JP2009293091A - Method for producing copper alloy for electrical or electronic parts - Google Patents

Method for producing copper alloy for electrical or electronic parts Download PDF

Info

Publication number
JP2009293091A
JP2009293091A JP2008149194A JP2008149194A JP2009293091A JP 2009293091 A JP2009293091 A JP 2009293091A JP 2008149194 A JP2008149194 A JP 2008149194A JP 2008149194 A JP2008149194 A JP 2008149194A JP 2009293091 A JP2009293091 A JP 2009293091A
Authority
JP
Japan
Prior art keywords
copper alloy
plating
copper
annealing
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008149194A
Other languages
Japanese (ja)
Inventor
Noriyuki Nomoto
詞之 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008149194A priority Critical patent/JP2009293091A/en
Publication of JP2009293091A publication Critical patent/JP2009293091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a copper alloy for electrical or electronic parts which can obtain satisfactory plating quality without strengthening pre-plating treatment and without damaging required characteristics to the material. <P>SOLUTION: Regarding a copper sheet or a copper alloy sheet rolled into a prescribed thickness through the stages of dissolution, casting, hot rolling, cold rolling, annealing or the like of pure copper or copper alloy, working strain is applied only to the vicinity of the surface layer of the material, thereafter, annealing is performed in an inert gas or reducing gas atmosphere, and subsequently, only the vicinity of the surface layer to which the working strain has been applied is subjected to the recovery of the rolled structure or is recrystallized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、良好な強度および導電性を有するとともに、めっき品質に優れた電気・電子部品用銅合金の製造方法に関するものである。   The present invention relates to a method for producing a copper alloy for electrical and electronic parts having good strength and conductivity and excellent plating quality.

銅および銅合金は熱伝導性が非常に高いことから電気・電子部品用材料として利用されている。電気・電子部品として、リードフレームやコネクタが挙げられるが、これらは通常銅材料に各種めっきを施して使用される。例えばリードフレーム用ではワイヤ・ボンディングのためにAgめっきやその下地のCuめっきが、基板実装のために半田めっきが施される。更に近年では先めっきリードフレーム(以下PPF)と呼ばれる方法が利用されるようになり、Niめっきの上にPdめっきおよびAuめっきが施される。PPFでは、樹脂モールデイング工程後の半田めっき工程が省略できると共にPbフリー対策としても有効なため、適用が拡がっている。   Copper and copper alloys are used as materials for electric and electronic parts because of their very high thermal conductivity. Examples of electrical / electronic components include lead frames and connectors, which are usually used after various plating is applied to a copper material. For example, for lead frames, Ag plating and underlying Cu plating are used for wire bonding, and solder plating is applied for board mounting. In recent years, a method called a pre-plated lead frame (hereinafter referred to as PPF) has come to be used, and Pd plating and Au plating are performed on Ni plating. In PPF, since the solder plating process after the resin molding process can be omitted and effective as a Pb-free measure, the application has been expanded.

めっき品質には、めっき前処理条件と共に銅材料の化学組成や表面の物理的状態および化学的状態が大きく影響する。   The plating quality is greatly affected by the chemical composition of the copper material and the physical and chemical state of the surface as well as the pretreatment conditions for plating.

めっき品質に優れた銅合金の製造方法として、例えば特許文献1〜4が挙げられる。特許文献2や特許文献3では、介在物の個数を規定している。特許文献2や特許文献1では、材料表面の加工変質層の厚さを規定している。   As a method for producing a copper alloy having excellent plating quality, for example, Patent Documents 1 to 4 can be cited. In Patent Document 2 and Patent Document 3, the number of inclusions is defined. In Patent Document 2 and Patent Document 1, the thickness of the work-affected layer on the material surface is defined.

加工変質層とは、冷間圧延で得られた銅板の表層部に存在する層であり、その最表層は結晶性の乱れた非晶質になっていると考えられている。厚さは、圧下率、圧延条件、材料特性に大きく影響されるが、一般的に表層1μm以内に存在するといわれている。   The work-affected layer is a layer present in the surface layer portion of a copper plate obtained by cold rolling, and the outermost layer is considered to be amorphous with disordered crystallinity. The thickness is greatly influenced by the rolling reduction, rolling conditions, and material characteristics, but it is generally said that the thickness exists within 1 μm of the surface layer.

加工変質層は、めっき品質に大きく影響し、加工変質層が厚い場合や結晶性の乱れが激しい場合、めっき品質が著しく低下する。具体的には、ピン・ホール、剥がれ、その後の加熱での膨れ等である。   The work-affected layer greatly affects the plating quality, and when the work-affected layer is thick or the crystallinity is severely disturbed, the plating quality is remarkably lowered. Specifically, pin holes, peeling, and subsequent swelling due to heating.

このため、従来は加工変質層を除去するために、酸洗等の前処理を充分に実施する、若しくは所定の温度で焼鈍し回復・再結晶させる等の方法が採られてきた。   For this reason, conventionally, in order to remove the work-affected layer, a pretreatment such as pickling has been sufficiently performed, or annealing at a predetermined temperature for recovery and recrystallization has been employed.

特開2007−39804号公報JP 2007-39804 A 特許第3383615号公報Japanese Patent No. 3383615 特開昭58−123846号公報Japanese Patent Laid-Open No. 58-123846 特開平2−100355号公報Japanese Patent Laid-Open No. 2-100355

しかし、加工変質層の除去のために酸洗処理を強くすると、量産製造工程では製造コストの増大に繋がる。銅材料の酸洗液は、一般的にH2SO4にH22やその他の酸化剤を加えたものを使用するが、H22は濃度管理が難しく、その他の酸化剤も製造コスト上昇の要因になる。また、量産製造工程で酸洗処理時間を長くすると酸洗ラインを長くするかライン速度を低下させる必要があり、これも製造コスト上昇の要因になる。 However, if the pickling treatment is strengthened to remove the work-affected layer, the production cost increases in the mass production process. The pickling solution for copper materials is generally H 2 SO 4 with H 2 O 2 and other oxidizing agents added, but H 2 O 2 is difficult to control the concentration, and other oxidizing agents are also produced. It becomes a factor of cost increase. Further, if the pickling time is increased in the mass production process, it is necessary to lengthen the pickling line or reduce the line speed, which also causes an increase in manufacturing cost.

一方、所定の温度で回復・再結晶させる方法では材料全体の強度が低下してしまい、要求特性を満たせなくなる可能性がある。   On the other hand, in the method of recovery / recrystallization at a predetermined temperature, the strength of the entire material is lowered, and the required characteristics may not be satisfied.

本発明の目的は、上記課題を解決し、めっき前処理を強化することなく、また材料への要求特性を損なうことなく良好なめっき品質が得られる電気・電子部品用銅合金の製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems and to provide a method for producing a copper alloy for electrical and electronic parts that can obtain good plating quality without strengthening the plating pretreatment and without impairing the required properties of the material. There is to do.

上記目的を達成するために本発明は、純銅若しくは銅合金を溶解、鋳造、熱間圧延、冷間圧延、焼鈍等の工程を経て所定の厚さに圧延した銅板若しくは銅合金板を、材料表層近傍にのみ加工歪みを与えた後、不活性ガス若しくは還元ガス雰囲気中で焼鈍させて、加工歪みを与えた表層近傍のみを、圧延組織の回復若しくは再結晶させることを特徴とする電気・電子部品用銅合金の製造方法である。   In order to achieve the above object, the present invention provides a material surface layer of a copper plate or a copper alloy plate obtained by melting pure copper or a copper alloy through a process such as melting, casting, hot rolling, cold rolling, annealing, etc. An electrical / electronic component characterized by applying a processing strain only to the vicinity and then annealing in an inert gas or reducing gas atmosphere to recover or recrystallize the rolled structure only in the vicinity of the surface layer to which the processing strain has been applied. It is a manufacturing method of the copper alloy.

表層近傍にのみ加工歪みを与える手段が、所定の厚さに最終圧延した銅板若しくは銅合金板をブラシや砥粒等を用いた研磨によるのが好ましい。   It is preferable that the means for imparting the processing strain only in the vicinity of the surface layer is by polishing a copper plate or copper alloy plate finally rolled to a predetermined thickness using a brush or abrasive grains.

本発明は、めっき前処理を強化することなく、また銅合金の強度、導電率といった基本特性を損なうことなく良好なめっき品質が得られる電気・電子部品用銅合金の製造方法を開発したもので、その効果は非常に大きい。更に、半田濡れ性の改善効果についてもめっき品質の向上と同様に得られる。   The present invention has developed a method for producing a copper alloy for electrical and electronic parts that can provide good plating quality without strengthening the plating pretreatment and without impairing the basic properties such as strength and conductivity of the copper alloy. The effect is very great. Furthermore, the effect of improving the solder wettability can be obtained in the same manner as the plating quality.

以下、本発明に係るめっき品質の良好な電気・電子部品用銅合金の製造方法の好適な一実施の形態を説明する。   Hereinafter, a preferred embodiment of a method for producing a copper alloy for electrical / electronic parts with good plating quality according to the present invention will be described.

本発明者は、リードフレーム用銅合金として広く使用されている数種の銅合金について、研磨条件とその後の焼鈍条件で加工変質層がどのように変化し、更にめっき品質にどのように影響するかを鋭意調査した。   The inventor of the present invention has determined how the work-affected layer changes depending on the polishing conditions and the subsequent annealing conditions, and further affects the plating quality for several types of copper alloys widely used as lead frame copper alloys. We conducted an extensive investigation.

その結果、最終圧延後に、材料表層近傍にのみ加工歪みを与えた後、不活性ガス若しくは還元ガス雰囲気中で適切な温度および時間において焼鈍することにより、表層近傍のみ回復若しくは再結晶させることが可能となり、この結果めっき品質が著しく向上することが判明した。更に、材料表層近傍にのみ加工歪みを与える方法を摸索検討した結果、材料表面をブラシや砥粒等の研磨剤を用いてランダムな方向に研磨することが有効であることが判明した。   As a result, after the final rolling, it is possible to recover or recrystallize only the vicinity of the surface layer by annealing at an appropriate temperature and time in an inert gas or reducing gas atmosphere after giving processing strain only to the material surface layer vicinity. As a result, it was found that the plating quality was remarkably improved. Furthermore, as a result of scrutinizing a method for imparting a processing strain only in the vicinity of the material surface layer, it has been found that it is effective to polish the material surface in a random direction using an abrasive such as a brush or abrasive grains.

すなわち本発明は、所定の厚さに圧延した銅板若しくは銅合金板を、材料表層近傍にのみ加工歪みを与えた後、不活性ガス若しくは還元ガス雰囲気中で適切な温度および時間において焼鈍することにより、表層近傍のみ回復若しくは再結晶させるめっき品質に優れた電気・電子部品用銅合金の製造方法にある。   That is, the present invention is to anneal a copper plate or copper alloy plate rolled to a predetermined thickness only in the vicinity of the material surface layer at an appropriate temperature and time in an inert gas or reducing gas atmosphere. In the method for producing a copper alloy for electric / electronic parts having excellent plating quality that recovers or recrystallizes only the vicinity of the surface layer.

以下に本発明の実施の形態をさらに詳しく説明する。   The embodiment of the present invention will be described in more detail below.

通常坩堝式溶解炉やチャネル式溶解炉等の電気炉で所定の成分を溶解後、連続鋳造により厚さ150〜250mm、幅400〜1000mm程度の矩形断面鋳塊(ケーク)を鋳造する。   Usually, after melting predetermined components in an electric furnace such as a crucible melting furnace or a channel melting furnace, a rectangular cross-section ingot (cake) having a thickness of about 150 to 250 mm and a width of about 400 to 1000 mm is cast by continuous casting.

ケークを800〜1000℃の温度において30分以上保持後、熱間圧延機により厚さ10〜15mm程度に圧延する。   After holding the cake at a temperature of 800 to 1000 ° C. for 30 minutes or more, the cake is rolled to a thickness of about 10 to 15 mm by a hot rolling mill.

熱間圧延の適正温度は化学組成によって異なり、一般的に析出型銅合金では添加元素が固溶する温度で熱間圧延を開始することが望ましいが、高すぎると酸化スケールが増大する。   The appropriate temperature for hot rolling varies depending on the chemical composition. In general, it is desirable to start hot rolling at a temperature at which an additive element is dissolved in a precipitation-type copper alloy, but if it is too high, the oxide scale increases.

熱間圧延後は、面削により酸化膜を除去して、一般的にその後は冷間圧延、焼鈍(時効処理を含む)、必要に応じて酸洗を繰り返し、最終圧延に至る。圧延による加工歪みを与えることにより材料は加工硬化し、強度が上昇する。   After hot rolling, the oxide film is removed by chamfering, and generally thereafter, cold rolling, annealing (including aging treatment), and pickling as necessary are repeated to reach final rolling. By giving the processing distortion by rolling, the material is work-hardened and the strength is increased.

本発明において、最終圧延後、材料表面をブラシや砥粒等の研磨剤を用いてランダムな方向に研磨する。   In the present invention, after the final rolling, the material surface is polished in a random direction using an abrasive such as a brush or abrasive grains.

研磨方向が一定の場合には研磨痕が残り、逆にめっき品質を低下させるため、ブラシの場合、番手が#2000より荒いと、表面の凹凸が増え、逆にめっき品質を低下させるため、番手は#2000以上の細かいブラシを使用する。   When the polishing direction is constant, polishing marks remain, and conversely, the plating quality deteriorates. In the case of a brush, if the count is rougher than # 2000, surface irregularities increase, and conversely the plating quality decreases. Use a fine brush of # 2000 or higher.

また砥粒で研磨する場合、アルミナやダイヤモンドが考えられるが、砥粒の直径が1μmより荒いと表面の凹凸が増え、逆にめっき品質を低下させるため、粒径は直径1μm以下の細かい砥粒を使用する。   In addition, when polishing with abrasive grains, alumina or diamond can be considered, but if the diameter of the abrasive grains is rougher than 1 μm, the surface irregularities increase, and conversely, the plating quality is deteriorated. Is used.

また、加える垂直応力は材料の降伏応力の2%以上20%未満とする。2%より小さい場合は、材料表面に充分な歪みを付与できない。20%以上の場合、研磨が困難となる他、材料への損傷が大きくまた逆効果となる。更に材料と研磨剤の相対速度は、10m/min以上、300m/min未満とする。10m/minより遅い場合は、材料表面に充分な歪みを付与できない。300m/min以上の場合、研磨が困難となる他、材料への損傷が大きくなり逆効果となる。   Further, the applied normal stress is 2% or more and less than 20% of the yield stress of the material. If it is less than 2%, sufficient distortion cannot be imparted to the material surface. If it is 20% or more, polishing becomes difficult, and damage to the material is great, which also has an adverse effect. Furthermore, the relative speed of the material and the abrasive is 10 m / min or more and less than 300 m / min. When it is slower than 10 m / min, sufficient distortion cannot be imparted to the material surface. In the case of 300 m / min or more, polishing becomes difficult, and damage to the material is increased, resulting in an adverse effect.

以上の材料表面への歪み付与後、不活性ガス雰囲気若しくは還元ガス雰囲気中で、適切な温度(300〜550℃)および適切な時間(30秒〜2分)で、焼鈍することにより、表層部のみ回復若しくは再結晶させた材料を得ることが可能となる。   After imparting strain to the material surface as described above, the surface layer part is obtained by annealing at an appropriate temperature (300 to 550 ° C.) and an appropriate time (30 seconds to 2 minutes) in an inert gas atmosphere or a reducing gas atmosphere. Only recovered or recrystallized material can be obtained.

雰囲気を不活性ガス雰囲気若しくは還元ガス雰囲気としない場合、めっき前に表面の酸化膜を除去するために酸洗を充分実施することが必要となる。焼鈍の条件は材料の化学組成、製造工程によって変化するため、その都度適正化させる必要がある。   When the atmosphere is not an inert gas atmosphere or a reducing gas atmosphere, it is necessary to sufficiently perform pickling in order to remove the oxide film on the surface before plating. Since the annealing conditions vary depending on the chemical composition of the material and the manufacturing process, it is necessary to optimize each time.

以上の本発明の製造方法により、めっき品質に優れた電気・電子部品用銅合金条が得られる。   By the manufacturing method of the present invention described above, a copper alloy strip for electric / electronic parts having excellent plating quality can be obtained.

なお、加工変質層厚さの評価は、SEMの反射電子像、EBSPで、めっき品質の評価はAgめっきの加熱膨れ試験、Niめっきのポロシティ評価試験、メニスコグラフによる半田濡れ性評価試験で実施した。   The thickness of the work-affected layer was evaluated by an SEM reflected electron image and EBSP, and the plating quality was evaluated by a thermal expansion test of Ag plating, a porosity evaluation test of Ni plating, and a solder wettability evaluation test by a meniscograph.

中周波誘導型坩堝炉でCu−2.2mass%Fe−0.03mass%P−0.12mass%Znの組成に溶解・調整後、銅製鋳型で半連続鋳造し、断面サイズ180mm×620mm、長さ6000mmの矩形断面鋳塊を鋳造した。   After melting and adjusting to a composition of Cu-2.2 mass% Fe-0.03 mass% P-0.12 mass% Zn in a medium frequency induction type crucible furnace, semi-continuous casting with a copper mold, cross-sectional size 180 mm x 620 mm, length A 6000 mm rectangular ingot was cast.

次に鋳塊を900℃に加熱後、約3時間保持し、11パスで厚さ約12mmに熱間圧延した。   The ingot was then heated to 900 ° C., held for about 3 hours, and hot rolled to a thickness of about 12 mm in 11 passes.

酸化スケールを除去後、冷間圧延、時効処理、酸洗、冷間圧延焼鈍を実施し、圧下率80%の最終圧延を実施した。   After removing the oxide scale, cold rolling, aging treatment, pickling, and cold rolling annealing were performed, and final rolling with a reduction rate of 80% was performed.

この後、表1に示すような条件で加工歪みを導入した。   Thereafter, processing strain was introduced under the conditions shown in Table 1.

Figure 2009293091
Figure 2009293091

表1において、実施例1は、番手#2000以上の細かいブラシで、押付圧30MPa、研磨速度30m/minで行い、実施例2は、アルミナ砥粒(粒径1μm以下)で、押付圧30MPa、研磨速度60m/minで行ったものである。   In Table 1, Example 1 is performed with a fine brush of count # 2000 or more at a pressing pressure of 30 MPa and a polishing rate of 30 m / min. Example 2 is alumina abrasive grains (particle size of 1 μm or less), and a pressing pressure of 30 MPa. This is performed at a polishing rate of 60 m / min.

比較例1は、ブラシで、押付圧5MPa、研磨速度30m/minで行い、比較例2は、ブラシで、押付圧150MPa、研磨速度30m/minで行い、比較例3は、アルミナ砥粒で、押付圧30MPa、研磨速度5m/minで行い、比較例4は、アルミナ砥粒で、押付圧30MPa、研磨速度400m/minで行い、従来例1は加工歪みを導入させない、そのままのものとした。   Comparative Example 1 was performed with a brush at a pressing pressure of 5 MPa and a polishing rate of 30 m / min, Comparative Example 2 was performed with a brush at a pressing pressure of 150 MPa and a polishing rate of 30 m / min, and Comparative Example 3 was an alumina abrasive grain. The pressing pressure was 30 MPa and the polishing rate was 5 m / min. Comparative Example 4 was alumina abrasive grains, and the pressing pressure was 30 MPa and the polishing rate was 400 m / min. Conventional Example 1 was used as it was without introducing processing strain.

このうち比較例2は、ブラシの押付圧が高く、また比較例4は研磨速度が速いため、安定して研磨できずサンプル作製が不可となった。   Among them, Comparative Example 2 had a high brush pressing pressure, and Comparative Example 4 had a high polishing rate, so that stable polishing could not be performed, making it impossible to produce a sample.

更に、Ar雰囲気中において300〜550℃の温度で1分の歪み除去焼鈍を実施した。   Furthermore, strain removal annealing was performed at a temperature of 300 to 550 ° C. for 1 minute in an Ar atmosphere.

図1は、実施例1、2、比較例1〜4、従来例1の各サンプルの歪み除去焼鈍温度に対する引張強さおよび伸びとの関係を示したもので、黒四角印は引張り強さ、黒丸印は伸びである。   FIG. 1 shows the relationship between the tensile strength and elongation of the samples of Examples 1 and 2 and Comparative Examples 1 to 4 and Conventional Example 1 with respect to the strain-removal annealing temperature, and the black squares indicate the tensile strength, A black circle mark is elongation.

材料全体の引張強さおよび伸びは、黒四角印、黒丸印ともに相互に重なり、表1の条件にはよらず、実施例1、2、比較例1〜4とも、従来例1と同等であることがわかる。   The tensile strength and elongation of the whole material overlap with each other in both the black square mark and the black circle mark, and regardless of the conditions in Table 1, Examples 1 and 2 and Comparative Examples 1 to 4 are equivalent to Conventional Example 1. I understand that.

この材料の要求特性は、引張強さ520MPa以上、伸び5%以上であり、これを満たす焼鈍温度は、図1から425〜500℃であることがわかる。   The required characteristics of this material are a tensile strength of 520 MPa or more and an elongation of 5% or more, and it can be seen from FIG. 1 that the annealing temperature satisfying this is 425 to 500 ° C.

そこで、表1の各サンプル(実施例1、2、比較例1、3、従来例1)について、それぞれ450℃と500℃の温度で1分の歪み除去焼鈍を実施し、最表面組織、加工変質層厚さ、Agめっきの加熱膨れ、NiめっきCu溶出量、半田濡れ時間を測定した結果を表2に示す。   Therefore, for each sample in Table 1 (Examples 1, 2, Comparative Examples 1, 3, and Conventional Example 1), strain-relief annealing was performed at 450 ° C. and 500 ° C. for 1 minute, respectively, and the outermost surface structure and processing Table 2 shows the results of measurement of the altered layer thickness, Ag plating heating swelling, Ni plating Cu elution amount, and solder wetting time.

Figure 2009293091
Figure 2009293091

最表面組織、加工変質層厚さの測定は、SEMの反射電子像とEBSPを用いて材料最表面の断面組織観察と加工変質層厚さ(EBSPで方位信頼性が10%以下の部分と定義)を測定した。   The measurement of the outermost surface structure and the work-affected layer thickness is the cross-sectional structure observation of the material outermost surface using the SEM reflected electron image and EBSP and the work-affected layer thickness (defined as the portion whose orientation reliability is 10% or less in EBSP) ) Was measured.

更に、めっき品質に与える影響を調査するためのAgめっきの加熱膨れ試験、Niめっきのポロシティ評価試験、半田濡れ性試験は、前処理として、サンプルを10秒間アルカリ電解脱脂→10秒間流水洗浄→純粋すすぎ→10秒間酸洗(2NのH2SO4)→10秒間流水洗浄→純粋すすぎを行った後に、各試験を行った。 In addition, Ag plating heating swelling test, Ni plating porosity evaluation test, and solder wettability test to investigate the effect on plating quality are as pre-treatment. Samples were subjected to alkaline electrolytic degreasing for 10 seconds → washed with running water for 10 seconds → pure Each test was carried out after rinsing → pickling for 10 seconds (2N H 2 SO 4 ) → washing with running water for 10 seconds → pure rinsing.

Agめっきは、AgCN:50g/l、KCN:115g/1を含むAgめっき浴とし、サンプル実効面積5cm×5cm、液温50℃、電流密度5A/cm2、めっき時間100秒の条件でめっきし、そのAgめっき後にN2雰囲気中で350℃×5分加熱し、両面に発生した膨れの有無を光学顕微鏡でチェックし、膨れの個数で評価した。 Ag plating is performed using an Ag plating bath containing AgCN: 50 g / l and KCN: 115 g / 1, with a sample effective area of 5 cm × 5 cm, a liquid temperature of 50 ° C., a current density of 5 A / cm 2 , and a plating time of 100 seconds. Then, after the Ag plating, it was heated in an N 2 atmosphere at 350 ° C. for 5 minutes, checked for the presence or absence of swelling on both surfaces with an optical microscope, and evaluated by the number of swellings.

Niめっきは、スルファミン酸浴とし、サンプル実効面積5cm×5cm、液温50℃、電流密度10A/cm2、めっき時間20秒で実施し、Niめっきのポロシティ評価試験は、Niめっき後に大気中で450℃の温度において5分間加熱した後、表裏両面に直径4cmの円形の露出部ができるようにマスキング・テープでマスキングし、更にこれを1NのH2SO4中に5分間浸漬させ、溶出したCuの濃度をICP発光分光法で定量評価した。 Ni plating is performed in a sulfamic acid bath, the sample effective area is 5 cm × 5 cm, the liquid temperature is 50 ° C., the current density is 10 A / cm 2 , and the plating time is 20 seconds. The Ni plating porosity evaluation test is performed in the atmosphere after Ni plating. After heating at a temperature of 450 ° C. for 5 minutes, masking was performed with a masking tape so that circular exposed portions having a diameter of 4 cm were formed on both the front and back surfaces, and this was further immersed in 1N H 2 SO 4 for 5 minutes to elute. The concentration of Cu was quantitatively evaluated by ICP emission spectroscopy.

半田濡れ性試験は、メニスコグラフで実施し、サンプルをロジン系フラックスに浸漬後、220℃に加熱した60Sn−40Pb半田に浸漬させ、濡れるまでの時間で評価した。   The solder wettability test was carried out by a meniscograph, and after immersing the sample in a rosin flux, the sample was immersed in 60Sn-40Pb solder heated to 220 ° C., and the time until wetting was evaluated.

表2より、本発明の実施例1、2では、焼鈍により材料表面の歪みが開放され加工変質層が薄くなり、この結果Agめっきの加熱膨れ試験、Niめっきのポロシティ評価試験、半田濡れ性試験のいずれでも良好な結果が得られた。   From Table 2, in Examples 1 and 2 of the present invention, the distortion of the material surface is released by annealing, and the work-affected layer becomes thin. As a result, the thermal expansion test of Ag plating, the porosity evaluation test of Ni plating, the solder wettability test In any case, good results were obtained.

一方、比較例1、3および従来例1では、この焼鈍条件では材料表面の歪みが開放されず、この結果、Agめっきの加熱膨れ試験、Niめっきのポロシティ評価試験、半田濡れ性試験のいずれでも良好な結果は得られなかった。   On the other hand, in Comparative Examples 1 and 3 and Conventional Example 1, the material surface strain is not released under this annealing condition, and as a result, any of the thermal expansion test of Ag plating, the porosity evaluation test of Ni plating, and the solder wettability test Good results were not obtained.

本発明の実施例、比較例、従来例のサンプルの歪み除去の焼鈍温度に対する引張強さおよび伸びの関係を示す図である。It is a figure which shows the relationship of the tensile strength and elongation with respect to the annealing temperature of the distortion removal of the sample of the Example of this invention, a comparative example, and a prior art example.

Claims (2)

純銅若しくは銅合金を溶解、鋳造、熱間圧延、冷間圧延、焼鈍等の工程を経て所定の厚さに圧延した銅板若しくは銅合金板を、材料表層近傍にのみ加工歪みを与えた後、不活性ガス若しくは還元ガス雰囲気中で焼鈍させて、加工歪みを与えた表層近傍のみを、圧延組織の回復若しくは再結晶させることを特徴とする電気・電子部品用銅合金の製造方法。   After applying a processing strain only to the vicinity of the surface layer of a copper plate or copper alloy plate that has been rolled to a predetermined thickness through steps such as melting, casting, hot rolling, cold rolling, and annealing of pure copper or copper alloy, A method for producing a copper alloy for electrical / electronic parts, comprising annealing in an active gas or reducing gas atmosphere and recovering or recrystallizing a rolled structure only in the vicinity of a surface layer subjected to processing strain. 表層近傍にのみ加工歪みを与える手段が、所定の厚さに最終圧延した銅板若しくは銅合金板をブラシや砥粒等を用いた研磨による請求項1に記載の電気・電子部品用銅合金の製造方法。   The copper alloy for electric / electronic parts according to claim 1, wherein the means for imparting a processing strain only in the vicinity of the surface layer is obtained by polishing a copper plate or copper alloy plate finally rolled to a predetermined thickness using a brush or abrasive grains. Method.
JP2008149194A 2008-06-06 2008-06-06 Method for producing copper alloy for electrical or electronic parts Pending JP2009293091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149194A JP2009293091A (en) 2008-06-06 2008-06-06 Method for producing copper alloy for electrical or electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149194A JP2009293091A (en) 2008-06-06 2008-06-06 Method for producing copper alloy for electrical or electronic parts

Publications (1)

Publication Number Publication Date
JP2009293091A true JP2009293091A (en) 2009-12-17

Family

ID=41541537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149194A Pending JP2009293091A (en) 2008-06-06 2008-06-06 Method for producing copper alloy for electrical or electronic parts

Country Status (1)

Country Link
JP (1) JP2009293091A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153950A (en) * 2011-01-26 2012-08-16 Hitachi Cable Ltd Copper alloy plate and method for manufacturing the same
JP2015017286A (en) * 2013-07-09 2015-01-29 三菱伸銅株式会社 Plating-fitted copper alloy sheet having excellent glossiness
JP2015129321A (en) * 2014-01-06 2015-07-16 三菱伸銅株式会社 METHOD FOR MANUFACTURING Cu-Fe-P-BASED COPPER ALLOY PLATE
CN110423967A (en) * 2019-08-13 2019-11-08 宁波金田铜业(集团)股份有限公司 A kind of shielding processing technology of Zn-Cu-Ni alloy strip
CN113122753A (en) * 2021-04-23 2021-07-16 江西金叶大铜科技有限公司 Micro-alloyed copper alloy cable material and preparation method thereof
CN114107731A (en) * 2021-12-02 2022-03-01 华北电力大学(保定) Diamond-enhanced high-strength conductive Cu-Ni-Si alloy and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153950A (en) * 2011-01-26 2012-08-16 Hitachi Cable Ltd Copper alloy plate and method for manufacturing the same
JP2015017286A (en) * 2013-07-09 2015-01-29 三菱伸銅株式会社 Plating-fitted copper alloy sheet having excellent glossiness
JP2015129321A (en) * 2014-01-06 2015-07-16 三菱伸銅株式会社 METHOD FOR MANUFACTURING Cu-Fe-P-BASED COPPER ALLOY PLATE
CN110423967A (en) * 2019-08-13 2019-11-08 宁波金田铜业(集团)股份有限公司 A kind of shielding processing technology of Zn-Cu-Ni alloy strip
CN110423967B (en) * 2019-08-13 2020-10-23 宁波金田铜业(集团)股份有限公司 Processing technology of zinc-copper-nickel strip for shielding
CN113122753A (en) * 2021-04-23 2021-07-16 江西金叶大铜科技有限公司 Micro-alloyed copper alloy cable material and preparation method thereof
CN114107731A (en) * 2021-12-02 2022-03-01 华北电力大学(保定) Diamond-enhanced high-strength conductive Cu-Ni-Si alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101056973B1 (en) Cu-Ni-Si alloy
KR101336495B1 (en) Method of Producing a Precipitate -type Copper Alloy Material for Electronic Machinery and Tools
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
JP2007039804A5 (en)
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2009293091A (en) Method for producing copper alloy for electrical or electronic parts
CN101978081B (en) Copper alloy material for electric/electronic parts
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP6811136B2 (en) Cu-Ni-Si based copper alloy strip and its manufacturing method
KR101682801B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
TWI625403B (en) Cu-Ni-Si series copper alloy bar and manufacturing method thereof
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP3056394B2 (en) Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP6793005B2 (en) Copper alloy plate material and its manufacturing method
KR20060047620A (en) C u-n i-s i-m g based copper alloy strip and parts for the electronic goods obtained by manufacturing the same
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP2010248593A (en) Copper alloy material for electrical and electronic component and method for manufacturing the same
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5334648B2 (en) Copper alloy sheet with excellent heat resistance for tin plating