JPH0816255B2 - Copper alloy for electronic devices - Google Patents

Copper alloy for electronic devices

Info

Publication number
JPH0816255B2
JPH0816255B2 JP61082746A JP8274686A JPH0816255B2 JP H0816255 B2 JPH0816255 B2 JP H0816255B2 JP 61082746 A JP61082746 A JP 61082746A JP 8274686 A JP8274686 A JP 8274686A JP H0816255 B2 JPH0816255 B2 JP H0816255B2
Authority
JP
Japan
Prior art keywords
alloy
strength
conductivity
less
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61082746A
Other languages
Japanese (ja)
Other versions
JPS62238343A (en
Inventor
章二 志賀
徹 谷川
好正 大山
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP61082746A priority Critical patent/JPH0816255B2/en
Priority to US06/916,694 priority patent/US4822560A/en
Priority to DE3634495A priority patent/DE3634495C2/en
Priority to KR1019860008487A priority patent/KR920001627B1/en
Priority to FR868614110A priority patent/FR2588572B1/en
Priority to GB8624318A priority patent/GB2182054B/en
Publication of JPS62238343A publication Critical patent/JPS62238343A/en
Publication of JPH0816255B2 publication Critical patent/JPH0816255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は改善された電子機器用銅合金、特に強度、加
工性、導電性(熱伝導性)、耐食性、耐熱性等が優れ、
小型化された精密部品の製造に適した銅合金に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is an improved copper alloy for electronic devices, particularly excellent in strength, workability, electrical conductivity (thermal conductivity), corrosion resistance, heat resistance, etc.
The present invention relates to a copper alloy suitable for manufacturing miniaturized precision parts.

〔従来の技術〕 電子機器、特に半導体(IC,トランジスター)のリー
ド、コネクター、スイッチ、接点ばね等には強度、加工
性、耐食性及び導電性に優れたCu合金が要求されてい
る。このような合金として強度が優れたCu−Be系合金や
Cu−Ti系合金が知られているが、これ等は高価であり、
Cu−Ni−Si系スピノーダル合金は導電率が10%IACS以下
と低く、加工性も乏しく、またCu−Ni−Al合金も同様で
ある。このためCu−Sn系合金、即ちリン青銅、特にSnを
6〜8wt%(以下wt%を%と略記)含むばね用リン青銅
が多用されている。
[Prior Art] Electronic devices, in particular, semiconductor (IC, transistor) leads, connectors, switches, contact springs, and the like require Cu alloys having excellent strength, workability, corrosion resistance, and conductivity. Such alloys have excellent strength such as Cu-Be alloys and
Cu-Ti alloys are known, but these are expensive,
The Cu-Ni-Si spinodal alloy has a low electrical conductivity of 10% IACS or less, poor workability, and the Cu-Ni-Al alloy is also the same. For this reason, Cu-Sn based alloys, that is, phosphor bronze, especially phosphor bronze for springs containing 6 to 8 wt% Sn (hereinafter wt% is abbreviated as%) are often used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記ばね用リン青銅は、60〜80kg/mm2程度の強度を有
するも、比較的高価なSnを多量に含むばかりが、導電率
が10〜15%IACSと低く、更に半田接合強度の経時劣化や
腐食割れ感受性の面から実用上大きな欠陥となってい
る。このためCu−Fe系合金、例えばC194合金やC195合金
が1部で利用されているが、強度が45〜65kg/mm2程度で
加工性が劣るため、用途が限定されている。
The above-mentioned phosphor bronze for springs has a strength of about 60 to 80 kg / mm 2 , but it contains a large amount of relatively expensive Sn, but its conductivity is low at 10 to 15% IACS, and the solder joint strength deteriorates over time. In terms of corrosion susceptibility and corrosion cracking, it is a practically large defect. For this reason, Cu-Fe alloys such as C194 alloy and C195 alloy are used in part, but their use is limited because their workability is poor at a strength of about 45 to 65 kg / mm 2 .

近年電子機器は小型化、高集積化の傾向にあり、これ
等に使用するCu合金として強度と導電性の向上が強く望
まれている。また多層に使用するためには安価であり、
面実装化の動向に答えるためには、半田接合強度やSn,S
n−Pb合金メッキの密着信頼性も要求される。このよう
な要求に応えて従来合金に替わるにはより高性能で、低
コストなパフォーマンスの合金が必要である。即ち、 (1)強度と導電率のより高度なバランスの取れた合
金、例えば強度50〜100kg/mm2、導電率10〜30%IACSの
特性を有すること。
In recent years, electronic devices have tended to be miniaturized and highly integrated, and there is a strong demand for improvement in strength and conductivity as a Cu alloy used for them. It is also cheap to use in multiple layers,
In order to respond to the trend of surface mounting, solder joint strength and Sn, S
Adhesion reliability of n-Pb alloy plating is also required. In order to replace such conventional alloys in response to such demands, higher performance, lower cost performance alloys are required. That is, (1) an alloy having a higher balance between strength and conductivity, such as strength of 50 to 100 kg / mm 2 and conductivity of 10 to 30% IACS.

(2)コスト的に安いこと、例えば合金成分が安価であ
ると同時に、製造プロセスが単純化されていること。
(2) The cost is low, for example, the alloy components are inexpensive and the manufacturing process is simplified.

(3)加工性、耐食性、耐応力腐食割れ性に優れている
こと。
(3) Excellent workability, corrosion resistance, and stress corrosion cracking resistance.

(4)半田接合強度やSn,Sn−Pb合金メッキの密着性が
長期にわたり安定していること。
(4) Solder joint strength and adhesion of Sn, Sn-Pb alloy plating are stable for a long time.

(5)電子機器用途ではSn,Sn−Pb合金の外にAu,Ag,Ni
等のメッキが多用されており、これ等のメッキ性にも優
れていること。
(5) For electronic devices, in addition to Sn, Sn-Pb alloys, Au, Ag, Ni
Such plating is often used, and it has excellent plating properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、特に強度、加工
性、導電性(熱伝動性)、耐食性、耐熱性が優れ、小型
化された精密部品、特に半導体のリードフレームに適し
た電子機器用銅合金を開発したものである。
As a result of various studies in view of the above, the present invention has excellent strength, workability, electrical conductivity (heat conductivity), corrosion resistance, and heat resistance, and is suitable for electronic equipment suitable for miniaturized precision parts, especially semiconductor lead frames. This is a developed copper alloy.

本発明は、Snを3.0%を超え6.0%以下と、Siを0.01〜
1.0%と、Ni,Co,Crの少なくとも1種の0.1〜4.0%とを
含み、更にZn5.0%以下もしくはMn0.5%以下のいずれか
一方、ミッシュメタル(以下MMと略記)1.0%以下、Al
1.0%以下、B0.3%以下の範囲内で少なくとも1種を含
み、残部Cuと通常の不純物からなることを特徴とするも
のである。即ち本発明は上記組成に配合して溶解鋳造し
た鋳塊に熱間加工と冷間加工を施して造られる。例えば
700〜1000℃に加熱して熱間圧延又は熱間押出を行な
い、650℃以上で加工を終了し、直ちに水冷し、望まし
くは10℃/sec以上の速度で400℃以下まで冷却する。こ
れをミーリング、シェービング又は酸洗により表面を清
浄化してから冷間圧延、引抜等の加工を施してから400
〜500℃で少なくとも10分以上加熱処理し、しかる後必
要に応じて冷間加工を施して仕上げる。熱間加工後の冷
間加工は少なくとも30%以上の減面加工を施し、これを
熱処理することが望ましい。また本発明合金の急冷鋳塊
を直接冷間加工してから熱処理することも可能である。
The present invention has a Sn content of more than 3.0% and 6.0% or less and a Si content of 0.01 to
1.0% and 0.1-4.0% of at least one of Ni, Co, Cr, and either Zn 5.0% or less or Mn 0.5% or less, or misch metal (hereinafter abbreviated as MM) 1.0% or less , Al
It is characterized in that it contains at least one kind within the range of 1.0% or less and B0.3% or less, and the balance Cu and ordinary impurities. That is, the present invention is produced by hot working and cold working the ingot melt-cast by blending with the above composition. For example
Hot-rolling or hot-extrusion is performed by heating to 700 to 1000 ° C., processing is completed at 650 ° C. or higher, water cooling is performed immediately, and preferably 400 ° C. or lower at a rate of 10 ° C./sec or higher. After cleaning the surface by milling, shaving or pickling, apply cold rolling, drawing, etc. to 400
Heat at ~ 500 ° C for at least 10 minutes and then cold work as necessary to finish. It is desirable that the cold working after the hot working is subjected to surface reduction processing of at least 30% or more and then heat treated. It is also possible to directly subject the quenched ingot of the alloy of the present invention to cold working before heat treatment.

〔作 用〕[Work]

上記製造法で造られた本発明合金は組成にもよるが、
強度50〜100kg/mm2、伸び3〜20%、導電率10〜40%IAC
Sの特性を示す。本発明合金はSn、Si、とNi、Co、Crの
少なくとも1種を含み、更にZnとMnのいずれか一方、ミ
ッシュメタル、AlまたはBの少なくとも1種を含む合金
であるが、この内、Ni、CoまたはCrは珪素化合物とし
て、NiSi、CoSi、CrSiの形態で分散析出し、強度の向上
と導電率の向上を可能にする。特にCrは一部メタリック
Cr単体として析出する。しかして本発明合金の組成を上
記の如く限定したのは下記の理由によるものである。
The alloy of the present invention produced by the above production method depends on the composition,
Strength 50-100kg / mm 2 , elongation 3-20%, conductivity 10-40% IAC
The characteristic of S is shown. The alloy of the present invention is an alloy containing Sn, Si, and at least one of Ni, Co, and Cr, and further containing any one of Zn and Mn, at least one of Misch metal, Al, and B. Ni, Co, or Cr as a silicon compound is dispersed and precipitated in the form of NiSi, CoSi, and CrSi, which makes it possible to improve strength and conductivity. Especially Cr is partially metallic
Precipitates as a simple substance of Cr. However, the reason why the composition of the alloy of the present invention is limited as described above is as follows.

Sn含有量を3.0%を超え6.0%以下と限定したのは、含
有量が3.0%以下では強度が不十分となり、6.0%を越え
るとより大きな強度が得られず、不経済であるばかり
か、過剰なSnのために熱間加工性が低下し、生産性に重
大な障害となる。
The reason for limiting the Sn content to more than 3.0% and 6.0% or less is that the strength is insufficient when the content is 3.0% or less, and a larger strength cannot be obtained when the content exceeds 6.0%, which is uneconomical. Hot workability deteriorates due to excessive Sn, which is a serious obstacle to productivity.

Ni,Co,Cr群とSiは前記の化学量論比で化合析出するの
で、両者の比(重量)は約4〜6:1の範囲とすることが
望ましく、遊離した未化合のSiやNiは導電率を低下した
り、半田接合強度に有害である。Crはこの点において有
利であるが、強度向上の効果はNiより少ない。しかして
Si含有量を0.01〜1.0%、Ni,Co,Crの少なくとも1種の
含有量を0.1〜4.0%と限定したのは、それぞれ下限未満
では十分な効果が得られず、上限を越えると高温度での
加工性を阻害して不都合となるためである。
Since the Ni, Co, Cr groups and Si are compounded and precipitated at the above stoichiometric ratio, it is desirable that the ratio (weight) of both is in the range of about 4 to 6: 1. Reduces the conductivity and is detrimental to the solder joint strength. Cr is advantageous in this respect, but is less effective in improving strength than Ni. Then
The Si content is limited to 0.01 to 1.0%, and the content of at least one of Ni, Co, and Cr is limited to 0.1 to 4.0%. When the upper limit is exceeded, sufficient effects cannot be obtained. This is because the workability in the above step is hindered and it becomes inconvenient.

その他の含有元素であるZn、Mn、MM(ミッシュメタ
ル)、Al、Bは特に合金の加工性をはじめ、諸特性を改
善する。特にZn及びMnは熱間加工性を向上すると共に、
半田接合強度やSn,Sn−Pb合金メッキの密着性の長期安
定性の改善に有効である。しかしてZn含有量が5%を越
え、Mn含有量が0.5%を越えると導電率を低下するばか
りか、応力腐食割れ感受性を増大するなど不都合とな
る。BはNi等と結合して強度や導電性の向上に寄与す
る。しかしてB含有量が0.3%を超えると熱間加工性を
低下して不都合となる。Al及びMMは強度の向上に働く。
しかしてAl含有量が1.0%を越え、MMが1.0%を越えると
導電率を低下するばかりか、加工性を低下して不都合な
ものとなる。
Other contained elements Zn, Mn, MM (Misch metal), Al, and B improve various properties including alloy workability. Especially Zn and Mn improve the hot workability,
It is effective for improving the solder joint strength and long-term stability of Sn, Sn-Pb alloy plating adhesion. However, if the Zn content exceeds 5% and the Mn content exceeds 0.5%, not only the conductivity decreases but also the stress corrosion cracking susceptibility increases, which is disadvantageous. B combines with Ni or the like and contributes to improvement of strength and conductivity. However, if the B content exceeds 0.3%, the hot workability is deteriorated, which is inconvenient. Al and MM work to improve strength.
However, if the Al content exceeds 1.0% and the MM exceeds 1.0%, not only the conductivity decreases but also the workability decreases, which is inconvenient.

本発明合金における上記化合析出物は粒径の小さい
程、強度向上に有効であり、粒径が3μを越える粗大粒
では強度向上の効果が小さく、5μを越える粒径が増え
るに従い、加工性も低下する。このため本発明合金では
析出物の粒径を3μ以下とすることが望ましい。
The smaller the grain size of the compound precipitate in the alloy of the present invention, the more effective it is in improving strength. Coarse grains having a grain size of more than 3 μ are less effective in improving the strength, and the workability increases as the grain size of more than 5 μ increases. descend. Therefore, in the alloy of the present invention, it is desirable that the grain size of precipitates be 3 μm or less.

〔実施例〕〔Example〕

第1表に示す合金組成に配合して溶解し、水冷金型に
鋳造して厚さ40mm、幅80mm、長さ250mmの鋳塊とした。
これを約920℃に加熱して厚さ6mmまで熱間圧延し、直ち
に水冷した。尚熱間圧延上り温度は約730℃であった。
これを酸洗してから厚さ0.5mmまで冷間圧延し、次に520
℃で2時間加熱処理した後、厚さ0.3mmまで冷間圧延し
た。これ等について平均粒径、引張強さ、伸び、導電
率、曲げ性、半田接合強度、応力腐食割れ性、Agメッキ
性を調べた。その結果を従来合金であるリン青銅(Sn4.
5%,P0.1%,Cu残部)及びC195(Fe1.5%,Sn0.6%,Co0.8
%,P0.09%,Cu残部)比較して第2表に示す。曲げ性は
各種曲げ半径(R)の90゜ダイスにより折り曲げ、40倍
の検鏡により割れの有無を判定し、割れない最小のR/t
(tは板厚)を求めた。測定は圧延方向と平行に行なっ
た。半田接合強度は直径1.8mmの面積にリード線を半田
付けした後、150℃の温度で300時間エージングした後プ
ルテストを行なって接合強度を求めた。応力腐食割れは
JIS C8306に基づき、アンモニア3Vol%の雰囲気中にて3
0kg/mm2の引張荷重をかけた低荷重試験を行ない、割れ
が発生するまでの時間を測定した。Agメッキ性は表面の
約1μの厚さをエッチング後、下記浴を用いてAgストラ
イクメッキと厚さ5μのAgメッキを施し、これを475℃
に5分間大気加熱処理した後膨れの有無を調べた。
The alloy composition shown in Table 1 was blended, melted, and cast in a water-cooled mold to obtain an ingot having a thickness of 40 mm, a width of 80 mm, and a length of 250 mm.
This was heated to about 920 ° C., hot-rolled to a thickness of 6 mm, and immediately water-cooled. The hot rolling rising temperature was about 730 ° C.
It is pickled and cold rolled to a thickness of 0.5 mm, then 520
After heat treatment at ℃ for 2 hours, it was cold rolled to a thickness of 0.3 mm. The average particle size, tensile strength, elongation, conductivity, bendability, solder joint strength, stress corrosion cracking property, and Ag plating property of these materials were examined. The result is phosphor bronze (Sn4.
5%, P0.1%, Cu balance) and C195 (Fe1.5%, Sn0.6%, Co0.8)
%, P0.09%, Cu balance) are shown in Table 2 for comparison. The bendability is the minimum R / t that does not crack by bending with a 90 ° die of various bending radii (R) and judging the presence of cracks with a 40 times speculum.
(T is the plate thickness) was determined. The measurement was performed parallel to the rolling direction. The solder joint strength was obtained by soldering the lead wire to an area having a diameter of 1.8 mm, aging it at a temperature of 150 ° C. for 300 hours, and then performing a pull test to determine the joint strength. Stress corrosion cracking
Based on JIS C8306, 3 in an atmosphere of 3 vol% ammonia
A low load test was performed under a tensile load of 0 kg / mm 2 , and the time until cracking was measured. For Ag plating, after etching about 1μ thickness of the surface, Ag strike plating and 5μ thickness Ag plating are applied using the following bath, and this is 475 ℃
After heating for 5 minutes in the atmosphere, the presence or absence of swelling was examined.

Agストライクメッキ AgCH 3g/ KCN 60g/ 電流密度 5A/dm2 時 間 15sec Agメッキ AgCH 37g/ KCN 58g/ K2CO3 25g/ 電流密度 1A/dm2 第1表及び第2表から明らかなように、本発明合金N
o.1〜6は何れも従来合金であるC195(No.20)、リン青
銅(No.21)と比較し、種々の特性で満足できるもので
あることが判る。対してSn量が少ない比較合金No.10で
は引張強さが不足し、Sn量が多い比較合金No.11では加
工性が悪く圧延工程を中止せざるを得なかった。またSi
量とNi量が少ない比較合金No.12では引張強さが不十分
なばかりか、応力腐蝕割れ感受性が高く、Si量とNi量が
多い比較合金No.13では加工性が悪く圧延工程を中止し
た。またその他の含有元素であるB、Zn等の含有量の多
い比較合金No.14〜18では導電性、応力腐蝕割れ性、加
工性の何れかが劣ることが判る。
Ag strike plating AgCH 3g / KCN 60g / current density 5A / dm 2 hours 15sec Ag plating AgCH 37g / KCN 58g / K 2 CO 3 25g / current density 1A / dm 2 As is clear from Tables 1 and 2, the alloy N of the present invention
It is understood that all of o.1 to 6 are satisfactory in various characteristics as compared with the conventional alloys C195 (No.20) and phosphor bronze (No.21). On the other hand, the comparative alloy No. 10 with a small amount of Sn had insufficient tensile strength, and the comparative alloy No. 11 with a large amount of Sn had poor workability and had to stop the rolling process. Also Si
In comparison alloy No. 12, which has a small amount of Ni and Ni, not only has insufficient tensile strength, but also has high susceptibility to stress corrosion cracking, and in Comparative alloy No. 13, which has a large amount of Si and Ni, workability is poor and the rolling process is stopped. did. Further, it is understood that Comparative Alloys Nos. 14 to 18 containing a large amount of other elements such as B and Zn are inferior in conductivity, stress corrosion cracking property and workability.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、従来のリン青銅の特性を
大幅に上回る高性能を有するもので、電子機器の小型
化、高密度化、高信頼性化を可能にする等工業上顕著な
効果を奏するのである。
As described above, according to the present invention, it has a high performance that greatly exceeds the characteristics of conventional phosphor bronze, and it is possible to reduce the size of electronic devices, increase the density, and achieve high reliability. Is played.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−218442(JP,A) 特開 昭61−174345(JP,A) 特開 昭61−272339(JP,A) 特開 昭62−60838(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-60-218442 (JP, A) JP-A-61-174345 (JP, A) JP-A-61-272339 (JP, A) JP-A-62-1 60838 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Snを3.0wt%を超え6.0wt%以下と、Siを0.
01〜1.0wt%と、Ni、Co、Crの少なくとも1種を0.1〜4.
0wt%とを含み、更にZn5.0wt%以下もしくはMn0.5wt%
以下のいずれか一方、ミッシュメタル1.0wt%以下、Al
1.0wt%以下、B0.3wt%以下の範囲内で少なくとも1種
を含み、残部Cuと通常の不純物からなる電子機器用銅合
金。
1. A Sn content of more than 3.0 wt% and 6.0 wt% or less and a Si content of 0.
01-1.0 wt% and at least one of Ni, Co and Cr 0.1-4.
Including 0wt%, Zn5.0wt% or less or Mn0.5wt%
One of the following, Mish metal 1.0 wt% or less, Al
A copper alloy for electronic devices, containing at least one kind within the range of 1.0 wt% or less and B 0.3 wt% or less, and the balance Cu and ordinary impurities.
JP61082746A 1985-10-10 1986-04-10 Copper alloy for electronic devices Expired - Lifetime JPH0816255B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61082746A JPH0816255B2 (en) 1986-04-10 1986-04-10 Copper alloy for electronic devices
US06/916,694 US4822560A (en) 1985-10-10 1986-10-08 Copper alloy and method of manufacturing the same
DE3634495A DE3634495C2 (en) 1985-10-10 1986-10-09 Process for producing a copper-tin alloy and its use as a conductor material
KR1019860008487A KR920001627B1 (en) 1985-10-10 1986-10-10 Copper alloy and method of manufacturing the same
FR868614110A FR2588572B1 (en) 1985-10-10 1986-10-10 COPPER ALLOY AND ITS MANUFACTURE
GB8624318A GB2182054B (en) 1985-10-10 1986-10-10 Copper alloy and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082746A JPH0816255B2 (en) 1986-04-10 1986-04-10 Copper alloy for electronic devices

Publications (2)

Publication Number Publication Date
JPS62238343A JPS62238343A (en) 1987-10-19
JPH0816255B2 true JPH0816255B2 (en) 1996-02-21

Family

ID=13782989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082746A Expired - Lifetime JPH0816255B2 (en) 1985-10-10 1986-04-10 Copper alloy for electronic devices

Country Status (1)

Country Link
JP (1) JPH0816255B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302722A (en) * 2001-04-09 2002-10-18 Chuetsu Metal Works Co Ltd High strength bronze alloy and production method therefor
KR100644510B1 (en) 2005-03-17 2006-11-10 한국기계연구원 High strength lead-frame material Cu-Ni-Mn-Si-Sn-Ms alloy with good hot-workability and good anti-softening and it's manufacturing method
DE102016008754B4 (en) 2016-07-18 2020-03-26 Wieland-Werke Ag Copper-nickel-tin alloy, process for their production and their use
KR101941163B1 (en) * 2017-07-31 2019-01-23 한국생산기술연구원 Copper alloy and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128234A (en) * 1983-12-16 1985-07-09 Furukawa Electric Co Ltd:The Copper alloy for lead frame
JPS60218442A (en) * 1984-04-13 1985-11-01 Furukawa Electric Co Ltd:The Copper alloy for lead frame
JPS61143540A (en) * 1984-12-15 1986-07-01 Kobe Steel Ltd Copper alloy having superior workability
JPS61174345A (en) * 1985-01-30 1986-08-06 Hitachi Metals Ltd Copper alloy for lead frame
JPS61272339A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Lead material for electronic parts excelled in repeated bendability and its production
JPS6260838A (en) * 1985-09-10 1987-03-17 Nippon Mining Co Ltd Copper alloy for lead frame
JPS6282746A (en) * 1985-10-07 1987-04-16 Fujitsu Ltd Counter control type packet reservation system
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy
JPH0771992B2 (en) * 1989-07-19 1995-08-02 三菱重工業株式会社 Liquid recovery device in container

Also Published As

Publication number Publication date
JPS62238343A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
KR950004935B1 (en) Copper alloy for electronic instruments
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPH0425338B2 (en)
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH0830234B2 (en) High strength and high conductivity copper alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0816255B2 (en) Copper alloy for electronic devices
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH0440417B2 (en)
JPH034612B2 (en)
JP2514926B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPS63109132A (en) High-strength conductive copper alloy and its production
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0356294B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0830233B2 (en) High strength and high conductivity copper alloy
JPH09143597A (en) Copper alloy for lead frame and its production
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JPS63192835A (en) Lead material for ceramic package
JPH0542488B2 (en)
JPS6393837A (en) Copper alloy for electronic equipment and its production
JPS64458B2 (en)