JPH034612B2 - - Google Patents

Info

Publication number
JPH034612B2
JPH034612B2 JP22015186A JP22015186A JPH034612B2 JP H034612 B2 JPH034612 B2 JP H034612B2 JP 22015186 A JP22015186 A JP 22015186A JP 22015186 A JP22015186 A JP 22015186A JP H034612 B2 JPH034612 B2 JP H034612B2
Authority
JP
Japan
Prior art keywords
less
strength
alloy
electronic devices
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22015186A
Other languages
Japanese (ja)
Other versions
JPS6376839A (en
Inventor
Masato Asai
Michiaki Terashita
Yoshimasa Ooyama
Shigeo Shinozaki
Shoji Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22015186A priority Critical patent/JPS6376839A/en
Publication of JPS6376839A publication Critical patent/JPS6376839A/en
Publication of JPH034612B2 publication Critical patent/JPH034612B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子機器用銅合金とその製造法に関
し、特に強度が高く、導電率及び耐食性が優れ、
かつ加工性やメツキ性が良好で、半田との界面強
度の経時劣化が起らない銅合金を提供するもので
ある。 〔従来の技術〕 電子機器、例えば半導体のリードフレームには
下記の特性が要求されている。 (1) 強度が高く、耐食性が良いこと。 (2) 放熱性、即ち熱伝導性が高いこと。 (3) 電気伝導性が高いこと。 (4) フレーム成形時の曲げ加工性が良いこと。 (5) メツキ密着性及び樹脂とのモールド性が良い
こと。 (6) 半田との接合部に経時劣化が無いこと。 従来半導体のリードフレームには主として42合
金(Fe−42wt%Ni合金)(以下wt%を%と略記)
が用いられてきた。この合金は引張強さ63Kg/
mm2、耐熱性670℃(30分の加熱により、初期強度
の70%になる温度)の優れた特性を示すが、導電
率は3%IACS程度と劣るものである。 近年半導体素子は集積度の増大及び小型化と同
時に高信頼性が求められるようになり、半導体素
子の形態も従来のDIP型ICからチツプキヤリアー
型PGA型へと変化しつつある。このため半導体
のリードフレームも薄肉・小型化され、同時に42
合金を上回る特性が要求されるようになつた。即
ち薄肉化による構成部品の強度低下を防ぐための
強度向上、集積度の増大による放熱性向上のため
に熱伝導性と同一特性である導電率の向上、優れ
た耐熱性、更に半導体のフレーム上の固定や半導
体からリードフレームの足の部分の配線へのボン
デイング前処理としてリードフレーム表面へのメ
ツキ性及び封止樹脂とのモールド性の向上、更に
は信頼性の問題としてフレーム基板と接合におけ
るハンダ接合強度の経時劣化が無いことが望まれ
ている。 〔発明が解決しようとする問題点〕 上記42合金は導電率が3%IACSと低く、放熱
性が劣る欠点があり、これに代えて銅合金を用い
れば導電率を50〜80%IACSと飛躍的に向上させ
ることができるも、42合金と同等の他の特性を満
足することは難しい。 〔問題点を解決するための手段〕 本発明はこれに鑑み種々検討の結果、42合金と
同等以上の強度と、はるかに優れた導電率を示す
電子機器用銅合金とその製造法を開発したもので
ある。 即ち本発明合金は、Ni0.1〜4.8%、Si0.05〜0.8
%の範囲内でNiとSiの比(Ni/Si)が2〜6と
なるようにNiとSiを含み、Zn0・05〜0.6%、
Ca0.0005〜0.3%、更にMg、B、Cr、Mn、Co、
希土類元素、Al、Sn、Tiの何れか1種又は2種
以上を単独で0.02〜0.5%、合計で0.02〜1.0%を
含み、残部Cuと不可避的不純物からなることを
特徴とるすものである。 また本発明製造法は、Ni0.1〜4.8%、Si0.05〜
0.8%の範囲内でNiとSiの比(Ni/Si)が2〜6
となるようにNiとSiを含み、Zn0.05〜0.6%、
Ca0.0005〜0.3%、更にMg、B、Cr、Mn、Co、
希土類元素、Al、Sn、Tiの何れか1種又は2種
以上を単独で0.02〜0.5%、合計で0.02〜1.0%を
含み、残部Cuと不可避的不純物からなる合金鋳
塊を熱間加工し、その後80%以上の冷間加工を施
してから350〜850℃で5秒〜12時間の再結晶を伴
なわない熱処理と、加工率30%以下の冷間加工を
1回以上繰返し、最終仕上げ加工を30%以下とす
ることを特徴とするものである。 〔作用〕 本発明合金は、上記組成から成り、Ni0.1〜4.8
%、Si0.05〜0.8%の範囲内で、NiとSiの比
(Ni/Si)が2〜6となるようにNiとSiを含有せ
しめたものは、それぞれ下限未満では本発明製造
法を持つてしても十分な強度が得られず、上限を
越えると半田付け性を悪化させると共に加工性、
特に熱間加工性を悪くし、製造性を害する。また
NiとSiの比(Ni/Si)が上記範囲内において十
分な強度と導電率を示し、かつメツキ性、鋳造
性、加工性も良好であり、これを外れると上記特
性が大きく低下する。 Znは半田付けやメツキの接合部の経時劣化を
抑制し、信頼性を向上させ、更に脱酸作用により
鋳造性を高め、コストの低減に寄与するも、上記
範囲の下限未満ではその効果が見られず、上限を
越えると導電率を低下すると共に加工性を阻害す
る。Caは脱酸脱硫の作用を持ち、鋳塊の健全性
の向上や熱間加工性を良好にし、更に熱間加工時
のNi、Siの析出現象を抑制し、優れた特性を付
与するも、上記範囲の下限未満ではその効果がな
く、上限を越えると鋳造性や加工性を損ね、導電
率を大きく低下する。更にMg、B、Cr、Mn、
Co、希土類元素、Al、Sn、Tiの何れか1種又は
2種以上は、強度を向上し、延性の改善に寄与
し、成型加工性、特に曲げ加工時の成型性(表面
性状や寸法精度)を良くし、更には脱酸、脱硫の
効果を示すも、上記範囲(単独で0.02〜0.5%、
合計で0.02〜1.0%)の下限未満でも、上限を越
えても効果がなく、導電率を低下させたり、熱間
加工性を悪化させる。尚Ba、V、Zr、Y、Fe、
Au、Ga、In、Ge、Sb、Bi、Ag、Tl、ランタノ
イド系、アクチノイド系においても、わずかでは
あるが同様の効果が見られる。 また不可避的不純物のうちO2含有量を40ppm
以下と制限したのは、O2は本発明合金の成分で
あるNiやSiの均一な析出に有害で、含有量が
40ppmを越えると粗大析出粒を作りやすく、その
ため強度の向上を阻害するばかりか、メツキ性や
半田付け性を劣化させ、更には成型加工性を劣化
させて電子機器に要求される精密な加工部品にお
いて実用上有害となるためである。更に析出粒の
大きさを10μm以下としたのは、析出粒の大きさ
は、強度、メツキ性、半田付け性等を大きく左右
し、粒径が10μmを越えると上記特性の劣化が著
しいためである。 尚不可避的不純物のうちPはNiとNixP化合物
を形成して、マトリツクス中のSiを過剰にし、導
電率や半田付け性を大きく劣化させるため、P含
有量を0.05%以下、望ましくは0.03%以下にする
とよい。 本発明合金は上記組織からなり、上記製造法に
より電子機器用として最適の特性を付与すること
ができる。即ち熱間加工後80%以上の冷間加工を
施してから350〜850℃で5秒〜12時間の再結晶を
伴なわない熱処理と、加工率30%以下の冷間加工
を1回以上繰返し、かつ最終仕上げ加工率を30%
以下とするものである。しかして熱処理条件がこ
の範囲から外れる再結晶状態又は部分再結晶状態
からでは、過析出による析出粒の粗大化により十
分な強度が得られず、組織の不均一性から特性の
不安定をまねく。更にこの熱処理と組合せる冷間
加工の加工率を30%以下としたのは、加工率が30
%を越えると熱処理による析出効果と、加工によ
る転位の導入により加工硬化の効果が増幅され、
高い強度を得ることは可能であるが、反面延性を
低下し、製造性や曲げ成型性を大きく劣化させ、
電子機器に要求される精密な加工部品において、
実用上有害となるためである。また最終の仕上げ
加工率を30%以下としたのは、これを越える加工
率では強度と延性の兼ね合による製造性や曲げ成
型性を劣化させる。 尚本発明において、熱間加工は800〜880℃から
開始し、終了後はNi、Si等の析出分を固溶状態
にしておく観定から迅速に冷却することが望まし
いが、冷却速度として徐冷以外であれば特性に何
等影響を及ぼさない。また最終仕上げ加工後、
200〜550℃の調質焼鈍やテンシヨンレベラー、テ
ンシヨンアニーリング等を組合せることにより、
より高い特性とすることができる。 〔実施例〕 第1表に示す組成の銅合金を冷却鋳型を用いて
半連続鋳造し、850℃で熱間圧延した後、面削し
て厚さ10mmの板とした。これを96%の加工率で厚
さ0.4mmまで冷間圧延してから、450℃で1時間加
熱処理し、更に25%の加工率で厚さ0.3mmまで冷
間圧延した後、400℃で1時間熱処理し、しかる
後加工率16.7%の最終仕上げ冷間圧延を行なつ
て、厚さ0.25mmの板にし、更に250℃で30分間の
調質焼鈍を施した。 これ等の板について強度、伸び、曲げ成型形、
半田付け性、耐食性及びメツキ性を調べた。その
結果を従来の42合金と比較して第2表に示す。 強度はJIS Z 2241に基づいて測定し、導電率
はJIS H 0505に基づいて測定した。曲げ成型性
はJIS Z 2248のVブロツク法により試験を行な
い、試験片の表面に割れを生じさせる最少曲げ半
径Rを試験片の厚さtで割つた値R/tで示し
た。半田付け性は幅25mm、長さ25mmのサンププル
を切出し、直径9mm部に60/40共晶半田により直
径2mmの無酸素銅線を接合し、150℃で500時間の
加速試験を行なつた後、引張試験により接合強度
を求めた。耐食性はJIS C 8306(応力腐食割れ)
に準じ、3vol%のNH3蒸気中で定荷重(引張強
さの50%)法により、割れ発生までの時間を求め
た。メツキ性はホウフツ化物浴にて厚さ7.5μmの
Sn−5%Pb合金メツキを施し、105℃で2000時間
保持してから180°に折り曲げ、その折り曲げ部の
メツキ層の剥離を検鏡により調べた。 尚第2表中比較例No.18、19は第1表中の本発明
例No.7同一合金であるが、比較例No.18は本発明例
No.7の製造工程において熱処理を完全に軟化する
温度(900℃)で2時間行なつたものであり、比
較例No.19は本発明例No.7の製造工程において、熱
処理以前の冷間加工率を93%とし、最終仕上げ加
工率を50%としたものである。
[Industrial Application Field] The present invention relates to a copper alloy for electronic devices and a method for producing the same, and particularly relates to a copper alloy for use in electronic devices, which has particularly high strength, excellent conductivity and corrosion resistance, and
The present invention also provides a copper alloy that has good workability and plating properties, and whose interfacial strength with solder does not deteriorate over time. [Prior Art] Lead frames for electronic devices, such as semiconductors, are required to have the following characteristics. (1) High strength and good corrosion resistance. (2) High heat dissipation, that is, high thermal conductivity. (3) High electrical conductivity. (4) Good bending workability during frame forming. (5) Good plating adhesion and moldability with resin. (6) There should be no deterioration over time in the joints with solder. Conventional semiconductor lead frames are mainly made of 42 alloy (Fe-42wt%Ni alloy) (hereinafter wt% is abbreviated as %).
has been used. This alloy has a tensile strength of 63Kg/
mm 2 and heat resistance of 670°C (temperature at which 70% of the initial strength is achieved by heating for 30 minutes), but the electrical conductivity is inferior to about 3% IACS. In recent years, semiconductor devices have been required to have higher reliability as well as increased integration and miniaturization, and the form of semiconductor devices is also changing from the conventional DIP type IC to the chip carrier type PGA type. For this reason, semiconductor lead frames have become thinner and smaller, and at the same time
Properties superior to those of alloys are now required. In other words, improved strength to prevent the strength of component parts from decreasing due to thinning, improved electrical conductivity, which has the same characteristics as thermal conductivity, to improve heat dissipation due to increased integration, excellent heat resistance, and improved heat resistance on the semiconductor frame. As a pretreatment for bonding from the semiconductor to the wiring at the foot of the lead frame, it improves the plating performance on the lead frame surface and the moldability with the sealing resin, and as a reliability issue, solder is used when bonding to the frame substrate. It is desired that the bonding strength does not deteriorate over time. [Problems to be solved by the invention] The above 42 alloys have a low electrical conductivity of 3% IACS and have poor heat dissipation properties.If a copper alloy is used instead, the electrical conductivity can be increased to 50-80% IACS. However, it is difficult to satisfy other properties equivalent to those of 42 alloy. [Means for Solving the Problems] In view of this, the present invention has developed a copper alloy for electronic devices that exhibits strength equal to or higher than alloy 42 and far superior conductivity, and a method for manufacturing the same. It is something. That is, the alloy of the present invention contains 0.1 to 4.8% Ni and 0.05 to 0.8% Si.
Contains Ni and Si so that the ratio of Ni and Si (Ni/Si) is 2 to 6 within the range of Zn0.05 to 0.6%,
Ca0.0005~0.3%, further Mg, B, Cr, Mn, Co,
It is characterized by containing 0.02 to 0.5% of one or more of rare earth elements, Al, Sn, and Ti individually and 0.02 to 1.0% in total, with the balance consisting of Cu and inevitable impurities. . In addition, the manufacturing method of the present invention has Ni0.1~4.8%, Si0.05~
The ratio of Ni to Si (Ni/Si) is 2 to 6 within the range of 0.8%.
Contains Ni and Si, Zn0.05~0.6%,
Ca0.0005~0.3%, further Mg, B, Cr, Mn, Co,
An alloy ingot containing one or more rare earth elements, Al, Sn, and Ti at 0.02 to 0.5% individually and 0.02 to 1.0% in total, with the remainder being Cu and unavoidable impurities, is hot worked. , followed by cold working of 80% or more, followed by heat treatment without recrystallization at 350 to 850°C for 5 seconds to 12 hours, and cold working at a working rate of 30% or less, repeated one or more times to achieve the final finish. It is characterized by the processing being less than 30%. [Function] The alloy of the present invention has the above composition, with Ni0.1 to 4.8
%, Si within the range of 0.05 to 0.8%, and containing Ni and Si so that the ratio of Ni to Si (Ni/Si) is 2 to 6, the manufacturing method of the present invention cannot be applied if each is below the lower limit. If the upper limit is exceeded, solderability will deteriorate and workability will be reduced.
In particular, it impairs hot workability and impairs manufacturability. Also
When the ratio of Ni to Si (Ni/Si) is within the above range, it exhibits sufficient strength and conductivity, and also has good plating, castability, and workability; when it deviates from this range, the above properties deteriorate significantly. Zn suppresses deterioration over time of soldering and plating joints, improves reliability, and also improves castability through its deoxidizing effect, contributing to cost reduction, but its effect is not seen below the lower limit of the above range. If the upper limit is exceeded, the conductivity decreases and workability is inhibited. Ca has a deoxidizing and desulfurizing effect, improves the soundness of the ingot and improves hot workability, and also suppresses the precipitation of Ni and Si during hot working, giving it excellent properties. If it is less than the lower limit of the above range, there is no effect, and if it exceeds the upper limit, castability and workability will be impaired and the electrical conductivity will be significantly reduced. Furthermore, Mg, B, Cr, Mn,
Any one or more of Co, rare earth elements, Al, Sn, and Ti improves strength, contributes to improving ductility, and improves formability, especially formability during bending (surface texture and dimensional accuracy). ), and also shows deoxidation and desulfurization effects, but the above range (0.02 to 0.5% alone,
Even if it is less than the lower limit (total of 0.02 to 1.0%) or exceeds the upper limit, it has no effect, lowering the electrical conductivity and deteriorating hot workability. In addition, Ba, V, Zr, Y, Fe,
A similar effect, albeit slight, is also seen in Au, Ga, In, Ge, Sb, Bi, Ag, Tl, lanthanoids, and actinides. In addition, the O 2 content of unavoidable impurities was reduced to 40ppm.
The reason why the O 2 content was limited to the following is that it is harmful to the uniform precipitation of Ni and Si, which are the components of the alloy of the present invention.
If it exceeds 40 ppm, coarse precipitate particles tend to form, which not only hinders the improvement of strength, but also deteriorates plating and solderability, and even deteriorates moldability, making it difficult to manufacture precision processed parts required for electronic devices. This is because it is harmful in practice. Furthermore, the size of the precipitated grains was set to 10 μm or less because the size of the precipitated grains greatly affects strength, plating properties, solderability, etc., and if the particle size exceeds 10 μm, the above characteristics deteriorate significantly. be. Among the unavoidable impurities, P forms a Ni x P compound with Ni, resulting in excessive Si in the matrix and greatly deteriorating conductivity and solderability. Therefore, the P content should be 0.05% or less, preferably 0.03%. % or less. The alloy of the present invention has the above-mentioned structure, and can be imparted with optimum characteristics for use in electronic devices by the above-mentioned manufacturing method. In other words, after hot working, cold working of 80% or more is performed, then heat treatment without recrystallization at 350 to 850°C for 5 seconds to 12 hours, and cold working with a working rate of 30% or less are repeated one or more times. , and the final finishing rate is 30%
The following shall apply. However, if the heat treatment conditions are outside of this range, such as a recrystallized state or a partially recrystallized state, sufficient strength cannot be obtained due to coarsening of the precipitated grains due to excessive precipitation, and properties may become unstable due to the non-uniformity of the structure. Furthermore, the processing rate of cold working combined with this heat treatment was set to 30% or less because the processing rate was 30%.
%, the precipitation effect due to heat treatment and the work hardening effect will be amplified due to the introduction of dislocations due to working.
It is possible to obtain high strength, but on the other hand, it reduces ductility and greatly deteriorates manufacturability and bending formability.
For precision processed parts required for electronic equipment,
This is because it is harmful in practice. Furthermore, the final finishing rate was set to 30% or less because if the rate exceeds this, the manufacturability and bending formability due to the balance between strength and ductility deteriorate. In the present invention, hot working is started at 800 to 880°C, and after completion of the hot working, it is desirable to cool quickly in order to keep precipitated Ni, Si, etc. in a solid solution state. If it is not cold, it will not affect the characteristics in any way. Also, after the final finishing process,
By combining temper annealing at 200 to 550℃, tension leveler, tension annealing, etc.
It can have higher properties. [Example] A copper alloy having the composition shown in Table 1 was semi-continuously cast using a cooling mold, hot rolled at 850°C, and then face-faced to form a plate with a thickness of 10 mm. This was cold rolled to a thickness of 0.4 mm at a processing rate of 96%, then heat treated at 450℃ for 1 hour, further cold rolled to a thickness of 0.3mm at a processing rate of 25%, and then heated at 400℃. After heat treatment for 1 hour, final cold rolling was carried out at a processing rate of 16.7% to form a plate with a thickness of 0.25 mm, and temper annealing was further performed at 250° C. for 30 minutes. Strength, elongation, bending shape,
Solderability, corrosion resistance and plating properties were investigated. The results are shown in Table 2 in comparison with the conventional 42 alloy. The strength was measured based on JIS Z 2241, and the electrical conductivity was measured based on JIS H 0505. Bending formability was tested according to the V-block method of JIS Z 2248, and was expressed as the value R/t, which is the minimum bending radius R that causes cracks on the surface of the test piece divided by the thickness t of the test piece. Solderability was determined by cutting a sample with a width of 25 mm and a length of 25 mm, joining a 2 mm diameter oxygen-free copper wire to the 9 mm diameter section using 60/40 eutectic solder, and performing an accelerated test at 150°C for 500 hours. The joint strength was determined by a tensile test. Corrosion resistance is JIS C 8306 (stress corrosion cracking)
The time until cracking was determined using the constant load (50% of tensile strength) method in 3 vol% NH 3 vapor. The plating property was determined using a borofusate bath with a thickness of 7.5 μm.
Sn-5%Pb alloy plating was applied, held at 105°C for 2000 hours, then bent at 180°, and peeling of the plating layer at the bent portion was examined using a microscope. Comparative examples No. 18 and 19 in Table 2 are the same alloys as the invention example No. 7 in Table 1, but comparative example No. 18 is the invention example No. 7.
In the manufacturing process of No. 7, heat treatment was performed for 2 hours at a temperature that completely softens (900°C), and in Comparative Example No. 19, cold treatment was performed before heat treatment in the manufacturing process of Invention Example No. 7. The machining rate is 93% and the final finishing rate is 50%.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、強度、導電性、曲
げ成型性、半田付け性、メツキ性及び耐食性に優
れており、電子機器用リードフレーム、コネクタ
ー、スイツチ等に使用し、その薄肉化、小型化を
可能にする等工業上顕著な効果を奏するものであ
る。
As described above, the present invention has excellent strength, conductivity, bending formability, solderability, plating performance, and corrosion resistance, and can be used for lead frames, connectors, switches, etc. for electronic devices, and can be used for thinner and more compact devices. It has remarkable industrial effects such as making it possible to

Claims (1)

【特許請求の範囲】 1 Ni0.1〜4.8wt%、Si0.05〜0.8wt%の範囲内
でNiとSiの比(Ni/Si)が2〜6となるように
NiとSiを含み、Zn0.05〜0.6wt%、Ca0.0005〜
0.3wt%、更にMg、B、Cr、Mn、Co、希土類元
素、Al、Sn、Tiの何れか1種又は2種以上を単
独で0.02〜0.5wt%、合計で0.02〜1.0wt%を含み、
残部Cuと不可避的不純物からなる電子機器用銅
合金。 2 不可避的不純物中O2含有量を40ppm以下に
制限し、析出物の粒径を10μm以下とする特許請
求の範囲第1項記載の電子機器用銅合金。 3 Ni0.1〜4.8wt%、Si0.05〜0.8wt%の範囲内
でNiとSiの比(Ni/Si)が2〜6となるように
NiとSiを含み、Zn0.05〜0.6wt%、Ca0.0005〜
0.3wt%、更にMg、B、Cr、Mn、Co、希土類元
素、Al、Sn、Tiの何れか1種又は2種以上を単
独で0.02〜0.5wt%、合計で0.02〜1.0wt%を含み、
残部Cuと不可避的不純物からなる合金鋳塊を熱
間加工し、その後80%以上の冷間加工を施してか
ら350〜850℃で5秒〜12時間の再結晶を伴なわな
い熱処理と、加工率30%以下の冷間加工を1回以
上繰返し、最終仕上げ加工率を30%以下とするこ
とを特徴とする電子機器用銅合金の製造法。
[Claims] 1. Ni 0.1 to 4.8 wt% and Si 0.05 to 0.8 wt% so that the ratio of Ni to Si (Ni/Si) is 2 to 6.
Contains Ni and Si, Zn0.05~0.6wt%, Ca0.0005~
0.3 wt%, and further contains 0.02 to 0.5 wt% of one or more of Mg, B, Cr, Mn, Co, rare earth elements, Al, Sn, and Ti individually, and 0.02 to 1.0 wt% in total. ,
Copper alloy for electronic devices consisting of Cu and unavoidable impurities. 2. The copper alloy for electronic devices according to claim 1, in which the content of O 2 in inevitable impurities is limited to 40 ppm or less, and the particle size of precipitates is 10 μm or less. 3 So that the ratio of Ni to Si (Ni/Si) is 2 to 6 within the range of Ni 0.1 to 4.8 wt% and Si 0.05 to 0.8 wt%.
Contains Ni and Si, Zn0.05~0.6wt%, Ca0.0005~
0.3 wt%, and further contains 0.02 to 0.5 wt% of one or more of Mg, B, Cr, Mn, Co, rare earth elements, Al, Sn, and Ti individually, and 0.02 to 1.0 wt% in total. ,
An alloy ingot consisting of residual Cu and unavoidable impurities is hot-worked, then cold-worked to 80% or more, and then heat-treated at 350-850℃ for 5 seconds to 12 hours without recrystallization, and processing. A method for producing copper alloys for electronic devices, characterized by repeating cold working at a rate of 30% or less one or more times and making the final finishing rate 30% or less.
JP22015186A 1986-09-18 1986-09-18 Copper alloy for electronic equipment and its production Granted JPS6376839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22015186A JPS6376839A (en) 1986-09-18 1986-09-18 Copper alloy for electronic equipment and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22015186A JPS6376839A (en) 1986-09-18 1986-09-18 Copper alloy for electronic equipment and its production

Publications (2)

Publication Number Publication Date
JPS6376839A JPS6376839A (en) 1988-04-07
JPH034612B2 true JPH034612B2 (en) 1991-01-23

Family

ID=16746692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22015186A Granted JPS6376839A (en) 1986-09-18 1986-09-18 Copper alloy for electronic equipment and its production

Country Status (1)

Country Link
JP (1) JPS6376839A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514234B2 (en) * 1988-08-05 1996-07-10 株式会社神戸製鋼所 Copper alloy for terminals and connectors with excellent strength and conductivity
JPH0266130A (en) * 1988-08-29 1990-03-06 Mitsubishi Shindoh Co Ltd Cu alloy for terminal and connector having less wear or blanking die
JP2006265731A (en) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The Copper alloy
WO2006093140A1 (en) * 2005-02-28 2006-09-08 The Furukawa Electric Co., Ltd. Copper alloy
JP4655834B2 (en) * 2005-09-02 2011-03-23 日立電線株式会社 Copper alloy material for electrical parts and manufacturing method thereof
JP5002768B2 (en) * 2006-03-30 2012-08-15 Dowaメタルテック株式会社 Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6376839A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2542370B2 (en) Copper alloy for semiconductor leads
JP2002266042A (en) Copper alloy sheet having excellent bending workability
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH034612B2 (en)
JPH0425339B2 (en)
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH0440417B2 (en)
JPH034613B2 (en)
JP2555070B2 (en) Manufacturing method of high strength copper base alloy
JP2555068B2 (en) Manufacturing method of high strength copper base alloy
JPH07258805A (en) Production of high-strength and high-conductivity copper alloy material for electronic equipment
JP2504956B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP2555069B2 (en) Manufacturing method of high strength copper base alloy
JPS63192835A (en) Lead material for ceramic package
JPS63266052A (en) Production of high tensile copper based alloy
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPH0816255B2 (en) Copper alloy for electronic devices
JP2764787B2 (en) High strength and high conductivity copper alloy for electronic equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees