JPS6393837A - Copper alloy for electronic equipment and its production - Google Patents

Copper alloy for electronic equipment and its production

Info

Publication number
JPS6393837A
JPS6393837A JP23873286A JP23873286A JPS6393837A JP S6393837 A JPS6393837 A JP S6393837A JP 23873286 A JP23873286 A JP 23873286A JP 23873286 A JP23873286 A JP 23873286A JP S6393837 A JPS6393837 A JP S6393837A
Authority
JP
Japan
Prior art keywords
less
alloy
content
copper alloy
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23873286A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Michiaki Terashita
寺下 道明
Yoshimasa Oyama
大山 好正
Shigeo Shinozaki
篠崎 重雄
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP23873286A priority Critical patent/JPS6393837A/en
Publication of JPS6393837A publication Critical patent/JPS6393837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve strength, electric and thermal conductivities, solderability, plating suitability, corrosion resistance, etc., by incorporating specific amounts of Zr, Cr, and Zn and one or more elements among Mg, Ca, etc., by limiting respective contents of O2, P, and S, and by specifying the grain size of a precipitate. CONSTITUTION:This copper alloy has a composition consisting of, by weight, 0.03-0.3% Zr, 0.05-0.5% Cr, 0.01-0.5% Zn, 0.0005-0.05% of one or more kinds among Mg, Ca, misch metal, Ba, Sr, and B, <=0.0030% O2, <=0.0030% P, <=0.0010% S, and the balance Cu and also has a structure in which grain size of a precipitate is regulated to <=10mu. Further, <=0.4% Sn may be incorporated to this alloy. In order to manufacture this copper alloy, an alloy ingot of the above composition is heated to 840-950 deg.C to undergo hot working, cooled rapidly, and then subjected to cold working involving single or more heat treatments at 350-850 deg.C for 5sec-12hr so as to regulate the grain size of the precipitate to <=10mu.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機器用銅合金とその製造法に関し、特に半
導体リードフレームやコネクター接点等に使用する銅合
金として、機械的強度、電気・熱伝導性、半田付は性、
メッキ性、耐食性等を改善したものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a copper alloy for electronic devices and a method for producing the same. conductivity, soldering is
It has improved plating properties, corrosion resistance, etc.

(従来の技術) 半導体リードフレームやコネクター接点等に使用される
電子機器用銅合金としては、リン青銅(Cu−3n系合
金)、黄銅(Cu−Zn系合金)、洋白(Cu−N 1
−Zn系合金)等が用いられている。しかし黄銅と洋白
は応力腐食割れという致命的欠陥を有し、機械的ストレ
スの大きい用途には使用できない。またリン青銅は強度
や成型加工性が優れているところから最も広く利用され
ているが、導電率が低く、かつ高価なSnを多量に使用
する。更に半田付けや3n、3n合金メッキの剥離現象
を起し易いばかりか、応力腐食割れ感受性も黄銅や洋白
はとではないが保有する。
(Prior art) Copper alloys for electronic devices used for semiconductor lead frames, connector contacts, etc. include phosphor bronze (Cu-3n alloy), brass (Cu-Zn alloy), and nickel silver (Cu-N1 alloy).
-Zn-based alloy), etc. are used. However, brass and nickel silver have the fatal defect of stress corrosion cracking, and cannot be used in applications that involve large mechanical stress. Further, phosphor bronze is most widely used because of its excellent strength and moldability, but it has low conductivity and uses a large amount of expensive Sn. Furthermore, not only is it susceptible to peeling of soldering and 3N and 3N alloy plating, but it is also susceptible to stress corrosion cracking, although this is not the case with brass and nickel silver.

このため一部の用途ではCu−Fe系合金、例えばC1
94(Cu −2,3wt%F e −0,12wt%
Zn−P合金)(以下wt%を%と略記)やC195(
Cu−1,5%Fe−0,8%Co−0,6%5n−P
合金)が利用されている。これ等は6%3nリン青銅は
どの強度はないが、その2〜3倍の導電率を有し、応力
腐食割れ感受性はない。しかしながら成型加工性が劣る
ばかりか、メッキ性や半田付は性が不十分である。
For this reason, in some applications Cu-Fe alloys, such as C1
94(Cu -2,3 wt% Fe -0,12 wt%
Zn-P alloy) (hereinafter wt% is abbreviated as %) and C195 (
Cu-1,5%Fe-0,8%Co-0,6%5n-P
alloy) is used. Although they do not have the strength of 6% 3N phosphor bronze, they have two to three times the conductivity and are not susceptible to stress corrosion cracking. However, not only is the moldability inferior, but also the plating and soldering properties are insufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

最近電子機器の小型化、高集積度化、高機能化と共に、
電子機器用銅合金には信頼性と経済性の強い要求に応え
得る高性能の銅合金が求められるようになった。このよ
うな要求を満たす銅合金としては、下記の特性を満足す
ることが望まれている。
Recently, as electronic devices have become smaller, more highly integrated, and more sophisticated,
Copper alloys for electronic devices are now required to have high performance and can meet strong demands for reliability and economy. A copper alloy that satisfies these requirements is desired to satisfy the following properties.

(1)強度と導電性(熱伝導性)が共に高度化できるこ
と。
(1) Both strength and electrical conductivity (thermal conductivity) can be improved.

(2)成型加工性が良いこと。(2) Good moldability.

(3)耐食性、特に応力腐食割れ感受性がないこと。(3) Corrosion resistance, especially no susceptibility to stress corrosion cracking.

(4)半田付は性やメッキ性、即ち半田接合強度やSn
メッキの密着性が長期にわたり高いこと。
(4) Soldering properties and plating properties, that is, solder joint strength and Sn
High adhesion of plating over a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々研究の結果、電子機器、例えば
半導体リードフレームやコネクター接点等に使用し、上
記特性を満足する電子機器用銅合金とその製造法を開発
したものである。
In view of this, as a result of various researches, the present invention has developed a copper alloy for electronic devices that satisfies the above characteristics and is used in electronic devices, such as semiconductor lead frames and connector contacts, and a method for producing the same.

即ち本発明合金の一つは、Zr0.03〜0.3%、(
:、 r0.05〜0.5%、Z n0.01〜0.5
%を含み、Mg、Ca、ミツシュメタル(MM)、Ba
That is, one of the alloys of the present invention contains 0.03 to 0.3% Zr (
:, r0.05~0.5%, Zn0.01~0.5
%, Mg, Ca, Mitsushmetal (MM), Ba
.

Sr、Bの内少なくとも1種以上を0.0005〜0、
05%含み、α含有量を0.0030%以下、P含有量
を0.0030%以下、S含有量を0.0010%以下
に制限し、残部Cuと不可避的不純物からなる析出物粒
径を10μ以下としたことを特徴とするものである。
at least one of Sr and B from 0.0005 to 0;
05%, α content is limited to 0.0030% or less, P content is limited to 0.0030% or less, S content is limited to 0.0010% or less, and the precipitate particle size consisting of the remainder Cu and unavoidable impurities is reduced. It is characterized by having a thickness of 10μ or less.

本発明合金の他の一つは、Zr0.03〜0.3%、C
r0.05〜0.5%、Z n0.01〜0.5%を含
み、Mg、Ca、ミツシュメタル(MM)、Ba。
Another alloy of the present invention contains 0.03 to 0.3% Zr, C
Contains r0.05-0.5%, Z n0.01-0.5%, Mg, Ca, Mitsushmetal (MM), Ba.

Sr、Bの内少なくとも1種以上を0.0005〜0.
05%含み、更にSn0.4%を含み、α含有量を0.
0030%以下、P含有量を0.0030%以下、S含
有量を0.0010%以下に制限し、残部CLIと不可
避的不純物からなる析出物粒径を10μm以下としたこ
とを特徴とするものである。
At least one of Sr and B is added in an amount of 0.0005 to 0.
0.05%, further contains Sn0.4%, and α content is 0.05%.
P content is limited to 0.0030% or less, P content is limited to 0.0030% or less, S content is limited to 0.0010% or less, and the precipitate particle size consisting of the remainder CLI and inevitable impurities is set to 10 μm or less. It is.

また本発明製造法は、Zr0.03〜0.3%、Cr0
.05〜0.5%、Z n0.01〜0.5%を含み、
Mg、Ca、ミツシュメタル(MM>、Ba。
In addition, the production method of the present invention has Zr0.03 to 0.3%, Cr0
.. 05-0.5%, Zn0.01-0.5%,
Mg, Ca, Mitsushmetal (MM>, Ba.

Sr、Bの内少なくとも1種以上を0.0005〜0.
05%含み、又はこれに3n0.4%以下を含み、α含
有量を0.0030%以下、P含有量を0.0030%
以下、S含有量を0.0010%以下に制限し、残部C
uと不可避的不純物からなる合金鋳塊を、840〜95
0℃に加熱して熱間加工した後急冷し、しかる後350
〜850°Cで5秒〜12時間の熱処理を少なくとも1
回以上含む冷間加工を施して、析出物粒径を10μm以
下とすることを特徴とするものである。
At least one of Sr and B is added in an amount of 0.0005 to 0.
05%, or 3n0.4% or less, α content is 0.0030% or less, P content is 0.0030%
Hereinafter, the S content is limited to 0.0010% or less, and the remaining C
An alloy ingot consisting of u and unavoidable impurities is heated to
After heating to 0℃ and hot working, it is rapidly cooled and then heated to 350℃.
At least one heat treatment at ~850°C for 5 seconds to 12 hours
It is characterized in that it is subjected to cold working more than once to reduce the precipitate particle size to 10 μm or less.

〔作用〕[Effect]

本発明合金は上記組成からなり、特にCrとZrを析出
分散せしめた合金で、両者の作用を相乗的に併合して所
定の特性を得たものである。
The alloy of the present invention has the above composition, and in particular is an alloy in which Cr and Zr are precipitated and dispersed, and the effects of both are synergistically combined to obtain predetermined characteristics.

またMg、Ca、ミツシュメタル(MM)。Also Mg, Ca, and Mitsushmetal (MM).

Ba、Br、B (以下M(J等と略記)はCrやZr
の析出分散の均質化に有効に働き、特にCrへの作用を
効率化したものである。しかしてこれ等の成分の作用は
本発明合金の組成範囲、即ちZ r 0.03〜0.3
%、Cr 0.05〜0.5%、MCI等の少なくとも
1種以上を0.0005〜0.05%において実用上有
効であり、Or0.15〜0.35%、Zr0.1〜0
.2%の時に要求特性を最大にすることができる。しか
してそれぞれ下限未満では実用上の作用が得られず、上
限を越えると製造上の欠陥や導電率の低下をきたし、特
に過剰のCrヤZrは粗大粒となり、成型加工性、メッ
キ性、半田付は性等に有害に働く。
Ba, Br, B (hereinafter M (abbreviated as J etc.) are Cr and Zr.
It works effectively to homogenize the precipitation and dispersion of Cr, and particularly improves the efficiency of its action on Cr. However, the effects of these components are within the composition range of the alloy of the present invention, that is, Z r 0.03 to 0.3.
%, Cr 0.05-0.5%, MCI etc. is practically effective at 0.0005-0.05%, Or 0.15-0.35%, Zr 0.1-0
.. The required characteristics can be maximized at 2%. However, if each is below the lower limit, no practical effect will be obtained, and if the upper limit is exceeded, manufacturing defects or a decrease in conductivity will occur.In particular, excessive Cr and Zr will become coarse grains, which will affect moldability, plating properties, and solderability. Attaching has a harmful effect on sexuality, etc.

Znは半田やメッキの密着強度の劣化を抑制するもので
、本発明合金の範囲内、即ちZn0.01〜0.5%、
望ましくは0.05〜0.2%において有効であり、下
限未満では効果がなく、上限を越えると成型加工性を低
下する。Snは本発明合金の範囲内、即ち0.4%以下
、望ましくは0.05〜0.2%の範囲で有効に作用し
、合金の強度向上とCrの析出作用を遅らせ、熱間加工
を安定化するも、過剰の3nは導電性を低下する。
Zn suppresses the deterioration of the adhesion strength of solder and plating, and is within the range of the present alloy, that is, Zn0.01 to 0.5%,
It is effective desirably at 0.05 to 0.2%, less than the lower limit is ineffective, and more than the upper limit reduces moldability. Sn acts effectively within the range of the present alloy, that is, 0.4% or less, preferably in the range of 0.05 to 0.2%, improves the strength of the alloy, delays the precipitation of Cr, and facilitates hot working. Although stabilized, excess 3n reduces conductivity.

更に不可避的不純物のうちα含有量を0.0030%以
下と制限したのは、これを越えてαを含有すると合金成
分の均一析出分散に有害となり、粗大析出を作りやすく
する。そのため強度の向上を阻害するばかりか、メッキ
性や半田付は性を劣化させ、更には成型加工性を低下し
て、電子機器に要求される精密な加工部品に有害となる
。またP含有量を0.0030%以下、S含有量を0.
0010%以下と制限したのは、これ等が過剰に含まれ
ると、本発明合金の特徴である高い導電性を著しく損な
うと共に、半田との界面にyA縮して半田付は性を劣化
し、特にSは結晶粒界に凝集して熱間加工性を大きく悪
化する。これ等不純物は本発明の範囲内であれば特性面
にあまり影響を及ぼさないが、好ましくはp0.001
0%以下、S ′4i:0.0005%以下とすること
が望ましい。
Furthermore, the reason why the α content of unavoidable impurities is limited to 0.0030% or less is that if α is contained in excess of this value, it will be detrimental to the uniform precipitation and dispersion of the alloy components and will make it easier to form coarse precipitates. This not only impedes improvement in strength, but also deteriorates plating and soldering properties, and further reduces moldability, which is harmful to precision machined parts required for electronic devices. In addition, the P content is 0.0030% or less, and the S content is 0.0030% or less.
The reason for limiting it to 0.010% or less is that if these are contained in excess, the high conductivity that is a characteristic of the alloy of the present invention will be significantly impaired, and yA will shrink at the interface with the solder, resulting in poor soldering properties. In particular, S aggregates at grain boundaries and greatly deteriorates hot workability. These impurities do not have much influence on the characteristics as long as they are within the scope of the present invention, but preferably p0.001
It is desirable that the content be 0% or less, and S'4i: 0.0005% or less.

更に本発明合金において、析出物粒径を10μm以下、
望ましくは1μm以下とするのは、析出物の粒径が強度
、メッキ性、半田付は性等を大きく左右し、上限を越え
る粒径では前記開時性を著しく低下するためである。
Furthermore, in the alloy of the present invention, the precipitate particle size is 10 μm or less,
The reason why the precipitate particle size is desirably 1 μm or less is because the particle size of the precipitate greatly influences strength, plating properties, soldering properties, etc., and if the particle size exceeds the upper limit, the above-mentioned opening properties are significantly reduced.

本発明合金は上記組成範囲からなり、前記製造法によっ
て強度などの特性を最適化することができる。しかして
合金鋳塊を840〜950℃に加熱して熱間圧延するの
は、本発明工程を通して上記の目的とする均質な析出分
散を達成するためで、840℃未満の加熱や950℃を
越える加熱では本発明工程を通して均質な析出分散が達
成できない。また熱間加工後の急冷は速かに冷却するこ
とが望ましく、冷却に10分を越えるようでは均質な析
出分散を達成することができない。次に急冷1350〜
850℃で5秒〜12時間、特に400〜500℃で0
.5〜5時間又は600〜800℃で10秒〜1時間の
熱処理を1回以上含む冷間加工を施すのは、ZrとCr
の均質析出を行なわせるためで、熱処理前に冷間加工に
より少なくとも10%以上の適度な加工歪を付与するこ
とも、均質析出に有効に働く。
The alloy of the present invention has the composition range described above, and properties such as strength can be optimized by the manufacturing method described above. However, the reason why the alloy ingot is heated to 840 to 950°C and hot rolled is to achieve the above-mentioned homogeneous precipitation dispersion through the process of the present invention. Heating cannot achieve homogeneous precipitation dispersion throughout the process of the present invention. Further, it is desirable that the rapid cooling after hot working be carried out quickly; if the cooling takes more than 10 minutes, homogeneous precipitation dispersion cannot be achieved. Next, quench 1350 ~
5 seconds to 12 hours at 850℃, especially 0 at 400-500℃
.. Cold working, which includes heat treatment for 5 to 5 hours or at 600 to 800°C for 10 seconds to 1 hour at least once, is applied to Zr and Cr.
This is to cause homogeneous precipitation, and applying a moderate working strain of at least 10% by cold working before heat treatment also works effectively for homogeneous precipitation.

以上の製造条件は、本発明合金特性を最適化する条件で
あり、勿論この条件を外れても合金の製造は可能である
。また本発明合金は前記組成に加えて、例えば少量のA
1.Ni、Co。
The above manufacturing conditions are conditions for optimizing the properties of the alloy of the present invention, and it is of course possible to manufacture the alloy even outside these conditions. In addition to the above composition, the alloy of the present invention also contains, for example, a small amount of A.
1. Ni, Co.

T i、Fe、M0.w、Ta、Nb、Hf。Ti, Fe, M0. w, Ta, Nb, Hf.

Ge、Pb、As、Sb、Ga、I n、Y。Ge, Pb, As, Sb, Ga, In, Y.

Tj!、Be、Cd、B i、Se、Te、Ru。Tj! , Be, Cd, B i, Se, Te, Ru.

Act、ALJ、Pd、Pt等を併用することも可能で
ある。尚本発明製造法において、最終仕上加工率を50
%以下とし、その後200〜500℃の調質焼鈍、テン
ションレベラー、テンションアニーラ等と組合せること
により、更に特性を向上せしめることができる。
It is also possible to use Act, ALJ, Pd, Pt, etc. in combination. In addition, in the manufacturing method of the present invention, the final finishing rate is 50
% or less, and then combined with temper annealing at 200 to 500°C, a tension leveler, a tension annealer, etc., the properties can be further improved.

〔実施例〕〔Example〕

第1表に示す組成の合金鋳塊(巾40711111.厚
さ40M、長さ300馴)を外削してから875℃で1
5分間加熱し、これを厚ざ10.の板に熱間圧延し、た
たらに水冷して100′C以下に冷却した。圧延時間は
約3分であり、上り温度は670〜700℃であった。
An alloy ingot with the composition shown in Table 1 (width 40711111, thickness 40M, length 300mm) was externally machined and then heated at 875℃ for 1
Heat for 5 minutes and make a 10. It was hot-rolled into a sheet and cooled to below 100'C by water-cooling. The rolling time was about 3 minutes, and the rising temperature was 670-700°C.

これを面側してから厚さ1.2 mmまで冷間圧延した
後、450℃で25分間加熱処理し、次に厚ざ0.4a
nまで冷間圧延し、再び450℃で30分間加熱処理し
た。これを更に厚さ0.2mまで圧延してから300℃
で15分間加熱処理した。これらについて引張強ざ、導
電率2曲げ成型性、耐食性。
This was face-sided and cold-rolled to a thickness of 1.2 mm, then heat-treated at 450°C for 25 minutes, and then rolled to a thickness of 0.4 mm.
It was cold rolled to n and then heat treated again at 450°C for 30 minutes. This was further rolled to a thickness of 0.2m and then heated to 300°C.
The mixture was heat-treated for 15 minutes. These include tensile strength, electrical conductivity, bending formability, and corrosion resistance.

半田つけ性及びメッキ性を調べた。これ等の結果を従来
合金であるC194  (Cu−2,3%Fe−0,1
2%Zn−P合金)と6%リン青銅(Cu−6%5n−
P合金)と比較して第2表に示す。
Solderability and plating properties were investigated. These results were compared to the conventional alloy C194 (Cu-2,3%Fe-0,1
2%Zn-P alloy) and 6% phosphor bronze (Cu-6%5n-
A comparison with P alloy) is shown in Table 2.

曲げ成型性は各種先端半径(R)の90”角のV曲げ試
験により曲げ部の割れの状態を検鏡し、マイクロクラッ
クのない最少半径(R)と板厚(1)の比(R/l)を
求めた。耐食性についてはJIS C8306(応力腐
食割れ)に準じ、3vo1%N113蒸気中定荷重(引
張強ざの50%)法により割れの時間を求めた。半田付
は性は直径9mの中部にリード線を共晶半田付tプし、
150℃で600時間エージングしてからプル試験によ
り接合強度を求めた。またメッキ性はホウフッ化物浴に
て5n−5%Pb合金メッキを7.5μの厚さにメッキ
し、105℃で2000時間保持してから180°の折
曲げを行ない、折曲げ部のメッキ層の剥離を検鏡した。
Bending formability is determined by examining the state of cracks in the bent part through a V-bending test of 90" squares with various tip radii (R), and determining the ratio (R/ The corrosion resistance was determined according to JIS C8306 (stress corrosion cracking), and the cracking time was determined by the constant load (50% of tensile strength) method in 3vol 1% N113 steam.The soldering resistance was 9 m in diameter. Connect the lead wire with eutectic solder to the middle of the
After aging at 150° C. for 600 hours, the bonding strength was determined by a pull test. The plating properties were tested by plating 5n-5%Pb alloy plating to a thickness of 7.5μ in a borofluoride bath, holding it at 105°C for 2000 hours, and then bending it 180°. The peeling was examined using a microscope.

第1表及び第2表から明らかなように本発明合金Nα1
〜6は何れも各特性が優れ、従来合金と比較しても強度
は6%リン青銅Nα13に匹敵し、導電率はC194N
(112よりはるかに優れていることが判る。
As is clear from Tables 1 and 2, the alloy Nα1 of the present invention
-6 all have excellent properties, and even compared to conventional alloys, the strength is comparable to 6% phosphor bronze Nα13, and the conductivity is C194N.
(It turns out that it is much better than 112.

これに対しZnを含まない比較合金Na8では半田接合
強度が著しく劣り、Cr含含有の多い比較合金Nα7、
α含有量が多く、析出粒径の大きい比較合金Nα9及び
P含有量の多い比較合金NQIOでは曲げ加工性が劣る
ばかりか、メッキ性及び半田接合強度も劣る。またSn
含有量の多い比較合金N011では、導電率の低下が著
しいことが判る。
On the other hand, the solder joint strength of the comparative alloy Na8, which does not contain Zn, is significantly inferior, and the comparative alloys Nα7, which contain a large amount of Cr,
Comparative alloy Nα9, which has a high α content and a large precipitate grain size, and comparative alloy NQIO, which has a high P content, not only have poor bending workability but also poor plating properties and solder joint strength. Also Sn
It can be seen that the comparative alloy N011, which has a large content, shows a significant decrease in electrical conductivity.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、強度、電気・熱伝導性、成
型加工性、耐食性、メッキ性、半田付は性等において、
従来合金よりはるかに優れ、電子機器における半導体リ
ードフレーム、コネクタースイッチ等のばね材として、
信頼性を高め、かつ小型化、高集積化、高機能化を容易
にする等工業上顕著な効果を奏するものである。
As described above, according to the present invention, strength, electrical/thermal conductivity, moldability, corrosion resistance, plating properties, soldering properties, etc.
Far superior to conventional alloys, it can be used as a spring material for semiconductor lead frames, connector switches, etc. in electronic equipment.
It has remarkable industrial effects, such as increasing reliability and facilitating miniaturization, high integration, and high functionality.

Claims (3)

【特許請求の範囲】[Claims] (1)Zr0.03〜0.3wt%、Cr0.05〜0
.5wt%、Zn0.01〜0.5wt%を含み、Mg
、Ca、ミツシュメタル(MM)、Ba、Sr、Bの内
の少なくとも1種以上を0.0005〜0.05wt%
含み、α含有量を0.0030wt%以下、P含有量を
0.0030wt%以下、S含有量を0.0010wt
%以下に制限し、残部Cuと不可避的不純物からなる析
出物粒径を10μm以下としたことを特徴とする電子機
器用銅合金。
(1) Zr0.03-0.3wt%, Cr0.05-0
.. 5wt%, Zn0.01-0.5wt%, Mg
, Ca, Mitsushmetal (MM), Ba, Sr, and at least one of B at 0.0005 to 0.05 wt%
Contains α content of 0.0030wt% or less, P content of 0.0030wt% or less, and S content of 0.0010wt.
% or less, and the particle size of precipitates consisting of the balance Cu and unavoidable impurities is 10 μm or less.
(2)Zr0.03〜0.3wt%、Cr0.05〜0
.5wt%、Zn0.01〜0.5wt%を含み、Mg
、Ca、ミツシュメタル(MM)、Ba、Sr、Bの内
の少なくとも1種以上を0.0005〜0.05wt%
含み、更にSn0.4wt%以下を含み、O_2含有量
を0.0030wt%以下、P含有量を0.0030w
t%以下、S含有量を0.0010wt%以下に制限し
、残部Cuと不可避的不純物からなる析出物粒径を10
μm以下としたことを特徴とする電子機器用銅合金。
(2) Zr0.03-0.3wt%, Cr0.05-0
.. 5wt%, Zn0.01-0.5wt%, Mg
, Ca, Mitsushmetal (MM), Ba, Sr, and at least one of B at 0.0005 to 0.05 wt%
Contains 0.4wt% or less of Sn, O_2 content of 0.0030wt% or less, and P content of 0.0030w.
t% or less, the S content is limited to 0.0010wt% or less, and the precipitate particle size consisting of the remainder Cu and unavoidable impurities is reduced to 10%.
A copper alloy for electronic devices characterized by having a thickness of μm or less.
(3)Zr0.03〜0.3wt%、Cr0.05〜0
.5wt%、Zn0.01〜0.5wt%を含み、Mg
、Ca、ミツシュメタル(MM)、Ba、Sr、Bの内
少なくとも1種以上を0.0005〜0.05wt%含
み、又はこれにSn0.4wt%以下を含み、O_2含
有量を0.0030wt%以下、P含有量を0.003
0wt%以下、S含有量を0.0010wt%以下に制
限し、残部Cuと不可避的不純物からなる合金鋳塊を、
840〜950℃に加熱して熱間加工した後急冷し、し
かる後350〜850℃で5秒〜12時間の熱処理を少
なくとも1回以上含む冷間加工を施して、析出物粒径を
10μm以下とすることを特徴とする電子機器用銅合金
の製造法。
(3) Zr0.03-0.3wt%, Cr0.05-0
.. 5wt%, Zn0.01-0.5wt%, Mg
Contains 0.0005 to 0.05 wt% of at least one of Ca, Mitsushi metal (MM), Ba, Sr, and B, or contains 0.4 wt% or less of Sn, and has an O_2 content of 0.0030 wt% or less. , P content 0.003
0wt% or less, the S content is limited to 0.0010wt% or less, and the remainder is Cu and inevitable impurities.
After hot working by heating to 840 to 950°C, quenching, and then cold working including at least one heat treatment at 350 to 850°C for 5 seconds to 12 hours to reduce the precipitate particle size to 10 μm or less. A method for producing a copper alloy for electronic devices, characterized by:
JP23873286A 1986-10-07 1986-10-07 Copper alloy for electronic equipment and its production Pending JPS6393837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23873286A JPS6393837A (en) 1986-10-07 1986-10-07 Copper alloy for electronic equipment and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23873286A JPS6393837A (en) 1986-10-07 1986-10-07 Copper alloy for electronic equipment and its production

Publications (1)

Publication Number Publication Date
JPS6393837A true JPS6393837A (en) 1988-04-25

Family

ID=17034434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23873286A Pending JPS6393837A (en) 1986-10-07 1986-10-07 Copper alloy for electronic equipment and its production

Country Status (1)

Country Link
JP (1) JPS6393837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149344A (en) * 1986-12-12 1988-06-22 Nippon Mining Co Ltd High strength copper alloy having high electrical conductivity
JPH02170932A (en) * 1988-12-24 1990-07-02 Nippon Mining Co Ltd Copper alloy having superior direct bonding property
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194031A (en) * 1984-03-15 1985-10-02 Mitsubishi Metal Corp Copper alloy for lead material for semiconductor device
JPS60245750A (en) * 1984-05-18 1985-12-05 Mitsubishi Metal Corp Copper alloy for lead material of semiconductor apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194031A (en) * 1984-03-15 1985-10-02 Mitsubishi Metal Corp Copper alloy for lead material for semiconductor device
JPS60245750A (en) * 1984-05-18 1985-12-05 Mitsubishi Metal Corp Copper alloy for lead material of semiconductor apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149344A (en) * 1986-12-12 1988-06-22 Nippon Mining Co Ltd High strength copper alloy having high electrical conductivity
JPH02170932A (en) * 1988-12-24 1990-07-02 Nippon Mining Co Ltd Copper alloy having superior direct bonding property
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property

Similar Documents

Publication Publication Date Title
US8257515B2 (en) Copper alloy containing cobalt, nickel and silicon
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
KR950004935B1 (en) Copper alloy for electronic instruments
US20090183803A1 (en) Copper-nickel-silicon alloys
JPH08503022A (en) Copper alloy having high strength and electrical conductivity and method for producing the same
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JPS62182240A (en) Conductive high-tensile copper alloy
JPH0830234B2 (en) High strength and high conductivity copper alloy
JP2006016629A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY
JPS6338543A (en) Copper alloy for electronic appliance and its manufacture
JPS6393837A (en) Copper alloy for electronic equipment and its production
JPH0425339B2 (en)
JPS63274729A (en) Copper alloy for electronic and electrical appliance
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JPH034612B2 (en)
JPS6142772B2 (en)
JPS63109132A (en) High-strength conductive copper alloy and its production
JPS62133033A (en) Cu alloy lead material for semiconductor device
JPH09143597A (en) Copper alloy for lead frame and its production
JPS62185847A (en) High strength copper alloy for high thermal and electric conductivity use and its production
JPH0816255B2 (en) Copper alloy for electronic devices
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment