JP7218270B2 - Copper alloy rolled sheet and quality judgment method thereof - Google Patents

Copper alloy rolled sheet and quality judgment method thereof Download PDF

Info

Publication number
JP7218270B2
JP7218270B2 JP2019190930A JP2019190930A JP7218270B2 JP 7218270 B2 JP7218270 B2 JP 7218270B2 JP 2019190930 A JP2019190930 A JP 2019190930A JP 2019190930 A JP2019190930 A JP 2019190930A JP 7218270 B2 JP7218270 B2 JP 7218270B2
Authority
JP
Japan
Prior art keywords
room temperature
temperature
measured
copper alloy
internal friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190930A
Other languages
Japanese (ja)
Other versions
JP2021066902A (en
Inventor
幸矢 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019190930A priority Critical patent/JP7218270B2/en
Publication of JP2021066902A publication Critical patent/JP2021066902A/en
Application granted granted Critical
Publication of JP7218270B2 publication Critical patent/JP7218270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、強度、耐応力緩和特性及び曲げ加工性を兼備した銅合金圧延板、及び銅合金圧延板の良否判定方法に関する。 TECHNICAL FIELD The present invention relates to a copper alloy rolled sheet having strength, stress relaxation resistance and bending workability, and a method for judging the quality of the copper alloy rolled sheet.

自動車用コネクタ等の端子に用いられる銅合金圧延板は、強度、曲げ加工性、耐応力緩和特性、導電性を兼備していなければならない。このうち強度と導電性は一般に相反する特性であり、これら2つの特性を両立させるために、微細な第二相を熱処理によって析出分散させる析出型銅合金や導電率を損ないにくいMgなどの固溶元素を添加した固溶強化型合金などが用いられてきた。
一方、曲げ加工性や耐応力緩和特性については材料内部の不均質な部分、たとえば粗大な析出物、結晶粒界、粒界析出物、無析出帯などが悪影響を及ぼすため、これらの制御が大きな課題であった。例えば特許文献1には、透過電子顕微鏡写真による撮影視野500nm×500nm内に、直径5nm~60nmの析出物を20個以上分布させることによって、銅合金圧延板のプレス打ち抜き性、曲げ加工性、耐応力緩和特性を向上させる技術が示されている。
Copper alloy rolled sheets used for terminals of automotive connectors and the like must have strength, bending workability, stress relaxation resistance and electrical conductivity. Of these, strength and conductivity are generally contradictory characteristics. Solid-solution-strengthened alloys with added elements have been used.
On the other hand, inhomogeneous parts inside the material, such as coarse precipitates, grain boundaries, grain boundary precipitates, and non-precipitated zones, have an adverse effect on bending workability and stress relaxation resistance. It was an issue. For example, in Patent Document 1, by distributing 20 or more precipitates with a diameter of 5 nm to 60 nm in a field of view of 500 nm × 500 nm in a transmission electron microscope photograph, press punchability, bending workability, and resistance of a copper alloy rolled plate are obtained. Techniques for improving stress relaxation properties have been demonstrated.

特開2006-342389号公報JP 2006-342389 A

特許文献1では、優れた特性を有する銅合金圧延板を、透過電子顕微鏡で観察される微細組織で特定している。しかしながら、透過電子顕微鏡で微細組織を観察するには、100nm程度まで薄く加工した薄膜試料が必要であり、一枚の透過電子顕微鏡像を得るためには、少なくとも数日かかるという問題がある。また、薄膜試料は工業製品の大きさに比べて何十億分の1のサイズであり、透過型電子顕微鏡では局所的な情報しか得られないという問題がある。さらに、透過電子顕微鏡自体にも、除振・消磁された特別な環境でなければ設置できないという問題がある。 In Patent Document 1, a copper alloy rolled sheet having excellent properties is specified by a microstructure observed with a transmission electron microscope. However, in order to observe a fine structure with a transmission electron microscope, a thin film sample processed as thin as about 100 nm is required, and there is a problem that it takes at least several days to obtain a single transmission electron microscope image. In addition, the size of a thin film sample is one billionth of the size of an industrial product, and transmission electron microscopes have the problem that only local information can be obtained. Furthermore, the transmission electron microscope itself also has the problem that it can only be installed in a special vibration-isolated and demagnetized environment.

本発明は、透過電子顕微鏡と薄膜試料を用いることなく、より簡便な手段により、強度、耐応力緩和特性及び曲げ加工性を兼備した銅合金圧延板を特定することを目的とする。 An object of the present invention is to specify a copper alloy rolled sheet having strength, stress relaxation resistance and bending workability by simple means without using a transmission electron microscope and a thin film sample.

本発明に係る銅合金圧延板は、Ni:0.7~2質量%、Si:0.6%質量以下、Sn:0.05~1.5質量%、P:0.1質量%以下、Zn:1.2質量%以下、Fe:0.1質量%以下を含み、残部が実質的にCu及び不可避不純物からなる組成を有し、下記(1)~(3)の全てを満たす。
(1)室温で測定した共振弾性率Eと、室温から再結晶温度以上550℃以下の温度まで昇温後再び室温に冷却して測定した共振弾性率E1が、0≦E1―E≦2(単位:GPa)の関係を有する。
(2)室温から300℃以上の温度まで昇温する過程で内部摩擦を測定したとき、室温から300℃までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax1 -1が0.004以下である。
(3)室温から再結晶温度以上の温度まで昇温後室温まで冷却する過程で内部摩擦を測定したとき、300℃から室温までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax2 -1が0.004以下である。
The copper alloy rolled sheet according to the present invention contains Ni: 0.7 to 2% by mass, Si: 0.6% by mass or less, Sn: 0.05 to 1.5% by mass, P: 0.1% by mass or less, It has a composition containing Zn: 1.2% by mass or less, Fe: 0.1% by mass or less, the balance being substantially Cu and unavoidable impurities, and satisfying all of the following (1) to (3).
(1) The resonance elastic modulus E0 measured at room temperature and the resonance elastic modulus E1 measured after heating from room temperature to the recrystallization temperature or higher and 550° C. or lower and then cooling to room temperature again are 0 ≦E1−E0≦ 0 . 2 (unit: GPa).
(2) When the internal friction is measured in the process of increasing the temperature from room temperature to 300 ° C. or higher, the value Q max1 −1 obtained by subtracting the minimum value from the maximum value of the measured internal friction in the range from room temperature to 300 ° C. is 0.004 or less.
(3) When the internal friction was measured in the process of heating from room temperature to a temperature equal to or higher than the recrystallization temperature and then cooling to room temperature, the minimum value was subtracted from the maximum value of the measured internal friction values in the range from 300 ° C. to room temperature. The value Q max2 −1 is less than or equal to 0.004.

上記組成を有する銅合金圧延板の共振弾性率及び内部摩擦が上記(1)~(3)の条件を満たすとき、銅合金圧延板は高い強度、優れた耐応力緩和特性及び曲げ加工性を兼備する。特許文献1では優れた特性を有する銅合金圧延板を透過電子顕微鏡で観察した微細組織で特定しているが、本発明では共振弾性率及び内部摩擦の値で特定することにより、薄膜試料及び透過電子顕微鏡を用いる場合の前記問題点が解消できる。
上記(1)~(3)の条件は、上記合金組成を有する銅合金圧延板の良否判定に用いることができる。上記条件(1)~(3)は銅合金圧延板の微細組織を反映したものであり、上記合金組成を有する銅合金圧延板は、上記(1)~(3)の条件を全て満たすとき優れた特性を有し、いずれか1つでも満たさないときいずれかの特性が劣る。銅合金圧延板の共振弾性率及び内部摩擦の測定は、薄膜試料及び透過電子顕微鏡を用いて微細組織を直接観察することに比べてはるかに短時間で簡便に行うことができる。
When the resonance elastic modulus and internal friction of the copper alloy rolled sheet having the above composition satisfy the above conditions (1) to (3), the copper alloy rolled sheet has high strength, excellent stress relaxation resistance, and bending workability. do. In Patent Document 1, a copper alloy rolled sheet having excellent properties is specified by a microstructure observed with a transmission electron microscope, but in the present invention, a thin film sample and a transmission It is possible to solve the above problems when using an electron microscope.
The above conditions (1) to (3) can be used to determine the quality of the copper alloy rolled sheet having the above alloy composition. The above conditions (1) to (3) reflect the microstructure of the copper alloy rolled sheet, and the copper alloy rolled sheet having the above alloy composition is excellent when all the above conditions (1) to (3) are satisfied. If any one of them is not satisfied, any one of the characteristics is inferior. Measurement of the resonance modulus and internal friction of a copper alloy rolled sheet can be carried out easily in a much shorter period of time than directly observing the microstructure using a thin film sample and a transmission electron microscope.

実施例のNo.2の昇温前及び昇温後(共振弾性率を測定するため550℃まで昇温した後冷却)の走査電子顕微鏡写真である。左側の写真が昇温前、右側の写真が冷却後である。Example No. 2 are scanning electron micrographs before and after heating (heating to 550° C. and cooling after heating to 550° C. to measure resonance elastic modulus) of No. 2. FIG. The photo on the left is before heating, and the photo on the right is after cooling. 実施例のNo.1の昇温過程及び冷却過程で測定した共振弾性率と内部摩擦の測定値を示す。Example No. 1 shows the measured values of resonance elastic modulus and internal friction measured during the heating process and cooling process of No. 1. 実施例のNo.2の昇温過程及び冷却過程で測定した共振弾性率と内部摩擦の測定値を示す。Example No. 2 shows measured values of resonance elastic modulus and internal friction measured during the heating process and cooling process of No. 2. 実施例のNo.4の昇温過程及び冷却過程で測定した共振弾性率と内部摩擦の測定値を示す。Example No. 4 shows the measured values of the resonance elastic modulus and the internal friction measured during the heating process and the cooling process of No. 4. 実施例のNo.9の昇温過程及び冷却過程で測定した共振弾性率と内部摩擦の測定値を示す。Example No. 9 shows the measured values of resonance elastic modulus and internal friction measured in the heating process and cooling process of No. 9. 実施例のNo.2及びNo.4の昇温前の走査電子顕微鏡写真である。左側の写真がNo.2のもの、右側の写真がNo.4のものである。Example No. 2 and No. 4 is a scanning electron micrograph before heating. The photo on the left is No. 2, the photo on the right is No. 4. 実施例のNo.14(No.1と同じもの)の透過電子顕微鏡写真である。Example No. 14 (same as No. 1) is a transmission electron micrograph.

以下、本発明に係る銅合金圧延板についてより詳細に説明する。始めに銅合金圧延板の合金組成について説明する。
Niは銅合金中に固溶して、銅合金中の転位に粘性抵抗を及ぼすSnやPの拡散を抑制し、耐応力緩和特性を向上させる作用を持つ。また、Niは、Si、Pとの間に析出物を形成し、銅合金の強度向上に寄与する。この効果を発揮させるためには、Niは0.7質量%以上の添加が必要である。一方、Niが2質量%を超えて添加されると、曲げ加工性を低下させるNi-Si粒界析出物が形成され、これによりQmax1 -1又はQmax2 -1が0.004を超える。従って、Ni含有量は0.7~2質量%とする。
Hereinafter, the copper alloy rolled sheet according to the present invention will be described in more detail. First, the alloy composition of the copper alloy rolled sheet will be described.
Ni forms a solid solution in the copper alloy, suppresses the diffusion of Sn and P that exert viscous resistance on dislocations in the copper alloy, and has the effect of improving stress relaxation resistance. In addition, Ni forms precipitates between Si and P, and contributes to improving the strength of the copper alloy. In order to exhibit this effect, Ni must be added in an amount of 0.7% by mass or more. On the other hand, when Ni is added in excess of 2% by mass, Ni—Si grain boundary precipitates are formed that reduce bendability, resulting in Q max1 −1 or Q max2 −1 exceeding 0.004. Therefore, the Ni content should be 0.7 to 2% by mass.

SiはNiと微細析出物を形成して銅合金の強度を向上させる作用を有する。しかし、Siが0.6質量%を超えて添加されると固溶Siが増加し、この固溶Siが製造工程中の熱処理で内部酸化し、これによりE1―Eが2GPaを超え、銅合金の応力緩和特性が劣化する。従って、Si含有量は0.6質量%以下とする。Pは、Siと同様の作用(Niと微細析出物を形成して銅合金の強度を向上させる)を有するので、Pが添加されている場合は、Siは無添加(含有量0質量%)でも構わない。 Si has the effect of forming fine precipitates with Ni to improve the strength of the copper alloy. However, when Si is added in excess of 0.6% by mass, the amount of solid-solution Si increases, and this solid-solution Si is internally oxidized by heat treatment during the manufacturing process. The stress relaxation properties of the alloy deteriorate. Therefore, the Si content should be 0.6% by mass or less. P has the same effect as Si (improves the strength of the copper alloy by forming fine precipitates with Ni), so when P is added, Si is not added (content 0% by mass). But I don't mind.

Snは銅合金中に固溶し、銅合金の強度と耐応力緩和特性を向上させる作用を有する。この効果を発揮させるためには、Snは0.05質量%以上の添加が必要である。一方、Snが1.5質量%を超えて添加されると、加工硬化(圧延)を併用して強化したとき、強度が過剰になり伸びが減少し、曲げ加工性が低下する。従って、Sn含有量は0.05~1.5質量%とする。
Pは、Niと微細析出物を形成して銅合金の強度を向上させる作用を有する。しかし、Pが0.1質量%を越えて添加されると、溶解鋳造中に低融点のCu-P金属間化合物が形成され、熱間圧延中に熱延材が割れてしまう。従って、P含有量は0.1質量%以下とする。Pは、Siと同様の作用を有するので、銅合金中にSiが添加されている場合は、Pは無添加(含有量0質量%)でも構わない。
Sn dissolves in the copper alloy and has the effect of improving the strength and stress relaxation resistance of the copper alloy. In order to exhibit this effect, Sn must be added in an amount of 0.05% by mass or more. On the other hand, when Sn is added in an amount exceeding 1.5% by mass, the strength becomes excessive and the elongation decreases, resulting in a decrease in bending workability when the steel is strengthened by work hardening (rolling). Therefore, the Sn content should be 0.05 to 1.5% by mass.
P has the effect of forming fine precipitates with Ni to improve the strength of the copper alloy. However, when P is added in excess of 0.1% by mass, a Cu—P intermetallic compound with a low melting point is formed during melting and casting, and the hot-rolled material cracks during hot rolling. Therefore, the P content is set to 0.1% by mass or less. Since P has the same action as Si, when Si is added to the copper alloy, P may not be added (content of 0% by mass).

Znは銅合金に施すはんだめっき及びすずめっきの経年剥離を防止し、はんだ濡れ性を向上させる作用を有する。Znの上記作用は銅合金がSiを含有する場合に顕著である。銅合金がSiを含有するとき、Znにより熱処理時のSiの内部酸化が抑制され、これにより銅合金のはんだ濡れ性が向上し、また応力緩和特性も向上する。一方、Znは導電率を低下させるため、Znの含有量は1.2質量%までとする。銅合金がSiを含有しないとき、Znは無添加(含有量0%)でもよい。
Feは製造時の実体温度600℃以上の熱処理工程において銅合金の結晶粒粗大化を抑制し、銅合金の曲げ加工性を向上させる作用を有する。しかし、Fe含有量が0.1質量%を超えると、実体温度600℃以上の熱処理工程でも再固溶しない粗大なFe系析出物が発生し、E1―Eが2GPaを超え、若しくはQmax1 -1又はQmax2 -1が0.004を超える。従って、Fe含有量は0.1質量%以下とする。Feと同様の結晶粒粗大化抑制効果はNi-Si系析出物も有するため、銅合金にSiが添加される場合、Feは無添加(含有量0質量%)でも構わない。
Zn has the effect of preventing peeling of solder plating and tin plating applied to the copper alloy over time and improving solder wettability. The above effect of Zn is remarkable when the copper alloy contains Si. When the copper alloy contains Si, Zn suppresses the internal oxidation of Si during heat treatment, thereby improving the solder wettability of the copper alloy and also improving the stress relaxation characteristics. On the other hand, since Zn lowers electrical conductivity, the Zn content is limited to 1.2% by mass or less. When the copper alloy does not contain Si, Zn may not be added (0% content).
Fe has the effect of suppressing the coarsening of crystal grains of the copper alloy in the heat treatment process at a substantial temperature of 600° C. or higher during production, and improving the bending workability of the copper alloy. However, when the Fe content exceeds 0.1% by mass, coarse Fe-based precipitates that do not redissolve even in a heat treatment process at a substance temperature of 600 ° C. or higher are generated, E1-E0 exceeds 2 GPa, or Q max1 -1 or Q max2 -1 is greater than 0.004. Therefore, the Fe content is set to 0.1% by mass or less. Since Ni—Si-based precipitates also have the same effect of suppressing grain coarsening as Fe, when Si is added to the copper alloy, Fe may not be added (content of 0% by mass).

本発明に係る銅合金圧延板は、先に示した(1)~(3)の条件を満たす。
(1)の条件は、室温で測定した共振弾性率Eと、室温から再結晶温度以上550℃以下の温度範囲まで昇温後再び室温に冷却して測定した共振弾性率E1が、0≦E1―E≦2(単位:GPa)の関係を有する、というものである。
銅合金板から採取した同じ試験片から、室温の弾性率Eと、室温から上記温度範囲に昇温後再び室温に冷却したときの弾性率Eを測定するため、本発明では、引張試験片を用いて応力ひずみ曲線の傾きから弾性率を測定する方法は用いることはできない。本発明では、外部から駆動された振動で試験片を共振振動させ、その共振周波数から算出される共振弾性率(E、E)を使用する。
The copper alloy rolled sheet according to the present invention satisfies the above conditions (1) to (3).
The condition of (1) is that the resonance elastic modulus E0 measured at room temperature and the resonance elastic modulus E1 measured by heating from room temperature to a temperature range from the recrystallization temperature to 550 ° C. and then cooling to room temperature again are 0 ≤ It has a relationship of E1−E 0 ≦2 (unit: GPa).
From the same test piece taken from a copper alloy plate, in order to measure the elastic modulus E 0 at room temperature and the elastic modulus E 1 when the temperature is raised from room temperature to the above temperature range and then cooled to room temperature again, in the present invention, a tensile test The method of measuring the elastic modulus from the slope of the stress-strain curve using a piece cannot be used. In the present invention, resonance elastic moduli (E 0 , E 1 ) calculated from the resonance frequency of the test piece which is vibrated by externally driven vibration are used.

共振弾性率Eは、銅原子間力に起因する弾性率の大きさをα、添加元素や強化機構(析出など)による弾性率への寄与をβ、結晶構造及び結晶方位による弾性率への寄与をγ、可動転位による弾性率欠損をδとしたとき、E=α+β+γ-δと表現できる。
α(銅原子間力に起因する弾性率)は、銅原子間の相互作用に起因するため、温度の上昇・冷却のサイクル後も大きな差が生じない。
β(添加元素や強化機構による弾性率への寄与)も、強化に寄与する析出物が温度上昇・冷却のサイクル中に再固溶して消失しない限り、加熱・冷却のサイクル後も差が生じない。
Resonance elastic modulus E is the magnitude of the elastic modulus due to the copper atomic force, α is the contribution to the elastic modulus due to additional elements and strengthening mechanisms (precipitation, etc.), and β is the contribution to the elastic modulus due to the crystal structure and crystal orientation. is expressed as E=α+β+γ-δ, where γ is the elastic modulus loss due to mobile dislocations and δ is the elastic modulus loss.
Since α (elastic modulus due to copper atomic force) is due to the interaction between copper atoms, there is no significant difference even after cycles of temperature rise and cooling.
β (contribution to elastic modulus due to added elements and strengthening mechanism) also varies after heating/cooling cycles unless the precipitates that contribute to strengthening redissolve and disappear during the temperature rise/cooling cycle. do not have.

γ(結晶構造及び結晶方位による弾性率への寄与)は、銅合金板の結晶構造及び結晶方位が温度上昇の途中で変化しない限り、加熱・冷却のサイクル後も差が生じない。結晶粒界をピン止めする析出粒子が少ないか析出粒子を含まない銅合金、例えばリン青銅や黄銅などでは、温度上昇の途中で再結晶すると結晶粒が変化し、この寄与は失われる。また、銅合金の組織が加工組織や大傾角粒界からなる場合、再結晶により組織が小傾角粒界へ転移すると、この寄与が失われる。一方、銅合金板の組織が熱処理によりすでに小傾角粒界組織になっていて、かつ粒界をピン止めする析出粒子が存在する場合、再結晶しても組織状態がほとんど変化しない。この場合、銅合金板の温度が再結晶温度を超えても、この寄与はほとんど消えない。図1は、後述する実施例のNo.2の昇温前及び昇温後(共振弾性率を測定するため550℃まで昇温した後冷却)の走査電子顕微鏡写真である。観察面は、圧延方向に平行な方向の断面である。図1の左側の写真が昇温前のもの、右側の写真が昇温後のものであり、両者の組織状態に顕著な相違は認められない。
δ(可動転位による弾性率欠損)は、回復温度(室温より高く、再結晶温度より低い温度)で発生する転位の再配列や密度減少によって消失していく。
γ (contribution to elastic modulus by crystal structure and crystal orientation) does not change after heating/cooling cycles unless the crystal structure and crystal orientation of the copper alloy plate change during the temperature rise. In copper alloys with few or no grain boundary pinning precipitates, such as phosphor bronze and brass, this contribution is lost when recrystallization occurs during a temperature rise as the grains change. In addition, in the case where the structure of the copper alloy consists of worked structures and high-angle grain boundaries, this contribution is lost when the structure changes to low-angle grain boundaries due to recrystallization. On the other hand, when the structure of the copper alloy sheet has already become a low-angle grain boundary structure due to the heat treatment and precipitated grains pinning the grain boundaries exist, the recrystallization hardly changes the structure state. In this case, even if the temperature of the copper alloy plate exceeds the recrystallization temperature, this contribution hardly disappears. FIG. 1 shows No. 1 of the embodiment described later. 2 are scanning electron micrographs before and after heating (heating to 550° C. and cooling after heating to 550° C. to measure resonance elastic modulus) of No. 2. FIG. The observation surface is a cross section in a direction parallel to the rolling direction. The photograph on the left side of FIG. 1 is the one before the temperature rise, and the photograph on the right side is the one after the temperature rise.
δ (elastic modulus loss due to mobile dislocations) disappears due to dislocation rearrangement and density reduction occurring at recovery temperature (higher than room temperature and lower than recrystallization temperature).

銅合金板の昇温前後の共振弾性率E,Eの差(E―E)は、銅合金板の共振弾性率に対する上記γ及びδの寄与の大きさを表し、その値は銅合金板の微細組織を反映したものである。
共振弾性率に対する上記δの寄与を検出するには、銅合金板を回復温度以上に加熱する必要がある。本発明に係る合金組成の銅合金板において、回復温度は一般に400℃未満であるから、上記δの寄与を検出するには、銅合金板を400℃以上に昇温させる必要がある。また、共振弾性率に対する上記γの寄与を検出するには、銅合金板を再結晶温度以上に加熱する必要がある。本発明に係る合金組成の銅合金板において、再結晶温度は概ね470℃以上である。一方、昇温温度が550℃を超えると、本発明に係る合金組成の銅合金板の強度に寄与する析出物の再固溶温度となる。銅合金板が再固溶温度以上に昇温すると、共振弾性率に対する上記βの寄与が無視できなくなる。以上のことから、共振弾性率率E,Eの測定において、昇温温度は再結晶温度以上550℃以下とする。
The difference (E 1 −E 0 ) between the resonance elastic moduli E 0 and E 1 before and after the temperature rise of the copper alloy plate represents the magnitude of contribution of γ and δ to the resonance elastic modulus of the copper alloy plate, and its value is This reflects the microstructure of the copper alloy sheet.
In order to detect the contribution of δ to the resonance elastic modulus, the copper alloy plate must be heated to the recovery temperature or higher. In the copper alloy sheet having the alloy composition according to the present invention, the recovery temperature is generally less than 400°C, so the copper alloy sheet must be heated to 400°C or higher in order to detect the contribution of δ. Further, in order to detect the contribution of γ to the resonance modulus, it is necessary to heat the copper alloy plate to the recrystallization temperature or higher. In the copper alloy sheet having the alloy composition according to the present invention, the recrystallization temperature is approximately 470° C. or higher. On the other hand, when the temperature rise exceeds 550° C., it becomes the re-dissolution temperature of the precipitates that contribute to the strength of the copper alloy sheet having the alloy composition according to the present invention. When the temperature of the copper alloy plate rises above the resolution temperature, the contribution of β to the resonance elastic modulus cannot be ignored. From the above, in the measurement of the resonance elastic moduli E 0 and E 1 , the heating temperature should be above the recrystallization temperature and below 550°C.

共振弾性率E、Eの差(E―E)が0GPaより小さい場合(E―E<0)、再結晶温度以上に加熱した際に銅合金板(試験片)に再結晶軟化が生じており、このような銅合金板は、耐応力緩和特性を必要とされる端子材としては使用できない。一方、共振弾性率E0、E1の差(E―E)が2GPaより大きくなる現象は、銅合金板中に存在する粗大な析出物(直径60nmから1μm程度で強度特性向上に寄与しない)に堰き止められていた転位が、加熱中の熱活性化過程で再配列や密度減少を生じるために起こる現象である。従って、共振弾性率E、E1の差(E―E)は0~2GPaの範囲内(0≦E―E≦2)になくてはならない。
なお、粗大な析出物まわりに発生した転位ループやこれらに堰き止められて集積した可動転位は、昇温が再結晶温度未満では残存することがあり、その場合、本来E―E>2となるはずのところが、0≦E―E≦2となる場合がある。銅合金板を再結晶温度以上に昇温した場合、これらの可動転位線は消失するので、E、Eの差(E―E)が2GPaより大きくなり、上記の粗大な析出物の存在をより正しく判断できる。
When the difference (E 1 −E 0 ) between the resonance elastic moduli E 0 and E 1 is less than 0 GPa (E 1 −E 0 <0), the copper alloy plate (specimen) is regenerated when heated to the recrystallization temperature or higher. Crystal softening occurs, and such a copper alloy plate cannot be used as a terminal material that requires stress relaxation resistance. On the other hand, the phenomenon that the difference between the resonance elastic moduli E0 and E1 (E 1 −E 0 ) is greater than 2 GPa is caused by coarse precipitates present in the copper alloy plate (diameters of about 60 nm to 1 μm do not contribute to the improvement of strength characteristics). This is a phenomenon that occurs because the dislocations that have been dammed up in the lattice undergo rearrangement and density reduction during the thermal activation process during heating. Therefore, the difference (E 1 −E 0 ) between the resonance elastic moduli E 0 and E1 must be within the range of 0 to 2 GPa (0≦E 1 −E 0 ≦2).
Dislocation loops generated around coarse precipitates and mobile dislocations accumulated by being blocked by these may remain if the temperature rise is less than the recrystallization temperature. 0≦E 1 −E 0 ≦2 in some cases. When the temperature of the copper alloy plate is raised to the recrystallization temperature or higher, these mobile dislocation lines disappear, so the difference between E 0 and E 1 (E 1 −E 0 ) becomes larger than 2 GPa, and the above coarse precipitates can more accurately determine the existence of

(2)の条件は、銅合金板(試験片)を室温から300℃以上の温度まで昇温する過程で内部摩擦を測定したとき、室温から300℃までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax1 -1が0.004以下、というものである。
銅合金板の共振弾性率を測定したとき、外部の駆動を切断した瞬間から共振が減衰していく。このときの共振振動波形の隣り合った山と山の高さの比が内部摩擦である。銅合金板の室温での内部摩擦は0.0001から0.001程度である。つまり共振振動は非常に減衰が遅いが、銅合金板中に共振振動と同期しない不均質な組織、粗大析出物、可動転位などが存在すると内部摩擦は増加する。銅合金板の温度を変えながら共振周波数を測定すると、高温になるほど共振周波数は低下していくので、温度を上昇させながら内部摩擦を測定することはより低い周波数で掃引していくことと等価である。
The condition of (2) is the maximum value of the internal friction measured in the range from room temperature to 300 ° C. when the internal friction is measured in the process of raising the temperature of the copper alloy plate (test piece) from room temperature to 300 ° C. or higher. The value Q max1 -1 obtained by subtracting the minimum value from the value is 0.004 or less.
When the resonance elastic modulus of the copper alloy plate is measured, the resonance begins to attenuate from the moment the external drive is cut off. The internal friction is the ratio of the heights of adjacent peaks of the resonant vibration waveform at this time. The internal friction of the copper alloy plate at room temperature is about 0.0001 to 0.001. In other words, the resonance vibration is very slow to damp, but the internal friction increases if there are inhomogeneous structures, coarse precipitates, mobile dislocations, etc. that are not synchronized with the resonance vibration in the copper alloy plate. When measuring the resonance frequency while changing the temperature of the copper alloy plate, the resonance frequency decreases as the temperature rises, so measuring the internal friction while increasing the temperature is equivalent to sweeping at a lower frequency. be.

室温から300℃までの内部摩擦は銅合金板内の不均質や欠陥、可動転位や析出物を反映した値となり、銅合金板内にこれらの内部欠陥が存在する場合、内部摩擦は温度上昇に伴い山なりに増加したり鋭いピークを持ったりする。銅合金板の温度が300℃を超えると結晶粒界の粘性的ずれが内部摩擦の急増をもたらし、銅合金板内部の詳細は判別できなくなる。一方、共振振動させる板の厚さや雰囲気、その他の試験要素で室温から300℃までの内部摩擦の測定値全体が影響を受け、各測定値が変動する。従って、室温から300℃までの範囲で測定された内部摩擦の値の最大値と最小値の差Qmax1 -1が、銅合金板の内部の微細組織を反映した内部摩擦となる。この値が0.004を超えると曲げ加工性や耐応力緩和特性が劣化し、端子用銅合金板としては不適である。 The internal friction from room temperature to 300°C reflects the inhomogeneity, defects, mobile dislocations, and precipitates in the copper alloy plate. It increases like a mountain or has a sharp peak. When the temperature of the copper alloy plate exceeds 300° C., the viscous displacement of the grain boundaries causes a rapid increase in internal friction, and the details inside the copper alloy plate cannot be discerned. On the other hand, the overall measured value of internal friction from room temperature to 300° C. is affected by the thickness of the plate to be vibrated in resonance, the atmosphere, and other test factors, and each measured value fluctuates. Therefore, the difference Q max1 −1 between the maximum and minimum values of internal friction measured in the range from room temperature to 300° C. is the internal friction reflecting the microstructure inside the copper alloy plate. If this value exceeds 0.004, bending workability and stress relaxation resistance deteriorate, making the copper alloy sheet unsuitable for terminals.

(3)の条件は、銅合金板(試験片)を室温から再結晶温度以上の温度まで昇温後再び室温まで冷却する過程で内部摩擦を測定したとき、300℃から室温までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax2 -1が0.004以下である、というものである。
前記(2)の条件において、内部摩擦の測定は室温から300℃まで加熱される過程で行われる。従って、測定時の銅合金板は、端子用銅合金として必要な強度を有し、転位密度が高く転位同士が相互に絡み合った状態である。この状態で内部摩擦の測定を行うと、材料内部の不均質や欠陥が相互に絡み合った転位で固定化され、測定される内部摩擦の値が前記不均質や欠陥を反映したものとならない(すなわち、温度上昇に伴う内部摩擦の山やピークが遮蔽される)可能性がある。
The condition of (3) is that when the internal friction is measured in the process of heating the copper alloy plate (test piece) from room temperature to the recrystallization temperature or higher and then cooling it again to room temperature, the internal friction in the range from 300 ° C. to room temperature The value Q max2 −1 obtained by subtracting the minimum value from the maximum value of the measured friction values is 0.004 or less.
Under the condition (2) above, the internal friction is measured during heating from room temperature to 300°C. Therefore, the copper alloy plate at the time of measurement has the strength required as a copper alloy for terminals, has a high dislocation density, and is in a state in which dislocations are entangled with each other. If internal friction is measured in this state, inhomogeneities and defects inside the material are fixed by intertwined dislocations, and the measured internal friction value does not reflect the inhomogeneities and defects (i.e. , the peaks and peaks of internal friction associated with temperature rise are shielded).

これを補償するため(3)の条件を追加する。この(3)の条件では、銅合金板を再結晶温度以上の温度に昇温して軟化させた後、冷却過程(300℃以下)で内部摩擦を測定する。この測定方法であれば、内部摩擦は材料内部の不均質や欠陥を反映したものとなり、材料の不均質や欠陥で生じた内部摩擦の山やピークを見逃さずに済む。冷却過程において300℃から室温までの範囲で測定された内部摩擦の値の最大値と最小値の差Qmax2 -1が0.004を超えると、銅合金板の曲げ性や耐応力緩和特性が劣化し、端子用銅合金としては不適である。 In order to compensate for this, condition (3) is added. Under the condition (3), the internal friction is measured in the cooling process (300° C. or less) after softening the copper alloy plate by heating it to a temperature equal to or higher than the recrystallization temperature. With this measurement method, the internal friction reflects the inhomogeneity and defects inside the material, so that the peaks and peaks of the internal friction caused by the inhomogeneity and defects in the material can be overlooked. When the difference Q max2 −1 between the maximum and minimum values of internal friction measured in the cooling process from 300° C. to room temperature exceeds 0.004, the bendability and stress relaxation resistance of the copper alloy plate are reduced. It deteriorates and is unsuitable as a copper alloy for terminals.

内部摩擦(Qmax1 -1、Qmax2 -1)の測定においても、共振弾性率(E、E)の測定の場合と同様に、昇温の上限値は再結晶温度以上550℃以下の範囲とすることが望ましい。後述する実施例で説明するように、銅合金板の共振弾性率(E、E)及び内部摩擦(Qmax1 -1、Qmax2 -1)の測定は、同じ試験片を断続的に昇温及び冷却する過程で、同時に行うことができる。その点を考慮したとき、内部摩擦(Qmax1 -1、Qmax2 -1)の測定において、昇温の上限値を再結晶温度以上550℃以下の範囲とすることは理にかなっている。
試験片を断続的に昇温するとき、試験片が室温から再結晶温度以上550℃以下の目標温度に達するまで、当該試験片に対し一定温度に維持する等温ステップと温度を上昇させる昇温ステップが繰り返される。また、試験片を断続的に冷却するときも同様に、試験片が前記目標温度から室温に達するまで、当該試験片に対し一定温度に維持する等温ステップと温度を下降させる冷却ステップが繰り返される。共振弾性率及び内部摩擦の測定は、前記等温ステップにおいて行われる。前記昇温ステップにおける昇温速度は、特に限定的ではないが、例えば10℃/1分~10℃/7分程度とすればよい。前記冷却ステップは、これも特に限定的ではないが放空冷(冷却速度:10℃/5分程度)でよい。
In the measurement of the internal friction (Q max1 −1 , Q max2 −1 ), as in the measurement of the resonance elastic modulus (E 0 , E 1 ), the upper limit of the temperature rise is above the recrystallization temperature and below 550 ° C. A range is desirable. As will be described in the examples below, the resonance elastic modulus (E 0 , E 1 ) and internal friction (Q max1 −1 , Q max2 −1 ) of the copper alloy plate were measured by intermittently raising the same test piece. The heating and cooling process can be done simultaneously. Considering this point, it makes sense to set the upper limit of the temperature rise to the recrystallization temperature or higher and 550° C. or lower in the measurement of the internal friction (Q max1 −1 , Q max2 −1 ).
When the temperature of the test piece is intermittently raised, an isothermal step in which the test piece is maintained at a constant temperature and a heating step in which the temperature is raised until the test piece reaches a target temperature of from room temperature to the recrystallization temperature or higher and 550 ° C. or lower is repeated. Similarly, when the test piece is intermittently cooled, the isothermal step of maintaining the test piece at a constant temperature and the cooling step of decreasing the temperature are repeated until the test piece reaches room temperature from the target temperature. Measurements of resonance modulus and internal friction are made in the isothermal step. The temperature increase rate in the temperature increase step is not particularly limited, but may be, for example, about 10° C./1 minute to 10° C./7 minutes. The cooling step is also not particularly limited, but may be discharge cooling (cooling rate: about 10° C./5 minutes).

本発明に係る銅合金圧延板は、例えば次の工程で製造することができる。
銅合金鋳塊を均質化処理後、熱間圧延及び冷間圧延を行い、続いて短時間の連続焼鈍を行った後、析出焼鈍を行うか、最終冷間圧延及び短時間の低温焼鈍を行う。前記の各工程において、例えば下記の条件が選択される。
均質化処理は保持温度を800~1000℃とし、保持時間を0.5~4時間とする。続いて行われる熱間圧延は終了まで600℃以上の温度を保ち、終了後は水冷又は放冷とする。冷間圧延後の連続焼鈍は溶体化処理のためのもので、保持温度を600℃以上、保持時間を数十秒とする。析出焼鈍は保持温度を450~550℃、保持時間を数時間とする。最終冷間圧延の加工率は30~80%程度とし、低温焼鈍は保持温度を250~450℃、保持時間を20~40秒とする。
The copper alloy rolled sheet according to the present invention can be produced, for example, by the following steps.
After the copper alloy ingot is homogenized, it is subjected to hot rolling and cold rolling, followed by continuous annealing for a short time, followed by precipitation annealing, or final cold rolling and low temperature annealing for a short time. . In each step described above, for example, the following conditions are selected.
The homogenization treatment is carried out at a holding temperature of 800-1000° C. for a holding time of 0.5-4 hours. The subsequent hot rolling is maintained at a temperature of 600° C. or more until the end, and after the end is water-cooled or allowed to cool. Continuous annealing after cold rolling is for solution treatment, and the holding temperature is 600° C. or higher and the holding time is several tens of seconds. Precipitation annealing is carried out at a holding temperature of 450 to 550° C. for several hours. The working ratio of the final cold rolling is about 30 to 80%, and the low temperature annealing is performed at a holding temperature of 250 to 450° C. and a holding time of 20 to 40 seconds.

上記製造方法において、銅合金には実体温度で600℃以上に2回以上保持する熱処理が施される。1回目は、不均質な鋳塊組織を打ち消し、全ての元素が固溶したα単相状態を実現するための熱処理で、主に熱間圧延の加熱工程(均質化処理を含む)が該当する。2回目は、熱延板から製品板厚又はそれに近い板厚まで冷間圧延することで形成された加工組織を打消し、全ての元素が固溶したα単相状態を実現するための熱処理で、主に溶体化処理工程が該当する。本発明で規定する銅合金は、再結晶温度は450℃~550℃の範囲にあり、Ni-Si、Ni-P化合物などを分解し再固溶させるために、熱間圧延及び連続焼鈍の工程において実体温度600℃以上が必要である。実体温度が600℃を下回る場合は、銅合金の組織の不均一あるいは曲げ加工性を劣化させる粗大な析出物が残留する。
この製造方法により、本発明で規定する組成を有する銅合金において、前記条件(1)~(3)を満たす銅合金圧延板を製造できる。この銅合金圧延板は、耐力500MPa以上を有し、R/t=0.5以上の優れた曲げ加工性を有し(R:曲げ半径、t:板厚)、150℃×1000時間後の応力緩和率が15%以下と優れた特性を有する。また、端子用として不足のない導電率を有する。
In the above manufacturing method, the copper alloy is subjected to a heat treatment at a substantial temperature of 600° C. or higher two or more times. The first is a heat treatment to eliminate the inhomogeneous ingot structure and realize a single α-phase state in which all elements are dissolved, and mainly applies to the heating process of hot rolling (including homogenization treatment). . The second heat treatment is to cancel the worked structure formed by cold rolling from the hot-rolled sheet to the product thickness or a thickness close to it, and to realize an α single-phase state in which all elements are dissolved. , mainly the solution treatment process. The copper alloy defined in the present invention has a recrystallization temperature in the range of 450 ° C. to 550 ° C., and in order to decompose Ni-Si, Ni-P compounds, etc. and redissolve, hot rolling and continuous annealing processes , a substance temperature of 600° C. or higher is required. If the substance temperature is lower than 600° C., coarse precipitates that degrade the non-uniform structure of the copper alloy or the bending workability remain.
According to this production method, a copper alloy rolled sheet having the composition specified in the present invention and satisfying the conditions (1) to (3) can be produced. This copper alloy rolled sheet has a yield strength of 500 MPa or more, has excellent bending workability of R / t = 0.5 or more (R: bending radius, t: plate thickness), and after 150 ° C. × 1000 hours It has an excellent stress relaxation rate of 15% or less. Moreover, it has sufficient electrical conductivity for terminals.

次に、本発明に係る銅合金圧延板の実施例を説明する。
銅合金をクリプトル炉において大気中で木炭被覆下で溶解し、表1に示す合金組成を有する45mm厚の鋳塊(No.1~10)を得た。この鋳塊に、表1に示す条件で均質化処理を行い、続いて熱間圧延して15mm厚とし、800℃以上で焼入れた(水冷)。この熱延材の両面を1mmずつ面削して13mm厚とした後、表1に示す工程(熱間圧延後の工程)を施してNo.1~14の製品板(銅合金圧延板)を得た。各製品板の板厚は0.25mmである。なお、No.11,12はNo.1の分割した冷延材(1t)を使用して製造し、No.13はNo.2の分割した冷延材(0.5t)を使用して製造した。No.14はNo.1の製品板を用いた。
Next, examples of the copper alloy rolled sheet according to the present invention will be described.
Copper alloys were melted in a Kryptor furnace in air under a charcoal coating to obtain 45 mm thick ingots (Nos. 1-10) having the alloy compositions shown in Table 1. This ingot was homogenized under the conditions shown in Table 1, hot rolled to a thickness of 15 mm, and quenched at 800° C. or higher (water cooling). Both sides of this hot-rolled material were chamfered by 1 mm each to a thickness of 13 mm, and then subjected to the process shown in Table 1 (process after hot rolling). 1 to 14 product sheets (copper alloy rolled sheets) were obtained. The plate thickness of each product plate is 0.25 mm. In addition, No. 11 and 12 are Nos. No. 1 divided cold-rolled material (1 t). 13 is No. 2 split cold-rolled stock (0.5t). No. 14 is No. No. 1 product plate was used.

Figure 0007218270000001
Figure 0007218270000001

得られた製品板(銅合金圧延材)を供試材として、共振弾性率、内部摩擦、導電率、硬さ、耐力、耐応力緩和特性(応力緩和率)及び曲げ加工性を、下記要領にて測定した。ただし、No.14については、共振弾性率と内部摩擦の測定は行わず、透過電子顕微鏡による微細組織の観察を行った。以上の結果を表2に示す。なお、材料中に発生した組織不均質、粗大析出物、可動転位群やそれにより発生したバウジンガー効果などは、圧延平行方向(LD方向)の方が、圧延垂直方向(TD方向)より強く影響を受ける。このため、耐力、応力緩和率を測定する試験片は、LD方向が長手方向となるようにした。一方、前記組織不均質などは圧延方向に伸びた分布をしているので、曲げに関してはTD方向の方が、LD方向より強く影響を受ける。このため、曲げを測定する試験片は、TD方向が長手方向となるようにして、いわゆるBadway曲げを実施した。 Using the obtained product sheet (copper alloy rolled material) as a test material, the resonance elastic modulus, internal friction, conductivity, hardness, yield strength, stress relaxation resistance (stress relaxation rate) and bending workability were measured in the following manner. measured by However, no. For No. 14, the microstructure was observed with a transmission electron microscope without measuring the resonance modulus and internal friction. Table 2 shows the above results. Structural inhomogeneity, coarse precipitates, mobile dislocation groups, and the resulting Bausinger effect generated in the material are more strongly affected in the direction parallel to rolling (LD direction) than in the direction perpendicular to rolling (TD direction). receive. For this reason, the LD direction was the longitudinal direction of the test piece for measuring the yield strength and stress relaxation rate. On the other hand, since the structural inhomogeneity has a distribution extending in the rolling direction, bending is more strongly affected in the TD direction than in the LD direction. For this reason, a so-called badway bending was performed on a test piece for bending measurement so that the TD direction was the longitudinal direction.

(共振弾性率及び内部摩擦)
共振弾性率及び内部摩擦の測定には日本テクノプラス製の弾性率及び内部摩擦測定装置JE-HTを用いた。幅10mm、厚さ0.25mm、長さ45mmの試験片を各供試材から採取し、板面が水平になるよう配置し、曲げ共振時の節となる部分2箇所をインバー製の細線で吊り下げる。試験片の加熱並びに共振弾性率及び内部摩擦の測定は窒素ガスを循環させた金属製チャンバーの中で行う。試験片の下面に設置した静電誘導トランスデューサーで曲げ振動を誘起し、隣接する非接触センサで試験片の振動をモニタ-する。試験片のすぐ間際に熱電対が設置されており、これを試験片の実体温度として測定する。このとき共振周波数f(単位:Hz)と弾性率E(単位:GPa)は次式の関係にある。

Figure 0007218270000002
ここでLは試験片の長さ(単位:mm)、ρは密度(g/cm)、tは板厚(単位:mm)である。
内部摩擦は共振の振動エネルギーの減衰率であり、共振弾性率と同時測定できる。試験片が共振している状態から加振を停止すると、試験片は共振周波数で徐々に減衰する。この減衰を1周期ごとに測定し対数減衰率として計算する。 (Resonant elastic modulus and internal friction)
An elastic modulus and internal friction measuring device JE-HT manufactured by Technoplus Japan was used to measure the resonance modulus and internal friction. A test piece with a width of 10 mm, a thickness of 0.25 mm, and a length of 45 mm was taken from each test material and placed so that the plate surface was horizontal. Be suspended. Heating of the specimen and measurement of resonance modulus and internal friction are performed in a metal chamber in which nitrogen gas is circulated. A static induction transducer installed on the underside of the test piece induces bending vibration, and an adjacent non-contact sensor monitors the vibration of the test piece. A thermocouple is installed just before the test piece, and this is measured as the actual temperature of the test piece. At this time, the resonance frequency f (unit: Hz) and the elastic modulus E (unit: GPa) have the following relationship.
Figure 0007218270000002
Here, L is the length of the test piece (unit: mm), ρ is the density (g/cm 3 ), and t is the plate thickness (unit: mm).
Internal friction is the damping rate of resonance vibration energy and can be measured simultaneously with the resonance elastic modulus. When the vibration is stopped while the test piece is resonating, the test piece gradually attenuates at the resonance frequency. This decay is measured every cycle and calculated as a logarithmic decay rate.

チャンバー内に配置された試験片は、室温(30℃)から一定の昇温速度で断続的に再結晶温度を超える温度(ただし、550℃以下)まで昇温した。この昇温過程では、まず室温で共振弾性率と内部摩擦を測定し、続いて10℃の昇温ごとに共振弾性率と内部摩擦を測定した。1回の測定に要した時間は7分であり、各測定温度において3回の測定を行い、その測定の間、試験片を当該測定温度に維持した。各測定温度において測定が終了すると、試験片を次の測定温度(+10℃)まで10℃/1分の昇温速度で昇温した。試験片が再結晶温度を超えて目標温度に達するまで断続的に昇温及び測定を行った後、直ちに一定の冷却速度で断続的に室温(30℃)まで冷却した。この冷却過程でも、10℃の冷却ごとに共振弾性率と内部摩擦を測定した。1回の測定に要した時間は7分であり、各測定温度において3回の測定を行い、その測定の間、試験片を当該測定温度に維持し、測定が終了すると、次の測定温度(-10℃)まで試験片をチャンバーごと放冷した。その際の冷却速度は10℃/5分であった。 The test piece placed in the chamber was intermittently heated from room temperature (30° C.) to a temperature exceeding the recrystallization temperature (550° C. or less) at a constant heating rate. In this temperature rising process, the resonance modulus and internal friction were first measured at room temperature, and then the resonance modulus and internal friction were measured each time the temperature was increased by 10°C. The time required for one measurement was 7 minutes, three measurements were performed at each measurement temperature, and the test piece was maintained at the measurement temperature during the measurements. When the measurement was completed at each measurement temperature, the test piece was heated to the next measurement temperature (+10°C) at a heating rate of 10°C/1 minute. After intermittently raising the temperature and measuring until the test piece exceeded the recrystallization temperature and reached the target temperature, it was immediately cooled intermittently to room temperature (30°C) at a constant cooling rate. During this cooling process, the resonance modulus and internal friction were also measured every 10°C of cooling. The time required for one measurement is 7 minutes, three measurements are performed at each measurement temperature, the test piece is maintained at the measurement temperature during the measurement, and when the measurement is completed, the next measurement temperature ( −10° C.), the test piece was allowed to cool together with the chamber. The cooling rate at that time was 10° C./5 minutes.

各測定温度で行った3回の測定値を比較すると、No.1~13の全ての試験片においてかつ全ての測定温度において、共振弾性率の最大値と最小値の差が0.2以内、内部摩擦の差が0.0002以内であった。各測定温度での共振弾性率と内部摩擦の値は、3回の測定値の平均とした。
室温からの昇温過程において室温で測定された共振弾性率Eと、室温までの冷却過程において室温で測定された共振弾性率E1から、共振弾性率E ,E1の差(E―E)を算出した。室温からの昇温過程において測定された内部摩擦(室温から300℃まで)の最大値と最小値からその差Qmax1 -1を算出した。また、室温への冷却過程において測定された内部摩擦(300℃から室温まで)の最大値と最小値からその差Qmax2 -1を算出した。
Comparing the three measurements made at each measurement temperature, No. In all test pieces 1 to 13 and at all measurement temperatures, the difference between the maximum and minimum values of resonance elastic modulus was within 0.2, and the difference in internal friction was within 0.0002. The values of resonance modulus and internal friction at each measurement temperature were the average of three measurements.
From the resonance modulus E0 measured at room temperature in the process of increasing the temperature from room temperature and the resonance modulus E1 measured at room temperature in the process of cooling down to room temperature, the difference between the resonance moduli E0 and E1 ( E1 - E 0 ) was calculated. The difference Q max1 −1 was calculated from the maximum and minimum values of the internal friction (from room temperature to 300° C.) measured during the temperature rising process from room temperature. Also, the difference Q max2 −1 was calculated from the maximum and minimum values of internal friction (from 300° C. to room temperature) measured during cooling to room temperature.

図2~5に昇温過程及び冷却過程におけるNo.1,2,4,9の共振弾性率と内部摩擦の測定値をグラフ化したものを例示する。縦軸が共振弾性率と内部摩擦、横軸が温度である。
No.1(図2)は、昇温過程において室温で測定された共振弾性率Eが128.59GPa、冷却過程において室温で測定された共振弾性率E1が130.00GPaであり、共振弾性率E ,E1の差(E―E)が1.41GPaである。昇温過程において測定された内部摩擦(室温から300℃まで)の最大値が0.00299(280℃)、最小値が0.00169(30℃)で、その差Qmax1 -1が0.00130である。冷却過程において測定された内部摩擦(300℃から室温まで)の最大値が0.00345(300℃)、最小値が0.00170(300℃)で、その差Qmax2 -1が0.00175である。
Figures 2 to 5 show No. 1 during the heating process and cooling process. 1, 2, 4, and 9 illustrate graphs of resonance moduli and internal friction measurements. The vertical axis is the resonance modulus and the internal friction, and the horizontal axis is the temperature.
No. 1 (FIG. 2 ) has a resonance modulus E0 of 128.59 GPa measured at room temperature during the heating process, and a resonance modulus E1 of 130.00 GPa measured at room temperature during the cooling process. , E1 is 1.41 GPa . The maximum value of internal friction (from room temperature to 300°C) measured during the heating process is 0.00299 (280°C), the minimum value is 0.00169 (30°C), and the difference Q max1 -1 is 0.00130. is. The maximum value of internal friction (from 300°C to room temperature) measured during the cooling process is 0.00345 (300°C), the minimum value is 0.00170 (300°C), and the difference Q max2 -1 is 0.00175. be.

No.2(図3)は、昇温過程において室温で測定された共振弾性率Eが128.71GPa、冷却過程において室温で測定された共振弾性率E1が129.00GPaであり、共振弾性率E ,E1の差(E―E)が0.29GPaである。昇温過程において測定された内部摩擦(室温から300℃まで)の最大値が0.00366(80℃、280℃)、最小値が0.00265(240℃)で、その差Qmax1 -1が0.00101である。冷却過程において測定された内部摩擦(300℃から室温まで)の最大値が0.00394(300℃)、最小値が0.00229(60℃)で、その差Qmax2 -1が0.00165である。 No. 2 (FIG. 3) has a resonance modulus E0 of 128.71 GPa measured at room temperature during the heating process, and a resonance modulus E1 of 129.00 GPa measured at room temperature during the cooling process. , E1 is 0.29 GPa . The maximum value of internal friction (from room temperature to 300°C) measured during the heating process is 0.00366 (80°C, 280°C), the minimum value is 0.00265 (240°C), and the difference Q max1 -1 is 0.00101. The maximum value of internal friction (from 300°C to room temperature) measured during the cooling process is 0.00394 (300°C), the minimum value is 0.00229 (60°C), and the difference Q max2 -1 is 0.00165. be.

No.4(図4)は、昇温過程において室温で測定された共振弾性率Eが127.48GPa、冷却過程において室温で測定された共振弾性率E1が130.32GPaであり、共振弾性率E ,E1の差(E―E)が2.84GPaである。昇温過程において測定された内部摩擦(室温から300℃まで)の最大値が0.00596(290℃)、最小値が0.00180(40℃)で、その差Qmax1 -1が0.00416である。冷却過程において測定された内部摩擦(300℃から室温まで)の最大値が0.00378(300℃)、最小値が0.00184(50℃、30℃)で、その差Qmax2 -1が0.00194である。 No. 4 (FIG. 4) has a resonance elastic modulus E0 of 127.48 GPa measured at room temperature during the heating process, and a resonance elastic modulus E1 of 130.32 GPa measured at room temperature during the cooling process. , E1 is 2.84 GPa . The maximum value of internal friction (from room temperature to 300°C) measured during the heating process is 0.00596 (290°C), the minimum value is 0.00180 (40°C), and the difference Q max1 -1 is 0.00416. is. The maximum value of internal friction (from 300 ° C to room temperature) measured during the cooling process is 0.00378 (300 ° C), the minimum value is 0.00184 (50 ° C, 30 ° C), and the difference Q max2 -1 is 0 .00194.

No.9(図5)は、昇温過程において室温で測定された共振弾性率Eが112.65GPa、冷却過程において室温で測定された共振弾性率E1が109.43GPaであり、共振弾性率E ,E1の差(E―E)が-3.22GPaである。昇温過程において測定された内部摩擦(室温から300℃まで)の最大値が0.00778(300℃)、最小値が0.00199(40℃)で、その差Qmax1 -1が0.00579である。冷却過程において測定された内部摩擦(300℃から室温まで)の最大値が0.00787(300℃)、最小値が0.00200(30℃)で、その差Qmax2 -1が0.00587である。 No. 9 (FIG. 5) has a resonance modulus E0 of 112.65 GPa measured at room temperature during the heating process, and a resonance modulus E1 of 109.43 GPa measured at room temperature during the cooling process. , E1 difference (E 1 −E 0 ) is −3.22 GPa. The maximum value of internal friction (from room temperature to 300°C) measured during the heating process is 0.00778 (300°C), the minimum value is 0.00199 (40°C), and the difference Q max1 -1 is 0.00579. is. The maximum value of internal friction (from 300°C to room temperature) measured during the cooling process is 0.00787 (300°C), the minimum value is 0.00200 (30°C), and the difference Q max2 -1 is 0.00587. be.

(導電率)
導電率は、JISH0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジを用いた四端子法で測定した。
(硬さ)
硬さは、JISZ2244に規定されているビッカース硬さの微少硬さ試験方法に準拠し、試験加重500g(4.9N)で測定した。
(耐力)
耐力は、JIS5号引張り試験片を長手方向が供試材のLD方向となるように機械加工にて作製し、JISZ2241の規定に準拠して引張り試験を行って測定した。耐力は永久伸び0.2%に相当する引張り強さである。
(conductivity)
The conductivity was measured by a four-probe method using a double bridge in conformity with the method for measuring the conductivity of non-ferrous metal materials specified in JISH0505.
(Hardness)
The hardness was measured with a test load of 500 g (4.9 N) in accordance with the microhardness test method for Vickers hardness defined in JISZ2244.
(proof strength)
Yield strength was measured by machining a JIS No. 5 tensile test piece so that the longitudinal direction was the LD direction of the test material, and performing a tensile test in accordance with JISZ2241. Yield stress is the tensile strength corresponding to 0.2% permanent elongation.

(応力緩和率)
応力緩和率は、日本伸銅協会技術標準JCBAT309に規定された片持ち梁方式を用いて測定した。長さ方向がLD方向になるように、供試材から幅10mmの短冊状試験片を切り出し、その一端を剛体試験台に固定し、試験片のスパン長Lの部分に高さd(=10mm)の枕状ブロックを咬ませてたわみ量を与える。このとき、材料耐力の80%に相当する表面応力が試験片に負荷されるようにスパン長Lを決める。これを180℃のオーブン中に30時間保持した後に取り出し、たわみ量dを取り去ったときの永久歪みδを測定し、RS=(δ/d)×100で計算される応力緩和率(RS)を求める。なお、180℃×30時間の保持は、ラーソン・ミラーパラメーターで計算すると、ほぼ150℃×1000時間の保持に相当する。
(Stress relaxation rate)
The stress relaxation rate was measured using the cantilever beam method specified in the Japan Copper and Brass Association technical standard JCBAT309. A strip-shaped test piece with a width of 10 mm is cut out from the test material so that the length direction is in the LD direction, one end is fixed to a rigid test stand, and the height d (= 10 mm) is attached to the span length L of the test piece. ) to give the amount of deflection by biting the pillow block. At this time, the span length L is determined so that a surface stress corresponding to 80% of the material proof stress is applied to the test piece. After holding this in an oven at 180 ° C. for 30 hours, it was taken out, the permanent strain δ was measured when the amount of deflection d was removed, and the stress relaxation rate (RS) calculated by RS = (δ / d) × 100 was calculated. demand. Note that holding at 180° C. for 30 hours corresponds to holding at approximately 150° C. for 1000 hours when calculated using Larson-Miller parameters.

(曲げ加工性)
長さ方向が供試材のTD方向になるように、供試材から幅10mm、長さ35mmの試験片を切り出した。試験片の曲げ線が長さ方向に垂直になるように、試験片を日本伸銅協会技術標準JBMAT307に規定されたCES-M0002金属材料W曲げ試験用B型曲げ治具を用いて挟み、荷重1tonのハンドプレスで曲げ加工を行った。曲げ割れが発生する直前のR/tを、曲げ部の曲率半径Rと試験片の板厚t(=0.25mm)から算出した。
(透過電子顕微鏡観察)
供試材から採取した試料を、手研磨と電解薄膜法(ツインジェット法)で透過電子顕微鏡観察用薄膜に仕上げた。日立製作所製の透過電子顕微鏡H-800(加速電圧200kV)を用い、撮影倍率100000倍で撮影し、上質印画紙にさらに1.5倍に拡大して印刷した。
(bendability)
A test piece having a width of 10 mm and a length of 35 mm was cut from the test material such that the length direction was the TD direction of the test material. The test piece is sandwiched using a B-type bending jig for the CES-M0002 metal material W bending test specified in the Japan Copper and Brass Association technical standard JBMAT307 so that the bending line of the test piece is perpendicular to the length direction, and the load is applied. Bending was performed with a hand press of 1 ton. The R/t just before bending cracks occurred was calculated from the curvature radius R of the bent portion and the plate thickness t (=0.25 mm) of the test piece.
(Transmission electron microscope observation)
A thin film for transmission electron microscope observation was made from a sample taken from the test material by manual polishing and electrolytic thin film method (twin jet method). Using a transmission electron microscope H-800 (accelerating voltage of 200 kV) manufactured by Hitachi, Ltd., the images were photographed at a magnification of 100,000 times, and printed on high-quality photographic paper at a magnification of 1.5 times.

Figure 0007218270000003
Figure 0007218270000003

No.1,2は合金組成が本発明の規定範囲内にあり、共振弾性率E,Eの差(E―E)が0GPa~2GPaの範囲内にある。また、昇温過程(室温→300℃)における内部摩擦の最大値と最小値の差Qmax1 -1及び冷却過程(300℃→室温)における内部摩擦の最大値と最小値の差Qmax2 -1が共に0.004以下である。この測定結果から、No.1,2の銅合金圧延板は、不均質な組織、粗大析出物、及び粗大析出部に堰き止められた可動転位などが少なく、均質な微細組織を有することが推測される。
図6は、No.2及び後述するNo.4の昇温前の走査電子顕微鏡写真(観察面は、圧延方向に平行な方向の断面)であり、左側の写真がNo.2のもの、右側の写真がNo.4のもの、いずれも観察面は圧延方向に平行な方向の断面である。No.2では、微細な析出物が相当数観察されるが、粗大析出物は観察されない。No.4では、比較的粗大な析出物が特に結晶粒界に観察される。
そして、No.1,2の銅合金圧延板は、耐力、耐応力緩和特性及び曲げ加工性がいずれも優れる。なお、No.1,2の製造工程には、600℃以上に加熱される熱処理工程が熱間圧延を含めて2回ある。
No.1,2において、共振弾性率と内部摩擦の値を測定するために要した時間は、試験片の加工も含めて50時間以内であった(この点はNo.3~13も同じ)。
No. 1 and 2 have an alloy composition within the specified range of the present invention, and the difference (E 1 −E 0 ) between the resonance elastic moduli E 0 and E 1 is within the range of 0 GPa to 2 GPa. In addition, the difference Q max1 -1 between the maximum and minimum values of internal friction in the heating process (room temperature → 300 ° C) and the difference Q max2 -1 between the maximum and minimum values of internal friction in the cooling process (300 ° C → room temperature) are both 0.004 or less. From this measurement result, No. It is presumed that the copper alloy rolled sheets of 1 and 2 have a homogeneous microstructure with few inhomogeneous structures, coarse precipitates, and mobile dislocations blocked by coarse precipitates.
FIG. 2 and No. 2 described later. 4 is a scanning electron microscope photograph (observation surface is a cross section in a direction parallel to the rolling direction) before temperature rise of No. 4, and the photograph on the left is No. 4. 2, the photo on the right is No. 4, the observation surface is a cross section in the direction parallel to the rolling direction. No. In 2, a considerable number of fine precipitates are observed, but no coarse precipitates are observed. No. 4, relatively coarse precipitates are observed especially at grain boundaries.
And no. The copper alloy rolled sheets of 1 and 2 are excellent in yield strength, stress relaxation resistance and bending workability. In addition, No. In manufacturing processes 1 and 2, there are two heat treatment processes including hot rolling in which the steel is heated to 600° C. or higher.
No. In Nos. 1 and 2, the time required to measure the values of resonance elastic modulus and internal friction was within 50 hours, including processing of the test piece (this point is the same for Nos. 3 to 13).

これに対し、No.3~13は、合金組成、共振弾性率の差(E―E)、昇温過程(室温→300℃)における内部摩擦の最大値と最小値の差Qmax1 -1、冷却過程(300℃→室温)における内部摩擦の最大値と最小値の差Qmax2 -1のいずれか1つ以上が本発明の規定から外れる。このため、No.3~13は、耐力、耐応力緩和特性及び曲げ加工性の1つ以上の特性が劣る。
No.3は、Ni含有量が不足しているために、No.1と同様の製造工程を経たにも関わらず、E―Eがマイナスとなり、Qmax1 -1とQmax2 -1が共に規定の値より大きく、応力緩和率が15%を超えた。
No.4はNi含有量が過剰なため、E―EとQmax1 -1が規定の値を超えた。この測定結果から、No.4では、銅合金板の内部に機械的特性の向上に寄与しない粗大な析出物が多くなっているものと推測される。実際、図6の右側の写真(No.4の走査電子顕微鏡写真)によれば、比較的粗大な析出物が特に結晶粒界に観察される。そして、No.4は、応力緩和特性及び曲げ加工性が低下した。
On the other hand, No. 3 to 13 are the alloy composition, the difference in resonance elastic modulus (E 1 - E 0 ), the difference Q max1 -1 between the maximum and minimum values of internal friction in the heating process (room temperature → 300 ° C.), the cooling process (300 °C to room temperature), any one or more of the difference Q max2 -1 between the maximum and minimum values of internal friction is outside the scope of the present invention. For this reason, No. 3 to 13 are inferior in one or more properties of yield strength, stress relaxation resistance and bending workability.
No. No. 3, because the Ni content is insufficient. Despite undergoing the same manufacturing process as No. 1, E 1 -E 0 became negative, both Q max1 -1 and Q max2 -1 were larger than the prescribed values, and the stress relaxation rate exceeded 15%.
No. In No. 4, the Ni content was excessive, so E 1 -E 0 and Q max1 -1 exceeded the prescribed values. From this measurement result, No. In 4, it is presumed that there are many coarse precipitates inside the copper alloy plate that do not contribute to the improvement of mechanical properties. In fact, according to the photograph on the right side of FIG. 6 (scanning electron microscope photograph of No. 4), relatively coarse precipitates are observed especially at grain boundaries. And no. 4, the stress relaxation property and bending workability were deteriorated.

No.5はSi含有量が過剰なため、No.1と同様の製造工程を経たにも関わらず、E―EとQmax2 -1が規定の値を超え、応力緩和特性及び曲げ加工性が低下した。No.5では、過剰Siが高温熱処理工程中で内部酸化を起こしているものと推測される。
No.6はP含有量が過剰なため、熱間圧延で割れが生じた。そのため以後の工程を断念した。P含有量が過剰なため低融点金属間化合物が粒界偏析したことが、熱間圧延で割れが生じた原因と推測される。
No.7はSn含有量が不足したため、Qmax1-1及びQmax2-1が規定の値を超え、応力緩和特性が低下した。No.7では、Sn含有量が少なく、転位を固着するSnが不足したことが原因と考えられる。
No.8はSn含有量が過剰であり、曲げ加工性が劣る。E―E、Qmax1 -1、Qmax2 -1はいずれも規定の範囲内であったのは、Sn含有量が多いことにより、可動転位の固着力に優れていたためと推測される。
No. No. 5 has an excessive Si content. Despite undergoing the same manufacturing process as No. 1, E 1 -E 0 and Q max2 -1 exceeded the specified values, and the stress relaxation characteristics and bending workability were degraded. No. In 5, it is presumed that the excess Si causes internal oxidation during the high-temperature heat treatment process.
No. In No. 6, since the P content was excessive, cracks occurred during hot rolling. Therefore, the subsequent steps were abandoned. The grain boundary segregation of the low-melting intermetallic compound due to the excessive P content is presumed to be the cause of cracking during hot rolling.
No. In No. 7, since the Sn content was insufficient, Qmax1-1 and Qmax2-1 exceeded the specified values, and the stress relaxation characteristics were lowered. No. In No. 7, the Sn content is small, and the Sn that fixes the dislocations is considered to be insufficient.
No. No. 8 has an excessive Sn content and is inferior in bending workability. The reason why E 1 -E 0 , Q max1 −1 , and Q max2 −1 were all within the specified ranges is presumed to be that the high Sn content resulted in excellent adhesion of mobile dislocations.

No.9は黄銅(C2600)であり、耐応力緩和特性が劣る。E―E、Qmax1 -1、Qmax2 -1も全て規定の範囲を外れている。
No.10はFe含有量が過剰なため、E―EとQmax2 -1が規定の範囲を大きく超え、耐応力緩和特性と曲げ加工性が劣化した。
No.11はNo.1の中間圧延材を分割して作製したもので、熱間圧延以外に600℃を超える熱処理工程を実施せず、圧延のみで最終板厚まで作製された。材料組織が加工組織であるため、共振弾性率及び内部摩擦を測定するための昇温工程において再結晶温度を超えて昇温させたとき、加工組織が小傾角粒界組織に転移し、これにより加工組織による弾性率寄与(先に説明したγ)が消失し、E1―E0がマイナスの値となったと考えられる。そして、No.11は、端子用に適する耐力及び耐応力緩和特性を有していない。また、No.11は、熱間圧延以外に600℃を超える熱処理工程を実施していないことで、熱間圧延後の冷却中に発生した比較的粗大な析出物を含むと推測される。
なお、No.11以外のものは、製品板となった時点ですでにいったん再結晶している。その結果、昇温工程において再結晶温度を超えても大規模な組織の転移はほとんど起こらなかったものと考えられる。
No. 9 is brass (C2600) and has poor stress relaxation resistance. E 1 -E 0 , Q max1 −1 and Q max2 −1 are also all outside the specified range.
No. In No. 10, since the Fe content was excessive, E 1 -E 0 and Q max2 -1 greatly exceeded the specified ranges, and the stress relaxation resistance and bending workability deteriorated.
No. 11 is No. 1 was produced by dividing the intermediate rolled material, and was produced to the final thickness only by rolling without performing a heat treatment process exceeding 600° C. other than hot rolling. Since the material structure is a worked structure, when the temperature is raised above the recrystallization temperature in the heating process for measuring the resonance modulus and internal friction, the worked structure transforms into a small tilt grain boundary structure, thereby It is considered that the elastic modulus contribution (γ described above) due to the processed structure disappeared, and E1-E0 became a negative value. And no. 11 does not have suitable yield strength and stress relaxation resistance properties for terminal applications. Also, No. No. 11 is presumed to contain relatively coarse precipitates generated during cooling after hot rolling because no heat treatment process exceeding 600° C. was performed other than hot rolling.
In addition, No. The samples other than No. 11 were already recrystallized once when they became product sheets. As a result, even if the recrystallization temperature was exceeded in the heating process, large-scale structural transition hardly occurred.

No.12もNo.1の中間圧延材を分割して使用したが、冷間圧延途中の焼鈍温度が600℃未満であり、E―E、Qmax1 -1、Qmax2 -1が規定範囲外となり、曲げ加工性と耐応力緩和特性が劣る。これは、焼鈍温度が低く、材料中の粗大なNi-P析出物を再固溶できなかったためと考えられる。
No.13はNo.2の中間圧延材を使用したが、冷間圧延途中の焼鈍温度が600℃未満であり、Qmax2 -1が規定の範囲を超え、曲げ加工性と耐応力緩和特性が低い。
No.14はNo.1の製品板を使用したものである。図7にNo.14の透過電子顕微鏡写真を示す。図7によれば、組織中に直径60nmを超える析出物はなく、約500nm×500nmの視野内に直径5nm以上60nm以下のものが約90個以上観察される。製品板から薄膜試料を作成し、透過電子顕微鏡で観察して微細組織が健全かどうかの判断を下すまでの時間が,約170時間かかった。
No. 12 is also No. The intermediate rolled material of No. 1 was divided and used, but the annealing temperature during cold rolling was less than 600 ° C., E 1 -E 0 , Q max1 -1 , Q max2 -1 were outside the specified range, and bending Poor strength and stress relaxation resistance. This is probably because the annealing temperature was low and coarse Ni--P precipitates in the material could not be dissolved again.
No. 13 is No. The intermediate rolled material No. 2 was used, but the annealing temperature during cold rolling was less than 600°C, Q max2 -1 exceeded the specified range, and the bending workability and stress relaxation resistance were low.
No. 14 is No. 1 is used. No. in FIG. 14 transmission electron micrographs are shown. According to FIG. 7, there is no precipitate exceeding 60 nm in diameter in the structure, and about 90 or more precipitates with a diameter of 5 nm or more and 60 nm or less are observed within a field of view of about 500 nm×500 nm. It took about 170 hours to prepare a thin film sample from the product plate, observe it with a transmission electron microscope, and judge whether or not the fine structure was sound.

Claims (2)

Ni:0.7~2質量%、Si:0.6%質量以下、Sn:0.05~1.5質量%、P:0.1質量%以下、Zn:1.2質量%以下、Fe:0.1質量%以下を含み、残部がCu及び不可避不純物からなる組成を有し、下記(1)~(3)の全てを満たすことを特徴とする銅合金圧延板。
(1)室温で測定した共振弾性率Eと、室温から再結晶温度以上550℃以下の温度まで昇温後再び室温に冷却して測定した共振弾性率E1が、0≦E1―E≦2(単位:GPa)の関係を有する。
(2)室温から300℃以上の温度まで昇温する過程で内部摩擦を測定したとき、室温から300℃までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax1 -1が0.004以下である。
(3)室温から再結晶温度以上の温度まで昇温後再び室温まで冷却する過程で内部摩擦を測定したとき、300℃から室温までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax2 -1が0.004以下である。
Ni: 0.7 to 2% by mass, Si: 0.6% by mass or less, Sn: 0.05 to 1.5% by mass, P: 0.1% by mass or less, Zn: 1.2% by mass or less, Fe : A copper alloy rolled sheet having a composition containing 0.1% by mass or less, the balance being Cu and inevitable impurities, and satisfying all of the following (1) to (3).
(1) The resonance elastic modulus E0 measured at room temperature and the resonance elastic modulus E1 measured after heating from room temperature to the recrystallization temperature or higher and 550° C. or lower and then cooling to room temperature again are 0 ≦E1−E0≦ 0 . 2 (unit: GPa).
(2) When the internal friction is measured in the process of increasing the temperature from room temperature to 300 ° C. or higher, the value Q max1 −1 obtained by subtracting the minimum value from the maximum value of the measured internal friction in the range from room temperature to 300 ° C. is 0.004 or less.
(3) When the internal friction is measured in the process of heating from room temperature to a temperature equal to or higher than the recrystallization temperature and then cooling to room temperature again, subtract the minimum value from the maximum value of the measured internal friction values in the range from 300 ° C. to room temperature. The value Q max2 −1 is 0.004 or less.
Ni:0.7~2質量%、Si:0.6%質量以下、Sn:0.05~1.5質量%、P:0.1質量%以下、Zn:1.2質量%以下、Fe:0.1質量%以下を含み、残部がCu及び不可避不純物からなる組成を有する銅合金圧延板について、下記(1)~(3)のいずれか1つ以上を満たさない場合に不適と判定することを特徴とする銅合金圧延板の良否判定方法。
(1)室温で測定した共振弾性率Eと、室温から再結晶温度以上550℃以下の温度まで昇温後再び室温に冷却して測定した共振弾性率E1が、0≦E1―E ≦2(単位:GPa)の関係を有する
(2)室温から300℃以上の温度まで昇温する過程で内部摩擦を測定したとき、室温から300℃までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax1 -1 が0.004以下である
(3)室温から再結晶温度以上の温度まで昇温後再び室温まで冷却する過程で内部摩擦を測定したとき、300℃から室温までの範囲における内部摩擦の測定値の最大値から最小値を引いた値Qmax2 -1 が0.004以下である
Ni: 0.7 to 2% by mass, Si: 0.6% by mass or less, Sn: 0.05 to 1.5% by mass, P: 0.1% by mass or less, Zn: 1.2% by mass or less, Fe : For a copper alloy rolled sheet having a composition containing 0.1% by mass or less and the balance consisting of Cu and unavoidable impurities, if one or more of the following (1) to (3) are not satisfied, it is determined to be unsuitable. A method for determining the quality of a copper alloy rolled sheet, characterized by:
(1) The resonance elastic modulus E0 measured at room temperature and the resonance elastic modulus E1 measured after heating from room temperature to the recrystallization temperature or higher and 550° C. or lower and then cooling to room temperature again are 0 ≦E1−E0 0 . 2 (unit: GPa) .
(2) When the internal friction is measured in the process of increasing the temperature from room temperature to 300 ° C. or higher, the value Q max1 −1 obtained by subtracting the minimum value from the maximum value of the measured internal friction in the range from room temperature to 300 ° C. is 0.004 or less .
(3) When the internal friction is measured in the process of heating from room temperature to a temperature equal to or higher than the recrystallization temperature and then cooling to room temperature again, subtract the minimum value from the maximum value of the measured internal friction values in the range from 300 ° C. to room temperature. The value Q max2 −1 is 0.004 or less .
JP2019190930A 2019-10-18 2019-10-18 Copper alloy rolled sheet and quality judgment method thereof Active JP7218270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190930A JP7218270B2 (en) 2019-10-18 2019-10-18 Copper alloy rolled sheet and quality judgment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190930A JP7218270B2 (en) 2019-10-18 2019-10-18 Copper alloy rolled sheet and quality judgment method thereof

Publications (2)

Publication Number Publication Date
JP2021066902A JP2021066902A (en) 2021-04-30
JP7218270B2 true JP7218270B2 (en) 2023-02-06

Family

ID=75636763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190930A Active JP7218270B2 (en) 2019-10-18 2019-10-18 Copper alloy rolled sheet and quality judgment method thereof

Country Status (1)

Country Link
JP (1) JP7218270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791111B (en) * 2021-08-06 2023-06-30 中国科学院合肥物质科学研究院 Method for measuring recrystallization temperature by using internal consumption of metal material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323881A (en) 2003-04-22 2004-11-18 Science Univ Of Tokyo METHOD OF PRODUCING HIGH DAMPING CAPACITY Ti-Ni-Cu-H ALLOY
JP2006200042A (en) 2006-03-23 2006-08-03 Kobe Steel Ltd Electronic component composed of copper alloy sheet having excellent bending workability
JP2006291356A (en) 2005-03-17 2006-10-26 Dowa Mining Co Ltd Ni-sn-p based copper alloy
JP2006342389A (en) 2005-06-08 2006-12-21 Kobe Steel Ltd Copper alloy sheet for electrical connection part
JP2007146275A (en) 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method
JP2009068114A (en) 2008-10-30 2009-04-02 Dowa Holdings Co Ltd Copper alloy excellent in press-punching property and its production method
JP2009074104A (en) 2007-09-18 2009-04-09 Seiko Instruments Inc Alloy with high elasticity
JP2009179864A (en) 2008-01-31 2009-08-13 Kobe Steel Ltd Copper alloy sheet superior in stress relaxation resistance
JP2012189407A (en) 2011-03-10 2012-10-04 Kobe Steel Ltd Evaluation method for stress relaxation resistance characteristics of copper alloy materials
JP2015014020A (en) 2013-07-03 2015-01-22 三菱マテリアル株式会社 Copper alloy for electronic and electrical apparatus, copper alloy thin sheet for electronic and electrical apparatus, and part and terminal for electronic and electrical apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323881A (en) 2003-04-22 2004-11-18 Science Univ Of Tokyo METHOD OF PRODUCING HIGH DAMPING CAPACITY Ti-Ni-Cu-H ALLOY
JP2006291356A (en) 2005-03-17 2006-10-26 Dowa Mining Co Ltd Ni-sn-p based copper alloy
JP2006342389A (en) 2005-06-08 2006-12-21 Kobe Steel Ltd Copper alloy sheet for electrical connection part
JP2007146275A (en) 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method
JP2006200042A (en) 2006-03-23 2006-08-03 Kobe Steel Ltd Electronic component composed of copper alloy sheet having excellent bending workability
JP2009074104A (en) 2007-09-18 2009-04-09 Seiko Instruments Inc Alloy with high elasticity
JP2009179864A (en) 2008-01-31 2009-08-13 Kobe Steel Ltd Copper alloy sheet superior in stress relaxation resistance
JP2009068114A (en) 2008-10-30 2009-04-02 Dowa Holdings Co Ltd Copper alloy excellent in press-punching property and its production method
JP2012189407A (en) 2011-03-10 2012-10-04 Kobe Steel Ltd Evaluation method for stress relaxation resistance characteristics of copper alloy materials
JP2015014020A (en) 2013-07-03 2015-01-22 三菱マテリアル株式会社 Copper alloy for electronic and electrical apparatus, copper alloy thin sheet for electronic and electrical apparatus, and part and terminal for electronic and electrical apparatus

Also Published As

Publication number Publication date
JP2021066902A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
KR101396616B1 (en) Copper alloy
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
US20110259480A1 (en) Copper alloy material
JP2012180593A (en) Copper alloy sheet and method for manufacturing the same
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
KR20170140771A (en) High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
KR20120048591A (en) Copper alloy and lead frame material for electronic equipment
JP2019178399A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP7218270B2 (en) Copper alloy rolled sheet and quality judgment method thereof
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP4556841B2 (en) High strength copper alloy material excellent in bending workability and manufacturing method thereof
JP2018162510A (en) Copper alloy for electronic material, and electronic component
CN109844147B (en) Copper alloy wire rod and method for producing same
JP2005163127A (en) Method of producing copper alloy sheet for high strength electrical/electronic component
WO2012160684A1 (en) Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP2019157153A (en) Cu-Ni-Si-BASED COPPER ALLOY
JP2016204708A (en) Copper alloy
JP5202812B2 (en) Copper alloy and its manufacturing method
JP2016211054A (en) Copper alloy
JP2022042515A (en) Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component
JP2015183262A (en) Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF AND ELECTRIFICATION COMPONENT
JP2019077889A (en) Copper alloy for electronic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230125

R150 Certificate of patent or registration of utility model

Ref document number: 7218270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150