JP2006200042A - Electronic component composed of copper alloy sheet having excellent bending workability - Google Patents

Electronic component composed of copper alloy sheet having excellent bending workability Download PDF

Info

Publication number
JP2006200042A
JP2006200042A JP2006081004A JP2006081004A JP2006200042A JP 2006200042 A JP2006200042 A JP 2006200042A JP 2006081004 A JP2006081004 A JP 2006081004A JP 2006081004 A JP2006081004 A JP 2006081004A JP 2006200042 A JP2006200042 A JP 2006200042A
Authority
JP
Japan
Prior art keywords
ratio
total
elongation
copper alloy
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006081004A
Other languages
Japanese (ja)
Inventor
Tetsuzo Ogura
哲造 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006081004A priority Critical patent/JP2006200042A/en
Publication of JP2006200042A publication Critical patent/JP2006200042A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component such as a lead frame, terminal, connector, switch and relay in which cracks in a bent part and reduction in strength caused by thinning are prevented, and whose miniaturization is attained. <P>SOLUTION: The electronic component is produced using a copper alloy sheet comprising 0.4 to 5% Ni, 0.1 to 1% Si and 0.01 to 10% Zn and/or 0.01 to 5% Sn, and the balance Cu with inevitable impurities, and, in which, in both the parallel and orthogonal directions to the rolling direction, proof stress is ≥450 N/mm<SP>2</SP>, the ratio between the proof stress and tensile strength is ≤0.95, and the ratio between uniform elongation and total elongation is ≥0.5, and also, whose work hardening exponent (n value) is ≥0.05. The copper alloy sheet has excellent bending workability in both the directions of G. W. (the bending line orthogonal to the rolling direction) and B. W. (the bending line parallel to the rolling direction). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、曲げ加工性に優れた銅合金板からなる電子部品、特にリードフレーム、端子、コネクタ、スイッチ、リレーなどの電子部品に関する。   The present invention relates to an electronic component made of a copper alloy plate excellent in bending workability, and more particularly to an electronic component such as a lead frame, a terminal, a connector, a switch, and a relay.

各種電子部品に、各種銅及び銅合金が用いられている。近年、電子部品の軽薄短小化の流れが急速に進展している。それに伴い、リードフレーム、端子、コネクタ、スイッチ、リレーなどに用いられる銅合金板は、高強度、高導電率はもちろんのこと、ノッチング後の90°曲げなど厳しい曲げ加工性が要求されることが多くなってきている。しかも、電子部品の小型化に伴い、従来厳しい曲げ加工は圧延方向に直角の曲げ線で行われる(いわゆるG.W.)のが通例であったのが、圧延方向に平行の曲げ線で行われる(いわゆるB.W.)ことが多くなってきている。
とりわけCu−Ni−Si系合金板は、高強度、高耐熱性、高い耐応力緩和特性及び比較的高い導電率を兼備する合金として、これらの用途に広く用いられている。しかし高強度と曲げ加工性の両立は難しいのが現状であった。従来の特許文献を以下に示す。
Various copper and copper alloys are used for various electronic components. In recent years, the trend of making electronic parts lighter, thinner, and smaller is rapidly progressing. Along with this, copper alloy plates used for lead frames, terminals, connectors, switches, relays, etc. are required to have not only high strength and high electrical conductivity, but also severe bending workability such as 90 ° bending after notching. It is getting more. In addition, along with the downsizing of electronic components, conventionally, severe bending work is usually performed with a bend line perpendicular to the rolling direction (so-called GW), but it is usually performed with a bend line parallel to the rolling direction. (So-called B.W.) is increasing.
In particular, Cu—Ni—Si based alloy plates are widely used for these applications as alloys having high strength, high heat resistance, high stress relaxation characteristics and relatively high electrical conductivity. However, it is difficult to achieve both high strength and bending workability. Conventional patent documents are shown below.

特開平6−184680号公報JP-A-6-184680 特開平11−222641号公報Japanese Patent Application Laid-Open No. 11-222641 特開2000−80428号公報JP 2000-80428 A 特開2001−49369号公報JP 2001-49369 A

従来、Cu−Ni−Si系合金板について、曲げ加工性の指標として引張試験における伸びがその目安として用いられ、その伸びの値は焼鈍後の冷間加工率に強く依存することが知られている。すなわち、優れた曲げ加工性を必要とする場合、強度が低くなることを前提に冷間加工率を低減させるというのがこれまでの常套手段であり、高い強度と優れた曲げ加工性を兼備させることは困難とされていた。
本発明は、従来のCu−Ni−Si系合金板の上記問題点に鑑みてなされたもので、電子部品用として、高い強度を保持しながら優れた曲げ加工性を持つ銅合金板を得ることを目的とする。
Conventionally, for a Cu—Ni—Si based alloy sheet, the elongation in a tensile test is used as an index for bending workability, and the value of the elongation is known to strongly depend on the cold work rate after annealing. Yes. That is, when excellent bending workability is required, the conventional method has been to reduce the cold working rate on the premise that the strength is low, and combines high strength and excellent bending workability. It was considered difficult.
The present invention has been made in view of the above-mentioned problems of conventional Cu-Ni-Si alloy plates, and obtains a copper alloy plate having excellent bending workability while maintaining high strength for electronic parts. With the goal.

本発明者は、Cu−Ni−Si系合金について、高強度と優れた曲げ加工性を両立させるべく鋭意研究した結果、圧延方向に対して平行及び直角方向の引張試験による応力−歪み曲線から得られる耐力と引張強さの比、さらに均一伸びと全伸びの比及びn値を制御することにより、高強度であっても、G.W.、B.W.両方の曲げ加工性を向上できることを見い出し、本発明をなすに至った。   As a result of earnest research on the Cu-Ni-Si alloy to achieve both high strength and excellent bending workability, the present inventor obtained from a stress-strain curve obtained by a tensile test parallel and perpendicular to the rolling direction. By controlling the ratio of proof stress to tensile strength, the ratio of uniform elongation to total elongation, and the n value, the G. W. , B. W. It has been found that both the bending workability can be improved, and the present invention has been made.

すなわち、本発明に係る電子部品は、Ni:0.4〜5%、Si:0.1〜1%を含み、残部Cuと不可避不純物からなり、圧延方向に対して平行及び直角方向とも、耐力が450N/mm以上でかつ耐力と引張強さの比が0.95以下、さらに、均一伸びと全伸びの比が0.5以上、かつn値が0.05以上である銅合金板からなることを特徴とする。上記銅合金は、必要に応じて、さらにZn:0.01〜10%とSn:0.01〜5%のいずれか一方又は双方を含有する。
さらに上記銅合金は、必要に応じて、B、C、P、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの群(A群)から選択される1種又は2種以上を合計で0.0001〜0.1%か、Be、Mg、Al、Ti、Cr、Mn、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auの群(B群)から選択される1種又は2種以上を合計で0.001〜1%含有する。あるいはA群から選択される1種又は2種以上を合計で0.0001〜0.1%とB群から選択される1種又は2種以上を合計で0.001〜1%の両者を、合計で1%以下の範囲で含有する。
That is, the electronic component according to the present invention includes Ni: 0.4 to 5%, Si: 0.1 to 1%, and is composed of the balance Cu and unavoidable impurities, both in parallel and perpendicular to the rolling direction. from There 450 n / mm 2 or more and a ratio of yield strength and tensile strength of 0.95 or less, further, uniform elongation and total elongation ratio of 0.5 or more, and n value is 0.05 or more copper alloy sheet It is characterized by becoming. The copper alloy further contains one or both of Zn: 0.01 to 10% and Sn: 0.01 to 5% as necessary.
Furthermore, the said copper alloy is 1 type selected from the group (A group) of B, C, P, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb as needed. Or a total of two or more of 0.0001 to 0.1% or a group of Be, Mg, Al, Ti, Cr, Mn, Fe, Co, Zr, Ag, Cd, In, Sb, Te, Au (B 1 type or 2 types or more selected from a group) are contained 0.001-1% in total. Or 1 type or 2 or more types selected from A group in total 0.0001 to 0.1% and 1 type or 2 or more types selected from B group in total 0.001 to 1%, It contains in the range of 1% or less in total.

本発明に係る銅合金板は、高強度を維持しながら、優れた曲げ加工性を有するので、高強度であり、曲げ加工部に割れがなく、薄肉化による強度低下もないリードフレーム、端子、コネクタ、スイッチ、リレーなどの電子部品を得ることができ、その小型化が可能である。   Since the copper alloy plate according to the present invention has excellent bending workability while maintaining high strength, the lead frame, the terminal, which has high strength, no cracks in the bent portion, and no strength reduction due to thinning, Electronic components such as connectors, switches, and relays can be obtained, and the size can be reduced.

次に、本発明に係る銅合金板の成分、耐力と引張強さの比等について、その限定理由を説明する。
(Ni及びSi)
これらの成分は、共存した状態でNiとSiの金属間化合物を形成することにより、導電率を大幅に低下させることなく強度を向上させる効果がある。Niが0.4%未満又はSiが0.1%未満ではその効果がなく、Niが5%を超え又はSiが1%を超えると熱間加工性が著しく低下する。従って、両成分はNi:0.4〜5%、Si:0.1〜1%とする。
Next, the reasons for limitation of the components of the copper alloy sheet according to the present invention, the ratio of the proof stress and the tensile strength, and the like will be described.
(Ni and Si)
These components have the effect of improving the strength without significantly reducing the conductivity by forming an intermetallic compound of Ni and Si in the coexisting state. If Ni is less than 0.4% or Si is less than 0.1%, the effect is not obtained. If Ni exceeds 5% or Si exceeds 1%, the hot workability is remarkably lowered. Therefore, both components are set to Ni: 0.4 to 5% and Si: 0.1 to 1%.

(Zn)
Znは、はんだ耐熱剥離性及び耐マイグレーション性を向上させる作用があるが、0.01%未満ではその効果が十分ではない。10%を超えると導電率が低下するだけでなく、はんだ付け性が低下するとともに、耐応力腐食割れ感受性も高くなり好ましくない。従って、Znは0.01〜10%とする。
(Sn)
Snは、固溶強化により強度を向上させる成分である。0.01%未満ではその効果が十分ではなく、5%を超えるとその効果が飽和するとともに、熱間及び冷間加工性が劣化する。従って、Snは0.01〜5%とする。
(Zn)
Zn has the effect of improving the solder heat resistance and migration resistance, but if it is less than 0.01%, the effect is not sufficient. If it exceeds 10%, not only the electrical conductivity is lowered, but also solderability is lowered, and the stress corrosion cracking resistance is increased, which is not preferable. Therefore, Zn is 0.01 to 10%.
(Sn)
Sn is a component that improves the strength by solid solution strengthening. If it is less than 0.01%, the effect is not sufficient, and if it exceeds 5%, the effect is saturated, and hot and cold workability deteriorate. Therefore, Sn is set to 0.01 to 5%.

(副成分)
B、C、P、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの各元素はプレス打抜き性を向上させる役割を有する。これらの元素は、1種又は2種以上の合計が0.0001%未満ではその効果がなく、0.1%を超えると熱間加工性が劣化するとともに曲げ加工性も劣化する。従って、これらの元素は1種又は2種以上の合計で0.0001〜0.1%とする。
Be、Mg、Al、Ti、Cr、Mn、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auの各元素は、Ni−Si化合物との共存により強度を一層向上させるとともにプレス打抜き性をも向上させる役割を有する。これらの元素は、1種又は2種以上の合計で0.001%未満ではその効果がなく、1%を超えると熱間及び冷間加工性が劣化するとともに曲げ加工性も劣化する。従って、これらの元素は1種又は2種以上の合計で0.001〜1%とする。
なお、両者を同時添加する場合は、合計で1%以下とする。
(Subcomponent)
Each element of B, C, P, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb has a role of improving press punchability. These elements are not effective when the total of one or more elements is less than 0.0001%, and when it exceeds 0.1%, hot workability is deteriorated and bending workability is also deteriorated. Therefore, these elements may be 0.0001 to 0.1% in total of one kind or two or more kinds.
Each element of Be, Mg, Al, Ti, Cr, Mn, Fe, Co, Zr, Ag, Cd, In, Sb, Te, and Au improves the strength further by coexistence with the Ni-Si compound and press punches. It also has a role to improve sex. These elements are not effective when the total of one or more elements is less than 0.001%, and when it exceeds 1%, hot and cold workability deteriorates and bending workability also deteriorates. Therefore, these elements are 0.001 to 1% in total of one kind or two or more kinds.
In addition, when adding both simultaneously, it is set as 1% or less in total.

(耐力、耐力と引張強さの比)
端子の小型化を達成するためには、ばね接点部の薄肉化、狭幅化が必要になってくるが、ばね接触力を確保するためには、高強度化が必須である。耐力が450N/mm以下では、端子の小型化の実現が難しくなる。従って、耐力は450N/mm以上とする。
一方、耐力と引張強さの比を制御することは、曲げ加工性、とりわけ厳しい曲げ加工性を確保する上で重要である。本発明者は、種々実験を重ねた結果、本合金系におけるこの比を0.95以下にすることが必要であることを見い出した。すなわち、この値を0.95以下にすることで、曲げ加工に対する耐割れ性が向上し、後述する曲げ成形部の薄肉化防止にも効果がある。
小型端子の成形では、厳しい曲げ加工がG.W.のみでなく、B.W.でも施されることから、上記2つの条件(耐力値と、耐力と引張強さの比)を圧延方向に対して平行方向(L.D.)のみでなく、直角方向(T.D.)においても満足することが必要である。
(Yield strength, ratio of yield strength and tensile strength)
In order to reduce the size of the terminal, it is necessary to make the spring contact portion thinner and narrower. However, in order to ensure the spring contact force, it is essential to increase the strength. When the proof stress is 450 N / mm 2 or less, it is difficult to realize miniaturization of the terminal. Therefore, the proof stress is 450 N / mm 2 or more.
On the other hand, controlling the ratio between the proof stress and the tensile strength is important for securing bending workability, particularly severe bending workability. As a result of various experiments, the present inventor has found that this ratio in the present alloy system needs to be 0.95 or less. That is, by setting this value to 0.95 or less, the cracking resistance to bending is improved, and it is effective in preventing the thickness reduction of the bending molded part described later.
In the molding of small terminals, strict bending is performed by G.C. W. As well as B. W. However, since the above two conditions (the proof stress value and the ratio between the proof stress and the tensile strength) are not only parallel to the rolling direction (LD), but also at right angles (TD). It is also necessary to be satisfied.

(均一伸びと全伸びの比)
曲げ加工性とは、通常、割れが発生しない限界の曲げ条件で表わすことが多いが、小型端子では割れの発生を防止すると同時に、曲げ成形部の肉厚が薄くなることによる端子部品としての強度低下を抑制することが重要となる。一方、本発明者の知見によれば、全伸びに対する均一伸びの比を大きくすることにより、曲げ加工性、特に曲げ成形部の薄肉化を改善することが可能である。
本発明者は、この知見に基づき種々実験を重ねた結果、本合金系におけるこの比の適正範囲を見い出した。すなわち、この比が0.5未満では、割れ性が劣化する、あるいは曲げ成形部の肉厚が薄くなるといった不具合が出てくる。従って、均一伸びと全伸びの比を0.5以上とする。
(Ratio of uniform elongation to total elongation)
Bending workability is usually expressed as the limit bending condition that does not cause cracking. However, in small terminals, cracking is prevented, and at the same time, the strength as a terminal component is achieved by reducing the thickness of the bent part. It is important to suppress the decrease. On the other hand, according to the knowledge of the present inventor, it is possible to improve the bending workability, in particular, the thinning of the bent portion by increasing the ratio of the uniform elongation to the total elongation.
As a result of repeating various experiments based on this knowledge, the present inventor has found an appropriate range of this ratio in the present alloy system. That is, when this ratio is less than 0.5, there arises a problem that the cracking property is deteriorated or the thickness of the bent portion is reduced. Therefore, the ratio of uniform elongation to total elongation is 0.5 or more.

(n値)
n値(加工硬化指数)は、一般に成形性の指標になることが知られているが、合金系はもちろん強度レベルによっても適正な値が異なってくる。本発明者は、種々実験を重ねた結果、本合金系におけるこの値の適正範囲を見い出した。
この値が0.05未満では、とくに曲げ成形部の肉厚が薄くなるといった不具合が出てくる。従って、n値は0.05以上とする。
(N value)
The n value (work hardening index) is generally known to be an index of formability, but an appropriate value varies depending on the strength level as well as the alloy system. As a result of repeated experiments, the present inventor has found an appropriate range of this value in the present alloy system.
If this value is less than 0.05, there is a problem that the thickness of the bent portion becomes particularly thin. Accordingly, the n value is 0.05 or more.

(製造工程)
ところで、前記組成のCu−Ni−Si系合金は、従来、連続鋳造など適当な方法で鋳塊を造塊し、この鋳塊を850〜950℃程度に加熱して均質化焼鈍後を行い、熱間圧延した後、水冷してNi−Si化合物の析出を抑制し、次いでこの熱延材に対して、(1)冷間圧延→(2)溶体化処理→(3)冷間圧延→(4)時効処理→(5)冷間圧延の加工熱処理を施し、目標とする最終板厚の板材を製造している。さらに、(5)の冷間加工の後、歪み取りや歪み矯正を目的とする短時間加熱、テンションレベリングなどの処理を行うこともある。
(Manufacturing process)
By the way, the Cu—Ni—Si based alloy having the above composition has been conventionally ingoted by an appropriate method such as continuous casting, and this ingot is heated to about 850 to 950 ° C. and subjected to homogenization annealing, After hot rolling, water cooling is performed to suppress the precipitation of the Ni—Si compound, and then (1) cold rolling → (2) solution treatment → (3) cold rolling → ( 4) Aging treatment → (5) Cold-rolling heat treatment is performed to produce a plate material having a target final thickness. Furthermore, after the cold working of (5), a process such as short-time heating or tension leveling for the purpose of strain removal or distortion correction may be performed.

(1)の冷間圧延は、比較的板厚の厚い熱延材を圧延するため、その加工率は90%を上回る。その後の加工熱処理条件は、合金の組成によって適宜変化させているが、(2)の溶体化処理条件としては冷延材を5℃/秒以上の速度で700〜800℃に加熱し、その温度で3〜30秒程度保持し、5℃/秒以上の速度で350℃以下の温度まで冷却するという方法がとられ、(3)と(5)の冷間圧延は高強度化のため、従来は合計で50%以上の圧延率が選択されている。あるいは(3)と(5)の圧延率を合計50%未満とすることもあるが、その場合は(3)と(5)の冷間圧延の加工率の比を2程度以下とし、時効処理後の圧延率を大きくすることで高強度化を達成しようとしていた。これにより、前記組成のCu−Ni−Si系合金において、耐力が450N/mm以上の高強度を得ることができるが、耐力と引張強さの比0.95以下、均一伸びと全伸びの比0.5以上、かつn値0.05以上の特性を得ることができない。 In the cold rolling of (1), a hot-rolled material having a relatively large thickness is rolled, so that the processing rate exceeds 90%. The subsequent heat treatment conditions are appropriately changed depending on the composition of the alloy. As the solution treatment conditions in (2), the cold rolled material is heated to 700 to 800 ° C. at a rate of 5 ° C./second or more, and the temperature Is held for about 3 to 30 seconds and cooled to a temperature of 350 ° C. or less at a rate of 5 ° C./second or more. The cold rolling of (3) and (5) A total rolling ratio of 50% or more is selected. Alternatively, the rolling ratios of (3) and (5) may be less than 50% in total. In that case, the ratio of the cold rolling ratios of (3) and (5) is set to about 2 or less, and an aging treatment is performed. We tried to achieve higher strength by increasing the rolling rate later. Thereby, in the Cu—Ni—Si based alloy having the above composition, a high strength with a yield strength of 450 N / mm 2 or more can be obtained, but the ratio of the yield strength to the tensile strength is 0.95 or less, uniform elongation and total elongation. A characteristic with a ratio of 0.5 or more and an n value of 0.05 or more cannot be obtained.

一方、(3)の冷間加工率を35%以下、かつ(5)の加工率との和を40%以下(いずれも0%でもよい)としたとき、Cu−Ni−Si系合金において耐力が450N/mm以上の高強度を得ると同時に、耐力と引張強さの比を0.95以下、均一伸びと全伸びの比を0.5以上、かつn値を0.05以上とすることができる。特に、(3)の冷間圧延の加工率:a%と(5)の冷間圧延の加工率:b%の比a/bを、a又はbが0の場合を除いて、3〜20程度とすることでよい結果が得られる。 On the other hand, when the cold work rate of (3) is 35% or less and the sum of the cold work rate of (5) is 40% or less (both may be 0%), the proof stress in the Cu-Ni-Si alloy Of 450 N / mm 2 and higher, while the ratio of proof stress to tensile strength is 0.95 or less, the ratio of uniform elongation to total elongation is 0.5 or more, and n value is 0.05 or more. be able to. In particular, the ratio a / b of (3) cold rolling processing rate: a% and (5) cold rolling processing rate: b% is 3 to 20 except when a or b is 0. A good result can be obtained by setting the degree.

ただし、上記の特性を得るには、(2)の溶体化処理と(4)の時効処理において適切な条件を選択する必要がある。具体的には、溶体化処理の加熱は、前記の加熱条件のなかで、再結晶粒の粒径が5〜15μmとなり、かつ導電率が27%IACS以下となる加熱条件(加熱温度と加熱時間の組合せ)を選択する。それは、溶体化処理によって結晶粒径が15μmを越え、かつ導電率が27%IACSを越えると、時効処理によって、Ni−Si化合物の析出が起こらない粒界無析出帯(Precipitate Free Zone)が形成されやすく、曲げ加工性が低下しやすいためである。また、時効処理は再結晶が発生しないあるいは再結晶粒の寸法が10μm未満となる条件を選択する。具体的には熱処理温度としては440〜500℃、熱処理時間は30分以上で300分以下の範囲である。さらに、時効後の硬さHvがピークを示す条件(温度・時間)より過時効側(高温側又は/及び長時間側)を選択することが望ましい。   However, in order to obtain the above characteristics, it is necessary to select appropriate conditions in the solution treatment (2) and the aging treatment (4). Specifically, the heating in the solution treatment is a heating condition (heating temperature and heating time) in which the recrystallized grain size is 5 to 15 μm and the conductivity is 27% IACS or less in the above heating conditions. Combination). When the crystal grain size exceeds 15 μm by the solution treatment and the conductivity exceeds 27% IACS, a grain-free precipitation zone (Precipitate Free Zone) where precipitation of Ni-Si compounds does not occur is formed by the aging treatment. It is because it is easy to bend and bending workability falls easily. In addition, for the aging treatment, conditions are selected so that recrystallization does not occur or the size of the recrystallized grains is less than 10 μm. Specifically, the heat treatment temperature ranges from 440 to 500 ° C., and the heat treatment time ranges from 30 minutes to 300 minutes. Furthermore, it is desirable to select the overaging side (high temperature side and / or long time side) from the condition (temperature / time) at which the hardness Hv after aging shows a peak.

次に、本発明の実施例について、比較例とともに以下に説明する。
表1に示す化学組成の銅合金をクリプトル炉にて木炭被覆下で大気溶解し、ブックモールドに鋳造し、50×80×200mmの鋳塊を作製した。この鋳塊を熱間圧延後、直ちに水中急冷し厚さ15mmの熱延材とした。この熱延材の表面の酸化スケールを除去するため、表面をグラインダで切削した。その後、本発明例の組成No.1〜18及び比較例の組成19〜24に対しては、前記実施の形態に記載した加工熱処理条件を採用して最終板厚0.25mmの板材に調整した。
Next, examples of the present invention will be described below together with comparative examples.
A copper alloy having a chemical composition shown in Table 1 was melted in the atmosphere under a charcoal coating in a kryptor furnace, and cast into a book mold to produce a 50 × 80 × 200 mm ingot. This ingot was immediately quenched in water after hot rolling to obtain a hot rolled material having a thickness of 15 mm. In order to remove the oxide scale on the surface of the hot rolled material, the surface was cut with a grinder. Then, composition No. of the example of the present invention. For the compositions 1 to 18 and Comparative Examples 19 to 24, the heat treatment conditions described in the above embodiment were adopted and adjusted to a plate material having a final thickness of 0.25 mm.

一方、No.3の組成については、加工熱処理条件を変化させ、(3)時効処理前の加工率、(4)時効処理条件及び(5)時効処理後の加工率として前記実施の形態に記載した加工熱処理条件を適用した3−1〜3−4(本発明例)、及び従来の製造方法を適用した3−5〜3−7(比較例)の板材を製作した(最終板厚0.25mm)。なお、(3)(4)(5)の条件は、3−1が30%、480℃×2時間、0%(圧延せず)、3−2が0%(圧延せず)、440℃×2時間、0%(圧延せず)、3−3が30%、480℃×2時間、5%、3−4が30%、450℃×2時間、0%(圧延せず)とした。また、3−5は30%、480℃×2時間、20%、3−6は50%、450℃×2時間、0%(圧延せず)、3−7は50%、480℃×2時間、10%とした。   On the other hand, no. For the composition of 3, the heat treatment conditions described in the above embodiment are changed as (3) the processing rate before the aging treatment, (4) the aging treatment conditions, and (5) the processing rate after the aging treatment. The plate materials of 3-1 to 3-4 (invention example) to which No. 1 was applied and 3-5 to 3-7 (comparative example) to which a conventional manufacturing method was applied were produced (final plate thickness 0.25 mm). The conditions of (3), (4) and (5) are as follows: 3-1 is 30%, 480 ° C. × 2 hours, 0% (not rolled), 3-2 is 0% (not rolled), 440 ° C. × 2 hours, 0% (not rolled), 3-3 is 30%, 480 ° C. × 2 hours, 5%, 3-4 is 30%, 450 ° C. × 2 hours, 0% (not rolled) . 3-5 is 30%, 480 ° C. × 2 hours, 20%, 3-6 is 50%, 450 ° C. × 2 hours, 0% (not rolled), 3-7 is 50%, 480 ° C. × 2 Time was 10%.

Figure 2006200042
Figure 2006200042

これらの板材について、引張強さ、耐力、均一伸び、全伸び、n値、導電率及びW曲げ加工性を下記要領にて調査した。その結果を表2及び表3に示す。
<引張強さ、耐力、均一伸び、全伸び、n値>
板材からL.D.、T.D.の両方向に5号試験片を採取し、JISZ2241に記載の方法に準じて引張試験を行い、応力−歪み曲線を得た。この曲線より引張強さ、全伸び、及びオフセット法で0.2%耐力(永久伸び0.2%)を求めた。また、最大引張荷重を示す永久伸びを均一伸びとして読み取った。さらに応力−歪み曲線を真応力−真歪み曲線に変換し、n値を読み取った。
<導電率>
JISH0505に記載の方法に準じた。電気抵抗の測定はダブルブリッジを用いた。
About these board | plate materials, tensile strength, yield strength, uniform elongation, total elongation, n value, electrical conductivity, and W bending workability were investigated as follows. The results are shown in Tables 2 and 3.
<Tensile strength, yield strength, uniform elongation, total elongation, n value>
From plate material to L. D. T. D. No. 5 test pieces were collected in both directions, and a tensile test was performed according to the method described in JISZ2241, to obtain a stress-strain curve. From this curve, tensile strength, total elongation, and 0.2% yield strength (permanent elongation 0.2%) were determined by the offset method. Further, the permanent elongation indicating the maximum tensile load was read as uniform elongation. Further, the stress-strain curve was converted into a true stress-true strain curve, and the n value was read.
<Conductivity>
In accordance with the method described in JISH0505. A double bridge was used to measure the electrical resistance.

<曲げ加工性>
板材からL.D.(圧延方向に対して平行)、T.D.(圧延方向に対して直角)両方向に幅10mmの試験片を採取し、JISH3130に記載の方法に準じ、R=0.125mmにて9.8×10N(1000kgf)の荷重をかけてW曲げを施した。試験片採取方向がL.DのものはG.W.(曲げ軸が圧延方向に直角)、T.D.のものはB.W.(曲げ軸が圧延方向に平行)である。W曲げ試験後、50倍の倍率で光学顕微鏡にて曲げ外側を外観観察し、割れの有無を判定した。また、試験片を樹脂に埋込み研磨後、200倍の倍率で光学顕微鏡にて曲げ頂点部の肉厚を測り、素材肉厚(0.25mm)との比(肉厚比)を求めた。
<Bending workability>
From plate material to L. D. (Parallel to the rolling direction), T.W. D. Test specimens having a width of 10 mm in both directions (perpendicular to the rolling direction) were collected and applied with a load of 9.8 × 10 3 N (1000 kgf) at R = 0.125 mm in accordance with the method described in JISH3130. Bent. The specimen collection direction is L. D is G. W. (Bending axis is perpendicular to rolling direction), T.E. D. Is B. W. (The bending axis is parallel to the rolling direction). After the W-bending test, the outside of the bending was observed with an optical microscope at a magnification of 50 times to determine the presence or absence of cracks. Further, after embedding the test piece in a resin and polishing, the thickness of the bending apex portion was measured with an optical microscope at a magnification of 200 times, and the ratio (thickness ratio) to the material thickness (0.25 mm) was obtained.

Figure 2006200042
Figure 2006200042

Figure 2006200042
Figure 2006200042

これらの結果より、本発明の規定範囲内の合金No.1〜2、3−1〜3−4、及び4〜18は、引張試験の結果、L.D.、T.D.両方向で、耐力と引張強さの比が0.95以下、均一伸びと全伸びの比が0.5以上、かつn値が0.05以上であり、耐力450N/mm以上の高強度において、曲げ加工性(耐割れ性及び肉厚比)が優れていた。また、導電率も高い。
なお、No.1とNo.2はNiとSiが低めで耐力がやや低く、逆にNo.4とNo.5はNiとSiが高めで、耐力がやや高い。また、No.3−2はNo.3−1に比べて耐力と引張強さの比が小さめ、均一伸びと全伸びの比が大きめ、かつn値が大きめのため、W曲げ部の肉厚比が大きい、すなわち曲げ加工性が良好である。一方、No.3−3は均一伸びと全伸びの比が小さめ、No.3−4は耐力と引張強さの比が大きめのため、W曲げ部の肉厚比が低め、すなわち曲げ加工性がやや低下している。
一方、比較合金No.19はNiとSiが低く、強度が低い。逆に、比較合金No.20はNiとSiが高いため、熱間圧延で割れが発生した。比較合金No.21はZnが多いため、導電率が低く、耐応力腐食割れ性が低い。比較合金No.22と23はSn又はP含有量が高く、熱間圧延で割れが発生した。No.24はFe含有量が高く、熱間圧延で微小割れが発生するとともに、曲げ加工性が低くなっている。No.3−5、3−6、3−7は、各々、耐力と引張強さの比が高い、又は均一伸びと全伸びの比が小さい、又はn値が小さいため、W曲げで割れが発生及び(又は)曲げ部の肉厚比が低くなっており、曲げ加工性が劣っている。
From these results, alloy no. 1-2, 3-1 to 3-4, and 4 to 18 are the results of a tensile test. D. T. D. In both directions, the ratio of yield strength to tensile strength is 0.95 or less, the ratio of uniform elongation to total elongation is 0.5 or more, n value is 0.05 or more, and high strength with a yield strength of 450 N / mm 2 or more. The bending workability (cracking resistance and wall thickness ratio) was excellent. Also, the conductivity is high.
In addition, No. 1 and No. No. 2 has lower Ni and Si and slightly lower yield strength. 4 and no. No. 5 is higher in Ni and Si and has a slightly higher yield strength. No. 3-2 is No.3. Compared to 3-1, the ratio of yield strength and tensile strength is smaller, the ratio of uniform elongation to total elongation is larger, and the n value is larger, so the wall thickness ratio of the W-bend is large, that is, the bending workability is good. It is. On the other hand, no. 3-3 has a smaller ratio of uniform elongation to total elongation. In 3-4, since the ratio of the proof stress and the tensile strength is large, the thickness ratio of the W-bending portion is low, that is, the bending workability is slightly lowered.
On the other hand, Comparative Alloy No. No. 19 has low Ni and Si and low strength. Conversely, comparative alloy No. No. 20 had high Ni and Si, so cracking occurred during hot rolling. Comparative Alloy No. Since No. 21 has a large amount of Zn, the electrical conductivity is low and the resistance to stress corrosion cracking is low. Comparative Alloy No. Nos. 22 and 23 had high Sn or P content, and cracking occurred during hot rolling. No. No. 24 has a high Fe content, microcracks are generated by hot rolling, and bending workability is low. No. 3-5, 3-6, and 3-7 each have a high ratio of yield strength and tensile strength, or a small ratio of uniform elongation to total elongation, or a small n value, so that cracking occurs in W bending and (Or) The thickness ratio of the bent portion is low, and the bending workability is inferior.

Claims (5)

Ni:0.4〜5%(質量%、以下同じ)、Si:0.1〜1%を含み、残部Cuと不可避不純物からなり、圧延方向に対して平行及び直角方向とも、耐力が450N/mm以上、耐力と引張強さの比が0.95以下、均一伸びと全伸びの比が0.5以上、かつ加工硬化指数(以下、n値という)が0.05以上である銅合金板からなることを特徴とする電子部品。 Ni: 0.4 to 5% (mass%, the same applies hereinafter), Si: 0.1 to 1%, and the balance is made of Cu and inevitable impurities. The yield strength is 450 N / in both parallel and perpendicular directions to the rolling direction. mm 2 or more, proof stress and tensile strength ratio is 0.95 or less, the uniform elongation and total elongation ratio of 0.5 or more, and work hardening coefficient (hereinafter, referred to as n value) is 0.05 or more copper alloy An electronic component comprising a plate. Ni:0.4〜5%、Si:0.1〜1%、Zn:0.01〜10%を含み、残部Cuと不可避不純物からなり、圧延方向に対して平行及び直角方向とも、耐力が450N/mm以上、耐力と引張強さの比が0.95以下、均一伸びと全伸びの比が0.5以上、かつn値が0.05以上である銅合金板からなることを特徴とする電子部品。 Ni: 0.4 to 5%, Si: 0.1 to 1%, Zn: 0.01 to 10%, consisting of the balance Cu and unavoidable impurities, the proof stress is parallel and perpendicular to the rolling direction. 450 N / mm 2 or more, a ratio of proof stress to tensile strength is 0.95 or less, a ratio of uniform elongation to total elongation is 0.5 or more, and an n value is 0.05 or more. And electronic parts. Ni:0.4〜5%、Si:0.1〜1%、Sn:0.01〜5%を含み、残部Cuと不可避不純物からなり、圧延方向に対して平行及び直角方向とも、耐力が450N/mm以上、耐力と引張強さの比が0.95以下、均一伸びと全伸びの比が0.5以上、かつn値が0.05以上である銅合金板からなることを特徴とする電子部品。 Ni: 0.4 to 5%, Si: 0.1 to 1%, Sn: 0.01 to 5%, the balance is Cu and inevitable impurities, and the proof stress is parallel and perpendicular to the rolling direction. 450 N / mm 2 or more, a ratio of proof stress to tensile strength is 0.95 or less, a ratio of uniform elongation to total elongation is 0.5 or more, and an n value is 0.05 or more. And electronic parts. Ni:0.4〜5%、Si:0.1〜1%、Zn:0.01〜10%、Sn:0.01〜5%を含み、残部Cuと不可避不純物からなり、圧延方向に対して平行及び直角方向とも、耐力が450N/mm以上、耐力と引張強さの比が0.95以下、均一伸びと全伸びの比が0.5以上、かつn値が0.05以上である銅合金板からなることを特徴とする電子部品。 Ni: 0.4 to 5%, Si: 0.1 to 1%, Zn: 0.01 to 10%, Sn: 0.01 to 5%, comprising the remainder Cu and inevitable impurities, with respect to the rolling direction In both parallel and perpendicular directions, the yield strength is 450 N / mm 2 or more, the ratio of yield strength to tensile strength is 0.95 or less, the ratio of uniform elongation to total elongation is 0.5 or more, and the n value is 0.05 or more. An electronic component comprising a copper alloy plate. さらに、B、C、P、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbから選択される1種又は2種以上を合計で0.0001〜0.1%か、Be、Mg、Al、Ti、Cr、Mn、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auから選択される1種又は2種以上を合計で0.001〜1%か、両者を合計で1%以下含有する銅合金板からなることを特徴とする請求項1〜4のいずれかに記載された電子部品。 Furthermore, 0.0001 to 0.1% in total of one or more selected from B, C, P, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb Or one or two or more selected from Be, Mg, Al, Ti, Cr, Mn, Fe, Co, Zr, Ag, Cd, In, Sb, Te, Au in total 0.001 to 1% The electronic component according to claim 1, wherein the electronic component is made of a copper alloy plate containing 1% or less in total.
JP2006081004A 2006-03-23 2006-03-23 Electronic component composed of copper alloy sheet having excellent bending workability Withdrawn JP2006200042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081004A JP2006200042A (en) 2006-03-23 2006-03-23 Electronic component composed of copper alloy sheet having excellent bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081004A JP2006200042A (en) 2006-03-23 2006-03-23 Electronic component composed of copper alloy sheet having excellent bending workability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001067850A Division JP3797882B2 (en) 2001-03-09 2001-03-09 Copper alloy sheet with excellent bending workability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009247163A Division JP4503696B2 (en) 2009-10-28 2009-10-28 Electronic parts made of copper alloy sheets with excellent bending workability

Publications (1)

Publication Number Publication Date
JP2006200042A true JP2006200042A (en) 2006-08-03

Family

ID=36958294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081004A Withdrawn JP2006200042A (en) 2006-03-23 2006-03-23 Electronic component composed of copper alloy sheet having excellent bending workability

Country Status (1)

Country Link
JP (1) JP2006200042A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
WO2009104615A1 (en) * 2008-02-18 2009-08-27 古河電気工業株式会社 Copper alloy material
JP2012224898A (en) * 2011-04-18 2012-11-15 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED ALLOY AND Cu-Co-Si BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
CN106399751A (en) * 2016-10-13 2017-02-15 龙岩学院 Preparing method for high-strength and high-conductivity copper alloy
JP2021066902A (en) * 2019-10-18 2021-04-30 株式会社神戸製鋼所 Copper alloy rolled sheet and method for determining quality of the same
CN115961173A (en) * 2021-10-08 2023-04-14 刘耀武 Connector material, manufacturing process and connector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126681A1 (en) * 2007-03-26 2008-10-23 The Furukawa Electric Co., Ltd. Copper alloy for electrical/electronic device and method for producing the same
JP2008266783A (en) * 2007-03-26 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy for electrical/electronic device and method for manufacturing the same
WO2009104615A1 (en) * 2008-02-18 2009-08-27 古河電気工業株式会社 Copper alloy material
JP2012224898A (en) * 2011-04-18 2012-11-15 Jx Nippon Mining & Metals Corp Cu-Ni-Si BASED ALLOY AND Cu-Co-Si BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
CN106399751A (en) * 2016-10-13 2017-02-15 龙岩学院 Preparing method for high-strength and high-conductivity copper alloy
JP2021066902A (en) * 2019-10-18 2021-04-30 株式会社神戸製鋼所 Copper alloy rolled sheet and method for determining quality of the same
JP7218270B2 (en) 2019-10-18 2023-02-06 株式会社神戸製鋼所 Copper alloy rolled sheet and quality judgment method thereof
CN115961173A (en) * 2021-10-08 2023-04-14 刘耀武 Connector material, manufacturing process and connector

Similar Documents

Publication Publication Date Title
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4809602B2 (en) Copper alloy
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
WO2011104982A1 (en) Cu-mg-p-based copper alloy bar and method for producing same
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
JP5466879B2 (en) Copper alloy sheet and manufacturing method thereof
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
WO2013018228A1 (en) Copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP2000178670A (en) Copper alloy for semiconductor lead frame
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP2008208466A (en) Copper alloy for connector, and method for producing the same
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP4175920B2 (en) High strength copper alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090908

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091102