JPH0718355A - Copper alloy for electronic appliance and its production - Google Patents
Copper alloy for electronic appliance and its productionInfo
- Publication number
- JPH0718355A JPH0718355A JP5161719A JP16171993A JPH0718355A JP H0718355 A JPH0718355 A JP H0718355A JP 5161719 A JP5161719 A JP 5161719A JP 16171993 A JP16171993 A JP 16171993A JP H0718355 A JPH0718355 A JP H0718355A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- copper alloy
- electronic devices
- alloy
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は電子機器用銅合金に関
するものであり、さらに詳しくは本発明は、コネクタ、
ICのリードフレーム等の電子部品用材料として、強
度、電気伝導性に優れ、しかも安価な電子機器用銅合金
およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic equipment. More specifically, the present invention relates to a connector,
The present invention relates to a copper alloy for electronic equipment, which is excellent in strength and electrical conductivity and is inexpensive as a material for electronic parts such as IC lead frames, and a method for producing the same.
【0002】[0002]
【従来の技術】コネクタ、ICリードフレーム等の電子
機器用銅合金としては、従来、黄銅、リン青銅をはじめ
とする多くの銅合金が使用されている。また近年電子部
品の小型化や表面実装化の動きにより薄板化、強度の向
上、高導電性、高熱伝導性とともに安価な材料が求めら
れている。このような動きの中で上記材料として銅−鉄
系合金が注目されており、例えば特公平4−24419
号公報にて提案されている。この銅−鉄系合金は銅を2
0〜90重量%以下含み、残部が主として鉄からなる合
金の溶湯を100℃/秒以上の冷却速度で鋳造した鋳塊
を、冷間圧延後、時効処理または焼鈍後時効処理を実施
して得られるリードフレーム用合金である。2. Description of the Related Art As copper alloys for electronic devices such as connectors and IC lead frames, many copper alloys such as brass and phosphor bronze have hitherto been used. Further, in recent years, with the trend toward miniaturization and surface mounting of electronic components, there has been a demand for a thin plate, improved strength, high electrical conductivity, high thermal conductivity, and an inexpensive material. In such a movement, a copper-iron based alloy has been attracting attention as the above material, for example, Japanese Patent Publication No. 4-24419.
It is proposed in Japanese Patent Publication No. This copper-iron alloy contains 2
Obtained by performing an aging treatment or an aging treatment after cold rolling on an ingot obtained by casting a molten metal of an alloy containing 0 to 90% by weight or less and the balance mainly consisting of iron at a cooling rate of 100 ° C./sec or more. This is an alloy for lead frames.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記銅−
鉄系合金は、鉄を多く含むためにリードフレームとして
必要な強度を得やすいが磁化しやすく、コネクタ、IC
リードフレームとして使用する場合、磁界の影響で、微
少電流が発生し、誤動作の原因になりがちであるという
問題があった。この発明は比較的強度および導電性が高
いという銅−鉄合金の特徴を生かしつつ、磁化の発生を
押さえることができる銅−鉄合金およびその最適な製造
方法を提供することを目的とする。[Problems to be Solved by the Invention] However, the above-mentioned copper-
Since iron-based alloys contain a large amount of iron, it is easy to obtain the strength required for a lead frame, but it is easy to magnetize, so that it can be used in connectors and ICs.
When used as a lead frame, there is a problem that a minute current is generated due to the influence of a magnetic field, which tends to cause a malfunction. An object of the present invention is to provide a copper-iron alloy capable of suppressing the occurrence of magnetization while utilizing the characteristics of the copper-iron alloy having relatively high strength and conductivity, and an optimal manufacturing method thereof.
【0004】[0004]
【課題を解決するための手段】本発明者らは鋭意検討の
結果、上記のような課題を解決することができた。すな
わち本発明は、以下に示す電子機器用銅合金を提供する
ものである。なお、以下の記述において、%とあるのは
特記しない限り重量%である。As a result of earnest studies, the present inventors were able to solve the above problems. That is, the present invention provides the following copper alloys for electronic devices. In the following description,% means% by weight unless otherwise specified.
【0005】(1) Feを5〜12%、Pを0.01〜1.
0%および/またはZnを0.01〜1.0%含有し、残
部がCuおよび不可避不純物からなることを特徴とす
る、電子機器用銅合金。(1) Fe of 5 to 12% and P of 0.01 to 1.
A copper alloy for electronic devices, characterized by containing 0% and / or Zn in an amount of 0.01 to 1.0%, and the balance being Cu and inevitable impurities.
【0006】(2) Si、Mn、Mgのうち1種または2種
以上合計で0.01〜0.1重量%またはAl、Pb、A
s、Sb、B、Co、Te、In、Ti、Zr、Hf、Ag、Ge
のうち1種または2種以上合計で0.001〜1.0重量
%、およびFeを5〜12重量%含有し、残部がCuお
よび不可避不純物からなることを特徴とする、電子機器
用銅合金。(2) One or more of Si, Mn, and Mg in a total amount of 0.01 to 0.1% by weight or Al, Pb, A
s, Sb, B, Co, Te, In, Ti, Zr, Hf, Ag, Ge
One or two or more of them, 0.001 to 1.0% by weight in total, and 5 to 12% by weight of Fe, the balance being Cu and inevitable impurities, copper alloy for electronic devices .
【0007】(3) Pを0.01〜1.0重量%および/
またはZnを0.01〜1.0重量%含有することを特徴
とする、(2)に記載の電子機器用銅合金。(3) 0.01 to 1.0% by weight of P and /
Alternatively, the copper alloy for electronic devices according to (2), which contains 0.01 to 1.0% by weight of Zn.
【0008】(4) Cuに少なくともFeを5重量%添
加し、溶解した後、100℃/秒以上の割合で急冷凝固
することにより固化することを特徴とする、電子機器用
銅合金。(4) A copper alloy for electronic equipment, characterized in that at least 5% by weight of Fe is added to Cu, melted, and then solidified by rapid solidification at a rate of 100 ° C./sec or more.
【0009】(5) Cuに少なくともFeを5重量%添加
し、溶解した後、100℃/秒以上の割合で急冷凝固す
ることにより固化することを特徴とする、電子機器用銅
合金の製造方法。(5) A method for producing a copper alloy for electronic equipment, characterized in that at least 5% by weight of Fe is added to Cu, melted, and then solidified by rapid solidification at a rate of 100 ° C./sec or more. .
【0010】(6) CuにFeを5〜12重量%、Pを0.
01〜1.0重量%および/またはZnを0.01〜1.0
重量%を溶解した後、固化することを特徴とする電子機
器用銅合金の製造方法。(6) 5 to 12% by weight of Fe in Cu and 0.1% of P in Cu.
01-1.0% by weight and / or Zn of 0.01-1.0
A method for producing a copper alloy for electronic devices, which comprises solidifying after melting wt%.
【0011】(7) 溶解後、100℃/秒以上の割合で
急冷凝固することにより固化する、(1)ないし(3)のいず
れか1項に記載の電子機器用銅合金の製造方法。(7) The method for producing a copper alloy for electronic devices according to any one of (1) to (3), which comprises melting and then solidifying by rapid solidification at a rate of 100 ° C./sec or more.
【0012】(8) CuにSi、Mn、Mgのうち1種また
は2種以上合計で0.01〜1.0重量%、および/また
はAl、Pb、As、Sb、B、Co、Te、In、Ti、Z
r、Hf、Ag、Geのうち1種または2種以上合計で0.
001〜1.0重量%およびFeを5〜12重量%を溶
解した後、固化することを特徴とする電子機器用銅合金
の製造方法。(8) In Cu, one or more of Si, Mn and Mg are added in a total amount of 0.01 to 1.0% by weight, and / or Al, Pb, As, Sb, B, Co, Te, In, Ti, Z
One of r, Hf, Ag, and Ge or two or more in total of 0.
A method for producing a copper alloy for electronic devices, which comprises melting 001 to 1.0% by weight and 5 to 12% by weight of Fe and then solidifying.
【0013】(9) Pを0.01〜1.0重量%および/
またはZnを0.01〜1.0重量%添加したことを特徴
とする(8)に記載の電子機器用銅合金の製造方法。(9) 0.01 to 1.0% by weight of P and /
Alternatively, 0.01 to 1.0% by weight of Zn is added to the copper alloy for electronic devices according to (8).
【0014】(10) Znを0.01〜1.0重量%添加し
たことを特徴とする、(5)または(8)に記載の電子機器用
銅合金の製造方法。(10) The method for producing a copper alloy for electronic equipment according to (5) or (8), characterized in that Zn is added in an amount of 0.01 to 1.0% by weight.
【0015】(11) (5)ないし(10)のいずれか1項に記
載の製造方法により造塊した鋳塊の仕上圧延前に、60
0℃〜800℃の温度範囲で1分間以上加熱し、冷間圧
延する工程を含むことを特徴とする、電子機器用銅合金
の製造方法。(11) Before finishing rolling the ingot produced by the production method according to any one of (5) to (10), 60
A method for producing a copper alloy for electronic devices, comprising a step of heating in a temperature range of 0 ° C to 800 ° C for 1 minute or more and cold rolling.
【0016】(12) (5)ないし(10)のいずれか1項に記
載の製造方法により造塊した鋳塊の仕上圧延前に、60
0℃〜800℃の温度範囲で1分間以上加熱し、冷間圧
延後、250〜500℃の温度範囲で10分以上加熱す
る工程を含むことを特徴とする、電子機器用銅合金の製
造方法。(12) Before finishing rolling of the ingot produced by the production method according to any one of (5) to (10), 60
A method for producing a copper alloy for electronic devices, comprising a step of heating in a temperature range of 0 ° C to 800 ° C for 1 minute or more, cold rolling, and then heating in a temperature range of 250 to 500 ° C for 10 minutes or more. .
【0017】(13) (5)ないし(10)のいずれか1項に記
載の製造方法により造塊した鋳塊の仕上圧延前に、70
0℃〜1000℃で1分間以上加熱し、水中または油中
で急冷する工程と、その後の冷間加工の有無にかかわら
ず350〜500℃の温度範囲で10分間以上加熱する
ことを特徴とする、電子機器用銅合金の製造方法。(13) Before finishing rolling the ingot produced by the production method according to any one of (5) to (10),
The method is characterized by heating at 0 ° C to 1000 ° C for 1 minute or more and quenching in water or oil, and heating at a temperature range of 350 to 500 ° C for 10 minutes or more regardless of the subsequent cold working. , A method for manufacturing a copper alloy for electronic devices.
【0018】[0018]
【作用】以下、本発明をさらに詳細に説明する。本発明
の電子機器用銅合金を構成する合金成分の添加理由とそ
の組成範囲の限定理由について説明する。FeはCu中へ
の固溶と、その固溶した一部が時効処理により析出分散
することにより、Cu自体の具備する高電導性を損なう
ことなく、機械的強度を向上させることができる。但し
その添加量が5%未満では100℃/秒以下の割合で冷
却する急冷凝固法にて固化しても組織が微細化しなくな
り、また所望の機械的強度が得られない。また12%を
超えると電気的特性、特に必要な電気電導度を得ること
ができない。The present invention will be described in more detail below. The reason for adding the alloy components that compose the copper alloy for electronic devices of the present invention and the reason for limiting the composition range will be described. Fe is solid-dissolved in Cu, and a part of the solid solution is precipitated and dispersed by aging treatment, whereby the mechanical strength can be improved without impairing the high electric conductivity of Cu itself. However, if the added amount is less than 5%, the structure will not become finer even if solidified by a rapid solidification method of cooling at a rate of 100 ° C./second or less, and desired mechanical strength cannot be obtained. On the other hand, if it exceeds 12%, the electrical characteristics, particularly the required electric conductivity, cannot be obtained.
【0019】FeをCu中に固溶させるには、仕上圧延
前に700〜1000℃の温度が必要である。1000
℃を超えると、結晶が大きくなり好ましくない。続く時
効処理においては350〜500℃で10分以上の加熱
を行うことができる。なお、焼なましは、600〜80
0℃で1分以上が好適である。この時効処理の温度範囲
により、Feが析出分散することにより、上記のように
機械的強度を向上させることができる。In order to form a solid solution of Fe in Cu, a temperature of 700 to 1000 ° C. is required before finish rolling. 1000
If the temperature exceeds ℃, the crystals become large, which is not preferable. In the subsequent aging treatment, heating at 350 to 500 ° C. for 10 minutes or more can be performed. The annealing is 600-80.
1 minute or more at 0 ° C. is preferable. By precipitating and dispersing Fe in the temperature range of the aging treatment, the mechanical strength can be improved as described above.
【0020】なお、最終の圧延上りの段階において圧延
時に生じた加工歪の除去のため、歪取り焼鈍(低温焼
鈍)として250〜500℃で1時間程度加熱すること
はバネ特性の向上及び成形加工性の改善に有効な調質手
段である。It should be noted that heating for about 1 hour at 250 to 500 ° C. as strain relief annealing (low temperature annealing) in order to remove the processing strain generated during rolling in the final rolling stage is to improve the spring characteristics and the forming process. It is an effective refining means for improving sex.
【0021】Pは脱酸剤として、またFeとの化合物を
形成し機械的強度、電気電導度を向上させるために添加
しているが、0.01%以下ではその添加による効果が
なく、1%を越えると、化合物が粗大化し、電気電導
度、ハンダ付性が低下する。またPはFeの添加による
機械的強度と電気電導度のバランスを考慮して添加量を
設定した。P is added as a deoxidizing agent and for forming a compound with Fe to improve mechanical strength and electric conductivity, but if it is less than 0.01%, there is no effect due to the addition, and If it exceeds%, the compound becomes coarse, and the electrical conductivity and solderability deteriorate. Further, the amount of P added was set in consideration of the balance between mechanical strength and electric conductivity due to the addition of Fe.
【0022】またSi、MnおよびMgは、主に脱酸剤と
して脱酸効果を高めるために添加されているが、0.0
1%未満ではその添加による効果がなく、1%を超える
と化合物が粗大化し電気、機械的特性が低下する。Further, Si, Mn and Mg are added mainly as a deoxidizing agent to enhance the deoxidizing effect.
If it is less than 1%, the effect due to its addition is not obtained, and if it exceeds 1%, the compound becomes coarse and the electrical and mechanical properties deteriorate.
【0023】また、Al、Pb、As、Sb、B、Co、T
e、In、Ti、Zr、Hf、Ag、Geも主に脱酸剤として
脱酸効果を高めるために添加されているが、0.001
%未満ではその添加による効果がなく、1%を超えると
化合物が粗大化し電気、機械的特性が低下する。Also, Al, Pb, As, Sb, B, Co, T
Although e, In, Ti, Zr, Hf, Ag and Ge are mainly added as a deoxidizing agent to enhance the deoxidizing effect, 0.001
If it is less than%, there is no effect due to its addition, and if it exceeds 1%, the compound becomes coarse and the electrical and mechanical properties deteriorate.
【0024】さらにZnは脱酸剤としても効果がある
が、ここではハンダ付あるいはハンダメッキ後の高温環
境下におけるハンダ層の剥離等の信頼性劣化を抑える目
的で添加するもので、最小必要量の0.01%を下限と
し、上限については応力腐食性の面から1.0%とし
た。Zn is also effective as a deoxidizer, but here it is added for the purpose of suppressing reliability deterioration such as peeling of the solder layer in a high temperature environment after soldering or after solder plating. The upper limit was 0.01% and the upper limit was 1.0% from the viewpoint of stress corrosion.
【0025】本発明は、従来の連続鋳造法に代わり、双
ロール法等により100℃/秒以上の割合で冷却する急
冷凝固法にて固化すると、マトリックス中に化合物相を
均一に分散でき、特に成形加工性の特性改善に有効であ
る。またこの双ロール法では、通常の鋳造方式よりも薄
い鋳塊厚さのものが造塊でき、通常の鋳造方式での中間
の加工・熱処理工程がかなり省略できるため、省エネル
ギーの面でも有利である。In the present invention, the compound phase can be uniformly dispersed in the matrix when solidified by a rapid solidification method of cooling at a rate of 100 ° C./sec or more by a twin roll method or the like instead of the conventional continuous casting method. It is effective for improving the characteristics of molding processability. In addition, this twin roll method is also advantageous in terms of energy saving because it can ingot an ingot with a thickness smaller than that of the normal casting method and can considerably omit intermediate processing and heat treatment steps in the normal casting method. .
【0026】[0026]
【実施例】表1は、各組成のCu−Fe系合金を高周波溶
解炉にて溶解し、鋳塊とし、さらにこの鋳塊の表面を面
削後、冷間圧延および熱処理等をくり返し、最終37%
の冷間圧延加工を施して0.4mmから0.25mmの板状に
仕上げたものについて硬さ、電気電導度、ハンダ耐熱性
を示したものである。ここで電気電導性は、試料の電気
抵抗を測定することにより、電気伝導率(%IACS)
で表示した。また、硬さは、JIS Z2244のビッ
カース硬さ試験方法に準じ測定した。ハンダ耐熱性は、
試料を90%Sn−10%Pbのハンダ浴中に浸漬し、ハ
ンダメッキ後150℃で加熱保持後にハンダメッキ部の
密着曲げを行い、剥離が生じるまでの時間を測定して評
価した。EXAMPLES Table 1 shows that Cu-Fe alloys of each composition are melted in a high-frequency melting furnace to form an ingot, and after the surface of the ingot is chamfered, cold rolling and heat treatment are repeated and the final 37%
Of the plate-shaped product having a thickness of 0.4 mm to 0.25 mm, which was subjected to the cold rolling process, was shown to have hardness, electric conductivity and solder heat resistance. The electrical conductivity here means the electrical conductivity (% IACS) measured by measuring the electrical resistance of the sample.
Displayed in. The hardness was measured according to the Vickers hardness test method of JIS Z2244. Solder heat resistance is
The sample was immersed in a solder bath of 90% Sn-10% Pb, and after solder plating, heating and holding at 150 ° C was performed, and then the solder-plated portion was subjected to close contact bending, and the time until peeling occurred was measured and evaluated.
【0027】この結果から実施例4〜10、13〜1
7、19、20、22〜27、29〜32、33に示す
ように、CuにFeを5%以上12%以下、Pを0.01
%以上0.95%以下添加するとリードフレーム等の電
子機器用銅合金として必要な特性、硬さ(Hv)140
以上、電気電導性30%IACS以上、ハンダ耐熱性2
50時間以上を満たす材料が得られる。From these results, Examples 4 to 10 and 13 to 1
As shown in 7, 19, 20, 22-27, 29-32, and 33, Cu has Fe of 5% or more and 12% or less, and P of 0.01.
% And 0.95% or less, the properties and hardness (Hv) 140 required for copper alloys for electronic devices such as lead frames are added.
Above, electrical conductivity 30% IACS or more, solder heat resistance 2
A material satisfying 50 hours or more is obtained.
【0028】また実施例62、63、65、66に示す
ようにCuにFeおよび、SiまたはMnまたはMgを添加
しても必要な特性を有する合金が得られる。さらに実施
例67〜71、73〜75、77〜79、81〜83、
85〜87、89〜91に示すようにCuにFeを5%以
上、Pを0.01%以上、Si、Mn、Mgの合計を1%以
下添加しても所定の特性の銅合金が得られる。Further, as shown in Examples 62, 63, 65 and 66, even if Fe and Si or Mn or Mg are added to Cu, an alloy having the required characteristics can be obtained. Furthermore, Examples 67 to 71, 73 to 75, 77 to 79, 81 to 83,
As shown in Nos. 85-87 and 89-91, Fe is added to Cu in an amount of 5% or more, P is 0.01% or more, and the total amount of Si, Mn, and Mg is 1% or less to obtain a copper alloy having predetermined characteristics. To be
【0029】さらに実施例46および47に示すよう
に、少なくともCuにFeを5%添加すれば、その後の加
工を経て所定の特性の銅合金を製造することができる。Further, as shown in Examples 46 and 47, if 5% of Fe is added to at least Cu, a copper alloy having predetermined characteristics can be manufactured through subsequent processing.
【0030】また実施例39〜44、49〜60、比較
例38および45等に示すようにZnを添加するとハン
ダ耐熱性が向上することがわかる。Further, as shown in Examples 39 to 44, 49 to 60, Comparative Examples 38 and 45, etc., it is understood that the addition of Zn improves the solder heat resistance.
【0031】また実施例4〜10、15〜17、39〜
41に示すように、表1に示すA〜Dのいずれの方法で
加工しても所定の特性の材料が得られる。Examples 4-10, 15-17, 39-
As shown in FIG. 41, a material having predetermined characteristics can be obtained by processing with any of the methods A to D shown in Table 1.
【0032】さらに実施例13と14の比較により、双
ロール鋳造機による急冷凝固法にて造塊した鋳塊から加
工した試料の方が、化合物相がより微細に均一分散する
ため機械的特性が良好となっていることが分かる。Further, by comparing Examples 13 and 14, the mechanical properties of the sample processed from the ingot produced by the rapid solidification method by the twin roll casting machine are more finely and uniformly dispersed in the compound phase. You can see that it is good.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【表3】 [Table 3]
【0036】[0036]
【表4】 [Table 4]
【0037】[0037]
【発明の効果】本発明の合金は、Feの含有量を低く押
えたCu−Fe系合金であるため、従来のCu−Fe系合金
が有する優れた強度および高い導電性を生かしつつ、磁
化の発生を押えることができる。また、Cu−Fe系合金
の鋳造において特定の元素を添加することにより鋳造品
質が良好な鋳塊が得られる。さらにそれを薄板材に加工
する過程において特定の熱処理を施すことにより高強度
と高電導性を併せもたせることが可能になる。Since the alloy of the present invention is a Cu-Fe based alloy in which the Fe content is kept low, the alloy has excellent magnetization and high electrical conductivity while maintaining the excellent strength and high conductivity of the conventional Cu-Fe based alloy. Occurrence can be suppressed. In addition, an ingot having good casting quality can be obtained by adding a specific element in the Cu-Fe alloy casting. Furthermore, it becomes possible to have both high strength and high electrical conductivity by performing a specific heat treatment in the process of processing it into a thin plate material.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年9月1日[Submission date] September 1, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0006[Correction target item name] 0006
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0006】(2) Si、Mn、Mgのうち1種または2種
以上合計で0.01〜0.1重量%および/またはAl、
Pb、As、Sb、B、Co、Te、In、Ti、Zr、Hf、
Ag、Geのうち1種または2種以上合計で0.001〜
1.0重量%、およびFeを5〜12重量%含有し、残
部がCuおよび不可避不純物からなることを特徴とす
る、電子機器用銅合金。(2) One or two or more of Si, Mn and Mg in total of 0.01 to 0.1% by weight and / or Al,
Pb, As, Sb, B, Co, Te, In, Ti, Zr, Hf,
One or more of Ag and Ge in total 0.001-
A copper alloy for electronic devices, comprising 1.0% by weight and 5 to 12% by weight of Fe, and the balance being Cu and inevitable impurities.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0027[Name of item to be corrected] 0027
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0027】この結果から実施例3〜9、12〜18、
20〜25、30〜33に示すように、CuにFeを5%
以上12%以下、Pを0.01%以上0.95%以下添加
するとリードフレーム等の電子機器用銅合金として必要
な特性、硬さ(Hv)140以上、電気電導性30%I
ACS以上、ハンダ耐熱性250時間以上を満たす材料
が得られる。From these results, Examples 3-9, 12-18,
As shown in 20-25 , 30-33 , 5% Fe in Cu
If the content of P is 0.01% or more and 0.95% or less, the properties required for copper alloys for electronic devices such as lead frames, hardness (Hv) 140 or more, and electrical conductivity 30% I
A material satisfying ACS or more and solder heat resistance of 250 hours or more can be obtained.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0031[Correction target item name] 0031
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0031】また実施例3〜9、14〜16、20〜2
5、27〜33、39〜44に示すように、表1に示す
A〜Dのいずれの方法で加工しても所定の特性の材料が
得られる。Examples 3 to 9, 14 to 16, 20 to 2
As shown in Nos. 5 , 27 to 33 and 39 to 44 , materials having predetermined characteristics can be obtained by processing by any of the methods A to D shown in Table 1.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0033[Correction target item name] 0033
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0033】[0033]
【表1】 [Table 1]
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0035[Correction target item name] 0035
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0035】[0035]
【表3】 [Table 3]
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0036[Correction target item name] 0036
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0036】[0036]
【表4】 [Table 4]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 晃 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 北風 敬三 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Maeda 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Material Device Research Center (72) Inventor Keizo Kitakaze 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Device Co., Ltd. Material Device Research Center
Claims (13)
1.0重量%および/またはZnを0.01〜1.0重量%
含有し、残部がCuおよび不可避不純物からなることを
特徴とする、電子機器用銅合金。1. Fe of 5 to 12% by weight and P of 0.01 to
1.0% by weight and / or Zn of 0.01 to 1.0% by weight
A copper alloy for electronic devices, characterized in that it contains Cu, and the balance is Cu and unavoidable impurities.
上合計で0.01〜0.1重量%またはAl、Pb、As、
Sb、B、Co、Te、In、Ti、Zr、Hf、Ag、Geの
うち1種または2種以上合計で0.001〜1.0重量
%、およびFeを5〜12重量%含有し、残部がCuお
よび不可避不純物からなることを特徴とする、電子機器
用銅合金。2. One or more of Si, Mn and Mg in a total amount of 0.01 to 0.1% by weight or Al, Pb, As,
One or more of Sb, B, Co, Te, In, Ti, Zr, Hf, Ag, and Ge, 0.001 to 1.0% by weight in total, and 5 to 12% by weight of Fe, A copper alloy for electronic devices, wherein the balance is Cu and inevitable impurities.
はZnを0.01〜1.0重量%含有することを特徴とす
る請求項2に記載の電子機器用銅合金。3. The copper alloy for electronic devices according to claim 2, which contains 0.01 to 1.0% by weight of P and / or 0.01 to 1.0% by weight of Zn.
し、溶解した後、100℃/秒以上の割合で急冷凝固す
ることにより固化することを特徴とする、電子機器用銅
合金。4. A copper alloy for electronic equipment, characterized in that at least 5% by weight of Fe is added to Cu, dissolved, and then solidified by rapid solidification at a rate of 100 ° C./sec or more.
溶解した後、100℃/秒以上の割合で急冷凝固するこ
とにより固化することを特徴とする、電子機器用銅合金
の製造方法。5. At least 5 wt% Fe is added to Cu,
A method for producing a copper alloy for electronic devices, characterized by solidifying by melting and then rapidly solidifying at a rate of 100 ° C./second or more.
1〜1.0重量%および/またはZnを0.01〜1.0重
量%を溶解した後、固化することを特徴とする電子機器
用銅合金の製造方法。6. Cu in an amount of 5 to 12% by weight and Fe in an amount of 0.0
A method for producing a copper alloy for electronic devices, which comprises melting 1 to 1.0% by weight and / or 0.01 to 1.0% by weight of Zn and then solidifying.
凝固することにより固化する、請求項1ないし3のいず
れか1項に記載の電子機器用銅合金の製造方法。7. The method for producing a copper alloy for electronic devices according to claim 1, wherein after melting, the alloy is solidified by rapid solidification at a rate of 100 ° C./second or more.
種以上合計で0.01〜1.0重量%、および/またはA
l、Pb、As、Sb、B、Co、Te、In、Ti、Zr、H
f、Ag、Geのうち1種または2種以上合計で0.001
〜1.0重量%およびFeを5〜12重量%を溶解した
後、固化することを特徴とする電子機器用銅合金の製造
方法。8. One or two of Si, Mn, and Mg is added to Cu.
0.01 to 1.0% by weight in total, and / or A
l, Pb, As, Sb, B, Co, Te, In, Ti, Zr, H
One or two or more of f, Ag and Ge in total 0.001
A method for producing a copper alloy for an electronic device, comprising: melting 1.0 wt% to 1.0 wt% and Fe 5 to 12 wt% and then solidifying.
はZnを0.01〜1.0重量%添加したことを特徴とす
る請求項8に記載の電子機器用銅合金の製造方法。9. The production of a copper alloy for electronic equipment according to claim 8, wherein 0.01 to 1.0% by weight of P and / or 0.01 to 1.0% by weight of Zn are added. Method.
ことを特徴とする、請求項5または8に記載の電子機器
用銅合金の製造方法。10. The method for producing a copper alloy for electronic equipment according to claim 5, wherein Zn is added in an amount of 0.01 to 1.0% by weight.
記載の製造方法により造塊した鋳塊の仕上圧延前に、6
00℃〜800℃の温度範囲で1分間以上加熱し、冷間
圧延する工程を含むことを特徴とする、電子機器用銅合
金の製造方法。11. Before the finish rolling of the ingot produced by the production method according to any one of claims 5 to 10,
A method for producing a copper alloy for electronic devices, comprising a step of heating in a temperature range of 00 ° C to 800 ° C for 1 minute or more and cold rolling.
記載の製造方法により造塊した鋳塊の仕上圧延前に、6
00℃〜800℃の温度範囲で1分間以上加熱し、冷間
圧延後、250〜500℃の温度範囲で10分以上加熱
する工程を含むことを特徴とする、電子機器用銅合金の
製造方法。12. Before the finish rolling of the ingot produced by the production method according to any one of claims 5 to 10,
A method for producing a copper alloy for electronic devices, comprising a step of heating in a temperature range of 00 ° C to 800 ° C for 1 minute or more, cold rolling, and then heating in a temperature range of 250 to 500 ° C for 10 minutes or more. .
記載の製造方法により造塊した鋳塊の仕上圧延前に、7
00℃〜1000℃で1分間以上加熱し、水中または油
中で急冷する工程と、その後の冷間加工の有無にかかわ
らず350〜500℃の温度範囲で10分間以上加熱す
ることを特徴とする、電子機器用銅合金の製造方法。13. Before the finish rolling of the ingot produced by the production method according to any one of claims 5 to 10,
It is characterized by heating at 00 ° C to 1000 ° C for 1 minute or more and quenching in water or oil, and heating at a temperature range of 350 to 500 ° C for 10 minutes or more regardless of the subsequent cold working. , A method for manufacturing a copper alloy for electronic devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5161719A JPH0718355A (en) | 1993-06-30 | 1993-06-30 | Copper alloy for electronic appliance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5161719A JPH0718355A (en) | 1993-06-30 | 1993-06-30 | Copper alloy for electronic appliance and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0718355A true JPH0718355A (en) | 1995-01-20 |
Family
ID=15740584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5161719A Pending JPH0718355A (en) | 1993-06-30 | 1993-06-30 | Copper alloy for electronic appliance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0718355A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138135A (en) * | 1986-11-27 | 1988-06-10 | Nissan Motor Co Ltd | Fuel injection control device for internal combustion engine |
JP2009079283A (en) * | 2007-09-27 | 2009-04-16 | Nikko Kinzoku Kk | High-strength, high-conductivity two phase copper alloy |
JP2009079281A (en) * | 2007-09-27 | 2009-04-16 | Nikko Kinzoku Kk | High-strength, high-conductivity two phase copper alloy |
WO2011142005A1 (en) * | 2010-05-12 | 2011-11-17 | Aimアセットマネジメント株式会社 | Process for producing ingot of copper-iron base alloy |
JP2014218698A (en) * | 2013-05-08 | 2014-11-20 | 住友電気工業株式会社 | Copper alloy material and connector part |
KR20200067472A (en) * | 2018-12-04 | 2020-06-12 | 주식회사 포스코 | High strength and high conductivity copper alloy and manufacturing method thereof |
CN113621850A (en) * | 2021-08-16 | 2021-11-09 | 江西理工大学 | High-strength conductive high-temperature softening resistant Cu-Fe alloy and preparation method thereof |
CN116694953A (en) * | 2023-08-04 | 2023-09-05 | 中铝科学技术研究院有限公司 | Copper alloy plate strip for electromagnetic shielding and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121293B2 (en) * | 1980-01-07 | 1986-05-26 | Furukawa Electric Co Ltd | |
JPH02111850A (en) * | 1988-10-20 | 1990-04-24 | Sumitomo Metal Mining Co Ltd | Manufacture of copper alloy for lead frame |
JPH03294459A (en) * | 1990-04-13 | 1991-12-25 | Furukawa Electric Co Ltd:The | Solution treatment for precipitation hardening copper alloy |
-
1993
- 1993-06-30 JP JP5161719A patent/JPH0718355A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121293B2 (en) * | 1980-01-07 | 1986-05-26 | Furukawa Electric Co Ltd | |
JPH02111850A (en) * | 1988-10-20 | 1990-04-24 | Sumitomo Metal Mining Co Ltd | Manufacture of copper alloy for lead frame |
JPH03294459A (en) * | 1990-04-13 | 1991-12-25 | Furukawa Electric Co Ltd:The | Solution treatment for precipitation hardening copper alloy |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138135A (en) * | 1986-11-27 | 1988-06-10 | Nissan Motor Co Ltd | Fuel injection control device for internal combustion engine |
JP2009079283A (en) * | 2007-09-27 | 2009-04-16 | Nikko Kinzoku Kk | High-strength, high-conductivity two phase copper alloy |
JP2009079281A (en) * | 2007-09-27 | 2009-04-16 | Nikko Kinzoku Kk | High-strength, high-conductivity two phase copper alloy |
WO2011142005A1 (en) * | 2010-05-12 | 2011-11-17 | Aimアセットマネジメント株式会社 | Process for producing ingot of copper-iron base alloy |
JP2014218698A (en) * | 2013-05-08 | 2014-11-20 | 住友電気工業株式会社 | Copper alloy material and connector part |
KR20200067472A (en) * | 2018-12-04 | 2020-06-12 | 주식회사 포스코 | High strength and high conductivity copper alloy and manufacturing method thereof |
CN113621850A (en) * | 2021-08-16 | 2021-11-09 | 江西理工大学 | High-strength conductive high-temperature softening resistant Cu-Fe alloy and preparation method thereof |
CN116694953A (en) * | 2023-08-04 | 2023-09-05 | 中铝科学技术研究院有限公司 | Copper alloy plate strip for electromagnetic shielding and preparation method thereof |
CN116694953B (en) * | 2023-08-04 | 2023-10-31 | 中铝科学技术研究院有限公司 | Copper alloy plate strip for electromagnetic shielding and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101056973B1 (en) | Cu-Ni-Si alloy | |
EP1873267B1 (en) | Copper alloy for electronic material | |
JP4255330B2 (en) | Cu-Ni-Si alloy member with excellent fatigue characteristics | |
JP3803981B2 (en) | Method for producing copper alloy having high strength and high conductivity | |
JP5097970B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP4809602B2 (en) | Copper alloy | |
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
KR102126731B1 (en) | Copper alloy sheet and method for manufacturing copper alloy sheet | |
JP4787986B2 (en) | Copper alloy and manufacturing method thereof | |
WO2006019035A1 (en) | Copper alloy plate for electric and electronic parts having bending workability | |
JP5619389B2 (en) | Copper alloy material | |
JP2008081762A (en) | Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JP3797882B2 (en) | Copper alloy sheet with excellent bending workability | |
JP2004315940A (en) | Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD | |
JP2007126739A (en) | Copper alloy for electronic material | |
JP4754930B2 (en) | Cu-Ni-Si based copper alloy for electronic materials | |
JP3957391B2 (en) | High strength, high conductivity copper alloy with excellent shear processability | |
JPH0718355A (en) | Copper alloy for electronic appliance and its production | |
JPH1143731A (en) | High strength copper alloy excellent in stamping property and suitable for silver plating | |
JP2006200042A (en) | Electronic component composed of copper alloy sheet having excellent bending workability | |
JP3049137B2 (en) | High strength copper alloy excellent in bending workability and method for producing the same | |
JPH0987814A (en) | Production of copper alloy for electronic equipment | |
JP6246454B2 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP4175920B2 (en) | High strength copper alloy |