JP6141708B2 - Plated copper alloy plate with excellent gloss - Google Patents

Plated copper alloy plate with excellent gloss Download PDF

Info

Publication number
JP6141708B2
JP6141708B2 JP2013143454A JP2013143454A JP6141708B2 JP 6141708 B2 JP6141708 B2 JP 6141708B2 JP 2013143454 A JP2013143454 A JP 2013143454A JP 2013143454 A JP2013143454 A JP 2013143454A JP 6141708 B2 JP6141708 B2 JP 6141708B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
plating
layer
glossiness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013143454A
Other languages
Japanese (ja)
Other versions
JP2015017286A (en
Inventor
熊谷 淳一
淳一 熊谷
真一 船木
真一 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2013143454A priority Critical patent/JP6141708B2/en
Publication of JP2015017286A publication Critical patent/JP2015017286A/en
Application granted granted Critical
Publication of JP6141708B2 publication Critical patent/JP6141708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、リードフレームとしての使用に適した光沢度に優れたAg或いはNiめっき付き銅合金板及びその製造に使用するCu−Fe−P系銅合金母板の製造方法に関する。   The present invention relates to an Ag or Ni-plated copper alloy plate excellent in glossiness suitable for use as a lead frame and a method for producing a Cu-Fe-P-based copper alloy mother plate used for the production thereof.

ICやLSI等の半導体装置に用いられるリードフレーム用の銅合金板として、熱伝導性、プレス加工性、導電性、機械的強度等の特性のバランスが取れ、その表面にSn、Ag、Ni等のめっき処理が施されたCu−Fe−P系銅合金板が多用されている。最近の発光ダイオードを用いたLEDチップ等の光学部材では、リードフレーム自体に高い光沢度が必要であり、特に、良好で均質なめっき光沢度を有するCu−Fe−P系銅合金板が求められている。
銅合金板は、一般的に鋳造、熱間圧延、冷間圧延、バフ研磨処理、焼鈍等の工程を適切に組み合わせて製造されており、その過程において、種々の塑性加工を受け、銅合金板の表層には、銅合金板内部よりも微細な結晶組織を呈する加工変質層と塑性変形層とが形成されている。加工変質層は、ベイルビー層(上層)と微細結晶層(下層) とからなり、その表面に形成されるめっきの諸性状に大きな影響を及ぼすことが知られている。
特許文献1では、銅合金の表層に存在する加工変質層の厚さを0.2μm以下、好ましくは、0.05μm以下にすることにより、めっき時の異常析出を防止してめっき性を向上させ、また、表層の加工変質層の厚さが0.2μm以下の銅合金上にめっきを施したものをリードフレーム、端子、コネクタ等の電子機器に適用することより、これらの製品の品質向上に寄与することが開示されている。
特許文献2では、良好な外観を有する光沢ニッケルめっき材、光沢ニッケルめっき材を用いた電子部品、及び、光沢ニッケルめっき材の製造方法が開示されており、光沢ニッケルめっき材は、圧延、スキンパス圧延、バフ研磨、ブラシ研磨により、表面に厚さが0.2μm以上で、結晶粒径が0.01〜0.3μmである加工変質層を形成した、ステンレス鋼、銅または銅合金等の金属基材と、該金属表面に形成したニッケルめっき層とを備えている。
特許文献3では、機械研磨上がりのNi−P−Sn系銅合金板において、錫めっきの耐熱剥離性を改善した、Ni:0.4〜1.6%(mass%、以下同じ)、Sn:0.4〜1.6%、P:0.027〜0.15%、Fe:0.005〜0.15%、及びZn:0.1〜1.1%を含み、Ni含有量とP含有量の比Ni/Pが15未満、残部が銅と不可避不純物からなる銅合金板が開示されており、熱処理上がり後に機械研磨で表面を清浄化され、微細結晶粒からなる表層の加工変質層の厚さは0.4μm以下とされている。
特許文献4には、Feを0.1質量%以上3.0質量%以下、Pを0.01質量%以上0.3質量%以下でそれぞれ含有し、残部がCuと不可避不純物からなる圧延された銅合金板において、銅合金板の表面層の加工変質層の厚さが100nm以下とし、銅合金板の酸化膜密着性を向上させることが開示されている。
As a copper alloy plate for lead frames used in semiconductor devices such as IC and LSI, it has a balance of properties such as thermal conductivity, press workability, conductivity, mechanical strength, etc., and Sn, Ag, Ni, etc. on its surface Cu-Fe-P-based copper alloy plates that have been subjected to the plating process are frequently used. In recent optical members such as LED chips using light emitting diodes, the lead frame itself needs to have high glossiness, and in particular, a Cu-Fe-P copper alloy plate having good and uniform plating glossiness is required. ing.
Copper alloy plates are generally manufactured by appropriately combining processes such as casting, hot rolling, cold rolling, buffing treatment, annealing, etc. In the process, the copper alloy plates are subjected to various plastic workings. In this surface layer, a work-affected layer and a plastically deformed layer exhibiting a finer crystal structure than the inside of the copper alloy plate are formed. It is known that the work-affected layer is composed of a Bailby layer (upper layer) and a fine crystal layer (lower layer), and has a great influence on various properties of plating formed on the surface.
In Patent Document 1, the thickness of the work-affected layer existing on the surface layer of the copper alloy is 0.2 μm or less, preferably 0.05 μm or less, thereby preventing abnormal precipitation during plating and improving the plating performance. In addition, by applying a plating on a copper alloy with a thickness of 0.2 μm or less to the surface damaged layer of the surface layer to electronic devices such as lead frames, terminals and connectors, the quality of these products can be improved. It is disclosed that it contributes.
Patent Document 2 discloses a bright nickel plating material having a good appearance, an electronic component using the bright nickel plating material, and a method for producing the bright nickel plating material. , Metal bases such as stainless steel, copper or copper alloy, on which a work-affected layer having a thickness of 0.2 μm or more and a crystal grain size of 0.01 to 0.3 μm is formed by buffing or brush polishing And a nickel plating layer formed on the metal surface.
In patent document 3, in Ni-P-Sn type copper alloy plate after mechanical polishing, the heat resistance peelability of tin plating was improved, Ni: 0.4 to 1.6% (mass%, the same applies hereinafter), Sn: 0.4-1.6%, P: 0.027-0.15%, Fe: 0.005-0.15%, and Zn: 0.1-1.1%, Ni content and P A copper alloy plate having a content ratio Ni / P of less than 15 and the balance being made of copper and unavoidable impurities is disclosed, and the surface of the work-affected layer is made of fine crystal grains whose surface is cleaned by mechanical polishing after heat treatment. The thickness is set to 0.4 μm or less.
In Patent Document 4, Fe is contained in an amount of 0.1% to 3.0% by mass, P is contained in an amount of 0.01% to 0.3% by mass, and the balance is rolled with Cu and inevitable impurities. In the copper alloy plate, it is disclosed that the thickness of the work-affected layer on the surface layer of the copper alloy plate is 100 nm or less to improve the oxide film adhesion of the copper alloy plate.

特開2007−39804号公報JP 2007-39804 A 特開2011−214066号公報JP 2011-214066 A 特開2010−236038号公報JP 2010-236038 A 特開2012−153950号公報JP 2012-153950 A

従来のAgめっき或いはNiめっきが表面に施されたCu−Fe−P系銅合金板は、光沢度が不足気味で均質性に欠け、リードフレームとしてLED等の光学部材へ適用した際には、光学素子からの光の取出し効率を低下させる大きな要因となっていた。   The Cu-Fe-P copper alloy plate with the conventional Ag plating or Ni plating applied to the surface is not glossy and lacks homogeneity, and when applied to an optical member such as an LED as a lead frame, This has been a major factor in reducing the light extraction efficiency from the optical element.

本発明では、上述の欠点を改良し、均質で良好なAg或いはNiめっき光沢度を有するリードフレーム用のめっき付き銅合金板及びその製造に使用するCu−Fe−P系銅合金母板の製造方法を提供する。   In the present invention, the above-mentioned drawbacks are improved, and a plated copper alloy plate for a lead frame having a uniform and good Ag or Ni plating gloss and the production of a Cu-Fe-P-based copper alloy mother plate used for the production thereof. Provide a method.

本発明者らは、特定の組成を有するCu−Fe−P系銅合金母板の表面に形成された加工変質層と、その加工変質層の表面に形成されたAgめっき層或いはNiめっき層の光沢度との関係につき、鋭意検討した結果、加工変質層の厚みと結晶粒径と表面粗さの比{(Rz=最大高さ粗さ)/(Rq=二乗平均平方根粗さ)}とが、それぞれに適正な範囲内である場合にのみ、加工変質層の表面に均質で良好な光沢度を有するAgめっき層或いはNiめっき層が形成されることを見出した。
また、上述のCu−Fe−P系銅合金母板は、溶解鋳造、熱間圧延、熱処理、仕上げ冷間圧延をこの順で含む工程で銅合金母板を製造するに際して、仕上げ冷間圧延の前或いは後に、ライン速度を0〜10mm/minとして、ワイヤー直径が0.〜0.6mmである回転型ワイヤーブラシにて、押付け圧力を〜15KPa、回転数を500〜2500rpmとして、仕上げ冷間圧延の前或いは後の銅合金板の表面を機械研磨することにより、上述の最適な加工変質層が得られ、その表面上にAgめっき或いはNiめっきを施した際に、均質で良好な光沢度を有するAgめっき層或いはNiめっき層が得られることも見出した。
The inventors of the present invention have provided a work-affected layer formed on the surface of a Cu-Fe-P-based copper alloy base plate having a specific composition, and an Ag plating layer or a Ni plating layer formed on the surface of the work-affected layer. As a result of intensive studies on the relationship with the glossiness, the ratio of the thickness of the work-affected layer, the crystal grain size and the surface roughness {(Rz = maximum height roughness) / (Rq = root mean square roughness)} It was found that an Ag plating layer or a Ni plating layer having a uniform and good glossiness is formed on the surface of the work-affected layer only when each is within an appropriate range.
In addition, the above-mentioned Cu-Fe-P-based copper alloy base plate is manufactured by a finish cold rolling process when manufacturing a copper alloy base plate in a process including melt casting, hot rolling, heat treatment, and finish cold rolling in this order. before or after, the line speed as 3 0 to 1 0 0 mm / min, a wire diameter 0. By mechanically polishing the surface of the copper alloy plate before or after finish cold rolling, with a pressing wire pressure of 5 to 15 KPa and a rotation speed of 500 to 2500 rpm with a rotary wire brush of 4 to 0.6 mm, It has also been found that when the above-mentioned optimum work-affected layer is obtained and Ag plating or Ni plating is applied on the surface thereof, an Ag plating layer or Ni plating layer having a uniform and good glossiness can be obtained.

即ち、本発明の光沢度に優れためっき付き銅合金板は、Fe;1.8〜2.4質量%、P;0.01〜0.08質量%、Zn;0.1〜0.5質量%、残部がCuおよび不可避的不純物である組成を有し、イオンミリングシステム(日立ハイテクノロジーズ社IM4000)を用いて試料の表面の横断面を研磨し、圧延方向に平行な断面を走査型電子顕微鏡(FE−SEM)にて観察して測定した、表面の加工変質層の厚みが0.3〜0.5μmであり、結晶粒径が0.05〜0.3μmであり、前記加工変質層の表面の最大高さ粗さ(Rz)と表面の二乗平均平方根粗さ(Rq)との比(Rz/Rq)が6.6〜7.9である銅合金母板と、前記加工変質層の上に形成された光沢度が570を超えるAgめっき層或いは光沢度が250を超えるNiめっき層とを有することを特徴とする。
本発明で使用する銅合金母板の基本組成は、Fe;1.8〜2.4質量%、P;0.01〜0.08質量%、Zn;0.1〜0.5質量%、残部がCuおよび不可避的不純物からなる。
Feは、銅の母相中に分散する析出物粒子を形成して強度及び耐熱性を向上させる効果があるが、その含有量が1.5質量%未満では析出物の個数が不足し、その効果を奏功せしめることができない。一方、2.4質量%を超えて含有すると、強度及び耐熱性の向上に寄与しない粗大な析出物粒子が存在してしまい、耐熱性に効果のある析出物粒子が不足してしまうことになる。このため、Feの含有量は1.5〜2.4質量%の範囲内とすることが好ましいが、1.8〜2.4質量%が本発明の範囲である。
Pは、Feと共に銅の母相中に分散する析出物粒子を形成して強度及び耐熱性を向上させる効果があるが、その含有量が0.008質量%未満では析出物粒子の個数が不足し、その効果を奏功せしめることができない。一方、0.08質量%を超えて含有すると、強度及び耐熱性の向上に寄与しない粗大な析出物が存在してしまい、耐熱性に効果のあるサイズの析出物粒子が不足してしまうことになると共に導電率及び加工性が低下してしまう。このため、Pの含有量は0.008〜0.08質量%の範囲内とすることが好ましいが、0.01〜0.08質量%が本発明の範囲である。
Znは、銅の母相中に固溶して半田耐熱剥離性を向上させる効果を有しており、0.01質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有しても、更なる効果を得ることが出来なくなると共に母層中への固溶量が多くなって導電率の低下をきたす。このため、Znの含有量は0.01〜0.5質量%の範囲内とすることが好ましいが、0.1〜0.5質量%が本発明の範囲である。
That is, the plated copper alloy plate having excellent glossiness according to the present invention is Fe: 1.8-2.4 mass%, P: 0.01-0.08 mass%, Zn: 0.1-0.5. It has a composition of mass%, the balance being Cu and inevitable impurities, and using an ion milling system (Hitachi High-Technologies Corporation IM4000), the cross section of the surface of the sample is polished, and the cross section parallel to the rolling direction is scanned by scanning electrons. The thickness of the work-affected layer on the surface measured with a microscope (FE-SEM) was 0.3 to 0.5 μm, the crystal grain size was 0.05 to 0.3 μm, and the work-affected layer A copper alloy base plate having a ratio (Rz / Rq) of the maximum height roughness (Rz) of the surface to the root mean square roughness (Rq) of the surface of 6.6 to 7.9, and the work-affected layer Ag plating layer with glossiness exceeding 570 formed on the surface or glossiness exceeding 250 And a Ni plating layer.
The basic composition of the copper alloy base plate used in the present invention is Fe: 1.8-2.4 mass%, P: 0.01-0.08 mass%, Zn: 0.1-0.5 mass%, The balance consists of Cu and inevitable impurities.
Fe has the effect of improving the strength and heat resistance by forming precipitate particles dispersed in the copper matrix, but if its content is less than 1.5% by mass, the number of precipitates is insufficient. The effect cannot be achieved. On the other hand, when the content exceeds 2.4% by mass, coarse precipitate particles that do not contribute to improvement in strength and heat resistance exist, and the precipitate particles effective in heat resistance are insufficient. . For this reason, the Fe content is preferably in the range of 1.5 to 2.4% by mass, but 1.8 to 2.4% by mass is within the scope of the present invention.
P has the effect of improving the strength and heat resistance by forming precipitate particles dispersed in the copper matrix with Fe, but if the content is less than 0.008% by mass, the number of precipitate particles is insufficient. However, the effect cannot be achieved. On the other hand, if the content exceeds 0.08% by mass, coarse precipitates that do not contribute to improvement in strength and heat resistance exist, and precipitate particles having a size effective for heat resistance are insufficient. At the same time, the conductivity and workability are reduced. For this reason, it is preferable to make content of P into the range of 0.008-0.08 mass%, but 0.01-0.08 mass% is the range of this invention.
Zn has the effect of improving the heat resistance peelability of the solid solution by dissolving in the copper matrix, and if less than 0.01% by mass, the effect cannot be achieved. On the other hand, even if the content exceeds 0.5% by mass, further effects cannot be obtained, and the amount of solid solution in the mother layer increases, resulting in a decrease in conductivity. For this reason, it is preferable to make content of Zn into the range of 0.01-0.5 mass%, but 0.1-0.5 mass% is the range of this invention.

銅合金母板の表面に形成される加工変質層が、その表面に形成されるめっきの性状に大きな影響を及ぼすことは周知であるが、Fe;1.〜2.4質量%、P;0.0〜0.08質量%、Zn;0.〜0.5質量%、残部がCuおよび不可避的不純物である組成を有する銅合金板において、その表面の加工変質層の厚みが0.〜0.5μmであり、結晶粒径が0.05〜0.μmであり、加工変質層の表面の最大高さ粗さ(Rz)と表面の二乗平均平方根粗さ(Rq)との比(Rz/Rq)が6.7.9であると、その表面に形成されたAgめっき層或いはNiめっき層のめっき光沢度が良好となり、圧延方向のGoodway方向とBadway方向での光沢度の差が少なくなり、光沢度の均質化が促進される。
加工変質層の厚みを0.1μm未満とするのは製造技術的に難しく、0.5μmを超えると、充分な光沢度が得られない。本発明では、加工変質層の厚みの範囲は0.3〜0.5μmである。結晶粒径が0.05μm未満では、均質性に乏しくなり、0.5μmを超えると充分な光沢度が得られない。本発明では、結晶粒径の範囲は0.05〜0.3μmである。表面粗さ比(Rz/Rq)が6.5未満では、均質性に乏しくなり、8.0を超えると充分な光沢度が得られない。本発明では、表面粗さ比(Rz/Rq)の範囲は6.6〜7.9である。
本発明では、表面の加工変質層の厚み及び結晶粒径は、銅合金板の圧延方向に平行な断面をFE−SEMによる観察から測定した。
発光ダイオードを用いたLEDチップ等への適用では、リードフレーム自体に均質で高い光沢度が求められ、めっきとしては、Agめっき或いはNiめっきが特に好ましいが、用途に応じては、Ni−Auめっき、Ni−Pd−Auめっき等でも支障はない。
Although it is well known that the work-affected layer formed on the surface of the copper alloy base plate greatly affects the properties of the plating formed on the surface, Fe; 8 to 2.4 mass%, P; 0.0 1 ~0.08 wt%, Zn; 0. In a copper alloy plate having a composition of 1 to 0.5% by mass, the balance being Cu and inevitable impurities, the thickness of the work-affected layer on the surface is 0.00. 3 to 0.5 μm, and the crystal grain size is 0.05 to 0.00. 3 is a [mu] m, the ratio between the maximum height surface roughness of the machining deteriorated layer (Rz) and the root mean square roughness of the surface (Rq) (Rz / Rq) 6. If it is 6 to 7.9 , the plating glossiness of the Ag plating layer or Ni plating layer formed on the surface becomes good, the difference in glossiness between the Goodway direction and Badway direction in the rolling direction is reduced, and the glossiness Homogenization is promoted.
If the thickness of the work-affected layer is less than 0.1 μm, it is difficult in terms of production technology, and if it exceeds 0.5 μm, sufficient glossiness cannot be obtained. In the present invention, the thickness range of the work-affected layer is 0.3 to 0.5 μm. If the crystal grain size is less than 0.05 μm, the homogeneity is poor, and if it exceeds 0.5 μm, sufficient glossiness cannot be obtained. In the present invention, the crystal grain size ranges from 0.05 to 0.3 μm. If the surface roughness ratio (Rz / Rq) is less than 6.5, the homogeneity is poor, and if it exceeds 8.0, sufficient glossiness cannot be obtained. In the present invention, the range of the surface roughness ratio (Rz / Rq) is 6.6 to 7.9.
In the present invention, the thickness and crystal grain size of the work-affected layer on the surface were measured by observing a cross section parallel to the rolling direction of the copper alloy plate by FE-SEM.
For application to LED chips using light emitting diodes, the lead frame itself is required to have a uniform and high glossiness, and as the plating, Ag plating or Ni plating is particularly preferable, but depending on the application, Ni—Au plating may be used. Ni-Pd-Au plating or the like is not problematic.

本発明の光沢度に優れためっき付き銅合金板は、前記銅合金母板が更にNi;0.003〜0.5質量%及びSn;0.003〜0.5質量%を含有することを特徴とする。
Niは、母相中に固溶して強度を向上させる効果を有しており、0.003質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有すると導電率の低下をきたす。このため、Niを含有する場合には、0.003〜0.5質量%の範囲内とすることが好ましい。
Snは、母相中に固溶して強度を向上させる効果を有しており、0.003質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有すると導電率の低下をきたす。このため、Snを含有する場合には、0.003〜0.5質量%の範囲内とすることが好ましい。
In the plated copper alloy plate having excellent glossiness according to the present invention, the copper alloy base plate further contains Ni; 0.003 to 0.5 mass% and Sn; 0.003 to 0.5 mass%. Features.
Ni has an effect of improving the strength by solid solution in the matrix, and if it is less than 0.003% by mass, the effect cannot be achieved. On the other hand, if the content exceeds 0.5% by mass, the conductivity is lowered. For this reason, when it contains Ni, it is preferable to set it as the range of 0.003-0.5 mass%.
Sn has the effect of improving the strength by solid solution in the matrix, and if it is less than 0.003 mass%, the effect cannot be achieved. On the other hand, if the content exceeds 0.5% by mass, the conductivity is lowered. For this reason, when it contains Sn, it is preferable to set it as the range of 0.003-0.5 mass%.

本発明の光沢度に優れためっき付き銅合金板は、前記銅合金母板が更にAl、Be、Ca、Cr、Mg及びSiのうちの少なくとも1種以上を含有し、その含有量の合計が0.0007〜0.5質量%に設定されていることを特徴とする。
これらの元素は、銅合金板の様々な特性を向上させる役割を有しており、用途に応じて選択的に添加することが好ましい。
In the copper alloy plate with plating excellent in the glossiness of the present invention, the copper alloy base plate further contains at least one of Al, Be, Ca, Cr, Mg and Si, and the total content thereof is It is set to 0.0007-0.5 mass%, It is characterized by the above-mentioned.
These elements have a role of improving various properties of the copper alloy sheet, and are preferably selectively added depending on the application.

本発明のCu−Fe−P系銅合金母板の製造方法は、溶解鋳造、熱間圧延、熱処理、仕上げ冷間圧延をこの順で含む工程で前記銅合金母板を製造するに際して、前記仕上げ冷間圧延の前或いは後に、ライン速度を0〜10mm/minとして、ワイヤー直径が0.〜0.6mmである回転型ワイヤーブラシにて、押付け圧力を〜15KPa、回転数を500〜2500rpmとして、前記仕上げ冷間圧延の前或いは後の銅合金板の表面を機械研磨することを特徴とする。
本発明では、銅合金母板の表面に形成される加工変質層は、仕上げ冷間圧延の前或いは後の銅合金板の表面を機械研磨することにより調整され、特に、回転型ワイヤーブラシ(ワイヤー直径:0.〜0.6mm、回転数:500〜2500rpm)を使用し、仕上げ冷間圧延の前或いは後の銅合金板(ライン速度:0〜10mm/min)の表面を押圧して機械研磨(押付け圧力:〜15KPa)することにより、表面の加工変質層の厚みを0.〜0.5μmとし、結晶粒径を0.05〜0.μmとし、表面粗さ(Rz)と表面粗さ(Rq)との比(Rz/Rq)を6.7.9とすることができる。
回転型ワイヤーブラシはホイル型或いはカップ型であることが好ましく、縦方向から押圧し、必要に応じて回転型ワイヤーブラシ自体をライン上の銅合金板の幅方向に往復移動させて機械研磨を施しても良い。
上述の機械研磨の条件の何れか一つでも範囲を外れると、目的とする加工変質層は得られない。
また、この機械研磨により形成された加工変質層に影響を及ぼさないように酸洗液にて酸洗処理しても良い。
The manufacturing method of the Cu-Fe-P-based copper alloy base plate of the present invention is the above-mentioned finishing when manufacturing the copper alloy base plate in a process including melt casting, hot rolling, heat treatment, and finish cold rolling in this order. before or after the cold rolling, a line speed as 3 0 to 1 0 0 mm / min, a wire diameter 0. The surface of the copper alloy plate before or after the finish cold rolling is mechanically polished with a rotary wire brush having a diameter of 4 to 0.6 mm and a pressing pressure of 5 to 15 KPa and a rotation speed of 500 to 2500 rpm. Features.
In the present invention, the work-affected layer formed on the surface of the copper alloy base plate is adjusted by mechanically polishing the surface of the copper alloy plate before or after the finish cold rolling. diameter:. 0 4 ~0.6mm, rotational speed: 500~2500Rpm) using a copper alloy plate before or after the finish cold rolling (line speed: 3 0 to 1 0 pressing the 0 mm / min) surface of And mechanical polishing (pressing pressure: 5 to 15 KPa) to reduce the thickness of the work-affected layer on the surface to 0. 3 to 0.5 μm, and the crystal grain size is 0.05 to 0. The ratio (Rz / Rq) between the surface roughness (Rz) and the surface roughness (Rq) is set to 3 μm. 6 to 7.9 .
The rotary wire brush is preferably a foil type or cup type, and is pressed from the vertical direction, and mechanically polished by reciprocating the rotary wire brush itself in the width direction of the copper alloy plate on the line as necessary. May be.
If any one of the above-mentioned mechanical polishing conditions is out of the range, the intended work-affected layer cannot be obtained.
Further, the pickling treatment may be performed with a pickling solution so as not to affect the work-affected layer formed by this mechanical polishing.

本発明により、リードフレームとしての使用に適した光沢度に優れたAg或いはNiめっき付き銅合金板及びその製造に使用するCu−Fe−P系銅合金母板の製造方法が提供される。   INDUSTRIAL APPLICABILITY According to the present invention, an Ag or Ni-plated copper alloy plate excellent in glossiness suitable for use as a lead frame and a method for producing a Cu-Fe-P-based copper alloy mother plate used for the production thereof are provided.

本発明の一実施対応例の光沢度に優れたAg或いはNiめっき付き銅合金板の断面概略図である。It is the cross-sectional schematic of the copper alloy board with Ag or Ni plating excellent in the glossiness of the example of 1 implementation corresponding to this invention.

以下、本発明の実施形態について詳細に説明する。
本発明の光沢度に優れためっき付き銅合金板1は、Fe;1.5〜2.4質量%、P;0.008〜0.08質量%、Zn;0.01〜0.5質量%、残部がCuおよび不可避的不純物である組成を有し、表面の加工変質層2の厚みが0.1〜0.5μmであり、結晶粒径が0.05〜0.5μmであり、加工変質層2の表面の最大高さ粗さ(Rz)と表面の二乗平均平方根粗さ(Rq)との比(Rz/Rq)が6.5〜8.0である銅合金母板3と、加工変質層2の上に形成されたAgめっき層或いはNiめっき層4とを有する。
Hereinafter, embodiments of the present invention will be described in detail.
The plated copper alloy plate 1 having excellent glossiness according to the present invention has Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass. %, The balance being Cu and inevitable impurities, the thickness of the work-affected layer 2 on the surface is 0.1 to 0.5 μm, the crystal grain size is 0.05 to 0.5 μm, A copper alloy base plate 3 having a ratio (Rz / Rq) of the maximum height roughness (Rz) of the surface of the altered layer 2 to the root mean square roughness (Rq) of 6.5 to 8.0; It has an Ag plating layer or a Ni plating layer 4 formed on the work-affected layer 2.

[銅合金母板の成分組成]
本発明で使用する銅合金母板3の基本組成は、Fe;1.5〜2.4質量%、P;0.008〜0.08質量%、Zn;0.01〜0.5質量%、残部がCuおよび不可避的不純物である。
Feは、銅の母相中に分散する析出物粒子を形成して強度及び耐熱性を向上させる効果があるが、その含有量が1.5質量%未満では析出物の個数が不足し、その効果を奏功せしめることができない。一方、2.4質量%を超えて含有すると、強度及び耐熱性の向上に寄与しない粗大な析出物粒子が存在してしまい、耐熱性に効果のある析出物粒子が不足してしまうことになる。このため、Feの含有量は1.5〜2.4質量%の範囲内とすることが好ましい。
Pは、Feと共に銅の母相中に分散する析出物粒子を形成して強度及び耐熱性を向上させる効果があるが、その含有量が0.008質量%未満では析出物粒子の個数が不足し、その効果を奏功せしめることができない。一方、0.08質量%を超えて含有すると、強度及び耐熱性の向上に寄与しない粗大な析出物が存在してしまい、耐熱性に効果のあるサイズの析出物粒子が不足してしまうことになると共に導電率及び加工性が低下してしまう。このため、Pの含有量は0.008〜0.08質量%の範囲内とすることが好ましい。
Znは、銅の母相中に固溶して半田耐熱剥離性を向上させる効果を有しており、0.01質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有しても、更なる効果を得ることが出来なくなると共に母層中への固溶量が多くなって導電率の低下をきたす。このため、Znの含有量は0.01〜0.5質量%の範囲内とすることが好ましい。
更に、この基本組成に対し、Ni;0.003〜0.5質量%及びSn;0.003〜0.5質量%を含有していることが好ましい。
Niは、母相中に固溶して強度を向上させる効果を有しており、0.003質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有すると導電率の低下をきたす。このため、Niを含有する場合には、0.003〜0.5質量%の範囲内とすることが好ましい。
Snは、母相中に固溶して強度を向上させる効果を有しており、0.003質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有すると導電率の低下をきたす。このため、Snを含有する場合には、0.003〜0.5質量%の範囲内とすることが好ましい。
更に、前述の基本組成に対し、或いは、この基本組成にNi;0.003〜0.5質量%及びSn;0.003〜0.5質量%を含有している上述の組成に対して、Al、Be、Ca、Cr、Mg及びSiのうちの少なくとも1種以上を含有し、その含有量の合計が0.0007〜0.5質量%に設定されていることが好ましい。
これらの元素は、銅合金の様々な特性を向上させる役割を有しており、用途に応じて選択的に添加することが好適である。
[Component composition of copper alloy mother board]
The basic composition of the copper alloy mother board 3 used in the present invention is as follows: Fe: 1.5 to 2.4 mass%, P: 0.008 to 0.08 mass%, Zn: 0.01 to 0.5 mass% The balance is Cu and inevitable impurities.
Fe has the effect of improving the strength and heat resistance by forming precipitate particles dispersed in the copper matrix, but if its content is less than 1.5% by mass, the number of precipitates is insufficient. The effect cannot be achieved. On the other hand, when the content exceeds 2.4% by mass, coarse precipitate particles that do not contribute to improvement in strength and heat resistance exist, and the precipitate particles effective in heat resistance are insufficient. . For this reason, it is preferable to make content of Fe into the range of 1.5-2.4 mass%.
P has the effect of improving the strength and heat resistance by forming precipitate particles dispersed in the copper matrix with Fe, but if the content is less than 0.008% by mass, the number of precipitate particles is insufficient. However, the effect cannot be achieved. On the other hand, if the content exceeds 0.08% by mass, coarse precipitates that do not contribute to improvement in strength and heat resistance exist, and precipitate particles having a size effective for heat resistance are insufficient. At the same time, the conductivity and workability are reduced. For this reason, it is preferable to make content of P into the range of 0.008-0.08 mass%.
Zn has the effect of improving the heat resistance peelability of the solid solution by dissolving in the copper matrix, and if less than 0.01% by mass, the effect cannot be achieved. On the other hand, even if the content exceeds 0.5% by mass, further effects cannot be obtained, and the amount of solid solution in the mother layer increases, resulting in a decrease in conductivity. For this reason, it is preferable to make content of Zn into the range of 0.01-0.5 mass%.
Furthermore, it is preferable to contain Ni; 0.003-0.5 mass% and Sn; 0.003-0.5 mass% with respect to this basic composition.
Ni has an effect of improving the strength by solid solution in the matrix, and if it is less than 0.003% by mass, the effect cannot be achieved. On the other hand, if the content exceeds 0.5% by mass, the conductivity is lowered. For this reason, when it contains Ni, it is preferable to set it as the range of 0.003-0.5 mass%.
Sn has the effect of improving the strength by solid solution in the matrix, and if it is less than 0.003 mass%, the effect cannot be achieved. On the other hand, if the content exceeds 0.5% by mass, the conductivity is lowered. For this reason, when it contains Sn, it is preferable to set it as the range of 0.003-0.5 mass%.
Furthermore, for the above-mentioned basic composition or for the above-mentioned composition containing Ni; 0.003-0.5% by mass and Sn; 0.003-0.5% by mass in this basic composition, It is preferable that at least one of Al, Be, Ca, Cr, Mg and Si is contained, and the total content thereof is set to 0.0007 to 0.5% by mass.
These elements have a role of improving various properties of the copper alloy, and it is preferable to selectively add them depending on the application.

[銅合金母板の表面の加工変質層]
銅合金母板3の表面に形成される加工変質層2は、その表面に形成されるめっきの性状に大きな影響を及ぼすことは周知であるが、Fe;1.5〜2.4質量%、P;0.008〜0.08質量%、Zn;0.01〜0.5質量%、残部がCuおよび不可避的不純物である組成を有する銅合金母板3において、その表面の加工変質層2の厚みが0.1〜0.5μmであり、結晶粒径が0.05〜0.5μmであり、加工変質層2の表面の最大高さ粗さ(Rz)と表面の二乗平均平方根粗さ(Rq)との比(Rz/Rq)が6.5〜8.0であると、その表面に形成されたAgめっき層或いはNiめっき層4のめっき光沢度が良好となり、圧延でのGoodway方向とBadway方向での光沢度の差が少なくなり、光沢度の均質化が促進される。
加工変質層4の厚みを0.1μm未満とするのは製造技術的に難しく、0.5μmを超えると、充分な光沢度が得られない。結晶粒径が0.05μm未満では、均質性に乏しくなり、0.5μmを超えると充分な光沢度が得られない。表面粗さ比(Rz/Rq)が6.5未満では、均質性に乏しくなり、8.0を超えると充分な光沢度が得られない。
本発明では、加工変質層4の厚み及び結晶粒径は、銅合金母板3の圧延方向に平行な断面をFE−SEMによる観察から測定した。
[Processed alteration layer on the surface of copper alloy mother board]
Although it is well known that the work-affected layer 2 formed on the surface of the copper alloy base plate 3 has a great influence on the properties of plating formed on the surface, Fe: 1.5 to 2.4% by mass, P: 0.008 to 0.08 mass%, Zn: 0.01 to 0.5 mass%, and the copper alloy base plate 3 having the balance of Cu and inevitable impurities, the work-affected layer 2 on the surface thereof The thickness is 0.1 to 0.5 μm, the crystal grain size is 0.05 to 0.5 μm, the maximum height roughness (Rz) of the surface of the work-affected layer 2 and the root mean square roughness of the surface When the ratio (Rz / Rq) to (Rq) is 6.5 to 8.0, the plating glossiness of the Ag plating layer or Ni plating layer 4 formed on the surface becomes good, and the Goodway direction in rolling And the difference in glossiness in the Badway direction is reduced, and homogenization of glossiness is promoted The
If the thickness of the work-affected layer 4 is less than 0.1 μm, it is difficult in terms of manufacturing technology, and if it exceeds 0.5 μm, sufficient glossiness cannot be obtained. If the crystal grain size is less than 0.05 μm, the homogeneity is poor, and if it exceeds 0.5 μm, sufficient glossiness cannot be obtained. If the surface roughness ratio (Rz / Rq) is less than 6.5, the homogeneity is poor, and if it exceeds 8.0, sufficient glossiness cannot be obtained.
In the present invention, the thickness and crystal grain size of the work-affected layer 4 were measured by observing a cross section parallel to the rolling direction of the copper alloy base plate 3 by FE-SEM.

[加工変質層の表面に施されたAgめっき層或いはNiめっき層]
発光ダイオードを用いたLEDチップ等への適用では、リードフレーム自体に均質な高い光沢度が求められ、そのめっきとしては、Agめっき或いはNiめっきが特に好ましいが、用途に応じては、Ni−Auめっき、Ni−Pd−Auめっき等でも支障はない。
加工変質層2の表面に形成されるAgめっき層或いはNiめっき層4の厚みは、特に制限はなく、用途に応じて適宜選択すれば良いが、費用対効果を考慮すると1〜5μmが好適である。そのめっき手法や条件も特に限定はされないが、例えば、Niめっき層4は、銅合金母板表面を脱脂及び酸洗した後に、無光沢Niめっき浴(スルファミン酸ニッケル;60g/l、ホウ酸;40g/l)を使用して、液温60℃、電流密度5A/dmにてNiめっきを施して形成されることが好ましい。また、例えば、Agめっき層4は、銅合金母板表面を脱脂及び酸洗した後に、Agめっき浴(シアン化銀;50g/L、シアン化;ナトリウム100g/L、炭酸カリウム;10g/L)を使用して、液温20℃、電流密度1.0A/dmにてAgめっきを施して形成されることが好ましい。
[Ag plating layer or Ni plating layer applied to the surface of the work-affected layer]
In application to an LED chip or the like using a light emitting diode, the lead frame itself is required to have a uniform and high glossiness. As the plating, Ag plating or Ni plating is particularly preferable, but depending on the application, Ni—Au There is no problem even with plating, Ni—Pd—Au plating or the like.
The thickness of the Ag plating layer or the Ni plating layer 4 formed on the surface of the work-affected layer 2 is not particularly limited and may be appropriately selected depending on the application. However, in consideration of cost effectiveness, 1 to 5 μm is preferable. is there. Although the plating technique and conditions are not particularly limited, for example, the Ni plating layer 4 is prepared by degreasing and pickling the surface of the copper alloy base plate, followed by a matte Ni plating bath (nickel sulfamate; 60 g / l, boric acid; 40 g / l) is preferably used by performing Ni plating at a liquid temperature of 60 ° C. and a current density of 5 A / dm 2 . Further, for example, the Ag plating layer 4 is prepared by degreasing and pickling the surface of the copper alloy base plate, followed by an Ag plating bath (silver cyanide; 50 g / L, cyanide; sodium 100 g / L, potassium carbonate; 10 g / L). It is preferably formed by performing Ag plating at a liquid temperature of 20 ° C. and a current density of 1.0 A / dm 2 .

[銅合金母板の製造方法]
本発明のCu−Fe−P系銅合金母板3の製造方法は、溶解鋳造、熱間圧延、熱処理、仕上げ冷間圧延をこの順で含む工程で銅合金母板を製造するに際して、仕上げ冷間圧延の前或いは後に、ライン速度を20〜120mm/minとして、ワイヤー直径が0.1〜0.6mmである回転型ワイヤーブラシにて、押付け圧力を1〜15KPa、回転数を500〜2500rpmとして、仕上げ冷間圧延の前或いは後の銅合金板の表面を機械研磨することを特徴とする。
銅合金母板3の表面に形成される加工変質層2は、仕上げ冷間圧延の前或いは後の銅合金板の表面を機械研磨することにより調整され、特に、回転型ワイヤーブラシ(ワイヤー直径:0.1〜0.6mm、回転数:500〜2500rpm)を使用し、仕上げ冷間圧延の前或いは後の銅合金板(ライン速度:20〜120mm/min)の表面を押圧して機械研磨(押付け圧力:1〜15KPa)することにより、表面の加工変質層2の厚みを0.1〜0.5μmとし、結晶粒径を0.05〜0.5μmとし、表面粗さ(Rz)と表面粗さ(Rq)との比(Rz/Rq)を6.5〜8.0とすることができる。
回転型ワイヤーブラシはホイル型或いはカップ型であることが好ましく、縦方向から押圧し、必要に応じて回転型ワイヤーブラシ自体をライン上の銅合金板の幅方向に往復移動させて機械研磨を施しても良い。
上述の機械研磨の条件の何れか一つでも範囲を外れると、目的とする加工変質層2は得られない。
また、この機械研磨後に、形成された加工変質層2に影響を及ぼさないように酸洗液にて酸洗処理しても良い。
回転型ワイヤーブラシではなく、適切な番手を有する研磨ロールを使用し、加工変質層2を形成することも考えられるが、研磨ロールよりも銅合金板に対して大きな加工歪みを
与えることができる回転型ワイヤーブラシを適切な条件で使用することにより、より効率的に目的とする加工変質層2を得ることができる。
製造方法の一例としては、所定の組成の原材料を電気炉により還元性雰囲気下で溶解・鋳造してCu−Fe−P系銅合金鋳塊を作製し、この鋳塊を熱間圧延してその表面をフライスで面削し、溶体化処理、冷間圧延、時効処理、仕上げ冷間圧延を実施してCu−Fe−P系銅合金母板3を製造するに際して、仕上げ冷間圧延の前或いは後に、ライン速度を20〜120mm/minとして、ワイヤー直径が0.1〜0.6mmである回転型ワイヤーブラシにて、押付け圧力を1〜15KPa、回転数を500〜2500rpmとして、仕上げ冷間圧延の前或いは後の銅合金板の表面を機械研磨することにより、表面の加工変質層2の厚みが0.1〜0.5μmであり、結晶粒径が0.05〜0.5μmであり、加工変質層2の表面の最大高さ粗さ(Rz)と表面の二乗平均平方根粗さ(Rq)との比(Rz/Rq)が6.5〜8.0となり、その加工変質層2の上に形成されたAg或いはNiめっき層4は、均質で良好なめっき光沢度を有することになる。
[Copper alloy mother board manufacturing method]
The manufacturing method of the Cu-Fe-P-based copper alloy mother board 3 of the present invention is a method for producing a cold-finished copper alloy mother board in a process including melt casting, hot rolling, heat treatment, and finish cold rolling in this order. Before or after the intermediate rolling, the line speed is set to 20 to 120 mm / min, the pressing pressure is set to 1 to 15 KPa, and the rotation speed is set to 500 to 2500 rpm with a rotating wire brush having a wire diameter of 0.1 to 0.6 mm. The surface of the copper alloy plate before or after the finish cold rolling is mechanically polished.
The work-affected layer 2 formed on the surface of the copper alloy base plate 3 is adjusted by mechanically polishing the surface of the copper alloy plate before or after finish cold rolling, and in particular, a rotary wire brush (wire diameter: The surface of the copper alloy plate (line speed: 20 to 120 mm / min) before or after finish cold rolling is pressed and mechanically polished (0.1 to 0.6 mm, rotation speed: 500 to 2500 rpm). Pressing pressure: 1 to 15 KPa), the thickness of the surface damaged layer 2 is 0.1 to 0.5 μm, the crystal grain size is 0.05 to 0.5 μm, the surface roughness (Rz) and the surface The ratio (Rz / Rq) to the roughness (Rq) can be 6.5 to 8.0.
The rotary wire brush is preferably a foil type or cup type, and is pressed from the vertical direction, and mechanically polished by reciprocating the rotary wire brush itself in the width direction of the copper alloy plate on the line as necessary. May be.
If any one of the above-mentioned mechanical polishing conditions is out of the range, the intended work-affected layer 2 cannot be obtained.
Further, after this mechanical polishing, pickling treatment with a pickling solution may be performed so as not to affect the formed damaged layer 2.
Although it is conceivable to use a polishing roll having an appropriate count instead of a rotating wire brush to form the work-affected layer 2, it is possible to give a larger processing strain to the copper alloy plate than the polishing roll. By using the mold wire brush under appropriate conditions, the intended work-affected layer 2 can be obtained more efficiently.
As an example of the manufacturing method, a raw material having a predetermined composition is melted and cast in a reducing atmosphere by an electric furnace to produce a Cu-Fe-P-based copper alloy ingot, and the ingot is hot-rolled to When the surface of the surface is milled and subjected to solution treatment, cold rolling, aging treatment, and finish cold rolling to produce the Cu-Fe-P-based copper alloy base plate 3, before the finish cold rolling or Later, with a rotating wire brush with a wire speed of 20 to 120 mm / min, a wire diameter of 0.1 to 0.6 mm, a pressing pressure of 1 to 15 KPa, a rotation speed of 500 to 2500 rpm, and finish cold rolling By mechanically polishing the surface of the copper alloy plate before or after, the thickness of the work-affected layer 2 on the surface is 0.1 to 0.5 μm, the crystal grain size is 0.05 to 0.5 μm, Maximum height roughness of surface of work-affected layer 2 The ratio (Rz / Rq) of the roughness (Rz) to the root mean square roughness (Rq) of the surface becomes 6.5 to 8.0, and the Ag or Ni plating layer 4 formed on the work-affected layer 2 Will have a uniform and good plating gloss.

以下、本発明の実施例について比較例を含めて詳細に説明する。
表1に示す組成(%は質量%である)の銅合金(添加元素以外の成分はCu及び不可避不純物)を、電気炉にて還元性雰囲気下で溶解し、厚さが30mm、幅が100mm、長さが250mmの鋳塊を作製した。この鋳塊を730℃にて1時間加熱した後、圧延率67%にて熱間圧延を施して厚さ10mmに仕上げ、その表面をフライスで板厚8mmになるまで面削した。次に、920℃にて3時間の溶体化処理を施し、板厚1.5mmまで冷間圧延を施し、450〜575℃にて3〜12時間の時効処理を施し、加工率70%にて仕上げ冷間圧延を施した後、ライン上を流れている銅合金板に、表1に示す条件にて、回転型ワイヤーブラシを使用して機械研磨を施し、表面に加工変質層が形成された板厚0.45mmの実施例1〜11、比較例1〜6に示すCu−Fe−P系銅合金薄板を作製した。
この場合、回転型ワイヤーブラシはホイル型(直径:480mmφ)とし、銅合金板幅は460mmとした。
Hereinafter, examples of the present invention will be described in detail including comparative examples.
A copper alloy having the composition shown in Table 1 (% is mass%) (components other than additive elements are Cu and inevitable impurities) is dissolved in a reducing atmosphere in an electric furnace and has a thickness of 30 mm and a width of 100 mm. An ingot having a length of 250 mm was produced. The ingot was heated at 730 ° C. for 1 hour, and then hot-rolled at a rolling rate of 67% to finish a thickness of 10 mm, and the surface thereof was milled with a milling machine until the plate thickness was 8 mm. Next, solution treatment is performed at 920 ° C. for 3 hours, cold-rolled to a sheet thickness of 1.5 mm, aging treatment is performed at 450 to 575 ° C. for 3 to 12 hours, and the processing rate is 70%. After finishing cold rolling, the copper alloy plate flowing on the line was mechanically polished using a rotating wire brush under the conditions shown in Table 1, and a work-affected layer was formed on the surface. Cu-Fe-P-based copper alloy thin plates shown in Examples 1 to 11 and Comparative Examples 1 to 6 having a plate thickness of 0.45 mm were produced.
In this case, the rotary wire brush was a foil type (diameter: 480 mmφ), and the copper alloy plate width was 460 mm.

Figure 0006141708
Figure 0006141708

これらの銅合金薄板から試料を切出し、それぞれの試料につき、表面の加工変質層の厚み、結晶粒径、Rz/Rqを測定した。
表面の加工変質層の厚み、結晶粒径は、イオンミリングシステム(日立ハイテクノロジーズ社IM4000)を用いて試料の表面の横断面を研磨し、圧延方向に平行な断面を走査型電子顕微鏡(FE−SEM)にて観察して測定した。
Rz/Rqは、レーザー顕微鏡(オリンパス社製OLS300)を使用して、Rz、Rqを測定し、その比を計算にて求めた。
これらの測定結果を表2に示す。
Samples were cut out from these copper alloy thin plates, and the thickness, crystal grain size, and Rz / Rq of the surface damaged layer were measured for each sample.
The thickness of the work-affected layer on the surface and the crystal grain size were determined by polishing the cross section of the surface of the sample using an ion milling system (Hitachi High-Technologies Corporation IM4000) and scanning the cross section parallel to the rolling direction with a scanning electron microscope (FE-). SEM) was observed and measured.
Rz / Rq was determined by measuring Rz and Rq using a laser microscope (OLS300 manufactured by Olympus Corporation) and calculating the ratio.
These measurement results are shown in Table 2.

Figure 0006141708
Figure 0006141708

次に、これらの試料につき、表面を脱脂及び酸洗した後に、無光沢Niめっき浴(スルファミン酸ニッケル;60g/l、ホウ酸;40g/l)を使用して、試料の表面に、液温60℃、電流密度5A/dmにて、厚さ3μmのNiめっき層を形成した。
これらの無光沢Niめっきが施された試料につき、光沢の外観観察を行った。外観評価は、試料のGoodway方向とBadway方向とから、光沢度計(日本電色工業製反射濃度計ND−1)を用いて測定した。Niめっきの光沢度は、測定値が250を超えるものを良好とした。
これらの結果を表3に示す。
また、前述の試料につき表面を脱脂、酸洗した後に、Agめっき浴(シアン化銀;50g/L、シアン化ナトリウム;100g/L、炭酸カリウム;10g/L)を使用して、試料の表面に、液温20℃、電流密度1.0A/dmにて、厚さ3μmのAgめっき層を形成した。
これらのAgめっきが施された試料につき、光沢の外観観察を行った。外観評価は、試料のGoodway方向とBadway方向とから、光沢度計(日本電色工業製反射濃度計ND−1)を用いて測定した。Agめっきの光沢度は、測定値が570を超えるものを良好とした。
これらの結果を表3に示す。
Next, after these surfaces were degreased and pickled, using a matte Ni plating bath (nickel sulfamate; 60 g / l, boric acid; 40 g / l), A Ni plating layer having a thickness of 3 μm was formed at 60 ° C. and a current density of 5 A / dm 2 .
With respect to the samples on which the matte Ni plating was applied, the appearance of gloss was observed. Appearance evaluation was measured using a gloss meter (Nippon Denshoku Kogyo Density Densitometer ND-1) from the Goodway direction and Badway direction of the sample. As for the glossiness of Ni plating, the measured value exceeded 250.
These results are shown in Table 3.
In addition, after degreasing and pickling the surface of the above-described sample, the surface of the sample was prepared using an Ag plating bath (silver cyanide; 50 g / L, sodium cyanide; 100 g / L, potassium carbonate; 10 g / L). Then, an Ag plating layer having a thickness of 3 μm was formed at a liquid temperature of 20 ° C. and a current density of 1.0 A / dm 2 .
Gloss appearance was observed for the samples plated with Ag. Appearance evaluation was measured using a gloss meter (Nippon Denshoku Kogyo Density Densitometer ND-1) from the Goodway direction and Badway direction of the sample. As for the glossiness of Ag plating, those with measured values exceeding 570 were considered good.
These results are shown in Table 3.

Figure 0006141708
Figure 0006141708

表1、表2、表3の結果より、実施例の試料は、比較例の試料に比べて、圧延方向のGoodway方向とBadway方向での光沢度の差が小さく、均質で高い光沢度を有していることがわかる。
即ち、本発明の製造方法で製造された銅合金母板にAgめっき層或いはNiめっき層を施しためっき付き銅合金板は、均質で優れた光沢度を有しており、光学部材等のリードフレームとして最適であることがわかる。
From the results of Table 1, Table 2 and Table 3, the sample of the example has a smaller difference in gloss between the Goodway direction and Badway direction of the rolling direction than the sample of the comparative example, and has a uniform and high gloss. You can see that
That is, the plated copper alloy plate obtained by applying the Ag plating layer or the Ni plating layer to the copper alloy base plate manufactured by the manufacturing method of the present invention has a uniform and excellent glossiness, and leads for optical members and the like. It turns out that it is optimal as a frame.

表4に示す組成(%は質量%である)の銅合金(添加元素以外の成分はCu及び不可避不純物)を、電気炉にて還元性雰囲気下で溶解し、厚さが30mm、幅が100mm、長さが250mmの鋳塊を作製した。この鋳塊を730℃にて1時間加熱した後、圧延率67%にて熱間圧延を施して厚さ10mmに仕上げ、その表面をフライスで板厚8mmになるまで面削した。次に、920℃にて3時間の溶体化処理を施し、板厚1.5mmまで冷間圧延を施し、450〜575℃にて3〜12時間の時効処理を施した後、ライン上を流れている銅合金板に、表4に示す条件にて、回転型ワイヤーブラシを使用して機械研磨を施し、その表面に加工変質層を形成した後、加工率50%にて仕上げ冷間圧延を施し、表面に加工変質層を有する板厚0.75mmの実施例21〜31、比較例21〜26に示すCu−Fe−P系銅合金薄板を作製した。
この場合、回転型ワイヤーブラシはホイル型(直径:480mmφ)とし、銅合金板幅は460mmとした。
A copper alloy having the composition shown in Table 4 (% is mass%) (components other than additive elements are Cu and inevitable impurities) is dissolved in a reducing atmosphere in an electric furnace and has a thickness of 30 mm and a width of 100 mm. An ingot having a length of 250 mm was produced. The ingot was heated at 730 ° C. for 1 hour, and then hot-rolled at a rolling rate of 67% to finish a thickness of 10 mm, and the surface thereof was milled with a milling machine until the plate thickness was 8 mm. Next, solution treatment is performed at 920 ° C. for 3 hours, cold rolling is performed to a plate thickness of 1.5 mm, and aging treatment is performed at 450 to 575 ° C. for 3 to 12 hours, and then flows on the line. The copper alloy sheet is mechanically polished using a rotating wire brush under the conditions shown in Table 4, and after forming a work-affected layer on the surface, finish cold rolling is performed at a processing rate of 50%. Cu-Fe-P-based copper alloy thin plates shown in Examples 21 to 31 and Comparative Examples 21 to 26 having a thickness of 0.75 mm and having a work-affected layer on the surface were prepared.
In this case, the rotary wire brush was a foil type (diameter: 480 mmφ), and the copper alloy plate width was 460 mm.

Figure 0006141708
Figure 0006141708

これらの銅合金薄板から試料を切出し、それぞれの試料につき、表面の加工変質層の厚み、結晶粒径、Rz/Rqを測定した。
表面の加工変質層の厚み、結晶粒径は、イオンミリングシステム(日立ハイテクノロジーズ社IM4000)を用いて試料の表面の横断面を研磨し、圧延方向に平行な断面を走査型電子顕微鏡(FE−SEM)にて観察して測定した。
Rz/Rqは、レーザー顕微鏡(オリンパス社製OLS300)を使用して、Rz、Rqを測定し、その比を計算にて求めた。
これらの測定結果を表5に示す。
Samples were cut out from these copper alloy thin plates, and the thickness, crystal grain size, and Rz / Rq of the surface damaged layer were measured for each sample.
The thickness of the work-affected layer on the surface and the crystal grain size were determined by polishing the cross section of the surface of the sample using an ion milling system (Hitachi High-Technologies Corporation IM4000) and scanning the cross section parallel to the rolling direction with a scanning electron microscope (FE-). SEM) was observed and measured.
Rz / Rq was determined by measuring Rz and Rq using a laser microscope (OLS300 manufactured by Olympus Corporation) and calculating the ratio.
These measurement results are shown in Table 5.

Figure 0006141708
Figure 0006141708

次に、これらの試料につき、表面を脱脂及び酸洗した後に、無光沢Niめっき浴(スルファミン酸ニッケル;60g/l、ホウ酸;40g/l)を使用して、試料の表面に、液温60℃、電流密度5A/dmにて厚さ3μmのNiめっき層を形成した。
これらの無光沢Niめっきが施された試料につき、光沢の外観観察を行った。外観評価は、試料のGoodway方向とBadway方向とから、光沢度計(日本電色工業製反射濃度計ND−1)を用いて測定した。Niめっきの光沢度は、測定値が250を超えるものは良好とした。
これらの結果を表6に示す。
また、前述の試料につき表面を脱脂、酸洗した後に、Agめっき浴(シアン化銀;50g/L、シアン化ナトリウム;100g/L、炭酸カリウム;10g/L)を使用して、試料の表面に、液温20℃、電流密度1.0A/dmにて厚さ3μmのAgめっき層を形成した。
これらのAgめっきが施された試料につき、光沢の外観観察を行った。外観評価は、試料のGoodway方向とBadway方向とから、光沢度計(日本電色工業製反射濃度計ND−1)を用いて測定した。Agめっきの光沢度は、測定値が570を超えるものは良好とした。
これらの結果を表6に示す。
Next, after these surfaces were degreased and pickled, using a matte Ni plating bath (nickel sulfamate; 60 g / l, boric acid; 40 g / l), A Ni plating layer having a thickness of 3 μm was formed at 60 ° C. and a current density of 5 A / dm 2 .
With respect to the samples on which the matte Ni plating was applied, the appearance of gloss was observed. Appearance evaluation was measured using a gloss meter (Nippon Denshoku Kogyo Density Densitometer ND-1) from the Goodway direction and Badway direction of the sample. As for the glossiness of Ni plating, those with measured values exceeding 250 were considered good.
These results are shown in Table 6.
In addition, after degreasing and pickling the surface of the above-described sample, the surface of the sample was prepared using an Ag plating bath (silver cyanide; 50 g / L, sodium cyanide; 100 g / L, potassium carbonate; 10 g / L). Then, an Ag plating layer having a thickness of 3 μm was formed at a liquid temperature of 20 ° C. and a current density of 1.0 A / dm 2 .
Gloss appearance was observed for the samples plated with Ag. Appearance evaluation was measured using a gloss meter (Nippon Denshoku Kogyo Density Densitometer ND-1) from the Goodway direction and Badway direction of the sample. As for the glossiness of Ag plating, those with measured values exceeding 570 were considered good.
These results are shown in Table 6.

Figure 0006141708
Figure 0006141708

表4、表5、表6の結果より、実施例の試料は、比較例の試料に比べて、圧延方向のGoodway方向とBadway方向での光沢度の差が小さく、均質で高い光沢度を有していることがわかる。
即ち、本発明の製造方法で製造された銅合金母板にAgめっき層或いはNiめっき層を施しためっき付き銅合金板は、均質で優れた光沢度を有しており、光学部材等のリードフレームとして最適であることがわかる。
From the results of Table 4, Table 5, and Table 6, the sample of the example has a smaller difference in glossiness between the Goodway direction and Badway direction of the rolling direction than the sample of the comparative example, and has a uniform and high glossiness. You can see that
That is, the plated copper alloy plate obtained by applying the Ag plating layer or the Ni plating layer to the copper alloy base plate manufactured by the manufacturing method of the present invention has a uniform and excellent glossiness, and leads for optical members and the like. It turns out that it is optimal as a frame.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   As mentioned above, although the manufacturing method of embodiment of this invention was demonstrated, this invention is not limited to this description, A various change can be added in the range which does not deviate from the meaning of this invention.

1 Cu−Fe−P系めっき付き銅合金板
2 加工変質層
3 銅合金母板
4 Agめっき層或いはNiめっき層
DESCRIPTION OF SYMBOLS 1 Copper alloy plate with Cu-Fe-P system plating 2 Work-affected layer 3 Copper alloy base plate 4 Ag plating layer or Ni plating layer

Claims (4)

Fe;1.8〜2.4質量%、P;0.01〜0.08質量%、Zn;0.1〜0.5質量%、残部がCuおよび不可避的不純物である組成を有し、イオンミリングシステム(日立ハイテクノロジーズ社IM4000)を用いて試料の表面の横断面を研磨し、圧延方向に平行な断面を走査型電子顕微鏡(FE−SEM)にて観察して測定した、表面の加工変質層の厚みが0.3〜0.5μmであり、結晶粒径が0.05〜0.3μmであり、前記加工変質層の表面の最大高さ粗さ(Rz)と表面の二乗平均平方根粗さ(Rq)との比(Rz/Rq)が6.6〜7.9である銅合金母板と、前記加工変質層の上に形成された光沢度が570を超えるAgめっき層或いは光沢度が250を超えるNiめっき層とを有することを特徴とする光沢度に優れためっき付き銅合金板。 Fe; 1.8 to 2.4 mass%, P; 0.01 to 0.08 mass%, Zn; 0.1 to 0.5 mass%, the balance being Cu and inevitable impurities, Surface processing , measured by observing a cross section parallel to the rolling direction with a scanning electron microscope (FE-SEM) using an ion milling system (Hitachi High-Technologies Corporation IM4000). The thickness of the deteriorated layer is 0.3 to 0.5 μm, the crystal grain size is 0.05 to 0.3 μm, the maximum height roughness (Rz) of the surface of the processed affected layer and the root mean square of the surface A copper alloy base plate having a ratio (Rz / Rq) to roughness (Rq) of 6.6 to 7.9, and an Ag plating layer or gloss having a glossiness of over 570 formed on the work-affected layer. Excellent in glossiness, characterized by having a Ni plating layer with a degree of more than 250 Plated copper alloy sheet. 前記銅合金母板は、更にNi;0.003〜0.5質量%及びSn;0.003〜0.5質量%を含有することを特徴とする請求項1に記載の光沢度に優れためっき付き銅合金板。   The said copper alloy mother board contains Ni; 0.003-0.5 mass% and Sn; 0.003-0.5 mass% further, It was excellent in the glossiness of Claim 1 characterized by the above-mentioned. Copper alloy plate with plating. 前記銅合金母板は、更にAl、Be、Ca、Cr、Mg及びSiのうちの少なくとも1種以上を含有し、その含有量の合計が0.0007〜0.5質量%に設定されていることを特徴とする請求項1または請求項2に記載の光沢度に優れためっき付き銅合金板。   The copper alloy base plate further contains at least one of Al, Be, Ca, Cr, Mg, and Si, and the total content thereof is set to 0.0007 to 0.5 mass%. The copper alloy plate with plating excellent in glossiness according to claim 1 or 2. Fe;1.8〜2.4質量%、P;0.01〜0.08質量%、Zn;0.1〜0.5質量%、残部がCuおよび不可避的不純物である組成を有し、イオンミリングシステム(日立ハイテクノロジーズ社IM4000)を用いて試料の表面の横断面を研磨し、圧延方向に平行な断面を走査型電子顕微鏡(FE−SEM)にて観察して測定した、表面の加工変質層の厚みが0.3〜0.5μmであり、結晶粒径が0.05〜0.3μmであり、前記加工変質層の表面の最大高さ粗さ(Rz)と表面の二乗平均平方根粗さ(Rq)との比(Rz/Rq)が6.6〜7.9である銅合金母板の製造方法であって、溶解鋳造、熱間圧延、熱処理、仕上げ冷間圧延をこの順で含む工程で前記銅合金母板を製造するに際して、前記仕上げ冷間圧延の前或いは後に、ライン速度を30〜100mm/minとして、ワイヤー直径が0.4〜0.6mmである回転型ワイヤーブラシにて、押付け圧力を5〜15KPa、回転数を500〜2500rpmとして、前記仕上げ冷間圧延の前或いは後の銅合金板の表面を機械研磨することを特徴とするCu−Fe−P系銅合金母板の製造方法。 Fe; 1.8 to 2.4 mass%, P; 0.01 to 0.08 mass%, Zn; 0.1 to 0.5 mass%, the balance being Cu and inevitable impurities, Surface processing , measured by observing a cross section parallel to the rolling direction with a scanning electron microscope (FE-SEM) using an ion milling system (Hitachi High-Technologies Corporation IM4000). The thickness of the deteriorated layer is 0.3 to 0.5 μm, the crystal grain size is 0.05 to 0.3 μm, the maximum height roughness (Rz) of the surface of the processed affected layer and the root mean square of the surface A method for producing a copper alloy base plate having a ratio (Rz / Rq) to roughness (Rq) of 6.6 to 7.9, in which melting casting, hot rolling, heat treatment, and finish cold rolling are performed in this order. In manufacturing the copper alloy base plate in the process of including, before the finish cold rolling or Later, with a rotary wire brush having a wire speed of 30 to 100 mm / min, a wire diameter of 0.4 to 0.6 mm, a pressing pressure of 5 to 15 KPa, a rotational speed of 500 to 2500 rpm, and the above finish cold A method for producing a Cu-Fe-P copper alloy base plate, wherein the surface of the copper alloy plate before or after rolling is mechanically polished.
JP2013143454A 2013-07-09 2013-07-09 Plated copper alloy plate with excellent gloss Active JP6141708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143454A JP6141708B2 (en) 2013-07-09 2013-07-09 Plated copper alloy plate with excellent gloss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143454A JP6141708B2 (en) 2013-07-09 2013-07-09 Plated copper alloy plate with excellent gloss

Publications (2)

Publication Number Publication Date
JP2015017286A JP2015017286A (en) 2015-01-29
JP6141708B2 true JP6141708B2 (en) 2017-06-07

Family

ID=52438553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143454A Active JP6141708B2 (en) 2013-07-09 2013-07-09 Plated copper alloy plate with excellent gloss

Country Status (1)

Country Link
JP (1) JP6141708B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320759B2 (en) * 2014-01-06 2018-05-09 三菱伸銅株式会社 Method for producing Cu-Fe-P copper alloy sheet
JP2016156056A (en) * 2015-02-24 2016-09-01 株式会社神戸製鋼所 Copper alloy sheet strip for lead frame of led
WO2023167230A1 (en) * 2022-03-04 2023-09-07 株式会社プロテリアル Copper alloy material and method for manufacturing copper alloy material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219996A (en) * 1999-02-01 2000-08-08 Kobe Steel Ltd Production of copper or copper alloy sheet for electronic parts
JP2007039804A (en) * 2005-07-05 2007-02-15 Furukawa Electric Co Ltd:The Copper alloy for electronic apparatus and method of producing the same
JP2009293091A (en) * 2008-06-06 2009-12-17 Hitachi Cable Ltd Method for producing copper alloy for electrical or electronic parts
JP5525369B2 (en) * 2010-03-11 2014-06-18 三菱伸銅株式会社 Cu-Fe-P copper alloy strips for electronic equipment with excellent resin adhesion
JP4629154B1 (en) * 2010-03-23 2011-02-09 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP5869749B2 (en) * 2010-03-31 2016-02-24 Jx金属株式会社 Manufacturing method of bright nickel plating material, and manufacturing method of electronic component using bright nickel plating material
JP4608025B1 (en) * 2010-06-03 2011-01-05 三菱伸銅株式会社 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
JP2012114260A (en) * 2010-11-25 2012-06-14 Mitsubishi Shindoh Co Ltd Solar cell electrode wire rod and base material thereof and base material manufacturing method
JP2012099555A (en) * 2010-10-29 2012-05-24 Mitsubishi Shindoh Co Ltd Light-emitting device for backlight
JP5710225B2 (en) * 2010-11-25 2015-04-30 三菱伸銅株式会社 Cu-Fe-P copper alloy strip for electronic equipment with excellent surface roughening and resin adhesion

Also Published As

Publication number Publication date
JP2015017286A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP6385382B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP6696769B2 (en) Copper alloy plate and connector
JP6155405B2 (en) Copper alloy material and method for producing the same
TW200918678A (en) Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same
JP5619389B2 (en) Copper alloy material
JP2009144248A (en) Deposition type copper alloy material for electronic equipment, and method for production thereof
KR20130143647A (en) Cu-ni-si based alloy and process for manufacturing same
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
TWI541367B (en) Cu-Ni-Si type copper alloy sheet having good mold resistance and shearing workability and manufacturing method thereof
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP6141708B2 (en) Plated copper alloy plate with excellent gloss
KR101682801B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
KR101688300B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP6302009B2 (en) Rolled copper alloy, method for producing the same, and electric / electronic component
JP4197717B2 (en) Copper alloy plate for electrical and electronic parts with excellent plating properties
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP6320759B2 (en) Method for producing Cu-Fe-P copper alloy sheet
JP6301618B2 (en) Copper alloy material and method for producing the same
JP2018070938A (en) Copper alloy sheet material and manufacturing method therefor
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP2011046970A (en) Copper alloy material and method for producing the same
JP5236973B2 (en) Copper alloy plate for QFN package with excellent dicing workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6141708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250