JPS62185847A - High strength copper alloy for high thermal and electric conductivity use and its production - Google Patents

High strength copper alloy for high thermal and electric conductivity use and its production

Info

Publication number
JPS62185847A
JPS62185847A JP2818486A JP2818486A JPS62185847A JP S62185847 A JPS62185847 A JP S62185847A JP 2818486 A JP2818486 A JP 2818486A JP 2818486 A JP2818486 A JP 2818486A JP S62185847 A JPS62185847 A JP S62185847A
Authority
JP
Japan
Prior art keywords
less
alloy
copper alloy
strength
strength copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2818486A
Other languages
Japanese (ja)
Other versions
JPH0356294B2 (en
Inventor
Shoji Shiga
志賀 章二
Toru Tanigawa
徹 谷川
Yoshimasa Ooyama
大山 好正
Masato Asai
真人 浅井
Shigeo Shinozaki
篠崎 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2818486A priority Critical patent/JPS62185847A/en
Publication of JPS62185847A publication Critical patent/JPS62185847A/en
Publication of JPH0356294B2 publication Critical patent/JPH0356294B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the titled copper alloy having stable characteristics and excellent in soldering strength, by incorporating Ta, Nb, misch metal, Te, and Ag besides specific amounts of Ni, Co, and Si to Cu. CONSTITUTION:This copper alloy has a composition consisting of, by weight, 0.4-4% Ni, Co, or mixtures thereof, 0.1-1% Si, 0.01-1% of one or more kinds among Ta, Nb, misch metal, Te, and Ag, and the balance Cu and containing, if necessary, one or more kinds among <=0.5% Mn, <=5% Zn, and <=5% Sn. This alloy is hot-worked at >=650 deg.C, immediately cooled down to <=350 deg.C at a rate of >=10 deg.C/sec, cold-worked at >=70% draft, and then heat- treated at 400-600 deg.C. In this way, the copper alloy which satisfies various characteristics including strength and conductivity required of electrical and electronic equipments, heat exchangers, etc., can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気・電子機器や熱交換器に用いられる熱・電
気高伝導用高力銅合金とその製造法に関し、特に電気・
熱の高伝導性と高い機械的強度を有し、小型・高密化さ
れた半導体のリード材等に適した銅合金を提供するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a high-strength copper alloy for high thermal and electrical conductivity used in electrical and electronic equipment and heat exchangers, and a method for producing the same.
The present invention provides a copper alloy that has high thermal conductivity and high mechanical strength, and is suitable for use as lead materials for small, high-density semiconductors.

[従来の技術] 半導体のリードの外コネクター、スイツヂリレー等の導
電ばね、各種端子には強度と熱・電気伝導性(以下伝導
性と略記)とを有する銅合金、例えばリン青銅(Sn4
〜awt%以下、P0.6wt%以下、残部Cu)(以
下wt%を%と略記)が用いられていたが、最近機器の
小型化、高密化に伴なって発熱量の増大から放熱性の必
要か高まり、更にプリント基板等に半田付けしたり、プ
ラスデックモールドを行なうなど、半田付は性、メッキ
性、スケール密着性、耐食性が不可欠の条件となってき
た。リン青銅は50〜F35KI/rrvAの強度を有
し、加工性に優れているが、導電率は10〜20%lA
C3と低く、高価なSnを4〜8%も含むもので、半田
接合強度が経時劣化を起すばかりか、応力腐食割れ感受
性も高い欠点がある。このためCu−1ee合金やCL
J−Fe合金が用いられるようになった。
[Prior Art] Copper alloys that have strength and thermal and electrical conductivity (hereinafter abbreviated as conductivity), such as phosphor bronze (Sn4
~awt% or less, P0.6wt% or less, balance Cu) (hereinafter wt% is abbreviated as %), but recently, with the miniaturization and high density of equipment, the heat dissipation performance has increased due to the increase in calorific value. The need for soldering has increased, and properties such as soldering properties, plating properties, scale adhesion, and corrosion resistance have become indispensable for soldering to printed circuit boards, etc., and for Plus Deck molding. Phosphor bronze has a strength of 50 to F35 KI/rrvA and is excellent in workability, but its electrical conductivity is 10 to 20% lA.
It has a low C3 content and contains 4 to 8% of expensive Sn, which not only causes deterioration of solder joint strength over time but also has the disadvantage of high stress corrosion cracking susceptibility. Therefore, Cu-1ee alloy and CL
J-Fe alloys came into use.

[発明が解決しようとする問題点コ CLI−[3e合金は100Nff/4以上の強度を示
すも、非常に高価なためにその使用は特殊な用途に限ら
れている。またCu−Fe合金、例えばC−195合金
(1,5%Fe、(:、o 0.8%、Sn0.6%、
Po、1%、残部Cu)は比較的安価でリードフレーム
等にかなり使用され、強度は45〜55に’j/mrA
、導電率は50〜65%lAC3の特性を示すも、多口
の1exPやFeの析出物を含むため、加工性、半田接
合強度、メッキ性などが劣る。その他CU−Or合金や
コルリン合金(Cu−Ni−Si系合金)が知られてい
るが、Cu−Cr合金は80%lAC3級の高導電率を
示すも強度が不」−分であり、コルリン合金は特性が不
安定なばかりか、半田接合強度の劣化が大ぎく、Snや
5n−Pb合金(半田)メッキの剥離を起し易く、電子
・電気機器等の用途では重大な障害となっている。
[Problems to be Solved by the Invention] Although the 3e alloy exhibits a strength of 100 Nff/4 or more, its use is limited to special applications because it is very expensive. Also, Cu-Fe alloys, such as C-195 alloy (1.5% Fe, (:, o 0.8%, Sn 0.6%,
Po, 1%, balance Cu) is relatively cheap and is widely used for lead frames, etc., and has a strength of 45 to 55'j/mrA.
Although it exhibits a conductivity of 50 to 65% lAC3, it contains many 1exP and Fe precipitates, so it is inferior in workability, solder joint strength, plating performance, etc. In addition, CU-Or alloy and Corrin alloy (Cu-Ni-Si alloy) are known, but Cu-Cr alloy has a high conductivity of 80% lAC3 class, but its strength is poor, and Corrin alloy is Not only do alloys have unstable properties, but their solder joint strength deteriorates significantly, and Sn and 5n-Pb alloy (solder) plating tends to peel off, which is a serious problem in electronic and electrical equipment applications. There is.

このように増々顕在化しつつある高性能化合金のニーズ
に応えるための改良された合金が要求されており、この
ような合金には次の特性が要求される。
Improved alloys are required to meet the ever-increasing needs for high-performance alloys, and such alloys are required to have the following properties.

(1)強度、耐熱性及び耐食性が優れていること。(1) Excellent strength, heat resistance, and corrosion resistance.

(2)加工性の均質性及び伝導性とその安定性が良いこ
と。
(2) Good homogeneity of workability, conductivity, and stability.

(3)半田接合強度が高く、経時劣化が少なく、メッキ
性が良いこと。
(3) High solder joint strength, little deterioration over time, and good plating properties.

(4)酸化スケールの密着性が良いこと。(4) Good adhesion of oxide scale.

問題点を解決するための手段 本発明はこれに鑑み種々検討の結果、伝導性、強度、半
田接合強度、メッキ性、酸化スケールの密着性及び耐食
性等の優れた熱・電気伝導用高力銅合金とその製造法を
開発したものである。
Means for Solving the Problems In view of this, the present invention has been developed as a result of various studies, and has been developed to produce high-strength copper for thermal and electrical conduction that has excellent conductivity, strength, solder joint strength, plating properties, oxide scale adhesion, and corrosion resistance. The alloy and its manufacturing method were developed.

即ち本発明合金の一つは、Ni、Co又はこれ等の混合
物を0.4〜4%とSiを0.1〜1%含み、’l’−
a、Nb、ミツシュメタル(以下MMと略記) 、Te
、Aqの内何れか1種又は2種以上を合計0.01〜1
%含み、゛残部Cuと不可避的不純物からなることを特
徴とするものである。
That is, one of the alloys of the present invention contains 0.4 to 4% of Ni, Co, or a mixture thereof and 0.1 to 1% of Si, and has 'l'-
a, Nb, Mitsushmetal (hereinafter abbreviated as MM), Te
, Aq, a total of 0.01 to 1 of any one or two or more of them.
%, with the remainder consisting of Cu and unavoidable impurities.

本発明合金の他の一つは、Ni、co又はこれ等の混合
物を0.4〜4%とSiを0.1〜1%含み、Ta、N
b、MM、Te、Agの内何れか1種又は2種以上を合
if0.01〜1%含み、更にMn0.5%以下、Zr
15%以下、Sn5%以下の範囲内で何れか1種又は2
種以上を含み、残部Cuと不可避的不純物からなること
を特徴とするものでおる。
Another alloy of the present invention contains 0.4-4% Ni, co or a mixture thereof and 0.1-1% Si, Ta, N
b, contains one or more of MM, Te, and Ag in a total of 0.01 to 1%, and further contains Mn 0.5% or less, Zr
Any one or two within the range of 15% or less, Sn 5% or less
It is characterized by containing more than one species, with the remainder consisting of Cu and unavoidable impurities.

また本発明製造法は、Ni、Co又はこれ等の混合物を
0.4〜4%とSiを0.1〜1%含み、Ta、Nb、
MM、Te、Actの内何れか1種又は2種以上を合計
o、 oi〜1%含み、又はこれニMn 0.5%以下
、Zn5%以下、Sn5%以下の範囲内で何れか1種又
は2種以上を含み、残部Cuと不可避的不純物からなる
合金を650℃以上で熱間加工し、直ちに10’C/S
ec以上の速度で350℃以下まで冷却した後、70%
以上の冷間加工を行なってから400〜600℃で熱処
理することを特徴とするものである。
Further, the production method of the present invention contains 0.4 to 4% of Ni, Co or a mixture thereof and 0.1 to 1% of Si, Ta, Nb,
Contains one or more of MM, Te, and Act in a total of o, oi ~ 1%, or any one of these within the range of Mn 0.5% or less, Zn 5% or less, Sn 5% or less Or hot working an alloy containing two or more types, the balance consisting of Cu and unavoidable impurities at 650°C or higher, and immediately 10'C/S
After cooling to 350℃ or less at a rate of ec or higher, 70%
It is characterized by performing the above cold working and then heat treating at 400 to 600°C.

本発明は常法により上記合金組成に配合して溶解し、水
冷金型鋳造法等により鋳造したインゴットを650°C
以上、望ましくは700℃以上で熱間加工し、加工後直
らに水冷又はJ!Il冷により冷却する。次にミーリン
グや酸洗等により表面を清浄化してから70%以上の冷
間加工を加え、しかる後400〜600 ’C望ましく
は450〜550’Cで1分〜24時間熱処理して仕上
げる。尚必要に応じて冷間加工と熱処理を繰返すことも
できる。
In the present invention, the above alloy composition is blended and melted by a conventional method, and an ingot is cast by a water-cooled mold casting method or the like at 650°C.
The above is preferably hot worked at a temperature of 700°C or higher, and immediately after the work is water cooled or J! Cool by Il cooling. Next, the surface is cleaned by milling, pickling, etc., and then subjected to cold working of 70% or more, followed by heat treatment at 400 to 600'C, preferably 450 to 550'C, for 1 minute to 24 hours to finish. Note that cold working and heat treatment can be repeated as necessary.

[作  用] 本発明において、Ni、CO又はこれ等の混合物とSi
の添加は金属間化合物Ni2Si又は/及びCO2S 
iを熱処理析出させて強度を向上させると共に導電率(
伝導性)の回復を計ったもので、Ni、CO又はこれ等
の混合物の含有量を0.4〜4%、Si含有伍を0.1
〜1%と限定したのは、何れも含有量が下限未満では十
分な効果が得られず、上限を越えると導電率を低下させ
るばかりか、加工性を損なうためである。尚N1zSi
及びCO2S iの化学量論比は5.2:1であり、N
i、Qo又はこれ等の混合物とSiの配合比を上記組成
範囲内において化学量論比に近ずけることが望ましく、
過剰のNi、co又はSiは導電率を低下させ、かつ加
工性や半田接続強度の低下をまねく。
[Function] In the present invention, Ni, CO or a mixture thereof and Si
The addition of intermetallic compound Ni2Si or/and CO2S
i is precipitated by heat treatment to improve the strength and improve the electrical conductivity (
The content of Ni, CO, or a mixture thereof is 0.4 to 4%, and the Si content is 0.1%.
The reason why the content is limited to ~1% is because sufficient effects cannot be obtained if the content is less than the lower limit, and if it exceeds the upper limit, not only the conductivity decreases but also processability is impaired. Furthermore, N1zSi
The stoichiometric ratio of N and CO2S i is 5.2:1, and N
It is desirable that the blending ratio of i, Qo or a mixture thereof and Si be close to the stoichiometric ratio within the above composition range,
Excessive Ni, Co, or Si reduces electrical conductivity, and also causes a decrease in workability and solder connection strength.

Ta、Nb、MM、Te、ACIの内何れか1種又は2
種状の添加は、更に強度を向上させるとと共に、特性を
安定化させるためで、これ等の1種又は2種以上の合計
含有量を0.旧〜1%と限定したのは、含有量が下限未
満では十分な効果が得られず、上限を越えると導電率を
低下するばかりか、コストを上昇し、加工性を損なう等
の不都合を生ずる。即ちN1zSi又は/及びCO2S
 iの析出は合金組成や熱処理条件のみでなく、加工条
件なども複刹[に関与し、実際上の特性を不安定にする
が、la、 Nb、MM、Te、Aqは特性の安定化に
働く。その作用機構は明らかではないが、これ等はSi
と化合し、未反応のSiを消費して強度向上に働くもの
と考えられる。またこれ等は結晶の微細化に鋤ぎ、製造
時に加工性を高める。待にle、MMはプレス成型性を
向上し、Act、Te、MMは耐熱性を向上する。
Any one or two of Ta, Nb, MM, Te, ACI
The purpose of adding seeds is to further improve the strength and stabilize the properties, and the total content of one or more of these is 0. The reason why the content was previously limited to ~1% is that if the content is less than the lower limit, a sufficient effect will not be obtained, and if it exceeds the upper limit, not only will the conductivity decrease, but also the cost will increase, and there will be problems such as impairing processability. . i.e. N1zSi or/and CO2S
The precipitation of i is not only affected by the alloy composition and heat treatment conditions, but also by the processing conditions, which makes the actual properties unstable, but la, Nb, MM, Te, and Aq contribute to the stabilization of the properties. work. Although the mechanism of action is not clear, these
It is thought that this increases the strength by consuming unreacted Si. These also help refine the crystals and improve workability during manufacturing. Furthermore, le and MM improve press formability, and Act, Te, and MM improve heat resistance.

またMn、 Zn、Snの内何れか1種又は2種以上の
添加は、上記添加元素の作用効果を一層高め、強度を向
上して特性を一層安定化させるためであり、Mn含有量
を0.5%以下、Zn含有量を5%以下、Sn含有量を
5%以下と限定したのは、何れもこれ越えて含有せしめ
ると導電率を著しく低下するためである。更にこれ等の
添加は上記作用効果の外にMnは半田接合強度の向上と
熱間加工性の向上に有効であり、Znは半田接合強度の
向上に有効であり、Snは強度加工性の外耐熱性の向上
に有効である。
The addition of one or more of Mn, Zn, and Sn is intended to further enhance the effects of the above-mentioned additive elements, improve strength, and further stabilize the properties. The reason why the Zn content is limited to 5% or less, and the Sn content is limited to 5% or less is that if any of the above is contained, the electrical conductivity will drop significantly. Furthermore, in addition to the above effects, Mn is effective in improving solder joint strength and hot workability, Zn is effective in improving solder joint strength, and Sn is effective in improving solder joint strength and workability. Effective in improving heat resistance.

添加元素の増加は導電性を低下するので特に実用上Mn
0.3%以下、Zr12%以下、Sn2%以下が有用で
ある。
Increasing the amount of added elements reduces the conductivity, so Mn is particularly useful in practical applications.
Useful values are 0.3% or less, Zr 12% or less, and Sn 2% or less.

以上の本発明合金は650℃以上、望ましくは700〜
950℃で熱間加工し、直ちに10’C/sec以上の
速度で350°C以下まで冷却した後、70%以上の冷
間加工を行なってから400〜600℃、望ましくは4
50〜550℃で熱処理覆ることにより、特性を最大限
に実現する。本発明合金を650’C以上で熱間加工し
、直ちに10°C/sec以上の速度で350’C以下
まで冷却するのは、粗大な析出を抑止するためである。
The above-mentioned alloy of the present invention has a temperature of 650°C or higher, preferably 700°C or higher.
After hot working at 950°C, immediately cooling to 350°C or less at a rate of 10'C/sec or more, cold working to 70% or more, and then 400 to 600°C, preferably 4
The properties are maximized by heat treatment at 50-550°C. The reason why the alloy of the present invention is hot worked at 650'C or higher and immediately cooled to 350'C or lower at a rate of 10°C/sec or higher is to suppress coarse precipitation.

次に70%以上の冷間加工を行なってから400〜60
0 ’C熱処理するのは加工歪みを加えた状態で熱処理
することにより、微細な析出を均一に分散析出させるた
めで、70%未満の冷間加工では均一な分散析出が得ら
れない。また熱処理温度が400’C未満では析出に長
時間を要し、析出粒子も超微粒子となって、加工性や半
田接合強度が不安定になり、600’Cを越えると粗大
不均一析出となるばかりか導電率などの特性が劣化する
。また熱処理後、必要に応じて冷間加工と再熱処理を繰
返すこともできる。即ち熱処理後所望サイズまで冷間加
工した後、250〜350’Cで熱処理することにより
加工歪の一部を解放し、伸びや成型加工性を向上する。
Next, after performing cold working of 70% or more,
The reason why the 0'C heat treatment is performed is to uniformly disperse and precipitate fine precipitates by performing the heat treatment under processing strain, and cold working of less than 70% does not result in uniformly dispersed precipitates. In addition, if the heat treatment temperature is less than 400'C, precipitation will take a long time and the precipitated particles will become ultra-fine particles, making workability and solder joint strength unstable, and if the heat treatment temperature exceeds 600'C, coarse and non-uniform precipitation will occur. Not only that, but properties such as electrical conductivity deteriorate. Further, after the heat treatment, cold working and reheat treatment can be repeated as necessary. That is, after heat treatment and cold working to a desired size, heat treatment is performed at 250 to 350'C to release some of the processing strain and improve elongation and moldability.

[実施例] 第1表に示す組成の合金を溶解し、金型に鋳造して機械
切削により幅80an、厚さ50mm、長さ300#の
インボッ1〜とした。これを870’Cに加熱して熱間
圧延し、約730 ’Cで板厚50mmとし、直ちに3
5 ()’Cまで冷却(水冷、風冷、炉冷)してから酸
洗した。これを第1冷間圧延してから熱処理し、一部第
2冷間圧延を加えてから再熱処理した。これ等の製造条
件を第2表に示す。
[Example] An alloy having the composition shown in Table 1 was melted, cast into a mold, and machined to form an ingot having a width of 80 an, a thickness of 50 mm, and a length of 300#. This was heated to 870'C and hot rolled to a thickness of 50mm at about 730'C, and immediately
After cooling (water cooling, air cooling, furnace cooling) to 5 ()'C, pickling was performed. This was first cold rolled and then heat treated, and then partially subjected to second cold rolling and then reheated. These manufacturing conditions are shown in Table 2.

上記板材について引張強ざ、伸び、導電率、耐熱性、半
田接合強度、スケール密着性、メッキ性及び耐食性を試
験し、その結果を従来の7/3黄銅(Zn29.7%、
残部Cu)、リン青銅(Sn6.1%、P 0.15%
、残部Cu)、C195(Fe 1.6%、Co 0.
8%、Sn0.13%、Po、05%、残部Cu)と比
較して第3表に示した。耐熱性は500″Cで1分間加
熱後の硬度を測定し、半田接合強度は直径5mmの半田
接合部を150’Cで300時間加熱してからプルテス
トを行なった。スケール密着性は大気中250〜400
°Cのホットプレート上で加熱した後、テープ剥離テス
トを行なって剥離を始めた最少膜厚を求めた。膜厚はカ
ソード還元法で測定した。メッキ性はl−+2 SO+
 −1−120混合液により表面を厚さ約0.3μエツ
チングした後、厚さ3μのシアン銀メッキを行ない、こ
れを470’Cで5分間加熱して表面の7タレ有無を4
0倍の実体顕微鏡により試べた。耐食性はJISC83
06に基づぎ、3Vo 1%のNH3カス中で30Kj
j / mm 2の定荷重を加え、破断するまでの時間
を調べた。
The above plate materials were tested for tensile strength, elongation, electrical conductivity, heat resistance, solder joint strength, scale adhesion, plating properties, and corrosion resistance, and the results were compared to conventional 7/3 brass (Zn 29.7%,
balance Cu), phosphor bronze (Sn6.1%, P 0.15%
, balance Cu), C195 (Fe 1.6%, Co 0.
8%, Sn0.13%, Po, 05%, balance Cu) as shown in Table 3. Heat resistance was determined by measuring the hardness after heating at 500'C for 1 minute, and solder joint strength was determined by heating a solder joint with a diameter of 5 mm at 150'C for 300 hours and then performing a pull test.Scale adhesion was measured at 250°C in air. ~400
After heating on a hot plate at °C, a tape peeling test was performed to determine the minimum film thickness at which peeling started. The film thickness was measured by cathodic reduction method. Plating property is l-+2 SO+
After etching the surface to a thickness of approximately 0.3 μm using the -1-120 mixed solution, perform cyan silver plating to a thickness of 3 μm, heat this at 470'C for 5 minutes, and check the presence or absence of sag on the surface.
It was tested using a stereomicroscope at 0x magnification. Corrosion resistance is JISC83
Based on 06, 30Kj in 3Vo 1% NH3 scum
A constant load of j/mm2 was applied and the time until breakage was investigated.

尚、表中耐熱性と半田接合強度の()内は試験前の測定
値である。
Note that the values in parentheses for heat resistance and solder joint strength in the table are measured values before the test.

第1表〜第3表から明らかなように、本発明法No、 
1〜6にJこり製造したものは従来材料No、 15〜
17と比較し、はるかに(至)れた特性を示すことが判
る。これに対し本発明合金(A)であっても製造条件か
外れる比較法No、 11〜14では、特に強度と導電
率の劣化か著しく、また本発明合金の組成範囲より外れ
る比較合金(G−J)では本発明の製造条件で加工して
も、導電率の低下か茗しいことが判る。即ち本発明合金
は添加成分の効果と本発明の製造条件により引張強さ、
伸び、導電率、耐熱性、半田接合強度、スケール密省性
、耐食性等の諸性性が改善されるのに対し、同じ製造条
件でも合金組成が外れるものは、これ等の特性の内何れ
か一つ以上が劣り、本発明合金であっても製造条件が外
れるものは、上記特性の内何れか一つ以上が劣り、特に
冷却速度が不足する比較例N0111では第1圧延工程
で割れを起こしてしまった。
As is clear from Tables 1 to 3, the present invention method No.
Those manufactured with J stiffness in 1 to 6 are conventional material No. 15 to 6.
It can be seen that compared to No. 17, it exhibits far superior characteristics. On the other hand, in Comparative Method Nos. 11 to 14, in which even the present invention alloy (A) is out of the manufacturing conditions, the strength and conductivity are significantly deteriorated, and the comparative alloy (G- In J), even when processed under the manufacturing conditions of the present invention, it can be seen that the conductivity decreases or is slow. That is, the alloy of the present invention has a high tensile strength due to the effects of the additive components and the manufacturing conditions of the present invention.
While various properties such as elongation, electrical conductivity, heat resistance, solder joint strength, scale density reduction, and corrosion resistance are improved, if the alloy composition deviates even under the same manufacturing conditions, then one of these properties may be improved. Even if the alloy is of the present invention, it is inferior in one or more of the above characteristics, and if the manufacturing conditions are not met, it is inferior in one or more of the above characteristics.In particular, Comparative Example No. It happened.

[発明の効果] このように本発明合金は、強度・伝導率を始め電気・電
子機器や熱交換器に要求される各種特性を満足りるもの
で、半導体を初め、各種電気・電子機器に用い、該機器
の小型化、高密度化を可能にする等工業上顕著な効果を
奏するものである。
[Effects of the Invention] As described above, the alloy of the present invention satisfies various properties required for electrical/electronic equipment and heat exchangers, including strength and conductivity, and can be used in various electrical/electronic equipment including semiconductors. This has significant industrial effects, such as making it possible to miniaturize and increase the density of the equipment.

Claims (3)

【特許請求の範囲】[Claims] (1)Ni、Co又はこれ等の混合物を0.4〜4wt
%とSiを0.1〜1wt%を含み、Ta、Nb、メッ
シュメタル、Te、Agの内何れか1種又は2種以上を
合計0.01〜1wt%含み、残部Cuと不可避的不純
物からなる熱・電気高伝導用高力銅合金。
(1) 0.4 to 4 wt of Ni, Co or a mixture thereof
% and Si, and a total of 0.01 to 1 wt% of any one or more of Ta, Nb, mesh metal, Te, and Ag, and the balance is Cu and unavoidable impurities. A high-strength copper alloy for high thermal and electrical conductivity.
(2)Ni、Co又はこれ等の混合物を0.4〜4wt
%とSiを0.1〜1wt%を含み、Ta、Nb、メッ
シュメタル、Te、Agの内何れか1種又は2種以上を
合計0.01〜1wt%含み、更にMn0.5wt%以
下、Zn5wt%以下、Sn5wt%以下の範囲内で何
れか1種又は2種以上を含み、残部Cuと不可避的不純
物からなる熱・電気高伝導用高力銅合金。
(2) 0.4 to 4 wt of Ni, Co or a mixture thereof
% and Si, a total of 0.01 to 1 wt% of any one or more of Ta, Nb, mesh metal, Te, and Ag, and further Mn of 0.5 wt% or less, A high-strength copper alloy for high thermal and electrical conductivity, containing one or more of Zn at 5wt% or less and Sn at 5wt% or less, with the remainder being Cu and inevitable impurities.
(3)Ni、Co又はこれ等の混合物を0.4〜4wt
%とSiを0.1〜1wt%を含み、Ta、Nb、メッ
シュメタル、Te、Agの内何れか1種又は2種以上を
合計0.01〜1wt%含み、又はこれにMn0.5w
t%以下、Zn5wt%以下、Sn5wt%以下の範囲
内で何れか1種又は2種以上を含み、残部Cuと不可避
的不純物からなる合金を650℃以上で熱間加工し、直
ちに10℃/sec以上の速度で350℃以下まで冷却
した後、70%以上の冷間加工を行なってから400〜
600℃で熱処理することを特徴とする熱・電気高伝導
用高力銅合金の製造法。
(3) 0.4 to 4 wt of Ni, Co or a mixture thereof
% and Si, and a total of 0.01 to 1 wt% of any one or more of Ta, Nb, mesh metal, Te, and Ag, or 0.5 w of Mn.
t% or less, Zn5wt% or less, Sn 5wt% or less, and the balance is Cu and unavoidable impurities.The alloy is hot worked at 650°C or higher, and immediately heated at 10°C/sec. After cooling to 350℃ or less at the above rate, cold working by 70% or more,
A method for producing a high-strength copper alloy for high thermal and electrical conductivity, which is characterized by heat treatment at 600°C.
JP2818486A 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production Granted JPS62185847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2818486A JPS62185847A (en) 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2818486A JPS62185847A (en) 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production

Publications (2)

Publication Number Publication Date
JPS62185847A true JPS62185847A (en) 1987-08-14
JPH0356294B2 JPH0356294B2 (en) 1991-08-27

Family

ID=12241616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2818486A Granted JPS62185847A (en) 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production

Country Status (1)

Country Link
JP (1) JPS62185847A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833920A (en) * 1996-02-20 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Copper alloy for electronic parts, lead-frame, semiconductor device and connector
KR100644510B1 (en) * 2005-03-17 2006-11-10 한국기계연구원 High strength lead-frame material Cu-Ni-Mn-Si-Sn-Ms alloy with good hot-workability and good anti-softening and it's manufacturing method
WO2009096546A1 (en) * 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
JP5400877B2 (en) * 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570494A (en) * 1978-11-18 1980-05-27 Futoshi Matsumura Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance
JPS6274037A (en) * 1985-09-26 1987-04-04 Furukawa Electric Co Ltd:The High strength copper alloy having high electric conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570494A (en) * 1978-11-18 1980-05-27 Futoshi Matsumura Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance
JPS6274037A (en) * 1985-09-26 1987-04-04 Furukawa Electric Co Ltd:The High strength copper alloy having high electric conductivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833920A (en) * 1996-02-20 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Copper alloy for electronic parts, lead-frame, semiconductor device and connector
KR100644510B1 (en) * 2005-03-17 2006-11-10 한국기계연구원 High strength lead-frame material Cu-Ni-Mn-Si-Sn-Ms alloy with good hot-workability and good anti-softening and it's manufacturing method
WO2009096546A1 (en) * 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
JP5400877B2 (en) * 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0356294B2 (en) 1991-08-27

Similar Documents

Publication Publication Date Title
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
EP1873267A1 (en) Copper alloy for electronic material
KR950004935B1 (en) Copper alloy for electronic instruments
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
KR20010062360A (en) copper alloy for electronic materials with excellent surface special and manufacturing method therefor
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS62185847A (en) High strength copper alloy for high thermal and electric conductivity use and its production
JPS62182240A (en) Conductive high-tensile copper alloy
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPS63274729A (en) Copper alloy for electronic and electrical appliance
JPS6256937B2 (en)
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPS6338547A (en) High strength conductive copper alloy
JPS6142772B2 (en)
JPS63109132A (en) High-strength conductive copper alloy and its production
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH0469217B2 (en)
JPS63192835A (en) Lead material for ceramic package
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPS60194031A (en) Copper alloy for lead material for semiconductor device
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPS62180025A (en) Copper alloy for electronic apparatus and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees