JP6811136B2 - Cu-Ni-Si based copper alloy strip and its manufacturing method - Google Patents

Cu-Ni-Si based copper alloy strip and its manufacturing method Download PDF

Info

Publication number
JP6811136B2
JP6811136B2 JP2017067999A JP2017067999A JP6811136B2 JP 6811136 B2 JP6811136 B2 JP 6811136B2 JP 2017067999 A JP2017067999 A JP 2017067999A JP 2017067999 A JP2017067999 A JP 2017067999A JP 6811136 B2 JP6811136 B2 JP 6811136B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
mass
treatment
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067999A
Other languages
Japanese (ja)
Other versions
JP2018168437A (en
Inventor
宗彦 中妻
宗彦 中妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017067999A priority Critical patent/JP6811136B2/en
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to KR1020197024972A priority patent/KR102285168B1/en
Priority to CN202311529623.3A priority patent/CN117551910A/en
Priority to CN201880022125.0A priority patent/CN110446796A/en
Priority to CN202210264105.2A priority patent/CN114606410A/en
Priority to PCT/JP2018/011573 priority patent/WO2018180940A1/en
Priority to TW107110739A priority patent/TWI647320B/en
Publication of JP2018168437A publication Critical patent/JP2018168437A/en
Application granted granted Critical
Publication of JP6811136B2 publication Critical patent/JP6811136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、電子材料などの電子部品の製造に好適に使用可能なCu−Ni−Si系銅合金条及びその製造方法に関する。 The present invention relates to Cu—Ni—Si based copper alloy strips that can be suitably used for manufacturing electronic components such as electronic materials, and methods for manufacturing the same.

近年、ICパッケージの小型化に伴い、リードフレーム、電子機器の各種端子、コネクタなどの小型化、ひいては、多ピン化が要求されている。特に、QFN(Quad Flat Non-leaded package)と称される、LSIパッケージのランドに電極パッドを配置し、リードピンを出さない構造が開発されており、多ピン化、狭ピッチ化がさらに要求される。これらリードフレーム等を多ピン化するにはエッチングによる微細加工が必要になるため、材料となる銅合金の強度を向上させると共に、エッチング性、めっき密着性、樹脂密着性等を向上させることが要求される。このようなことから、時効析出型のCu−Ni−Si系銅合金が開発されている。 In recent years, with the miniaturization of IC packages, there is a demand for miniaturization of lead frames, various terminals of electronic devices, connectors, and the like, and eventually, the number of pins. In particular, a structure called QFN (Quad Flat Non-leaded package), in which electrode pads are placed on the land of the LSI package and lead pins are not exposed, has been developed, and more pins and narrower pitches are required. .. Since fine processing by etching is required to increase the number of pins of these lead frames, etc., it is required to improve the strength of the copper alloy used as the material and improve the etching property, plating adhesion, resin adhesion, etc. Will be done. For these reasons, aging precipitation type Cu—Ni—Si based copper alloys have been developed.

ところで、Cu−Ni−Si系銅合金をリードフレーム等の電子部品に用いる際、前処理として酸洗が施されるが、酸洗時にNi−Si系化合物が酸化してスマットとして材料表面に残留することがある。このスマットの残留物が多くなるとICパッケージの組み立て工程でリードフレームとモールド樹脂との間に介在して樹脂密着性を低下させたり、はんだやメッキの密着性を低下させる場合がある。
そこで、Cu−Ni−Si系銅合金のNi−Si系析出物の粒径を規制しNiおよびSiの含有量を限定することにより、酸洗時のスマット残存を抑制することで、はんだ密着性及びメッキ性を改善した技術が提案されている(特許文献1)。
By the way, when a Cu-Ni-Si copper alloy is used for an electronic component such as a lead frame, pickling is performed as a pretreatment, but the Ni-Si compound is oxidized and remains on the material surface as a smut during the pickling. I have something to do. If the amount of this smut residue increases, it may intervene between the lead frame and the mold resin in the IC package assembly process to reduce the resin adhesion or the adhesion of solder or plating.
Therefore, by regulating the particle size of the Ni-Si-based precipitate of the Cu-Ni-Si-based copper alloy and limiting the contents of Ni and Si, the residual smut during pickling is suppressed, and the solder adhesion is improved. And a technique for improving the plating property has been proposed (Patent Document 1).

特開平8-319527号公報Japanese Unexamined Patent Publication No. 8-319527

しかしながら、特許文献1記載の技術の場合、はんだ密着性およびめっき性を改善するため、酸洗でNiSi粒のスマットをほぼ完全に除去しようとする。そのため、酸洗後に露出した材料表面にはほとんど析出物による凹凸が生じず、凹凸によるアンカー効果が低減して樹脂との密着性が劣るという問題がある。従って、例えば上述のICパッケージの組み立て工程でのリードフレームとモールド樹脂との密着性に影響を与える。
すなわち、本発明は上記の課題を解決するためになされたものであり、強度を向上させると共に、スマットの発生を適度に抑制して樹脂との密着性に優れたCu−Ni−Si系銅合金条及びその製造方法の提供を目的とする。
However, in the case of the technique described in Patent Document 1, in order to improve solder adhesion and plating property, NiSi grain smut is almost completely removed by pickling. Therefore, there is a problem that the surface of the material exposed after pickling hardly has irregularities due to precipitates, the anchor effect due to the irregularities is reduced, and the adhesion to the resin is inferior. Therefore, for example, it affects the adhesion between the lead frame and the mold resin in the above-mentioned IC package assembly process.
That is, the present invention has been made to solve the above-mentioned problems, and is a Cu—Ni—Si-based copper alloy that improves the strength, appropriately suppresses the generation of smut, and has excellent adhesion to the resin. The purpose is to provide articles and their manufacturing methods.

本発明者らは種々検討した結果、Cu−Ni−Si系銅合金条の酸洗時にスマットが層状になるまで過度に発生した状態は樹脂密着性を低下させるが、スマットが除去され過ぎてもNiSi析出物による凹凸が消失し、凹凸によるアンカー効果が低減して樹脂との密着性が低下することを見出した。つまり、酸洗時にスマットが適度に残るようにすることで、表面凹凸が残り、樹脂との密着性が向上することを見出した。又、このようにスマットの発生を制御する方法としては、銅合金条製造時の、溶体化処理条件を調整することを見出した。 As a result of various studies by the present inventors, the state in which the smut is excessively generated until the smut becomes a layer during pickling of the Cu—Ni—Si copper alloy strip reduces the resin adhesion, but even if the smut is removed too much. It has been found that the unevenness due to the NiSi precipitate disappears, the anchor effect due to the unevenness is reduced, and the adhesion to the resin is lowered. That is, it has been found that by allowing the smut to remain appropriately during pickling, surface irregularities remain and the adhesion to the resin is improved. Further, as a method for controlling the generation of smut in this way, it has been found that the solution treatment conditions at the time of producing copper alloy strips are adjusted.

すなわち、本発明のCu−Ni−Si系銅合金条はNi:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなるCu−Ni−Si系銅合金条であって、導電率が30%IACS以上、引張強さが800MPa以上であり、室温で40wt%硝酸水溶液に10秒浸漬させた後、JIS -Z8781:2013に規定されたL表色系における明度Lが50〜75である。 That is, the Cu—Ni—Si-based copper alloy strip of the present invention contains Ni: 1.5 to 4.5% by mass and Si: 0.4 to 1.1% by mass, and is composed of the balance Cu and unavoidable impurities. It is a Cu-Ni-Si copper alloy strip, has a conductivity of 30% IACS or more, a tensile strength of 800 MPa or more, and is immersed in a 40 wt% nitric acid aqueous solution for 10 seconds at room temperature, and then subjected to JIS-Z8781: 2013. The brightness L * in the specified L * a * b * color system is 50 to 75.

さらに、Mg、Fe、P、Mn、Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することが好ましい。 Further, it is preferable to contain 0.005 to 0.8% by mass in total of one or more selected from the group of Mg, Fe, P, Mn, Co and Cr.

本発明のCu−Ni−Si系銅合金条の製造方法は、Ni:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなる前記Cu−Ni−Si系銅合金条のインゴットを熱間圧延、冷間圧延後に、溶体化処理、375〜625℃、1〜50時間の時効処理をこの順で行い、さらに加工度40%以上で時効処理後冷間圧延を行い、前記溶体化処理後で前記時効処理前の材料を、室温で40wt%硝酸水溶液に10秒浸漬させた後、JIS -Z8781:2013に規定されたL表色系における明度Lを測定したときに40〜70となるよう、前記溶体化処理を調整する。 The method for producing a Cu-Ni—Si-based copper alloy strip of the present invention contains Ni: 1.5 to 4.5% by mass and Si: 0.4 to 1.1% by mass, and the balance Cu and unavoidable impurities. an ingot of the Cu-Ni-Si-based copper alloy strips hot rolled, after cold rolling consisting of solution treatment, 375-625 ° C., subjected to aging treatment 1-50 hours in this order, further working ratio 40 After cold rolling after aging treatment at% or more, the material before aging treatment after the solution treatment was immersed in a 40 wt% nitrate aqueous solution for 10 seconds at room temperature, and then L specified in JIS-Z8781: 2013. * A * b * The solution treatment is adjusted so that the brightness L * in the color system is 40 to 70 when measured.

本発明によれば、強度が高く、スマットの発生を適度に抑制して樹脂との密着性に優れたCu−Ni−Si系銅合金条が得られる。 According to the present invention, a Cu—Ni—Si-based copper alloy strip having high strength, appropriately suppressing the generation of smut, and having excellent adhesion to a resin can be obtained.

以下、本発明の実施形態に係るCu−Ni−Si系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, Cu—Ni—Si based copper alloy strips according to the embodiment of the present invention will be described. In the present invention,% means mass% unless otherwise specified.

まず、銅合金条の組成の限定理由について説明する。
<Ni及びSi>
Ni及びSiは、時効処理を行うことによりNiとSiが微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのNiSiの析出に伴い、導電性が向上する。ただし、Ni濃度が1.5%未満の場合、またはSi濃度が0.4%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が4.5%を超える場合、またはSi濃度が1.1%を超える場合は十分な強度が得られるものの、導電性が低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性およびめっき性の低下を招く。よって、Niの含有量を1.5〜4.5%とし、Siの含有量を0.4〜1.1%とする。好ましくは、Niの含有量を1.6〜3.0%とし、Siの含有量を0.4〜0.7%とする。
First, the reason for limiting the composition of the copper alloy strip will be described.
<Ni and Si>
For Ni and Si, by performing the aging treatment, the Ni and Si form fine precipitated particles of an intermetallic compound mainly composed of Ni 2 Si, which significantly increases the strength of the alloy. In addition, the conductivity is improved with the precipitation of Ni 2 Si in the aging treatment. However, when the Ni concentration is less than 1.5% or the Si concentration is less than 0.4%, the desired strength cannot be obtained even if the other component is added. Further, when the Ni concentration exceeds 4.5%, or when the Si concentration exceeds 1.1%, sufficient strength can be obtained, but the conductivity becomes low, and further, coarse Ni that does not contribute to the improvement of strength. -Si-based particles (crystals and precipitates) are formed in the matrix, which causes deterioration of bending workability, etching property and plating property. Therefore, the Ni content is 1.5 to 4.5%, and the Si content is 0.4 to 1.1%. Preferably, the Ni content is 1.6 to 3.0% and the Si content is 0.4 to 0.7%.

<その他の元素>
さらに、上記合金には、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、更にMg,Fe,P,Mn,Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することができる。これら元素の合計量が0.005質量%未満であると、上記効果が生じず、0.8質量%を超えると所望の特性は得られるものの、導電性や曲げ加工性が低下することがある。
<Other elements>
Further, in the above alloy, for the purpose of improving the strength, heat resistance, stress relaxation resistance, etc. of the alloy, one or more selected from the group of Mg, Fe, P, Mn, Co and Cr is added in total of 0.005 to 0.8. It can contain mass%. If the total amount of these elements is less than 0.005% by mass, the above effect does not occur, and if it exceeds 0.8% by mass, the desired characteristics can be obtained, but the conductivity and bending workability may be lowered.

<導電率と引張強さTS>
本発明の実施形態に係るCu−Ni−Si系銅合金条は、導電率が30%IACS以上、引張強さTSが800MPa以上である。
半導体素子の動作周波数の増大に伴い、通電による発熱が増大するので、銅合金条の導電率を30%IACS以上とする。
又、ワイヤボンディングする際のリードフレームの変形等を防止し、形状を維持するため、引張強さTSを800MPa以上とする。
<Conductivity and tensile strength TS>
The Cu—Ni—Si-based copper alloy strip according to the embodiment of the present invention has a conductivity of 30% IACS or more and a tensile strength TS of 800 MPa or more.
Since heat generation due to energization increases as the operating frequency of the semiconductor element increases, the conductivity of the copper alloy strip is set to 30% IACS or more.
Further, in order to prevent deformation of the lead frame during wire bonding and maintain the shape, the tensile strength TS is set to 800 MPa or more.

<明度L
本発明の実施形態に係るCu−Ni−Si系銅合金条は、室温で40wt%硝酸水溶液に10秒浸漬させた後、JIS-Z8781:2013に規定されたL表色系における明度Lが50〜75である。
硝酸水溶液に試料を浸漬させると、試料表面にスマットが発生、残留し、試料表面の色が暗く変化する。そこで、試料表面の色調を測定することで、スマットの発生の有無を判定することができる。
明度Lが0に近づくと黒くなり、100に近づくと白くなる。
<Brightness L * >
The Cu—Ni—Si-based copper alloy strip according to the embodiment of the present invention is immersed in a 40 wt% nitric acid aqueous solution for 10 seconds at room temperature, and then the L * a * b * color system specified in JIS-Z8781: 2013. The lightness L * in is 50 to 75.
When the sample is immersed in an aqueous nitric acid solution, smut is generated and remains on the sample surface, and the color of the sample surface changes darkly. Therefore, by measuring the color tone of the sample surface, it is possible to determine whether or not smut is generated.
When the brightness L * approaches 0, it becomes black, and when it approaches 100, it becomes white.

本発明の実施形態に係るCu−Ni−Si系銅合金条の硝酸水溶液に浸漬後の明度Lが50〜75とすることで、酸洗後の材料表面に、NiSi析出物が適度に残った凹凸状の表面を得ることができ、アンカー効果により樹脂との密着性が良好となる。 By setting the brightness L * after immersion in the nitric acid aqueous solution of the Cu—Ni—Si based copper alloy strip according to the embodiment of the present invention to 50 to 75, NiSi precipitates appropriately remain on the surface of the material after pickling. An uneven surface can be obtained, and the adhesion with the resin is improved by the anchor effect.

一方、明度Lが50未満であると、酸洗後にスマットが多く発生して材料表面を層状に覆ってしまい、スマット層と銅合金層との剥離により樹脂密着性が低下する。明度Lが75を超えるものは、酸洗でスマットが除去され過ぎ、表面のNiSi析出物が小さくなって表面凹凸が小さくなる。その結果、アンカー効果が得られなくなったり、材料表面の銅合金(マトリックス)の表面積が高まることでCuの酸化膜成長が促進され、この酸化膜が剥離して樹脂との密着性が低下する。
銅合金条の明度Lを50〜75に制御する方法としては、後述する溶体化処理条件を調整することが挙げられる。溶体化処理条件については後述する。
On the other hand, when the brightness L * is less than 50, a large amount of smut is generated after pickling and covers the material surface in layers, and the resin adhesion is lowered due to the peeling of the smut layer and the copper alloy layer. When the brightness L * exceeds 75, the smut is removed too much by pickling, the NiSi precipitate on the surface becomes small, and the surface unevenness becomes small. As a result, the anchor effect cannot be obtained, or the surface area of the copper alloy (matrix) on the surface of the material is increased, so that the growth of the oxide film of Cu is promoted, and the oxide film is peeled off to reduce the adhesion to the resin.
As a method of controlling the brightness L * of the copper alloy strip to 50 to 75, it is possible to adjust the solution treatment conditions described later. The solution treatment conditions will be described later.

<Cu−Ni−Si系銅合金条の製造>
本発明の実施形態に係るCu−Ni−Si系銅合金条は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、時効後冷間圧延、歪取焼鈍の順で行って製造することができる。溶体化処理前の冷間圧延は必須ではなく、必要に応じて実施してもよい。また、溶体化処理後で時効処理前に冷間圧延を必要に応じて実施してもよい。上記各工程の間に、表面の酸化スケール除去のための研削、研磨、ショットブラスト、酸洗等を適宜行うことができる。
<Manufacturing of Cu-Ni-Si copper alloy strips>
In the Cu—Ni—Si-based copper alloy strip according to the embodiment of the present invention, the ingot is usually hot-rolled, cold-rolled, solution-treated, aging-treated, cold-rolled after aging, and strain-removed and annealed in this order. Can be manufactured. Cold rolling before solution treatment is not essential and may be carried out if necessary. Further, cold rolling may be carried out after the solution treatment and before the aging treatment, if necessary. During each of the above steps, grinding, polishing, shot blasting, pickling and the like for removing the oxide scale on the surface can be appropriately performed.

溶体化処理は、Ni−Si系化合物などのシリサイドをCu母地中に固溶させ、同時にCu母地を再結晶させる熱処理である。
本発明の実施形態に係るCu−Ni−Si系銅合金条の製造方法においては、溶体化処理後で時効処理前の材料を、室温で40wt%硝酸水溶液に10秒浸漬させた後、JIS -Z8781:2013に規定されたL表色系における明度Lを測定したときに40〜70となるよう、溶体化処理条件を調整する。
上記のように溶体化処理条件を調整することで、スマットの原因となるNiおよびSiをCu中に適度に溶体化させ、NiSi析出物の量を過不足なく制御し、その結果、得られたCu−Ni−Si系銅合金条における明度Lを50〜75に制御できる。
The solution treatment is a heat treatment in which silicide such as a Ni—Si compound is dissolved in a Cu base material and at the same time the Cu base material is recrystallized.
In the method for producing Cu—Ni—Si-based copper alloy strips according to the embodiment of the present invention, the material after the solution treatment and before the aging treatment is immersed in a 40 wt% nitric acid aqueous solution at room temperature for 10 seconds, and then JIS-. The solution treatment conditions are adjusted so that the brightness L * in the L * a * b * color system specified in Z8781: 2013 is 40 to 70 when measured.
By adjusting the solution treatment conditions as described above, Ni and Si, which cause smut, were appropriately dissolved in Cu, and the amount of NiSi precipitate was controlled in just proportion, and as a result, it was obtained. The brightness L * in the Cu—Ni—Si based copper alloy strip can be controlled to 50 to 75.

溶体化処理後の材料の明度Lが40未満のものは、溶体化処理が不十分でスマットとなるNiSi析出物の量が多くなり過ぎる。
溶体化処理後の材料の明度Lが70を超えるものは、溶体化処理が過度となりスマットとなるNiSi析出物の量が少なくなり過ぎる。
なお、溶体化処理条件を変えるためには、溶体化処理の温度と時間を制御すればよいが、具体的な溶体化処理の温度と時間を規定しないのは、銅合金条中のNi,Si等の添加量や、溶体化処理の前工程の条件により、溶体化処理前のNi−Si系化合物の量や粒径が異なるためである。
If the lightness L * of the material after the solution treatment is less than 40, the solution treatment is insufficient and the amount of NiSi precipitates to be smut becomes too large.
If the lightness L * of the material after the solution treatment exceeds 70, the solution treatment is excessive and the amount of NiSi precipitates to be smut becomes too small.
In order to change the solution treatment conditions, the temperature and time of the solution treatment may be controlled, but the specific temperature and time of the solution treatment are not specified for Ni and Si in the copper alloy strip. This is because the amount and particle size of the Ni—Si-based compound before the solution treatment differ depending on the amount of the addition and the conditions of the step before the solution treatment.

<時効処理>
時効処理は、溶体化処理で固溶させたシリサイドを、NiSiを主とした金属間化合物の微細粒子として析出させる。この時効処理で強度と導電率が上昇する。時効処理は、例えば375〜625℃、1〜50時間の条件で行うことができ、これにより強度を向上させことができる。
時効時間が1時間未満の場合、Ni−Si系析出物の析出量が少なく、強度が不十分な場合がある。また時効温度が625℃を超えたり時効時間が50時間を超えた場合、析出物の粗大化や再固溶が起き、スマット発生量が増加したり、強度が不十分になったり、導電率が低くなることがある。
<Aging process>
In the aging treatment, the silicide dissolved in the solution treatment is precipitated as fine particles of an intermetallic compound mainly composed of Ni 2 Si. This aging treatment increases the strength and conductivity. The aging treatment can be carried out under the conditions of, for example, 375 to 625 ° C. and 1 to 50 hours, whereby the strength can be improved.
If the aging time is less than 1 hour, the amount of Ni—Si-based precipitates precipitated may be small and the strength may be insufficient. When the aging temperature exceeds 625 ° C. or the aging time exceeds 50 hours, the precipitates become coarse and resolidified, the amount of smut generated increases, the strength becomes insufficient, and the conductivity becomes low. May be low.

<冷間圧延>
次に、時効処理の後に冷間圧延(時効処理後冷間圧延)を加工度40%以上で行う。
加工度40%以上の冷間圧延を行えば、加工硬化により引張強さが800MPa以上となる。
加工度が40%未満であると、強度が不十分な場合がある。
時効処理後冷間圧延を加工度40〜90%以上で行うとより好ましい。加工度が90%を超えると、加工歪による導電率の低下が著しくなり、歪取焼鈍を行っても導電率が低い場合がある。
時効処理後冷間圧延の加工度は、時効処理後冷間圧延の直前の材料厚みに対する、時効処理後冷間圧延による厚みの変化率である。
本発明のCu−Ni−Si系銅合金条の厚みは特に限定されないが、例えば0.03〜0.6mmとすることができる。
<Cold rolling>
Next, after the aging treatment, cold rolling (cold rolling after the aging treatment) is performed at a processing degree of 40% or more.
If cold rolling with a work degree of 40% or more is performed, the tensile strength becomes 800 MPa or more due to work hardening.
If the degree of processing is less than 40%, the strength may be insufficient.
It is more preferable to perform cold rolling after the aging treatment at a processing degree of 40 to 90% or more. If the degree of processing exceeds 90%, the conductivity is significantly lowered due to the processing strain, and the conductivity may be low even if the strain is removed and annealed.
The workability of cold rolling after aging treatment is the rate of change in thickness due to cold rolling after aging treatment with respect to the material thickness immediately before cold rolling after aging treatment.
The thickness of the Cu—Ni—Si-based copper alloy strip of the present invention is not particularly limited, but may be, for example, 0.03 to 0.6 mm.

<歪取焼鈍>
時効処理後冷間圧延の後に歪取焼鈍を行うことができる。歪取焼鈍は一般的な条件で行えばよく、例えば300℃〜550℃、保持時間は5秒〜300秒までの条件で行うことができる。これにより材料内の残留応力を除去することができる。
<Distortion annealing>
Strain removal annealing can be performed after cold rolling after aging treatment. Strain removal annealing may be performed under general conditions, for example, 300 ° C. to 550 ° C., and a holding time of 5 seconds to 300 seconds. This makes it possible to remove the residual stress in the material.

各実施例及び各比較例の試料を、以下のように作製した。
電気銅を原料とし、大気溶解炉を用いて表1、表2に示す組成の銅合金を溶製し、厚さ20mm×幅60mmのインゴットに鋳造した。このインゴットを950℃で板厚10mmまで熱間圧延を行った。熱間圧延後、研削し、冷間圧延をこの順に行った。
次に、表1、表2に示す条件で、溶体化処理および時効処理をこの順に行った。その後、表1、表2に示す加工度で板厚0.150mmまで時効処理後冷間圧延を行い、450℃で30秒の歪取焼鈍を行って試料を得た。
Samples of each Example and each Comparative Example were prepared as follows.
Using electrolytic copper as a raw material, copper alloys having the compositions shown in Tables 1 and 2 were melted and cast into an ingot having a thickness of 20 mm and a width of 60 mm using an atmospheric melting furnace. This ingot was hot-rolled at 950 ° C. to a plate thickness of 10 mm. After hot rolling, grinding was performed, and cold rolling was performed in this order.
Next, the solution treatment and the aging treatment were performed in this order under the conditions shown in Tables 1 and 2. Then, cold rolling was performed after aging treatment to a plate thickness of 0.150 mm at the processing degrees shown in Tables 1 and 2, and strain annealing was performed at 450 ° C. for 30 seconds to obtain a sample.

<導電率(%IACS)>
得られた試料につき、JIS H0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
<Conductivity (% IACS)>
The obtained sample was measured for conductivity (% IACS) at 25 ° C. by the 4-terminal method based on JIS H0505.

<引張強さ(TS)>
得られた試料につき、引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強さ(TS)をそれぞれ測定した。まず、各試料から、引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製した。引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さ50mmとした。
<Tensile strength (TS)>
The tensile strength (TS) of the obtained sample was measured by a tensile tester in a direction parallel to the rolling direction according to JIS-Z2241. First, from each sample, a JIS13B test piece was prepared using a press machine so that the tensile direction was the rolling direction. The conditions of the tensile test were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, and a gauge length of 50 mm.

<明度L
溶体化処理後で前記時効処理前の試料、及び歪取焼鈍後の試料の片面につき、室温で40wt%硝酸水溶液に10秒浸漬させた後、流水で洗い流した。処理後の試料表面について、色差計を用いて明度L*を求めた。
色差計は、コニカミノルタ製CR-200を用い測定を行った。
<Brightness L * >
After the solution treatment, one side of the sample before the aging treatment and the sample after strain annealing were immersed in a 40 wt% nitric acid aqueous solution at room temperature for 10 seconds and then rinsed with running water. The brightness L * of the treated sample surface was determined using a color difference meter.
The color difference meter was measured using CR-200 manufactured by Konica Minolta.

<樹脂との密着性>
歪取焼鈍後の試料を圧延平行方向の長さ100mmで幅20mmに切出した後、試料の片面につき、室温で40wt%硝酸水溶液に10秒浸漬させた後、流水で洗い流した。次に、この試料に対し、240℃で5分間の大気加熱を施した。大気加熱の後、上記片面の長さ60mmの範囲に耐酸テープを張り付けたのち剥離し、耐酸テープの粘着面への付着物の有無を、画像処理で求めた。具体的には、耐酸テープの粘着面の画像を2値化し、耐酸テープの粘着面の面積に対する、付着物となる黒い画像領域の総面積の比を算出し、以下の基準で評価した。評価が○であれば樹脂との密着性に優れる。
○:付着物の総面積がテープ粘着面の面積の10%以下
×:付着物の総面積がテープ粘着面の面積の10%を超える
<Adhesion with resin>
The sample after strain-removal annealing was cut out to a length of 100 mm and a width of 20 mm in the parallel direction of rolling, and then one side of the sample was immersed in a 40 wt% nitric acid aqueous solution at room temperature for 10 seconds and then rinsed with running water. Next, this sample was heated to the atmosphere at 240 ° C. for 5 minutes. After heating to the atmosphere, an acid-resistant tape was attached to the range of 60 mm in length on one side and then peeled off, and the presence or absence of deposits on the adhesive surface of the acid-resistant tape was determined by image processing. Specifically, the image of the adhesive surface of the acid-resistant tape was binarized, the ratio of the total area of the black image area to be the deposit to the area of the adhesive surface of the acid-resistant tape was calculated, and evaluated according to the following criteria. If the evaluation is ◯, the adhesion with the resin is excellent.
◯: The total area of deposits is 10% or less of the area of the tape adhesive surface ×: The total area of deposits exceeds 10% of the area of the tape adhesive surface

得られた結果を表1に示す。 The results obtained are shown in Table 1.

Figure 0006811136
Figure 0006811136

表1から明らかなように、明度Lが50〜75である各実施例の場合、強度が高いと共に、樹脂との密着性に優れていた。 As is clear from Table 1, in each of the examples having a brightness L * of 50 to 75, the strength was high and the adhesion to the resin was excellent.

一方、明度Lが75を超えた比較例1の場合、樹脂との密着性が劣った。これは、材料表面のNiSi析出物が少なすぎ、表面のCu酸化が著しく、表面酸化膜が剥離して樹脂との密着性を低下させたためと考えられる。
明度Lが50未満の比較例2の場合、スマット発生量が多くなり、樹脂との密着性が劣った。
On the other hand, in the case of Comparative Example 1 in which the brightness L * exceeded 75, the adhesion to the resin was inferior. It is considered that this is because the amount of NiSi precipitates on the surface of the material is too small, the Cu oxidation on the surface is remarkable, and the surface oxide film is peeled off to reduce the adhesion to the resin.
In the case of Comparative Example 2 in which the brightness L * was less than 50, the amount of smut generated was large and the adhesion to the resin was inferior.

時効処理後冷間圧延の加工度が90%を超えた比較例3の場合、導電率が30%IACS未満となった。
時効処理後冷間圧延の加工度が40%未満の比較例4の場合、引張強さが800MPa未満となった。
In the case of Comparative Example 3 in which the workability of cold rolling after aging treatment exceeded 90%, the conductivity was less than 30% IACS.
In the case of Comparative Example 4 in which the workability of cold rolling after aging treatment was less than 40%, the tensile strength was less than 800 MPa.

Ni及びSiの含有量が規定範囲を超えた比較例5の場合、導電率が30%IACS未満となった。
Mg、Fe、P、Mn、Co及びCrの群から選ばれる一種以上を合計で0.8質量%を超えて含有した比較例7の場合も、導電率が30%IACS未満となった。
In the case of Comparative Example 5 in which the contents of Ni and Si exceeded the specified range, the conductivity was less than 30% IACS.
In the case of Comparative Example 7 in which one or more selected from the group of Mg, Fe, P, Mn, Co and Cr was contained in a total amount of more than 0.8% by mass, the conductivity was less than 30% IACS.

時効温度が625℃未満の比較例8、及び時効時間が1時間未満の比較例10の場合、亜時効となり、引張強さが800MPa未満となった。
時効温度が625℃を超えた比較例9、及び時効時間が50時間を超えた比較例11の場合、過時効となり、引張強さが800MPa未満となった。また、過時効によりNi−Si系析出物が顕著に析出し、明度Lが50未満となってスマット発生量が多くなり、樹脂との密着性が劣った。
In the case of Comparative Example 8 in which the aging temperature was less than 625 ° C. and Comparative Example 10 in which the aging time was less than 1 hour, sub-aging was achieved and the tensile strength was less than 800 MPa.
In the case of Comparative Example 9 in which the aging temperature exceeded 625 ° C. and Comparative Example 11 in which the aging time exceeded 50 hours, overaging occurred and the tensile strength was less than 800 MPa. In addition, Ni—Si-based precipitates were remarkably precipitated due to overaging, the brightness L * became less than 50, the amount of smut generated increased, and the adhesion to the resin was inferior.

Claims (3)

Ni:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなるCu−Ni−Si系銅合金条であって、
導電率が30%IACS以上、引張強さが800MPa以上であり、
室温で40wt%硝酸水溶液に10秒浸漬させた後、JIS -Z8781:2013に規定されたL表色系における明度Lが50〜75であるCu−Ni−Si系銅合金条。
A Cu—Ni—Si copper alloy strip containing 1.5 to 4.5% by mass of Ni and 0.4 to 1.1% by mass of Si, and composed of the balance Cu and unavoidable impurities.
The conductivity is 30% IACS or more, the tensile strength is 800 MPa or more, and
After immersing in a 40 wt% nitric acid aqueous solution at room temperature for 10 seconds, a Cu—Ni—Si copper alloy having an L * a * b * color-based brightness L * specified in JIS-Z8781: 2013 is 50 to 75. Article.
さらに、Mg、Fe、P、Mn、Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有する請求項1記載のCu−Ni−Si系銅合金条。 The Cu—Ni—Si-based copper alloy strip according to claim 1, further containing 0.005 to 0.8% by mass in total of one or more selected from the group of Mg, Fe, P, Mn, Co and Cr. Ni:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなるCu−Ni−Si系銅合金条のインゴットを熱間圧延、冷間圧延後に、溶体化処理、375〜625℃、1〜50時間の時効処理をこの順で行い、さらに加工度40%以上で時効処理後冷間圧延を行い、
前記溶体化処理後で前記時効処理前の材料を、室温で40wt%硝酸水溶液に10秒浸漬させた後、JIS -Z8781:2013に規定されたL表色系における明度Lを測定したときに40〜70となるよう、前記溶体化処理を調整する請求項1又は2に記載のCu−Ni−Si系銅合金条の製造方法。
Hot-rolled Cu-Ni-Si copper alloy strip ingot containing 1.5 to 4.5% by mass of Ni and 0.4 to 1.1% by mass of Si, and consisting of the balance Cu and unavoidable impurities. After cold rolling, solution treatment, aging treatment at 375-625 ° C. for 1 to 50 hours are performed in this order, and cold rolling is performed after aging treatment at a processing degree of 40% or more.
After the solution treatment, the material before the aging treatment is immersed in a 40 wt% nitric acid aqueous solution for 10 seconds at room temperature, and then the lightness L * in the L * a * b * color system specified in JIS-Z8781: 2013 . The method for producing a Cu—Ni—Si-based copper alloy strip according to claim 1 or 2 , wherein the solution treatment is adjusted so that the color is 40 to 70 when measured.
JP2017067999A 2017-03-30 2017-03-30 Cu-Ni-Si based copper alloy strip and its manufacturing method Active JP6811136B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017067999A JP6811136B2 (en) 2017-03-30 2017-03-30 Cu-Ni-Si based copper alloy strip and its manufacturing method
CN202311529623.3A CN117551910A (en) 2017-03-30 2018-03-23 Cu-Ni-Si copper alloy strip and method for producing same
CN201880022125.0A CN110446796A (en) 2017-03-30 2018-03-23 Cu-Ni-Si series copper alloy strip and its manufacturing method
CN202210264105.2A CN114606410A (en) 2017-03-30 2018-03-23 Cu-Ni-Si-based copper alloy strip and method for producing same
KR1020197024972A KR102285168B1 (en) 2017-03-30 2018-03-23 Cu-Ni-Si-based copper alloy bath and manufacturing method thereof
PCT/JP2018/011573 WO2018180940A1 (en) 2017-03-30 2018-03-23 Cu-Ni-Si-BASED COPPER ALLOY STRIP AND METHOD FOR MANUFACTURING SAME
TW107110739A TWI647320B (en) 2017-03-30 2018-03-28 Cu-Ni-Si copper alloy strip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067999A JP6811136B2 (en) 2017-03-30 2017-03-30 Cu-Ni-Si based copper alloy strip and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019181150A Division JP2020015986A (en) 2019-10-01 2019-10-01 Cu-Ni-Si-BASED COPPER ALLOY STRIP AND MANUFACTURING METHOD THEREFOR

Publications (2)

Publication Number Publication Date
JP2018168437A JP2018168437A (en) 2018-11-01
JP6811136B2 true JP6811136B2 (en) 2021-01-13

Family

ID=63677544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067999A Active JP6811136B2 (en) 2017-03-30 2017-03-30 Cu-Ni-Si based copper alloy strip and its manufacturing method

Country Status (5)

Country Link
JP (1) JP6811136B2 (en)
KR (1) KR102285168B1 (en)
CN (3) CN117551910A (en)
TW (1) TWI647320B (en)
WO (1) WO2018180940A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167230A1 (en) 2022-03-04 2023-09-07 株式会社プロテリアル Copper alloy material and method for manufacturing copper alloy material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640972B1 (en) 2021-05-28 2024-02-23 부산대학교 산학협력단 Manufacturing method for copper with surface coated silicon, copper with permanent oxidation resistance by silicon-coated surface thereof and semiconductor system thereof
KR20230153296A (en) 2022-04-28 2023-11-06 부산대학교 산학협력단 Nickel with permanent oxidation resistance by silicon-coated surface and manufacturing method for nickel with permanent oxidation resistance by silicon-coated surface
KR20230153295A (en) 2022-04-28 2023-11-06 부산대학교 산학협력단 Iron with permanent oxidation resistance by silicon-coated surface and manufacturing method for iron with permanent oxidation resistance by silicon-coated surface

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056394B2 (en) 1995-05-25 2000-06-26 株式会社神戸製鋼所 Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP5468423B2 (en) * 2010-03-10 2014-04-09 株式会社神戸製鋼所 High strength and high heat resistance copper alloy material
JP6223057B2 (en) * 2013-08-13 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6301618B2 (en) * 2013-09-17 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
TWI621721B (en) * 2014-07-10 2018-04-21 Furukawa Electric Co Ltd Copper alloy sheet, connector, and method for manufacturing copper alloy sheet
JP6328166B2 (en) * 2015-03-30 2018-05-23 Jx金属株式会社 Cu-Ni-Si rolled copper alloy and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167230A1 (en) 2022-03-04 2023-09-07 株式会社プロテリアル Copper alloy material and method for manufacturing copper alloy material
KR20240121247A (en) 2022-03-04 2024-08-08 가부시키가이샤 프로테리아루 Copper alloy material and method for producing copper alloy material

Also Published As

Publication number Publication date
KR20190112059A (en) 2019-10-02
WO2018180940A1 (en) 2018-10-04
TWI647320B (en) 2019-01-11
CN114606410A (en) 2022-06-10
KR102285168B1 (en) 2021-08-04
CN110446796A (en) 2019-11-12
TW201840870A (en) 2018-11-16
CN117551910A (en) 2024-02-13
JP2018168437A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4143662B2 (en) Cu-Ni-Si alloy
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP6811136B2 (en) Cu-Ni-Si based copper alloy strip and its manufacturing method
JP2009144248A (en) Deposition type copper alloy material for electronic equipment, and method for production thereof
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
TWI628407B (en) Copper alloy plate and coil for heat dissipation parts
JP2007039804A5 (en)
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
TW201602369A (en) Copper alloy material, manufacturing method of the same, lead frame and connector
TWI625403B (en) Cu-Ni-Si series copper alloy bar and manufacturing method thereof
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP6762333B2 (en) Cu-Ni-Si based copper alloy strip
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JPH06108212A (en) Production of precipitation type copper alloy
JP4175920B2 (en) High strength copper alloy
JP2013095977A (en) Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
TW201600617A (en) Copper alloy material and manufacturing method of the same, and lead frame and connector
JP2020015986A (en) Cu-Ni-Si-BASED COPPER ALLOY STRIP AND MANUFACTURING METHOD THEREFOR
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPH034612B2 (en)
JP5236973B2 (en) Copper alloy plate for QFN package with excellent dicing workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191002

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200720

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201102

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201208

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R151 Written notification of patent or utility model registration

Ref document number: 6811136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250