JP2015014020A - Copper alloy for electronic and electrical apparatus, copper alloy thin sheet for electronic and electrical apparatus, and part and terminal for electronic and electrical apparatus - Google Patents

Copper alloy for electronic and electrical apparatus, copper alloy thin sheet for electronic and electrical apparatus, and part and terminal for electronic and electrical apparatus Download PDF

Info

Publication number
JP2015014020A
JP2015014020A JP2013139995A JP2013139995A JP2015014020A JP 2015014020 A JP2015014020 A JP 2015014020A JP 2013139995 A JP2013139995 A JP 2013139995A JP 2013139995 A JP2013139995 A JP 2013139995A JP 2015014020 A JP2015014020 A JP 2015014020A
Authority
JP
Japan
Prior art keywords
electronic
plane
ray diffraction
mass
diffraction intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013139995A
Other languages
Japanese (ja)
Other versions
JP5565506B1 (en
Inventor
牧 一誠
Kazumasa Maki
一誠 牧
裕隆 松永
Hirotaka Matsunaga
裕隆 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013139995A priority Critical patent/JP5565506B1/en
Priority to PCT/JP2013/070336 priority patent/WO2015001683A1/en
Priority to TW102127116A priority patent/TW201502294A/en
Application granted granted Critical
Publication of JP5565506B1 publication Critical patent/JP5565506B1/en
Publication of JP2015014020A publication Critical patent/JP2015014020A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy for electronic and electrical apparatuses which has excellent proof strength-flexure balance, is especially excellent in stress relaxation resistance characteristics, and is suitable for parts for electronic and electrical apparatuses, including terminals of e.g. connectors, relays, and lead frames.SOLUTION: A copper alloy for electronic and electrical apparatuses contains 1.0-5.0 mass% of Ni, 0.1-1.5 mass% of Si and the remaining mass being Cu and unavoidable impurities, and has a composition where a Ni/Si mass ratio falls in a range of 2.0-6.0. A special particle boundary length ratio, (Lσ/L), or a ratio of the sum Lσ of individual particle boundary lengths of Σ3, Σ9, Σ27a and Σ27b to all the crystal particle boundary lengths, is 30% or higher, and a ratio R{200} of X-ray diffraction intensity from a {200} plane on a surface of a material is 0.2 or higher.

Description

本発明は、半導体装置のコネクタ等の端子、あるいは電磁リレーの可動導電片や、リードフレームなどの電子・電気機器用部品として使用される電子・電気機器用銅合金と、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子に関するものである。   The present invention relates to a copper alloy for electronic / electric equipment used as a terminal for a connector of a semiconductor device, a movable conductive piece of an electromagnetic relay, or a component for electronic / electric equipment such as a lead frame, and an electronic / electronic device using the same. The present invention relates to copper alloy thin plates for electrical equipment, parts for electronic and electrical equipment, and terminals.

従来、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用されるコネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品の小型化および薄肉化が図られている。このため、電子・電気機器用部品を構成する材料として、ばね性、強度、曲げ加工性に優れた銅合金が要求されている。特に、非特許文献1に記載されているように、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品として使用される銅合金としては、耐力が高いものが望ましい。   Conventionally, along with downsizing of electronic equipment and electrical equipment, etc., miniaturization and thinning of electronic and electrical equipment parts such as connectors, relays, lead frames and other terminals used in such electronic equipment and electrical equipment are being attempted. It has been. For this reason, a copper alloy excellent in springiness, strength, and bending workability is required as a material constituting electronic / electric equipment parts. In particular, as described in Non-Patent Document 1, a copper alloy having high proof strength is desirable as a copper alloy used as a component for electronic and electrical equipment such as a terminal such as a connector, a relay, and a lead frame.

ここで、端子、コネクタ、リレー、リードフレーム等の電子・電気機器用部品として使用される銅合金として、例えば特許文献1−3には、Cu−Ni−Si系合金(いわゆるコルソン合金)が提供されている。このコルソン合金は、NiSiからなる析出物を分散させる析出硬化型合金であり、比較的高い導電率と強度とを有するものである。このため、自動車用端子や信号系小型端子用途として多用されており、近年、活発に開発が進んでいる。 Here, as a copper alloy used as components for electronic and electrical equipment such as terminals, connectors, relays, and lead frames, for example, Patent Document 1-3 provides a Cu—Ni—Si based alloy (so-called Corson alloy). Has been. This Corson alloy is a precipitation hardening type alloy in which precipitates made of Ni 2 Si are dispersed, and has a relatively high conductivity and strength. For this reason, it is widely used as a terminal for automobiles and signal system small terminals, and has been actively developed in recent years.

例えば、特許文献2に記載された電子・電気機器用銅合金においては、材料表面における{200}面からの回折強度の割合R{200}を0.3以上とすることによって、曲げ加工性の向上を図っている。
また、特許文献3に記載された電子・電気機器用銅合金においては、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒界の全粒界長さに対する特殊粒界の全特殊粒界長さの比率を60〜70%に規定することによって、深絞り加工性及び耐疲労特性の向上を図っている。
For example, in the copper alloy for electronic / electric equipment described in Patent Document 2, the ratio R {200} of the diffraction intensity from the {200} plane on the material surface is set to 0.3 or more, so that the bending workability can be improved. We are trying to improve.
In addition, in the copper alloy for electronic and electrical equipment described in Patent Document 3, a special grain for the total grain boundary length of the grain boundary measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. By defining the ratio of the total special grain boundary length of the boundary to 60 to 70%, the deep drawability and the fatigue resistance are improved.

特開平11−036055号公報Japanese Patent Laid-Open No. 11-036055 特開2009−007666号公報JP 2009-007666 A 特開2012−122114号公報JP2012-122114A

野村幸矢、「コネクタ用高性能銅合金条の技術動向と当社の開発戦略」、神戸製鋼技報Vol.54No.1(2004)p.2−8Yukiya Nomura, “Technical Trends of High Performance Copper Alloy Strips for Connectors and Our Development Strategy”, Kobe Steel Technical Report Vol. 54No. 1 (2004) p. 2-8

ところで、最近では、電子・電気機器のさらなる軽量化にともない、これら電子機器や電気機器等に使用されるコネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品のさらなる薄肉化が図られている。このため、コネクタ等の端子においては、接圧を確保するために、厳しい曲げ加工を行う必要があり、従来よりも優れた耐力−曲げバランスが要求されている。さらに、これらの電子・電気機器用部品は、自動車のエンジンルーム等の高温環境下で使用する用途にも適用されており、従来よりも優れた耐応力緩和特性が要求されている。   By the way, recently, with the further weight reduction of electronic / electrical equipment, the thickness of electronic / electrical equipment parts such as connectors, relays, lead frames and other terminals used in such electronic equipment and electrical equipment has been reduced. It has been. For this reason, in a terminal such as a connector, it is necessary to perform a strict bending process in order to ensure a contact pressure, and a proof stress-bending balance superior to the conventional one is required. Furthermore, these parts for electronic and electric devices are also applied to applications used in a high temperature environment such as an engine room of an automobile, and are required to have a stress relaxation resistance superior to conventional ones.

ここで、特許文献2に記載された電子・電気機器用銅合金においては、上述のように、材料表面における{200}面からの回折強度の割合R{200}を規定することによって曲げ加工性の向上を図っているが、十分な耐力−曲げバランスを得ることができないおそれがあった。また、成分組成を調整することによって耐応力緩和特性の向上を図っているため、導電率を確保するために添加元素量を低減した場合には、耐応力緩和特性が不十分となり、高温環境下で使用できないおそれがあった。
また、特許文献3に記載された電子・電気機器用銅合金においては、結晶粒界の全粒界長さに対する特殊粒界の全特殊粒界長さの比率を60〜70%に規定しているが、結晶方位について考慮していないため、十分な曲げ加工性および応力緩和特性を得ることができないおそれがあった。
Here, in the copper alloy for electronic / electric equipment described in Patent Document 2, as described above, the bending workability is determined by defining the ratio R {200} of the diffraction intensity from the {200} plane on the material surface. However, there is a possibility that sufficient proof stress-bending balance cannot be obtained. In addition, the stress relaxation resistance is improved by adjusting the component composition. Therefore, when the amount of additive elements is reduced to ensure conductivity, the stress relaxation resistance becomes insufficient, and the stress relaxation resistance is reduced. There was a risk that it could not be used.
Moreover, in the copper alloy for electronic / electric equipment described in Patent Document 3, the ratio of the total special grain boundary length of the special grain boundary to the total grain boundary length of the crystal grain boundary is defined as 60 to 70%. However, since the crystal orientation is not taken into consideration, there is a possibility that sufficient bending workability and stress relaxation characteristics cannot be obtained.

本発明は、以上のような事情を背景としてなされたものであって、優れた耐力−曲げバランスを有するとともに、耐応力緩和特性に特に優れ、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品に適した電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子を提供することを目的とする。   The present invention has been made against the background as described above, and has an excellent proof stress-bending balance, and is particularly excellent in stress relaxation resistance, such as terminals of connectors, relays, lead frames, etc. It is an object of the present invention to provide a copper alloy for electronic / electric equipment, a copper alloy thin plate for electronic / electric equipment, electronic / electric equipment parts and terminals suitable for electric equipment parts.

この課題を解決するために、本発明の電子・電気機器用銅合金は、Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上であるとともに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.2以上であることを特徴としている。 In order to solve this problem, the copper alloy for electronic and electrical equipment of the present invention contains Ni in an amount of 1.0 mass% to 5.0 mass%, Si in an amount of 0.1 mass% to 1.5 mass%, and the rest It consists of Cu and inevitable impurities and has a composition in which Ni / Si (mass ratio) is in the range of 2.0 or more and 6.0 or less, and a measurement area of 1000 μm 2 or more by the EBSD method at a measurement interval of 0.1 μm step. Measured and analyzed with the exception of measurement points with a CI value of 0.1 or less analyzed by the data analysis software OIM, and a crystal grain boundary between the measurement points where the orientation difference between adjacent measurements exceeds 15 °, The special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b to all the grain boundary lengths L, is 30% or more, and the material surface {111} plane in X-ray diffraction intensity from I {111}, X-ray diffraction intensity from {200} plane from I {200}, X-ray diffraction intensity from {220} plane from I {220}, {311} plane X-ray diffraction intensity is I {311}, X-ray diffraction intensity from {331} plane is I {331}, X-ray diffraction intensity from {420} plane is I {420}, X-ray from {200} plane When the ratio R {200} of the diffraction intensity is R {200} = I {200} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}) , R {200} is 0.2 or more.

上述の構成とされた本発明の電子・電気機器用銅合金においては、Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有していることから、NiSiを主とする金属間化合物からなる析出物粒子を銅の母相中に分散させることができ、高い導電率を確保しつつ強度の向上を図ることができる。 In the copper alloy for electronic and electrical equipment of the present invention having the above-described configuration, Ni is contained in an amount of 1.0 mass% to 5.0 mass%, Si is contained in an amount of 0.1 mass% to 1.5 mass%, and the remainder is Cu. And a precipitate composed of an intermetallic compound mainly composed of Ni 2 Si since it has a composition in which Ni / Si (mass ratio) is in the range of 2.0 to 6.0. The particles can be dispersed in the copper matrix, and the strength can be improved while ensuring high electrical conductivity.

そして、上述の構成とされた本発明の電子・電気機器用銅合金においては、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上とされるとともに、材料表面における{200}面からのX線回折強度の割合R{200}が0.2以上とされているので、{200}面に配向させた銅合金の組織において結晶性の高い粒界(原子配列の乱れが少ない粒界)が増加することになる。   And in the copper alloy for electronic / electrical equipment of the present invention having the above-mentioned configuration, the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b to all the crystal grain boundary lengths L. Since the special grain boundary length ratio (Lσ / L) is 30% or more and the ratio R {200} of the X-ray diffraction intensity from the {200} plane on the material surface is 0.2 or more, Grain boundaries with high crystallinity (grain boundaries with less disorder of atomic arrangement) increase in the structure of the copper alloy oriented in the {200} plane.

ここで、{200}面は、曲げ加工の応力方向に対して、滑り系が活動し易い方位関係となるため、局所的な変形を抑制することができる。さらに、結晶性の高い粒界(原子配列の乱れが少ない粒界)が増加することにより、曲げ加工時の破壊の起点となる粒界の割合を少なくなる。本発明の電子・電気機器用銅合金においては、これらの相乗効果によって、耐力―曲げバランスが飛躍的に向上することになる。また、特殊粒界は、ランダム粒界と比べて粒界の拡散が遅いことから、耐応力緩和特性を向上させることができる。
上述の作用効果を確実に奏功せしめるためには、特殊粒界長さ比率(Lσ/L)を45%以上とすることが好ましく、50%以上とすることがさらに好ましい。また、材料表面における{200}面からのX線回折強度の割合R{200}を0.25以上とすることが好ましく、0.3以上とすることがさらに好ましい。
Here, since the {200} plane has an azimuth relationship in which the sliding system is likely to be active with respect to the stress direction of bending, local deformation can be suppressed. Furthermore, an increase in grain boundaries with high crystallinity (grain boundaries with less disorder of atomic arrangement) reduces the proportion of grain boundaries that are the starting point of fracture during bending. In the copper alloy for electronic and electrical equipment of the present invention, the yield strength-bending balance is drastically improved by these synergistic effects. In addition, the special grain boundary can improve the stress relaxation resistance because the grain boundary diffuses slower than the random grain boundary.
In order to achieve the above-mentioned effects and effects, the special grain boundary length ratio (Lσ / L) is preferably 45% or more, and more preferably 50% or more. The ratio R {200} of the X-ray diffraction intensity from the {200} plane on the material surface is preferably 0.25 or more, and more preferably 0.3 or more.

なお、EBSD法とは、後方散乱電子回折像システム付の走査型電子顕微鏡による電子線反射回折法(Electron Backscatter Diffraction Patterns:EBSD)法を意味し、またOIMは、EBSDによる測定データを用いて結晶方位を解析するためのデータ解析ソフトOrientation Imaging Microscopy:OIM)である。さらにCI値とは、信頼性指数(Confidence Index)であって、EBSD装置の解析ソフトOIM Analysis(Ver.5.3)を用いて解析したときに、結晶方位決定の信頼性を表す数値として表示される数値である(例えば、「EBSD読本:OIMを使用するにあたって(改定第3版)」鈴木清一著、2009年9月、株式会社TSLソリューションズ発行)。ここで、EBSDにより測定してOIMにより解析した測定点の組織が加工組織である場合、結晶パターンが明確ではないため結晶方位決定の信頼性が低くなり、CI値が低くなる。特にCI値が0.1以下の場合にその測定点の組織が加工組織であると判断される。   Note that the EBSD method means an electron beam diffraction diffraction pattern (EBSD) method using a scanning electron microscope with a backscattered electron diffraction image system, and the OIM uses crystal data measured by the EBSD. This is data analysis software Orienting Imaging Microscopy (OIM) for analyzing the orientation. Further, the CI value is a reliability index, which is displayed as a numerical value representing the reliability of crystal orientation determination when analyzed using analysis software OIM Analysis (Ver. 5.3) of an EBSD device. (For example, “EBSD Reader: Using OIM (Revised 3rd Edition)” written by Seiichi Suzuki, September 2009, published by TSL Solutions, Inc.). Here, when the structure of the measurement point measured by EBSD and analyzed by OIM is a processed structure, since the crystal pattern is not clear, the reliability of crystal orientation determination is lowered, and the CI value is lowered. In particular, when the CI value is 0.1 or less, it is determined that the structure of the measurement point is a processed structure.

また、特殊粒界とは、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。
一方、ランダム粒界とは、Σ値が29以下の対応方位関係があってかつDq≦15°/Σ1/2 を満たす特殊粒界以外、の粒界である。
The special grain boundary is a Σ value defined crystallographically based on CSL theory (Kronberg et al: Trans. Met. Soc. AIME, 185, 501 (1949)) and corresponding to 3 ≦ Σ ≦ 29. The grain boundary and the inherent corresponding site lattice orientation defect Dq at the corresponding grain boundary is Dq ≦ 15 ° / Σ 1/2 (DG Brandon: Acta. Metallurgica. Vol. 14, p. 1479, (1966)).
On the other hand, a random grain boundary is a grain boundary other than a special grain boundary that has a corresponding orientation relationship with a Σ value of 29 or less and satisfies Dq ≦ 15 ° / Σ 1/2 .

また、本発明の電子・電気機器用銅合金は、Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上であるとともに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.2以上であることを特徴としている。 In addition, the copper alloy for electronic and electrical equipment of the present invention contains 1.0 mass% or more of Ni, and contains one or more of Co, Mn, and Fe, and Ni, Co, Mn , Fe content is 1.0 mass% to 5.0 mass% or less, Si is contained 0.1 mass% or more and 1.5 mass% or less, the remainder is made of Cu and inevitable impurities, and (Ni + Co + Mn + Fe) / Si (Mass ratio) has a composition in the range of 2.0 or more and 6.0 or less, measures the measurement area of 1000μm 2 or more by the EBSD method at the measurement interval of 0.1μm step, and analyzes it by the data analysis software OIM The analysis is performed except for the measurement points having a CI value of 0.1 or less, and the crystal grain boundary is defined as the crystal grain boundary between the measurement points where the orientation difference between adjacent measurements exceeds 15 °. The special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b, is 30% or more, and X from the {111} plane on the material surface X-ray diffraction intensity from I {111}, X-ray diffraction intensity from {200} plane is I {200}, X-ray diffraction intensity from {220} plane is I {220}, X-ray diffraction from {311} plane The intensity is I {311}, the X-ray diffraction intensity from the {331} plane is I {331}, the X-ray diffraction intensity from the {420} plane is I {420}, and the X-ray diffraction intensity from the {200} plane is When the ratio R {200} is R {200} = I {200} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}), R {200 } Is 0.2 or more.

上述の構成とされた本発明の電子・電気機器用銅合金においては、Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有していることから、Co,Mn,FeがNiの一部を代替することになり、NiSiを主とする金属間化合物からなる析出物粒子を銅の母相中に分散させることができ、高い導電率を確保しつつ強度の向上を図ることができる。
また、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上とされるとともに、材料表面における{200}面からのX線回折強度の割合R{200}が0.2以上とされているので、耐力―曲げバランスを飛躍的に向上させることができるとともに、優れた耐応力緩和特性を得ることができる。
In the copper alloy for electronic and electrical equipment of the present invention configured as described above, Ni is contained in an amount of 1.0 mass% or more, and contains any one or more of Co, Mn, Fe, The total content of Ni, Co, Mn, and Fe is 1.0 mass% and 5.0 mass% or less, Si is contained 0.1 mass% or more and 1.5 mass% or less, and the remainder consists of Cu and inevitable impurities, Since (Ni + Co + Mn + Fe) / Si (mass ratio) has a composition in the range of 2.0 or more and 6.0 or less, Co, Mn, and Fe substitute a part of Ni, and Ni 2 Precipitate particles composed of an intermetallic compound mainly containing Si can be dispersed in a copper matrix, and strength can be improved while ensuring high electrical conductivity.
Further, the special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b to all the grain boundary lengths L, is set to 30% or more. Since the ratio R {200} of the X-ray diffraction intensity from the {200} plane on the material surface is 0.2 or more, the yield strength-bending balance can be dramatically improved and excellent stress resistance Relaxation properties can be obtained.

ここで、本発明の電子・電気機器用銅合金においては、さらに、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上を合計で0.01mass%以上2.0mass%以下の範囲内で含んでいてもよい。
Ti,Cr,Zr,P,Bといった元素は、析出物を形成することによって強度を向上させる作用を有する。よって、これらの元素を適宜添加することにより、さらに強度を向上させることが可能となる。
Here, in the copper alloy for electronic / electric equipment of the present invention, any one or more of Ti, Cr, Zr, P, and B is further added in a total amount of 0.01 mass% or more and 2.0 mass%. It may be included within the following range.
Elements such as Ti, Cr, Zr, P, and B have the effect of improving strength by forming precipitates. Therefore, the strength can be further improved by appropriately adding these elements.

また、本発明の電子・電気機器用銅合金においては、さらに、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上2.0mass%以下の範囲内で含んでいてもよい。
Mg,Sn,Zn,Al,Agといった元素は、銅の母中に固溶して強度を向上させる作用を有する。よって、これらの元素を適宜添加することにより、さらに強度を向上させることが可能となる。
Moreover, in the copper alloy for electronic / electrical equipment of the present invention, any one or more of Mg, Sn, Zn, Al, and Ag is added in a total amount of 0.01 mass% to 2.0 mass%. It may be included within the range.
Elements such as Mg, Sn, Zn, Al, and Ag have a function of improving the strength by dissolving in a copper mother. Therefore, the strength can be further improved by appropriately adding these elements.

また、本発明の電子・電気機器用銅合金においては、平均結晶粒径が0.5μm以上100μm以下の範囲内とされていることが好ましい。
この場合、平均結晶粒径が0.5μm以上100μm以下の範囲内と比較的微細にされているので、強度及び曲げ加工性を確実に向上させることができる。また、上述のように、特殊粒界長さ比率(Lσ/L)を規定していることから、結晶粒径を微細としても耐応力緩和特性を維持することができる。
上述の作用効果を確実に奏功せしめるためには、平均結晶粒径を1.0μm以上75μm以下の範囲内とすることが好ましく、さらには2.0μm以上50μm以下の範囲内とすることが好ましい。
Moreover, in the copper alloy for electronic / electrical devices of the present invention, it is preferable that the average crystal grain size is in the range of 0.5 μm or more and 100 μm or less.
In this case, since the average crystal grain size is relatively fine within the range of 0.5 μm or more and 100 μm or less, the strength and bending workability can be improved reliably. In addition, as described above, since the special grain boundary length ratio (Lσ / L) is defined, the stress relaxation resistance can be maintained even if the crystal grain size is fine.
In order to achieve the above-described effects, the average crystal grain size is preferably in the range of 1.0 to 75 μm, more preferably in the range of 2.0 to 50 μm.

また、本発明の電子・電気機器用銅合金においては、0.2%耐力が400MPa以上の機械特性を有することが好ましい。
0.2%耐力が400MPa以上である場合には、容易に塑性変形しなくなるため、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品に特に適している。
Moreover, in the copper alloy for electronic / electrical equipments of this invention, it is preferable that 0.2% yield strength has a mechanical characteristic of 400 Mpa or more.
When the 0.2% proof stress is 400 MPa or more, plastic deformation does not easily occur, so that it is particularly suitable for electronic / electronic device parts such as terminals such as connectors, relays, and lead frames.

また、本発明の電子・電気機器用銅合金においては、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.8以下とされていることが好ましい。   Further, in the copper alloy for electronic and electrical equipment of the present invention, the X-ray diffraction intensity from the {111} plane on the material surface is I {111}, the X-ray diffraction intensity from the {200} plane is I {200}, The X-ray diffraction intensity from the {220} plane is I {220}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {331} plane is I {331}, {420 } X-ray diffraction intensity from the plane is I {420}, and the ratio R {220} of the X-ray diffraction intensity from the {220} plane is R {220} = I {220} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}), it is preferable that R {220} is 0.8 or less.

{220}面は、圧延集合組織によるものであり、圧延方向に対して曲げ軸が平行になるように曲げ加工を行った場合に、曲げ加工の応力方向に対して滑り系が活動しにくい方位関係となる。よって、曲げ加工時に局所的な変形が生じてクラックが発生しやすくなる。そこで、材料表面における{220}面からのX線回折強度の割合R{220}を0.8以下と規定することにより、曲げ加工性を向上させることが可能となる。
なお、上述の作用効果を確実に奏功せしめるためには、材料表面における{220}面からのX線回折強度の割合R{220}を0.75以下とすることが好ましく、0.7以下とすることがさらに好ましい。
The {220} plane is due to the rolling texture, and when bending is performed so that the bending axis is parallel to the rolling direction, the sliding system is less likely to act on the bending stress direction. It becomes a relationship. Therefore, local deformation occurs during bending, and cracks are likely to occur. Therefore, by defining the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface as 0.8 or less, it becomes possible to improve the bending workability.
In order to surely achieve the above-described effects, the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface is preferably 0.75 or less, and 0.7 or less. More preferably.

本発明の電子・電気機器用銅合金薄板は、上述の電子・電気機器用銅合金の圧延材からなり、厚みが0.01mm以上2.0mm以下の範囲内にあることを特徴としている。
このような構成の電子・電気機器用銅合金薄板は、耐力―曲げバランスに優れ、かつ、耐応力緩和特性に優れているので、コネクタ、その他の端子、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。
ここで、本発明の電子・電気機器用銅合金薄板においては、表面にSnめっきが施されていてもよい。
The copper alloy thin plate for electronic / electric equipment of the present invention is made of the above-described rolled material of copper alloy for electronic / electric equipment, and has a thickness in the range of 0.01 mm to 2.0 mm.
The copper alloy sheet for electronic and electrical equipment with this structure has excellent strength-bending balance and excellent stress relaxation characteristics, so connectors, other terminals, movable conductive pieces of electromagnetic relays, lead frames, etc. Can be suitably used.
Here, in the copper alloy thin plate for electronic / electrical equipment of the present invention, Sn plating may be applied to the surface.

本発明の電子・電気機器用部品は、上述の電子・電気機器用銅合金からなることを特徴とする。
さらに、本発明の電子・電気機器用部品は、上述の電子・電気機器用銅合金薄板からなることを特徴とする。
なお、本発明における電子・電気機器用部品とは、端子、コネクタ、リレー、リードフレーム等を含むものである。
The component for electronic / electrical equipment of the present invention is characterized by comprising the above-described copper alloy for electronic / electrical equipment.
Furthermore, the component for electronic / electrical equipment of the present invention is characterized by comprising the above-described copper alloy thin plate for electronic / electrical equipment.
The electronic / electrical device parts in the present invention include terminals, connectors, relays, lead frames and the like.

本発明の端子は、上述の電子・電気機器用銅合金からなることを特徴とする。
さらに、本発明の端子は、上述の電子・電気機器用銅合金薄板からなることを特徴とする。
なお、本発明における端子は、コネクタ等を含むものである。
The terminal of the present invention is characterized by comprising the above-described copper alloy for electronic and electrical equipment.
Furthermore, the terminal of the present invention is characterized by comprising the above-described copper alloy thin plate for electronic and electrical equipment.
The terminals in the present invention include connectors and the like.

この構成の電子・電気機器用部品及び端子は、強度、曲げ加工性、耐応力緩和特性に優れた電子・電気機器用銅合金を用いて製造されているので、経時的に、もしくは高温環境で、残留応力が緩和されにくく、例えば曲げ部分のバネ性により相手側導電材に圧接させる構造とした場合に、相手側導電部材との接触圧を保つことができる。また、電子・電気機器用部品及び端子の薄肉化を図ることができる。   The components and terminals for electronic / electrical devices with this structure are manufactured using copper alloy for electronic / electrical devices with excellent strength, bending workability, and stress relaxation resistance. Residual stress is less likely to be relaxed. For example, when the structure is made to press against the mating conductive material by the spring property of the bent portion, the contact pressure with the mating conductive member can be maintained. Further, it is possible to reduce the thickness of parts for electronic / electrical equipment and terminals.

本発明によれば、優れた耐力−曲げバランスを有するとともに、耐応力緩和特性に特に優れ、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品に適した電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子を提供することができる。   According to the present invention, the copper for electronic / electric equipment has excellent proof stress-bending balance and is particularly excellent in stress relaxation resistance, and is suitable for electronic / electric equipment parts such as terminals of connectors, relays, lead frames, etc. Alloys, copper alloy thin plates for electronic / electrical equipment, electronic / electrical equipment parts and terminals can be provided.

本実施形態である電子・電気機器用銅合金の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the copper alloy for electronic and electrical apparatuses which is this embodiment.

以下に、本発明の実施形態について説明する。
本実施形態である電子・電気機器用銅合金は、Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなる組成とされ、さらにNi/Si(質量比)が2.0以上6.0以下の範囲内とされている。
Hereinafter, embodiments of the present invention will be described.
The copper alloy for electronic / electric equipment according to the present embodiment contains Ni in an amount of 1.0 mass% to 5.0 mass%, Si is contained in an amount of 0.1 mass% to 1.5 mass%, and the remainder is made of Cu and inevitable impurities. Further, the Ni / Si (mass ratio) is in the range of 2.0 or more and 6.0 or less.

また、本実施形態である電子・電気機器用銅合金は、上記のNiの一部をCo,Mn,Feで代替したものであってもよい。具体的には、Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなる組成とされ、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内とされていてもよい。   Moreover, the copper alloy for electronic / electric equipment which is this embodiment may substitute Co, Mn, Fe for a part of the Ni described above. Specifically, Ni is contained in an amount of 1.0 mass% or more, and one or more of Co, Mn, and Fe are contained, and the total content of Ni, Co, Mn, and Fe is 1 0.0 mass% to 5.0 mass% or less, Si is contained in an amount of 0.1 mass% or more and 1.5 mass% or less, and the remainder is composed of Cu and inevitable impurities, and (Ni + Co + Mn + Fe) / Si (mass ratio) is 2 It may be within the range of 0.0 or more and 6.0 or less.

さらに、本実施形態である電子・電気機器用銅合金は、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上上を合計で0.01mass%以上2.0mass%以下の範囲内で含んでいてもよい。
また、本実施形態である電子・電気機器用銅合金は、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上2.0mass%以下の範囲内で含んでいてもよい。
Furthermore, the copper alloy for electronic / electrical equipment which is this embodiment is 0.01 mass% or more and 2.0 mass% or less in total on any 1 type or 2 types or more in Ti, Cr, Zr, P, and B. It may be included within the range.
Moreover, the copper alloy for electronic / electrical equipment which is this embodiment is 0.01 mass% or more and 2.0 mass% or less in total in any 1 type or 2 types or more in Mg, Sn, Zn, Al, and Ag. It may be included within the range.

そして、本実施形態である電子・電気機器用銅合金においては、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上とされている。 In the copper alloy for electronic / electric equipment according to the present embodiment, the measurement area of 1000 μm 2 or more is measured at a measurement interval of 0.1 μm by the EBSD method, and the CI value analyzed by the data analysis software OIM is 0. The analysis is performed except for the measurement points that are less than or equal to 1, and the crystal grain boundaries are defined as the crystal grain boundaries between the measurement points where the azimuth difference between adjacent measurements exceeds 15 °, and Σ3, Σ9, Σ27a, and Σ27b for all the grain boundary lengths L The special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths, is 30% or more.

また、本実施形態である電子・電気機器用銅合金においては、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.2以上とされている。   Further, in the copper alloy for electronic / electric equipment according to this embodiment, the X-ray diffraction intensity from the {111} plane on the material surface is I {111}, and the X-ray diffraction intensity from the {200} plane is I {200. }, The X-ray diffraction intensity from the {220} plane is I {220}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {331} plane is I {331}, The X-ray diffraction intensity from the {420} plane is I {420}, and the ratio of the X-ray diffraction intensity from the {200} plane R {200} is R {200} = I {200} / (I {111} + I When {200} + I {220} + I {311} + I {331} + I {420}), R {200} is 0.2 or more.

さらに、本実施形態である電子・電気機器用銅合金においては、材料表面における{220}面からのX線回折強度の割合R{220}を、R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.8以下とされている。
なお、本実施形態である電子・電気機器用銅合金を圧延板とした場合には、圧延板の板表面(圧延面)において、上述のX線回折強度を測定することになる。
Furthermore, in the copper alloy for electronic / electric equipment according to the present embodiment, the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface is expressed as R {220} = I {220} / (I When {111} + I {200} + I {220} + I {311} + I {331} + I {420}), R {220} is set to 0.8 or less.
In addition, when the copper alloy for electronic / electrical equipment which is this embodiment is used as a rolled plate, the above-mentioned X-ray diffraction intensity is measured on the plate surface (rolled surface) of the rolled plate.

また、本実施形態である電子・電気機器用銅合金においては、平均結晶粒径(双晶を含む)が0.5μm以上100μm以下の範囲内とされている。   Moreover, in the copper alloy for electronic / electrical equipment which is this embodiment, the average crystal grain size (including twins) is in the range of 0.5 μm to 100 μm.

ここで、上述のように成分組成、特殊粒界長さ比率(Lσ/L)、X線回折強度、平均結晶粒径を規定した理由について以下に説明する。   Here, the reason why the component composition, the special grain boundary length ratio (Lσ / L), the X-ray diffraction intensity, and the average crystal grain size are defined as described above will be described below.

〔Ni〕
Niは、Siと共添されることにより、銅の母相中に分散する微細な析出物を形成する元素であり、導電率を維持したまま強度を大幅に向上させる作用効果を有する。
ここで、Niの含有量が1.0mass%未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。一方、Niの含有量が5.0mass%を超える場合には、熱間加工時に割れが発生するおそれがある。
以上のことから、本実施形態では、Niの含有量を1.0mass%以上5.0mass%以下の範囲内に設定している。なお、析出物の個数を確保して強度を確実に向上させるためには、Niの含有量を1.5mass%以上とすることが好ましい。また、熱間加工時の割れを確実に抑制するためには、Niの含有量を4.0mass%以下とすることが好ましい。
[Ni]
Ni is an element that forms fine precipitates dispersed in the parent phase of copper when co-added with Si, and has the effect of greatly improving strength while maintaining conductivity.
Here, when the Ni content is less than 1.0 mass%, the number of precipitates is insufficient, and the strength may not be sufficiently improved. On the other hand, if the Ni content exceeds 5.0 mass%, cracks may occur during hot working.
From the above, in this embodiment, the Ni content is set within a range of 1.0 mass% to 5.0 mass%. In order to secure the number of precipitates and improve the strength reliably, the Ni content is preferably set to 1.5 mass% or more. Moreover, in order to suppress the crack at the time of hot processing reliably, it is preferable to make content of Ni into 4.0 mass% or less.

〔Si〕
Siは、Niと共添されることにより、銅の母相中に分散する微細な析出物を形成する元素であり、導電率を維持したまま強度を大幅に向上させる作用効果を有する。
ここで、Siの含有量が0.1mass%未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。一方、Siの含有量が1.5mass%を超える場合には、熱間加工時に割れが発生するおそれがある。
以上のことから、本実施形態では、Siの含有量を0.1mass%以上1.5mass%以下の範囲内に設定している。なお、析出物の個数を確保して強度を確実に向上させるためには、Siの含有量を0.3mass%以上とすることが好ましい。また、熱間加工時の割れを確実に抑制するためには、Siの含有量を1.3mass%以下とすることが好ましい。
[Si]
Si is an element that forms fine precipitates dispersed in the copper matrix by being co-added with Ni, and has the effect of greatly improving the strength while maintaining the electrical conductivity.
Here, when the Si content is less than 0.1 mass%, the number of precipitates is insufficient, and the strength may not be sufficiently improved. On the other hand, if the Si content exceeds 1.5 mass%, cracks may occur during hot working.
From the above, in this embodiment, the Si content is set within a range of 0.1 mass% or more and 1.5 mass% or less. In addition, in order to ensure the number of precipitates and to surely improve the strength, the Si content is preferably set to 0.3 mass% or more. Moreover, in order to suppress the crack at the time of hot processing reliably, it is preferable to make content of Si into 1.3 mass% or less.

〔NiとSiの質量比:Ni/Si〕
NiとSiは、上述のように銅の母相中に分散する微細な析出物を形成する。この析出物は、NiSiを主とする金属間化合物からなる。
ここで、NiとSiの質量比Ni/Siが2.0未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。また、過剰なSiによって導電率が低下してしまうおそれがある。一方、NiとSiの質量比Ni/Siが6.0を超える場合には、析出物の個数が不足して強度を十分に向上させることができないおそれがある。なお、上述の作用効果を確実に奏功せしめるためには、NiとSiの質量比:Ni/Siを3.0以上5.0以下の範囲内とすることが好ましい。
[Mass ratio of Ni and Si: Ni / Si]
Ni and Si form fine precipitates dispersed in the copper matrix as described above. This deposit consists of an intermetallic compound mainly composed of Ni 2 Si.
Here, when the mass ratio Ni / Si of Ni and Si is less than 2.0, the number of precipitates is insufficient, and the strength may not be sufficiently improved. Moreover, there exists a possibility that electrical conductivity may fall with excess Si. On the other hand, when the mass ratio Ni / Si of Ni and Si exceeds 6.0, the number of precipitates may be insufficient and the strength may not be sufficiently improved. In order to ensure that the above-described effects are achieved, it is preferable that the mass ratio of Ni and Si: Ni / Si is in the range of 3.0 to 5.0.

〔Co,Mn,Fe〕
Co,Mn,Feといった元素は、Niと同様に、Siとともに金属間化合物からなる微細な析出物を形成し、導電率を維持したまま強度を大幅に向上させる作用効果を有する。よって、Niの一部をCo,Mn,Feを代替することができる。
ここで、Niの含有量が1.0mass%未満、Ni,Co,Mn,Feの含有量の合計が1.0mass%以下である場合には、微細な析出物の個数が不足し、強度を十分に向上させることができないおそれがある。一方、Ni,Co,Mn,Feの含有量の合計が5.0mass%を超える場合には、熱間加工時に割れが発生するおそれがある。
以上のことから、本実施形態では、Niの含有量を1.0mass%以上、Ni,Co,Mn,Feの含有量の合計を1.0mass%超え5.0mass%以下の範囲内に設定している。なお、熱間加工時の割れを確実に抑制するためには、Ni,Co,Mn,Feの含有量の合計を4.0mass%以下とすることが好ましい。
[Co, Mn, Fe]
Like Ni, elements such as Co, Mn, and Fe form fine precipitates made of an intermetallic compound together with Si, and have the effect of greatly improving strength while maintaining conductivity. Therefore, Co, Mn, and Fe can be substituted for part of Ni.
Here, when the Ni content is less than 1.0 mass% and the total content of Ni, Co, Mn, and Fe is 1.0 mass% or less, the number of fine precipitates is insufficient and the strength is reduced. There is a possibility that it cannot be improved sufficiently. On the other hand, when the total content of Ni, Co, Mn, and Fe exceeds 5.0 mass%, cracks may occur during hot working.
From the above, in this embodiment, the Ni content is set within a range of 1.0 mass% or more and the total content of Ni, Co, Mn, and Fe is within a range of 1.0 mass% to 5.0 mass%. ing. In order to surely suppress cracking during hot working, the total content of Ni, Co, Mn, and Fe is preferably set to 4.0 mass% or less.

〔Ni,Co,Mn,FeとSiの質量比:(Ni+Co+Mn+Fe)/Si〕
Ni,Co,Mn,FeとSiは、上述のように銅の母相中に分散する微細な析出物を形成する。この析出物は、NiSiを主とする金属間化合物からなる。
ここで、Ni,Co,Mn,FeとSiの質量比:(Ni+Co+Mn+Fe)/Siが2.0未満の場合には、析出物の個数が不足し、強度を十分に向上させることができないおそれがある。また、過剰なSiによって導電率が低下してしまうおそれがある。一方、Ni,Co,Mn,FeとSiの質量比:(Ni+Co+Mn+Fe)/Siが6.0を超える場合には、析出物の個数が不足して強度を十分に向上させることができないおそれがある。なお、上述の作用効果を確実に奏功せしめるためには、Ni,Co,Mn,FeとSiの質量比:(Ni+Co+Mn+Fe)/Siを3.0以上5.0以下の範囲内とすることが好ましい。
[Mass ratio of Ni, Co, Mn, Fe and Si: (Ni + Co + Mn + Fe) / Si]
Ni, Co, Mn, Fe and Si form fine precipitates dispersed in the copper matrix as described above. This deposit consists of an intermetallic compound mainly composed of Ni 2 Si.
Here, when the mass ratio of Ni, Co, Mn, Fe and Si: (Ni + Co + Mn + Fe) / Si is less than 2.0, the number of precipitates may be insufficient, and the strength may not be sufficiently improved. is there. Moreover, there exists a possibility that electrical conductivity may fall with excess Si. On the other hand, if the mass ratio of Ni, Co, Mn, Fe and Si: (Ni + Co + Mn + Fe) / Si exceeds 6.0, the number of precipitates may be insufficient and the strength may not be sufficiently improved. . In order to surely achieve the above-described effects, it is preferable that the mass ratio of Ni, Co, Mn, Fe and Si: (Ni + Co + Mn + Fe) / Si is within a range of 3.0 to 5.0. .

〔Ti,Cr,Zr,P,B〕
Ti,Cr,Zr,P,Bといった元素は、Cu,Ni,Siとともに金属間化合物からなる析出物を形成し、導電率を維持したまま強度を大幅に向上させる作用効果を有する。よって、さらなる強度向上を図る場合には、適宜添加することが好ましい。
ここで、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上の含有量の合計が0.01mass%未満の場合には、上述した作用効果を確実に奏功せしめることができないおそれがある。一方、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上の含有量の合計が2.0mass%を超える場合には、導電率が大幅に低下するおそれがある。
以上のことから、Ti,Cr,Zr,P,Bといった元素を添加する場合には、Ti,Cr,Zr,P,Bのうちのいずれか1種または2種以上の含有量の合計を0.01mass%以上2.0mass%以下の範囲内とすることが好ましい。
[Ti, Cr, Zr, P, B]
Elements such as Ti, Cr, Zr, P, and B form a precipitate made of an intermetallic compound together with Cu, Ni, and Si, and have an effect of greatly improving strength while maintaining conductivity. Therefore, it is preferable to add appropriately when further improving the strength.
Here, when the total content of any one or more of Ti, Cr, Zr, P, and B is less than 0.01 mass%, the above-described effects can be reliably achieved. It may not be possible. On the other hand, when the total content of any one or more of Ti, Cr, Zr, P, and B exceeds 2.0 mass%, the conductivity may be significantly reduced.
From the above, when adding elements such as Ti, Cr, Zr, P, and B, the total content of any one or more of Ti, Cr, Zr, P, and B is 0. It is preferable to be within the range of 0.01 mass% or more and 2.0 mass% or less.

〔Mg,Sn,Zn,Al,Ag〕
Mg,Sn,Zn,Al,Agといった元素は、銅の母相中に固溶し、強度を大幅に向上させる作用効果を有する。よって、さらなる強度向上を図る場合には、適宜添加することが好ましい。
ここで、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上の含有量の合計が0.01mass%未満の場合には、上述した作用効果を確実に奏功せしめることができないおそれがある。一方、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上の含有量の合計が2.0mass%を超える場合には、導電率が大幅に低下するおそれがある。
以上のことから、Mg,Sn,Zn,Al,Agといった元素を添加する場合には、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上の含有量の合計を0.01mass%以上2.0mass%以下の範囲内とすることが好ましい。
[Mg, Sn, Zn, Al, Ag]
Elements such as Mg, Sn, Zn, Al, and Ag are dissolved in the copper matrix and have the effect of significantly improving the strength. Therefore, it is preferable to add appropriately when further improving the strength.
Here, when the total content of any one or more of Mg, Sn, Zn, Al, and Ag is less than 0.01 mass%, the above-described effects can be reliably achieved. It may not be possible. On the other hand, when the total content of any one or more of Mg, Sn, Zn, Al, and Ag exceeds 2.0 mass%, the conductivity may be significantly reduced.
From the above, when adding elements such as Mg, Sn, Zn, Al, and Ag, the total content of any one or more of Mg, Sn, Zn, Al, and Ag is 0. It is preferable to be within the range of 0.01 mass% or more and 2.0 mass% or less.

〔不可避不純物〕
なお、上述した元素以外の不可避不純物としては、Ca,Sr,Ba,Sc,Y,希土類元素,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Te,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Ge,As,Sb,Tl,Pb,Bi,S,O,C,Be,N,H,Hg等が挙げられる。これらの不可避不純物は、総量で0.3質量%以下であることが望ましい。
[Inevitable impurities]
Note that inevitable impurities other than the elements described above include Ca, Sr, Ba, Sc, Y, rare earth elements, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Te, Rh, Ir. , Pd, Pt, Au, Cd, Ga, In, Ge, As, Sb, Tl, Pb, Bi, S, O, C, Be, N, H, Hg, and the like. These inevitable impurities are desirably 0.3% by mass or less in total.

〔特殊粒界長さ比率(Lσ/L)〕
特殊粒界は結晶性の高い粒界(原子配列の乱れが少ない粒界)であるため、加工時の破壊の起点となりにくくなる。よって、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)を高くすると、曲げ加工時の破壊の起点となる粒界の割合を少なくすることができ、曲げ加工性を向上させることができる。また、後述する{200}面の割合を増加させた組織中に特殊粒界を導入することにより、相乗効果により曲げ加工時の破壊の起点は大幅に減少し、曲げ加工性は飛躍的に上昇する。さらに、特殊粒界はランダム粒界に比べて粒界の拡散が遅いことから、特殊粒界長さ比率(Lσ/L)を高くすることで結晶粒径を小さくしても、耐応力緩和特性が劣化することを抑制できる。
そこで、本実施形態においては、特殊粒界長さ比率(Lσ/L)を30%以上に設定している。上述の作用効果を確実に奏功せしめるためには、特殊粒界長さ比率(Lσ/L)を35%以上とすることが好ましく、40%以上とすることがさらに好ましい。より好ましくは50%以上である。
なお、EBSD装置の解析ソフトOIMにより解析したときのCI値(信頼性指数)は、測定点の結晶パターンが明確ではない場合にその値が小さくなり、CI値が0.1以下ではその解析結果を信頼することが難しい。よって、本実施形態では、CI値が0.1以下である信頼性の低い測定点を除いた。
[Special grain boundary length ratio (Lσ / L)]
The special grain boundary is a grain boundary with high crystallinity (a grain boundary with little disorder of atomic arrangement), and thus it becomes difficult to be a starting point of fracture during processing. Therefore, when the special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b with respect to all the grain boundary lengths L, is increased, It is possible to reduce the ratio of grain boundaries that are the starting points of fracture, and to improve bending workability. In addition, by introducing special grain boundaries in the structure with an increased {200} plane ratio, which will be described later, the starting point of fracture during bending is greatly reduced due to a synergistic effect, and bending workability is dramatically increased. To do. Furthermore, since special grain boundaries are slower in diffusion than random grain boundaries, even if the grain size is reduced by increasing the special grain boundary length ratio (Lσ / L), the stress relaxation resistance Can be prevented from deteriorating.
Therefore, in this embodiment, the special grain boundary length ratio (Lσ / L) is set to 30% or more. In order to achieve the above-described effects, the special grain boundary length ratio (Lσ / L) is preferably 35% or more, and more preferably 40% or more. More preferably, it is 50% or more.
The CI value (reliability index) when analyzed by the analysis software OIM of the EBSD device is small when the crystal pattern of the measurement point is not clear, and the analysis result is obtained when the CI value is 0.1 or less. Difficult to trust. Therefore, in the present embodiment, measurement points with low reliability whose CI value is 0.1 or less are excluded.

〔X線回折強度比:R{200}〕
{200}面は、曲げ加工の応力方向に対して、滑り系が活動し易い方位関係となるため、局所的な変形を抑制することができ、曲げ加工時のクラックの発生を抑制することが可能となる。また、上述した特殊粒界比率の高い組織において{200}面割合を高めることで、相乗効果により曲げ加工時の破壊の起点は大幅に減少し、曲げ加工性は飛躍的に上昇する。
このため、材料表面における{200}面からのX線回折強度の割合R{200}を0.2以上とすることにより、曲げ加工性を向上させることが可能となる。ここで、{200}面からのX線回折強度の割合R{200}は、上記の範囲内でも0.25以上が好ましく、0.3以上がさらに好ましい。
なお、{200}面からのX線回折強度の割合R{200}の上限には、特に規定はないが、0.9以下とすることが好ましい。
[X-ray diffraction intensity ratio: R {200}]
Since the {200} plane has an azimuth relationship in which the sliding system is easily active with respect to the stress direction of bending, local deformation can be suppressed, and generation of cracks during bending can be suppressed. It becomes possible. Further, by increasing the {200} plane ratio in the above-described structure with a high special grain boundary ratio, the starting point of fracture during bending is greatly reduced due to a synergistic effect, and the bending workability is dramatically increased.
For this reason, it is possible to improve the bending workability by setting the ratio R {200} of the X-ray diffraction intensity from the {200} plane on the material surface to 0.2 or more. Here, the ratio R {200} of the X-ray diffraction intensity from the {200} plane is preferably 0.25 or more, and more preferably 0.3 or more, even within the above range.
The upper limit of the ratio R {200} of the X-ray diffraction intensity from the {200} plane is not particularly specified, but is preferably 0.9 or less.

〔X線回折強度比:R{220}〕
材料表面における{220}面は、圧延集合組織によるものであり、この{220}面の割合が高くなると、圧延方向に対して垂直方向に曲げ加工を行った場合に、曲げ加工の応力方向に対して滑り系が活動しにくい方位関係となる。これにより、曲げ加工時に変形が局所的に発生し、クラックの原因となる。
このため、材料表面における{220}面からのX線回折強度の割合R{220}を0.8以下に抑制することにより、クラックの発生を抑制でき、曲げ加工性が向上するものと考えられる。ここで、{220}面からのX線回折強度の割合R{220}は、上記の範囲内でも0.75以下が好ましく、0.7以下がさらに好ましい。
なお、{220}面からのX線回折強度の割合R{220}の下限には、特に規定はないが、0.1以上とすることが好ましい。
[X-ray diffraction intensity ratio: R {220}]
The {220} plane on the surface of the material is due to the rolling texture. When the ratio of the {220} plane is increased, when the bending process is performed in the direction perpendicular to the rolling direction, the stress direction of the bending process is increased. On the other hand, it becomes an orientation relationship in which the sliding system is difficult to activate. Thereby, a deformation | transformation generate | occur | produces locally at the time of a bending process, and causes a crack.
For this reason, by suppressing the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface to 0.8 or less, it is considered that the occurrence of cracks can be suppressed and the bending workability is improved. . Here, the ratio R {220} of the X-ray diffraction intensity from the {220} plane is preferably 0.75 or less and more preferably 0.7 or less even within the above range.
The lower limit of the ratio R {220} of the X-ray diffraction intensity from the {220} plane is not particularly specified, but is preferably 0.1 or more.

〔平均結晶粒径〕
耐応力緩和特性には、材料の結晶粒径もある程度の影響を与えることが知られており、一般には結晶粒径が小さいほど耐応力緩和特性は低下する。本実施形態である電子・電気機器用銅合金の場合、成分組成と各合金元素の比率の適切な調整、及び、結晶性の高い特殊粒界の比率を適切にすることによって良好な耐応力緩和特性を確保できるため、結晶粒径を小さくして、強度と曲げ加工性の向上を図ることができる。
したがって、本実施形態である電子・電気機器用銅合金においては、粒界(ランダム粒界及び特殊粒界)によって構成される結晶粒の平均結晶粒径を、0.5μm以上100μm以下の範囲内とすることが好ましい。なお、耐応力緩和特性をさらに向上させるためには、平均結晶粒径を1.0μm以上とすることが好ましく、2.0μm以上とすることがさらに好ましい。また、強度、曲げ加工性を確実に確保するためには、平均結晶粒径を75μm以下とすることが好ましく、50μm以下とすることがさらに好ましい。
以上のように、本実施形態である電子・電気機器用銅合金においては、要求される特性に応じて平均結晶粒径を調整することが好ましい。
[Average crystal grain size]
It is known that the crystal grain size of the material also has some influence on the stress relaxation resistance. Generally, the stress relaxation resistance decreases as the crystal grain size decreases. In the case of the copper alloy for electronic / electric equipment according to this embodiment, good stress relaxation can be achieved by appropriately adjusting the ratio of the component composition and each alloy element and by appropriately adjusting the ratio of the special grain boundary having high crystallinity. Since the characteristics can be secured, the crystal grain size can be reduced to improve the strength and bending workability.
Therefore, in the copper alloy for electronic and electrical equipment according to the present embodiment, the average crystal grain size of the crystal grains constituted by the grain boundaries (random grain boundaries and special grain boundaries) is in the range of 0.5 μm to 100 μm. It is preferable that In order to further improve the stress relaxation resistance, the average grain size is preferably 1.0 μm or more, and more preferably 2.0 μm or more. Moreover, in order to ensure the strength and bending workability, the average crystal grain size is preferably 75 μm or less, and more preferably 50 μm or less.
As described above, in the copper alloy for electronic / electric equipment according to the present embodiment, it is preferable to adjust the average crystal grain size according to the required characteristics.

次に、このような構成とされた本実施形態である電子・電気機器用銅合金の製造方法について、図1に示すフロー図を参照して説明する。   Next, a manufacturing method of the copper alloy for electronic / electric equipment according to the present embodiment having such a configuration will be described with reference to the flowchart shown in FIG.

〔溶解・鋳造工程:S01〕
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。銅原料としては、純度が99.99%以上の4NCu(無酸素銅等)を使用することが望ましいが、スクラップを原料として用いてもよい。また、各種元素の添加には、元素単体や母合金等を用いることができる。また、各種元素を含む原料を銅原料とともに溶解してもよい。また、リサイクル材およびスクラップ材を用いてもよい。
原料の溶解には、大気雰囲気炉を用いてもよいが、添加元素の酸化を抑制するために、真空炉、不活性ガス雰囲気又は還元性雰囲気とされた雰囲気炉を用いてもよい。
次いで、成分調整された銅合金溶湯を、適宜の鋳造法、例えば金型鋳造などのバッチ式鋳造法、あるいは連続鋳造法、半連続鋳造法などによって鋳造して鋳塊を得る。
[Melting / Casting Process: S01]
First, the above-described elements are added to a molten copper obtained by melting a copper raw material to adjust the components, thereby producing a molten copper alloy. Although it is desirable to use 4NCu (oxygen-free copper or the like) having a purity of 99.99% or more as the copper raw material, scrap may be used as the raw material. Further, for the addition of various elements, an elemental element or a mother alloy can be used. Moreover, you may melt | dissolve the raw material containing various elements with a copper raw material. Further, recycled materials and scrap materials may be used.
An atmospheric furnace may be used for melting the raw material, but an atmosphere furnace having a vacuum furnace, an inert gas atmosphere, or a reducing atmosphere may be used to suppress oxidation of the additive element.
Next, the copper alloy melt whose components are adjusted is cast by an appropriate casting method, for example, a batch casting method such as die casting, a continuous casting method, a semi-continuous casting method, or the like to obtain an ingot.

〔加熱工程:S02〕
その後、必要に応じて、鋳塊の偏析を解消して鋳塊組織を均一化するために均質化熱処理を行う。または晶出物、析出物を固溶させるために溶体化熱処理を行う。この熱処理の条件は特に限定しないが、通常は700〜1100℃において5分〜24時間加熱すればよい。熱処理温度が700℃未満、あるいは熱処理時間が5分未満では、十分な均質化効果または溶体化効果が得られないおそれがある。一方、熱処理温度が1100℃を超えれば、偏析部位が一部溶解してしまうおそれがあり、さらに熱処理時間が24時間を超えることはコスト上昇を招くだけである。熱処理後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、熱処理後には、必要に応じて面削を行う。
[Heating step: S02]
Thereafter, if necessary, a homogenization heat treatment is performed in order to eliminate segregation of the ingot and make the ingot structure uniform. Alternatively, a solution heat treatment is performed to dissolve the crystallized product and the precipitate. The conditions for this heat treatment are not particularly limited, but usually it may be heated at 700 to 1100 ° C. for 5 minutes to 24 hours. When the heat treatment temperature is less than 700 ° C. or the heat treatment time is less than 5 minutes, there is a possibility that a sufficient homogenization effect or solution effect cannot be obtained. On the other hand, if the heat treatment temperature exceeds 1100 ° C., a part of the segregated part may be dissolved, and if the heat treatment time exceeds 24 hours, only the cost increases. The cooling conditions after the heat treatment may be determined as appropriate, but usually water quenching may be performed. After the heat treatment, chamfering is performed as necessary.

〔熱間加工工程:S03〕
次いで、粗加工の効率化と組織の均一化のために、鋳塊に対して熱間加工を行ってもよい。この熱間加工の条件は特に限定されないが、通常は、開始温度600〜1100℃、終了温度300〜850℃、加工率10〜99%程度とすることが好ましい。なお、熱間加工開始温度までの鋳塊加熱は、前述の加熱工程S02と兼ねてもよい。熱間加工後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、熱間加工後には、必要に応じて面削を行う。熱間加工の加工方法については、特に限定されないが、最終形状が板や条の場合は熱間圧延を適用すればよい。また最終形状が線や棒の場合には、押出や溝圧延を、また最終形状がバルク形状の場合には、鍛造やプレスを適用すればよい。
[Hot working process: S03]
Next, hot working may be performed on the ingot in order to increase the efficiency of roughing and make the structure uniform. The conditions for this hot working are not particularly limited, but it is usually preferable that the starting temperature is 600 to 1100 ° C., the finishing temperature is 300 to 850 ° C., and the working rate is about 10 to 99%. The ingot heating up to the hot working start temperature may also serve as the heating step S02 described above. Cooling conditions after hot working may be determined as appropriate, but usually water quenching may be performed. In addition, after hot processing, it chamfers as needed. Although it does not specifically limit about the processing method of hot processing, What is necessary is just to apply hot rolling, when a final shape is a board or a strip. If the final shape is a wire or a rod, extrusion or groove rolling may be applied, and if the final shape is a bulk shape, forging or pressing may be applied.

〔粗加工工程:S04〕
次に、加熱工程S02で均質化処理を施した鋳塊、あるいは熱間圧延などの熱間加工S03を施した熱間加工材に対して、粗加工を施す。この粗加工工程S04における温度条件は特に限定はないが、冷間又は温間加工となる−200℃から+200℃の範囲内とすることが好ましい。粗加工の加工率も特に限定されないが、通常は10〜99%程度とし、好ましくは50〜99%とする。加工方法は特に限定されないが、最終形状が板、条の場合は、圧延を適用すればよい。また最終形状が線や棒の場合には、押出や溝圧延、さらに最終形状がバルク形状の場合には、鍛造やプレスを適用する事ができる。なお、溶体化の徹底のために、S02〜S04を繰り返してもよい。
[Roughing process: S04]
Next, roughing is performed on the ingot subjected to the homogenization treatment in the heating step S02 or the hot-worked material subjected to the hot working S03 such as hot rolling. The temperature condition in the roughing step S04 is not particularly limited, but is preferably in the range of −200 ° C. to + 200 ° C. that is cold or warm processing. The processing rate of roughing is also not particularly limited, but is usually about 10 to 99%, preferably 50 to 99%. Although the processing method is not particularly limited, rolling may be applied when the final shape is a plate or strip. When the final shape is a wire or a rod, extrusion or groove rolling can be applied. When the final shape is a bulk shape, forging or pressing can be applied. It should be noted that S02 to S04 may be repeated for thorough solution.

〔中間熱処理工程:S05〕
冷間もしくは温間での粗加工工程S04の後に、溶体化の徹底、再結晶処理のため中間熱処理を施す。中間熱処理の好ましい加熱温度、加熱時間は、次に説明するように、具体的な熱処理の手法によっても異なる。すなわち中間熱処理工程S05の具体的手法としては、バッチ式の加熱炉を用いても、あるいは連続焼鈍ラインを用いて連続的に加熱してもよい。バッチ式の加熱炉を使用する場合は、300〜 800℃の温度で、5分〜24時間加熱することが望ましく、また連続焼鈍ラインを用いる場合は、加熱到達温度を500〜900℃とし、かつその範囲内の温度で、保持なし、もしくは1秒〜5分程度保持することが好ましい。また、中間熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、還元性雰囲気)とすることが好ましい。
中間熱処理後の冷却条件は、特に限定しないが、通常は水焼入れすればよい。
なお、必要に応じて、上記の粗加工工程S04と中間熱処理工程S05を、複数回繰り返してもよい。
[Intermediate heat treatment step: S05]
After the rough or warm processing step S04, an intermediate heat treatment is performed for thorough solution treatment and recrystallization. The preferable heating temperature and heating time of the intermediate heat treatment vary depending on the specific heat treatment method, as will be described below. That is, as a specific method of the intermediate heat treatment step S05, a batch-type heating furnace may be used, or continuous heating may be performed using a continuous annealing line. When using a batch-type heating furnace, it is desirable to heat at a temperature of 300 to 800 ° C. for 5 minutes to 24 hours, and when using a continuous annealing line, the heating temperature is 500 to 900 ° C., and It is preferable to keep the temperature within the range without holding or for about 1 second to 5 minutes. The atmosphere for the intermediate heat treatment is preferably a non-oxidizing atmosphere (nitrogen gas atmosphere, inert gas atmosphere, reducing atmosphere).
The cooling conditions after the intermediate heat treatment are not particularly limited, but usually water quenching may be performed.
If necessary, the roughing step S04 and the intermediate heat treatment step S05 may be repeated a plurality of times.

〔中間加工工程:S06〕
次に、中間熱処理工程S05を施した中間熱処理材に対して、中間加工を施す。この中間加工工程S06は、後述する仕上熱処理工程S07で、ひずみ誘起粒界移動により特殊粒界を形成させるために実施される工程であり、加工率は1%以上40%未満とすることが好ましい。加工率が40%以上であると、次工程の仕上熱処理工程S07において、ひずみ誘起粒界移動が起こりにくく、一般的な(核生成・成長機構による)再結晶が生じ、ランダム粒界の割合が増加し、特殊粒界長さ比率(Lσ/L)を十分に向上させることができないおそれがある。次工程の仕上熱処理工程S07において、特殊粒界長さ比率(Lσ/L)を確実に向上させるためには、加工率を1%以上30%以下とすることが好ましく、1%以上25%以下とすることがさらに好ましい。
ここで、加工方法は特に限定されないが、最終形態が板や条である場合、圧延を採用する。他には鍛造やプレス、溝圧延を採用しても良い。温度も特に限定されないが、析出が起こらないように、冷間または温間となる−200〜+200℃が好ましい。
[Intermediate processing step: S06]
Next, intermediate processing is performed on the intermediate heat treatment material that has undergone the intermediate heat treatment step S05. The intermediate processing step S06 is a finishing heat treatment step S07, which will be described later, and is a step performed to form a special grain boundary by strain-induced grain boundary movement, and the processing rate is preferably 1% or more and less than 40%. . When the processing rate is 40% or more, strain-induced grain boundary migration hardly occurs in the subsequent finishing heat treatment step S07, and general recrystallization (by the nucleation / growth mechanism) occurs. The special grain boundary length ratio (Lσ / L) may not be sufficiently improved. In the next finishing heat treatment step S07, in order to surely improve the special grain boundary length ratio (Lσ / L), the processing rate is preferably 1% or more and 30% or less, and preferably 1% or more and 25% or less. More preferably.
Here, the processing method is not particularly limited, but rolling is employed when the final form is a plate or a strip. In addition, forging, pressing, and groove rolling may be employed. The temperature is not particularly limited, but is preferably −200 to + 200 ° C. which is cold or warm so that precipitation does not occur.

〔仕上熱処理工程:S07〕
中間加工工程S06の後に、再結晶処理のための仕上熱処理を施す。この仕上熱処理を実施することで、ひずみ誘起粒界移動が起こり多数の特殊粒界が形成される。このとき、保持温度、到達温度は一般的な再結晶温度と比較して低温のときにひずみ誘起粒界移動が起こり易いが、低温すぎるとひずみ誘起粒界移動が生じないため好ましくない。
仕上熱処理工程S07の具体的手法としては、Ni及びSiを含有する金属間化合物を析出させるために、バッチ式の加熱炉を用いてもよい。あるいは連続焼鈍ラインを用いて連続的に加熱してもよい。バッチ式の加熱炉を使用する場合は、300〜800℃の温度で、5分〜24時間加熱することが好ましく、400〜700℃の温度で、5分〜24時間加熱することがさらに好ましい。また連続焼鈍ラインを用いる場合は、加熱到達温度350〜900℃とし、かつその範囲内の温度で、保持なし、もしくは1秒〜5分程度保持することが好ましく、加熱到達温度500〜800℃とし、かつその範囲内の温度で、保持なし、もしくは1秒〜5分程度保持することがさらに好ましい。
また、仕上熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、還元性雰囲気)とすることが好ましい。
さらに、昇温過程でのひずみの解放を抑制してひずみ誘起粒界移動を生じ易くし、特殊粒界を十分に形成させるためには、200℃から400℃の間の昇温速度を、200℃/min.以上とすることが好ましく、600℃/min.以上とすることがさらに好ましい。
なお、中間加工工程S06と仕上熱処理工程S07を繰り返すことにより、ひずみ誘起粒界移動が促進され、特殊粒界長さ比率(Lσ/L)が増加するため、中間加工工程S06と仕上熱処理工程S07を2回以上繰り返すことが好ましく、3回以上繰り返すことがさらに好ましい。
[Finish heat treatment step: S07]
After the intermediate processing step S06, a finish heat treatment for recrystallization is performed. By performing this finishing heat treatment, strain-induced grain boundary migration occurs and a large number of special grain boundaries are formed. At this time, the holding temperature and the ultimate temperature are likely to cause strain-induced grain boundary migration when the temperature is lower than the general recrystallization temperature, but if the temperature is too low, strain-induced grain boundary migration does not occur.
As a specific method of the finish heat treatment step S07, a batch-type heating furnace may be used to precipitate an intermetallic compound containing Ni and Si. Or you may heat continuously using a continuous annealing line. When using a batch-type heating furnace, it is preferably heated at a temperature of 300 to 800 ° C. for 5 minutes to 24 hours, more preferably at a temperature of 400 to 700 ° C. for 5 minutes to 24 hours. Moreover, when using a continuous annealing line, it is preferable to make it the heating attainment temperature 350-900 degreeC, and hold | maintain at the temperature within the range, without holding | maintenance or for 1 second-about 5 minutes, and the heating attainment temperature is made 500-800 degreeC. Further, it is more preferable to hold at a temperature within the range without holding or for about 1 second to 5 minutes.
The atmosphere for the finish heat treatment is preferably a non-oxidizing atmosphere (nitrogen gas atmosphere, inert gas atmosphere, reducing atmosphere).
Furthermore, in order to suppress the release of strain in the temperature rising process to easily cause strain-induced grain boundary movement and to sufficiently form the special grain boundary, the temperature rising rate between 200 ° C. and 400 ° C. is set to 200 ° C. ° C / min. It is preferable to set it as the above, 600 degreeC / min. More preferably, the above is used.
Note that by repeating the intermediate working step S06 and the finish heat treatment step S07, strain-induced grain boundary movement is promoted and the special grain boundary length ratio (Lσ / L) increases, so the intermediate working step S06 and the finish heat treatment step S07. Is preferably repeated twice or more, more preferably three or more times.

〔時効熱処理工程:S08〕
仕上熱処理工程S07においてNi、Siを含有する金属間化合物の析出物が十分に形成されなかった場合には、Ni、Siを含有する金属間化合物の更なる析出のため、時効熱処理を施してもよい。この時効熱処理の条件は特に限定されないが、通常は、熱処理温度200〜600℃の温度で、5分〜48時間加熱することが望ましい。
[Aging heat treatment step: S08]
In the finishing heat treatment step S07, when sufficient precipitates of intermetallic compounds containing Ni and Si are not formed, aging heat treatment may be performed for further precipitation of intermetallic compounds containing Ni and Si. Good. The conditions for this aging heat treatment are not particularly limited, but it is usually desirable to heat at a heat treatment temperature of 200 to 600 ° C. for 5 minutes to 48 hours.

〔仕上加工工程:S09〕
次に、仕上熱処理工程S07を施した材料、あるいは時効熱処理S08を施した材料に対して、最終寸法、最終形状まで仕上加工を行ってもよい。仕上加工工程S09における加工方法は特に限定されないが、最終製品形態が板や条である場合には、圧延(冷間圧延)を適用すればよい。その他、最終製品形態に応じて、鍛造やプレス、溝圧延などを適用してもよい。なお、本実施形態では、仕上加工工程S09として冷間圧延を実施し、圧延材を製出している。
加工率は最終板厚や最終形状に応じて適宜選択すればよい。ここで、加工率が1%未満では、耐力を向上させる効果が十分に得られなくなるおそれがある。一方、加工率が70%を超えれば、特殊粒界長さ比率(Lσ/L)が減少するとともに、再結晶組織が失われて加工組織となることでR{200}が減少、R{220}が増大し、曲げ加工性、耐応力緩和特性が低下してしまうおそれがある。以上のことから、仕上加工工程S09における加工率は1〜70%とすることが好ましく、1〜50%とすることがさらに好ましく、5〜40%とすることが特に好ましい。仕上加工工程S09後は、これをそのまま製品として用いてもよいが、通常は、さら低温焼鈍を施すことになる。
[Finishing process: S09]
Next, the finishing process may be performed to the final dimension and the final shape on the material subjected to the finishing heat treatment step S07 or the material subjected to the aging heat treatment S08. The processing method in the finish processing step S09 is not particularly limited, but when the final product form is a plate or a strip, rolling (cold rolling) may be applied. In addition, forging, pressing, groove rolling, or the like may be applied depending on the final product form. In the present embodiment, cold rolling is performed as the finishing process S09 to produce a rolled material.
What is necessary is just to select a processing rate suitably according to final board thickness and final shape. Here, if the processing rate is less than 1%, the effect of improving the yield strength may not be sufficiently obtained. On the other hand, if the processing rate exceeds 70%, the special grain boundary length ratio (Lσ / L) decreases and R {200} decreases due to the loss of the recrystallized structure to form the processed structure, R {220 } May increase, and the bending workability and the stress relaxation resistance may decrease. From the above, the processing rate in the finish processing step S09 is preferably 1 to 70%, more preferably 1 to 50%, and particularly preferably 5 to 40%. After the finish processing step S09, it may be used as a product as it is, but normally, it will be subjected to a lower temperature annealing.

〔低温焼鈍工程:S10〕
仕上加工工程S09後には、必要に応じて、耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、低温焼鈍を行う。この低温焼鈍工程S10においては、150〜800℃の範囲内の温度で、0.1秒〜24時間行うことが望ましい。熱処理温度が低い場合は長時間、熱処理温度が高い場合は短時間の熱処理をすればよい。低温焼鈍工程S10の温度が150℃未満、または低温焼鈍工程S10の時間が0.1秒未満では、十分な歪み取りの効果が得られなくなるおそれがあり、一方、低温焼鈍工程S10の温度が800℃を超える場合は再結晶のおそれがあり、さらに低温焼鈍工程S10の時間が24時間を超えることは、コスト上昇を招くだけである。なお、仕上加工工程S09を実施しない場合には、低温焼鈍工程S10は省略してもよい。
[Low temperature annealing step: S10]
After the finish processing step S09, low temperature annealing is performed as necessary to improve stress relaxation resistance and low temperature annealing hardening, or to remove residual strain. In this low temperature annealing process S10, it is desirable to carry out at the temperature within the range of 150-800 degreeC for 0.1 second-24 hours. When the heat treatment temperature is low, the heat treatment may be performed for a long time, and when the heat treatment temperature is high, the heat treatment may be performed for a short time. If the temperature of the low-temperature annealing step S10 is less than 150 ° C. or the time of the low-temperature annealing step S10 is less than 0.1 seconds, there is a possibility that a sufficient effect of removing strain may not be obtained, while the temperature of the low-temperature annealing step S10 is 800 If it exceeds ° C., there is a risk of recrystallization, and if the time of the low-temperature annealing step S10 exceeds 24 hours, it only increases the cost. If the finishing process S09 is not performed, the low-temperature annealing process S10 may be omitted.

以上のようにして、本実施形態である電子・電気機器用銅合金を得ることができる。この電子・電気機器用銅合金においては、0.2%耐力が400MPa以上とされている。
また、中間加工工程S07または仕上加工工程S09における加工方法として圧延を適用した場合、板厚0.05〜1.0mm程度の電子・電気機器用銅合金薄板(条材)を得ることができる。このような薄板は、これをそのまま電子・電気機器用部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1〜10μm程度のSnめっきを施し、Snめっき付き銅合金条として、コネクタその他の端子などの電子・電気機器用部品に使用するのが通常である。この場合のSnめっきの方法は特に限定されない。また、場合によっては電解めっき後にリフロー処理を施してもよい。
さらに、本実施形態である電子・電気機器用部品及び端子は、上述の電子・電気機器用銅合金の薄板等に対して、打ち抜き加工、曲げ加工等を施すことによって製造される。
As described above, the copper alloy for electronic / electric equipment according to the present embodiment can be obtained. In this copper alloy for electronic / electric equipment, the 0.2% proof stress is 400 MPa or more.
Moreover, when rolling is applied as a processing method in the intermediate processing step S07 or the finishing processing step S09, a copper alloy thin plate (strip material) for electronic / electric equipment having a plate thickness of about 0.05 to 1.0 mm can be obtained. Such a thin plate may be used as it is for parts for electronic and electrical equipment, but Sn plating with a film thickness of about 0.1 to 10 μm is applied to one or both sides of the plate surface, and copper with Sn plating is provided. As an alloy strip, it is usually used for electronic and electrical equipment parts such as connectors and other terminals. In this case, the Sn plating method is not particularly limited. In some cases, a reflow treatment may be performed after electrolytic plating.
Furthermore, the electronic / electric device parts and terminals according to the present embodiment are manufactured by punching, bending, or the like the above-described copper alloy thin plate for electronic / electric devices.

以上のような構成とされた本実施形態である電子・電気機器用銅合金においては、Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成とされている。あるいは、Niの一部の代替としてCo,Mn,Feを添加し、Niの含有量が1.0mass%以上とされるとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成とされている。
よって、銅の母相中に、NiSiを主とする金属間化合物からなる微細な析出物粒子を分散させることができ、高い導電率を確保できるとともに、強度の大幅な向上を図ることができる。
In the copper alloy for electronic and electrical equipment according to the present embodiment configured as described above, Ni is contained in an amount of 1.0 mass% to 5.0 mass%, and Si is contained in an amount of 0.1 mass% to 1.5 mass%. The remainder is composed of Cu and inevitable impurities, and the composition is such that Ni / Si (mass ratio) is in the range of 2.0 to 6.0. Alternatively, Co, Mn, and Fe are added as a substitute for a part of Ni, and the Ni content is 1.0 mass% or more, and one or more of Co, Mn, and Fe are added. And the total content of Ni, Co, Mn, and Fe exceeds 1.0 mass% and is 5.0 mass% or less, and (Ni + Co + Mn + Fe) / Si (mass ratio) is within a range of 2.0 or more and 6.0 or less. The composition is as follows.
Therefore, it is possible to disperse fine precipitate particles made of an intermetallic compound mainly composed of Ni 2 Si in the copper matrix, ensuring high electrical conductivity and greatly improving the strength. it can.

また、本実施形態である電子・電気機器用銅合金においては、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上とされるとともに、材料表面(板表面)における{200}面からのX線回折強度の割合R{200}が0.2以上とされているので、材料表面において曲げ加工の応力方向に対して滑り系が活動し易い方位関係となる(200)面の存在比率が高くなるとともに、結晶性の高い粒界(原子配列の乱れが少ない粒界)が多く存在し、曲げ加工性が大幅に向上することになり、耐力―曲げバランスが飛躍的に向上することになる。また、特殊粒界は、ランダム粒界と比べて粒界の拡散が遅いことから、耐応力緩和特性の向上を図ることができる。   In addition, in the copper alloy for electronic and electrical equipment according to the present embodiment, the special grain boundary length that is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b to all the grain boundary lengths L The thickness ratio (Lσ / L) is set to 30% or more, and the ratio R {200} of the X-ray diffraction intensity from the {200} plane on the material surface (plate surface) is set to 0.2 or more. The presence ratio of the (200) plane, which has an orientation relationship in which the sliding system is likely to be active with respect to the stress direction of the bending process on the surface of the material, is high, and there is a grain boundary with high crystallinity (grain boundary with little disorder of atomic arrangement). Many bends will greatly improve bending workability, and the yield strength-bending balance will be dramatically improved. In addition, since the special grain boundary has a slower grain boundary diffusion than the random grain boundary, the stress relaxation resistance can be improved.

さらに、本実施形態である電子・電気機器用銅合金においては、材料表面(板表面)における{220}面からのX線回折強度の割合R{220}が0.8以下とされているので、材料表面において圧延集合組織である(220)面の存在比率が低くなり、曲げ加工時に局所的な変形が生じてクラックが発生することを抑制でき、曲げ加工性を確実に向上させることが可能となる。   Furthermore, in the copper alloy for electronic / electric equipment according to this embodiment, the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface (plate surface) is 0.8 or less. The ratio of the (220) plane, which is the rolling texture on the surface of the material, is reduced, it is possible to suppress the occurrence of cracks due to local deformation during bending, and the bending workability can be improved reliably. It becomes.

本実施形態である電子・電気機器用銅合金において、さらにTi,Cr,Zr,P,Bのうちのいずれか1種または2種以上を合計で0.01mass%以上2.0mass%以下の範囲内で添加した場合には、銅の母相中に分散する析出物粒子の個数を確保することにより、強度をさらに向上させることが可能となる。
本実施形態である電子・電気機器用銅合金において、さらにMg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上2.0mass%以下の範囲内で添加した場合には、銅の母相中にこれらの元素を固溶させることにより、強度をさらに向上させることが可能となる。
In the copper alloy for electronic / electric equipment according to the present embodiment, any one or two or more of Ti, Cr, Zr, P, and B are added in a range of 0.01 mass% to 2.0 mass% in total. When added within the range, the strength can be further improved by securing the number of precipitate particles dispersed in the copper matrix.
In the copper alloy for electronic / electric equipment according to the present embodiment, any one or more of Mg, Sn, Zn, Al, and Ag is further added in a range of 0.01 mass% to 2.0 mass% in total. When added in the above, the strength can be further improved by dissolving these elements in the copper matrix.

また、本実施形態である電子・電気機器用銅合金においては、平均結晶粒径が0.5μm以上100μm以下の範囲内とされているので、強度及び曲げ加工性を確実に向上させることができる。ここで、本実施形態である電子・電気機器用銅合金においては、特殊粒界長さ比率(Lσ/L)を30%以上としているので、耐応力緩和特性が劣化することを抑制できる。よって、強度、曲げ加工性、耐応力緩和特性をバランス良く向上させることができる。   Moreover, in the copper alloy for electronic / electrical equipment which is this embodiment, since an average crystal grain diameter is made into the range of 0.5 micrometer or more and 100 micrometers or less, intensity | strength and bending workability can be improved reliably. . Here, in the copper alloy for electronic / electric equipment according to the present embodiment, the special grain boundary length ratio (Lσ / L) is set to 30% or more, so that it is possible to prevent the stress relaxation resistance from deteriorating. Therefore, strength, bending workability, and stress relaxation resistance can be improved in a well-balanced manner.

さらに、本実施形態である電子・電気機器用銅合金においては、0.2%耐力が400MPa以上の機械的特性を有しているので、容易に塑性変形しなくなり、コネクタ等の端子、リレー、リードフレーム等の電子機器用部品の素材として好適に用いることが可能となる。   Furthermore, in the copper alloy for electronic and electrical equipment according to the present embodiment, since 0.2% proof stress has mechanical characteristics of 400 MPa or more, it is not easily plastically deformed, and terminals such as connectors, relays, It can be suitably used as a material for electronic device parts such as lead frames.

本実施形態である電子・電気機器用銅合金薄板は、上述の電子・電気機器用銅合金の圧延材からなることから、耐応力緩和特性に優れており、コネクタ、その他の端子、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。   Since the copper alloy thin plate for electronic / electric equipment according to the present embodiment is made of the above-mentioned copper alloy rolled sheet for electronic / electric equipment, it has excellent stress relaxation resistance, and is suitable for connectors, other terminals, and electromagnetic relays. It can be suitably used for a movable conductive piece, a lead frame, and the like.

また、本実施形態である電子・電気機器用部品及び端子は、上述の電子・電気機器用銅合金を用いて製造されているので、耐力が高く、かつ、曲げ加工性に優れており、複雑な形状であっても割れ等がなく、信頼性が向上することになる。さらに、耐応力緩和特性に優れていることから、高温環境下で使用することができる。   In addition, the electronic device parts and terminals according to the present embodiment are manufactured using the above-described copper alloy for electronic devices, and thus have high yield strength and excellent bending workability. Even if it is a simple shape, there will be no cracks and the reliability will be improved. Furthermore, since it has excellent stress relaxation resistance, it can be used in a high temperature environment.

以上、本発明の実施形態である電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子・電気機器用銅合金の製造方法の一例について、図1のフロー図を参照して説明したが、製造方法は本実施形態に限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
As described above, the copper alloy for electronic / electric equipment, the copper alloy thin plate for electronic / electric equipment, the component for electronic / electric equipment, and the terminal according to the embodiment of the present invention have been described, but the present invention is not limited thereto. The invention can be changed as appropriate without departing from the technical idea of the invention.
For example, in the above-described embodiment, an example of a method for manufacturing a copper alloy for electronic / electric equipment has been described with reference to the flowchart of FIG. 1, but the manufacturing method is not limited to this embodiment, The production method may be selected as appropriate.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。なお、以下の実施例は、本発明の効果を説明するためのものであって、実施例に記載された構成、プロセス、条件が本発明の技術的範囲を限定するものでない。   Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated. In addition, the following examples are for explaining the effects of the present invention, and the configurations, processes, and conditions described in the examples do not limit the technical scope of the present invention.

純度99.99質量%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1、2に示す成分組成に調製し、カーボン鋳型に注湯して鋳塊を製出した。ここで、鋳塊の大きさは、厚さ約25mm×幅約50mm×長さ約200mmとした。
続いて各鋳塊について、均質化処理(加熱工程S02)として、Arガス雰囲気中において、980℃で4時間保持後、水焼き入れを実施した
A copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99% by mass or more was prepared, charged in a high-purity graphite crucible, and melted at high frequency in an atmosphere furnace having an Ar gas atmosphere. . Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Tables 1 and 2, and poured into a carbon mold to produce an ingot. Here, the size of the ingot was about 25 mm thick × about 50 mm wide × about 200 mm long.
Subsequently, each ingot was subjected to water quenching as a homogenization treatment (heating step S02) after being held at 980 ° C. for 4 hours in an Ar gas atmosphere.

次に、熱間加工工程S03として熱間圧延を実施した。熱間圧延開始温度が980℃となるように再加熱して、鋳塊の幅方向が圧延方向となるようにして、圧延率約50%の熱間圧延を行い、圧延終了温度300〜800℃から水焼入れを行った。その後、切断および表面研削を行い、厚さ約11mm×幅約160mm×長さ約100mmの熱間圧延材を製出した。この熱間加工工程S03において割れの有無を確認した。確認結果を表3,4に示す。なお、熱間加工で割れが生じた場合には、その後の工程及び評価を中止した。   Next, hot rolling was performed as a hot working step S03. Reheating so that the hot rolling start temperature becomes 980 ° C., the hot rolling at a rolling rate of about 50% is performed so that the width direction of the ingot becomes the rolling direction, and the rolling end temperature is 300 to 800 ° C. The water quenching was performed. Thereafter, cutting and surface grinding were performed to produce a hot rolled material having a thickness of about 11 mm × width of about 160 mm × length of about 100 mm. The presence or absence of cracks was confirmed in this hot working step S03. The confirmation results are shown in Tables 3 and 4. In addition, when the crack generate | occur | produced by hot processing, the subsequent process and evaluation were stopped.

その後、粗加工工程S04および中間熱処理工程S05を、それぞれ1回行うか、又は2回繰り返して実施した。
具体的には、粗加工工程S04および中間熱処理工程S05をそれぞれ1回実施する場合には、圧延率約90%以上の冷間圧延(粗加工)を行った後、再結晶のための中間熱処理として、300〜800℃で5分〜24時間、もしくは500〜900℃で1秒〜5分の熱処理を実施し、水焼入れした。その後、圧延材を切断し、酸化被膜を除去するために表面研削を実施した。
一方、粗加工工程S04および中間熱処理工程S05をそれぞれ2回実施する場合には、圧延率約50〜90%の一次冷間圧延(一次粗加工)を行った後、一次中間熱処理として、300〜800℃で5分〜24時間、もしくは500〜900℃で1秒〜5分の熱処理を実施して水焼入れした後、圧延率約50〜90%の二次冷間圧延(二次粗加工)を施し、300〜800℃で5分〜24時間、もしくは500〜900℃で1秒〜5分の二次中間熱処理を実施し、水焼入れした。その後、圧延材を切断し、酸化被膜を除去するために表面研削を実施した。
Thereafter, the roughing step S04 and the intermediate heat treatment step S05 were each performed once or repeated twice.
Specifically, when each of the roughing step S04 and the intermediate heat treatment step S05 is performed once, the intermediate heat treatment for recrystallization is performed after cold rolling (roughing) at a rolling rate of about 90% or more. As above, heat treatment was performed at 300 to 800 ° C. for 5 minutes to 24 hours, or at 500 to 900 ° C. for 1 second to 5 minutes, and water quenched. Thereafter, the rolled material was cut, and surface grinding was performed to remove the oxide film.
On the other hand, when each of the roughing step S04 and the intermediate heat treatment step S05 is performed twice, after performing the primary cold rolling (primary roughing) with a rolling rate of about 50 to 90%, as the primary intermediate heat treatment, 300 to Secondary cold rolling (secondary roughing) with a rolling rate of about 50 to 90% after heat treatment at 800 ° C for 5 minutes to 24 hours or 500 to 900 ° C for 1 second to 5 minutes. And subjected to a secondary intermediate heat treatment at 300 to 800 ° C. for 5 minutes to 24 hours, or 500 to 900 ° C. for 1 second to 5 minutes, and water quenching was performed. Thereafter, the rolled material was cut, and surface grinding was performed to remove the oxide film.

次に、中間加工工程S06として、表3,4に記載された条件で冷間圧延を実施した。その後、仕上熱処理工程S07として、ソルトバス、または急速熱処理炉を用いて表3,4に記載された条件で熱処理を行い、水焼入れを実施した。
なお、この中間加工工程S06と仕上熱処理工程S07とを繰り返し実施した。表3,4に、中間加工工程S06と仕上熱処理工程S07との繰り返し回数を記載した。
Next, cold rolling was performed under the conditions described in Tables 3 and 4 as the intermediate processing step S06. Thereafter, as a finish heat treatment step S07, heat treatment was performed under the conditions described in Tables 3 and 4 using a salt bath or a rapid heat treatment furnace, and water quenching was performed.
The intermediate processing step S06 and the finish heat treatment step S07 were repeated. Tables 3 and 4 list the number of repetitions of the intermediate processing step S06 and the finish heat treatment step S07.

次に、時効熱処理工程S08として、ソルトバスを用いて表3,4に記載された温度で8時間保持し、水焼入れを実施した。
その後、仕上圧延工程S09として、表3,4に記載された圧延率で冷間圧延を実施した。
そして、最後に、200〜500℃で1秒〜1時間の低温焼鈍を実施した後に水焼入れし、切断および表面研磨を実施した後、厚さ0.20mm×幅約160mmの特性評価用条材を製出した。
Next, as an aging heat treatment step S08, water quenching was performed by holding at a temperature described in Tables 3 and 4 for 8 hours using a salt bath.
After that, cold rolling was performed at the rolling rates described in Tables 3 and 4 as the finish rolling step S09.
Finally, after performing low-temperature annealing at 200 to 500 ° C. for 1 second to 1 hour, water quenching, cutting and surface polishing, and then a strip for property evaluation having a thickness of 0.20 mm × width of about 160 mm Was produced.

これらの特性評価用条材について、特殊粒界長さ比率(Lσ/L)、平均結晶粒径、板表面における{220}面からのX線回折強度の割合R{220}、板表面における{200}面からのX線回折強度の割合R{200}、導電率、機械的特性(耐力)、曲げ加工性、耐応力緩和特性を評価した。各評価項目についての試験方法、測定方法は次の通りである。   For these strips for property evaluation, the special grain boundary length ratio (Lσ / L), the average crystal grain size, the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the plate surface, the { The ratio R {200} of the X-ray diffraction intensity from the 200} plane, electrical conductivity, mechanical properties (yield strength), bending workability, and stress relaxation resistance were evaluated. The test method and measurement method for each evaluation item are as follows.

〔特殊粒界長さ比率(Lσ/L)〕
圧延の幅方向に対して垂直な面、すなわちTD面(Transverse direction)を観察面として、EBSD測定装置及びOIM解析ソフトによって、次のように結晶粒界(特殊粒界とランダム粒界)および結晶方位差分布を測定した。
耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM Data Analysis ver.5.3)によって、電子線の加速電圧20kV、測定間隔0.1μmステップで1000μm以上の測定面積で、CI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とした。また、測定範囲における結晶粒界の全粒界長さLを測定し、隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界のうちΣ3、Σ9、Σ27a、Σ27b粒界の各長さの和Lσと、上記測定した結晶粒界の全粒界長さLとの粒界長さ比率Lσ/Lを求め、特殊粒界長さ比率(Lσ/L)とした。
[Special grain boundary length ratio (Lσ / L)]
Using a plane perpendicular to the width direction of rolling, that is, a TD plane (Transverse direction) as an observation plane, and using an EBSD measuring device and OIM analysis software, crystal grain boundaries (special grain boundaries and random grain boundaries) and crystals are as follows: The orientation difference distribution was measured.
After mechanical polishing using water-resistant abrasive paper and diamond abrasive grains, final polishing was performed using a colloidal silica solution. And an EBSD measuring device (Quanta FEG 450 made by FEI, EDAX / TSL (current AMETEK) OIM Data Collection) and analysis software (EDAX / TSL (current AMETEK) OIM Data Analysis ver. 5.3). ) To analyze the orientation difference of each crystal grain except for the measurement point where the acceleration value of electron beam is 20 kV, the measurement interval is 0.1 μm and the measurement area is 1000 μm 2 or more and the CI value is 0.1 or less. A crystal grain boundary was defined between the measurement points where the orientation difference between adjacent measurement points was 15 ° or more. In addition, the total grain boundary length L of the crystal grain boundaries in the measurement range is measured to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary, and among the special grain boundaries, Σ3, Σ9 , Σ27a, Σ27b The grain boundary length ratio Lσ / L between the sum Lσ of the grain boundary lengths and the total grain boundary length L of the crystal grain boundaries measured above is obtained, and the special grain boundary length ratio (Lσ / L).

〔結晶粒径〕
上述のように、EBSD測定装置及びOIM解析ソフトによって、TD面の結晶粒界(特殊粒界とランダム粒界)および結晶方位差分布を測定し、特定された結晶粒界を用いて結晶粒界マップを作成し、JIS H 0501の切断法に準拠し、結晶粒界マップに対して、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。
[Crystal grain size]
As described above, the grain boundaries (special grain boundaries and random grain boundaries) and the crystal orientation difference distribution on the TD plane and the crystal orientation difference distribution are measured by the EBSD measuring apparatus and the OIM analysis software, and the grain boundaries are determined using the specified grain boundaries. Create a map, conform to the cutting method of JIS H 0501, draw 5 vertical and horizontal line segments at a time to the grain boundary map, count the number of crystal grains to be completely cut, The average value of the cutting length was defined as the average crystal grain size.

〔X線回折強度〕
板表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度I{200}、{220}面からのX線回折強度I{220}、{311}面からのX線回折強度I{311}、{331}面からのX線回折強度I{331}、{420}面からのX線回折強度I{420}を、次のような手順で測定した。
特性評価用条材から測定試料を採取し、反射法で、測定試料に対して1つの回転軸の回りのX線回折強度を測定した。ターゲットにはCuを使用し、KαのX線を使用した。管電流40mA、管電圧40kV、測定角度40〜150°、測定ステップ0.02°の条件で測定し、回折角とX線回折強度のプロファイルにおいて、X線回折強度のバックグラウンドを除去後、各回折面からのピークのKα1とKα2を合わせた積分X線回折強度Iを求めた。
そして、R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})から、板表面における{220}面からのX線回折強度の割合R{220}を算出した。
さらに、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})から、板表面における{200}面からのX線回折強度の割合R{200}を算出した。
[X-ray diffraction intensity]
The X-ray diffraction intensity from the {111} plane on the plate surface is I {111}, the X-ray diffraction intensity I {200} from the {200} plane, the X-ray diffraction intensity I {220} from the {220} plane, { 311} plane X-ray diffraction intensity I {311}, {331} plane X-ray diffraction intensity I {331}, {420} plane X-ray diffraction intensity I {420} Measured with
A measurement sample was collected from the strip for characteristic evaluation, and the X-ray diffraction intensity around one rotation axis was measured with respect to the measurement sample by a reflection method. Cu was used as the target, and Kα X-rays were used. Measured under the conditions of tube current 40 mA, tube voltage 40 kV, measurement angle 40 to 150 °, measurement step 0.02 °, and after removing the background of X-ray diffraction intensity in the profile of diffraction angle and X-ray diffraction intensity, The integrated X-ray diffraction intensity I obtained by combining the peaks Kα1 and Kα2 from the diffraction surface was determined.
Then, from R {220} = I {220} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}), X from the {220} plane on the plate surface The ratio R {220} of the line diffraction intensity was calculated.
Further, from R {200} = I {200} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}), X from the {200} plane on the plate surface The ratio R {200} of the line diffraction intensity was calculated.

〔導電率〕
特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して垂直になるように採取した。
〔conductivity〕
A test piece having a width of 10 mm and a length of 150 mm was taken from the strip for characteristic evaluation, and the electric resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract | collected so that the longitudinal direction might become perpendicular | vertical with respect to the rolling direction of the strip for characteristic evaluation.

〔機械的特性〕
特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、ヤング率E、0.2%耐力σ0.2を測定した。なお、試験片は、圧延方向に垂直な方向で採取した。
(Mechanical properties)
A No. 13B test piece defined in JIS Z 2201 was taken from the strip for property evaluation, and Young's modulus E and 0.2% proof stress σ0.2 were measured by the offset method of JIS Z 2241. The test piece was collected in a direction perpendicular to the rolling direction.

〔曲げ加工性〕
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。
圧延方向と試験片の長手方向が垂直になるように、特性評価用条材から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径0.3のW型の治具を用い、W曲げ試験を行った。
そして、曲げ部の外周部を目視で確認し割れが観察された場合は×、破断や微細な割れを確認できない場合を○として判定を行った。
[Bending workability]
Bending was performed in accordance with four test methods of Japan Copper and Brass Association Technical Standard JCBA-T307: 2007.
A plurality of test pieces having a width of 10 mm and a length of 30 mm are taken from the strip for property evaluation so that the rolling direction and the longitudinal direction of the test piece are perpendicular to each other. A W bending test was performed using a jig.
And when the outer peripheral part of the bending part was confirmed visually and a crack was observed, it determined as x, and the case where a fracture | rupture and a fine crack could not be confirmed was evaluated as (circle).

〔耐応力緩和特性〕
耐応力緩和特性試験は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、下記に示す条件(温度、時間)で保持した後の残留応力率を測定した。
試験方法としては、各特性評価用条材から圧延方向に対して平行な方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ0/Ls 2
ただし、
E:ヤング率(MPa)
t:試料の厚み(t=0.25mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。耐応力緩和特性の評価は、150℃の温度で、1000h保持後の曲げ癖から、残留応力率を測定し、耐応力緩和特性を評価した。なお、残留応力率は次式を用いて算出した。
残留応力率(%)=(1−δt0)×100
ただし、
δ:150℃で1000h保持後の永久たわみ変位(mm)−常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
残留応力率が、70%以上のものを○、70%未満ものを×と評価した。
[Stress relaxation resistance]
The stress relaxation resistance test was conducted by applying a stress according to a method according to the Japan Copper and Brass Association Technical Standard JCBA-T309: 2004 cantilever screw method and holding it under the following conditions (temperature, time). The rate was measured.
As a test method, a specimen (width 10 mm) is taken from each characteristic evaluation strip in a direction parallel to the rolling direction, and the initial deflection displacement is set so that the maximum surface stress of the specimen is 80% of the proof stress. The span length was adjusted to 2 mm. The maximum surface stress is determined by the following equation.
Maximum surface stress (MPa) = 1.5 Etδ 0 / L s 2
However,
E: Young's modulus (MPa)
t: sample thickness (t = 0.25 mm)
δ 0 : Initial deflection displacement (2 mm)
L s : Span length (mm)
It is. The stress relaxation resistance was evaluated by measuring the residual stress ratio from a bending wrinkle after holding for 1000 hours at a temperature of 150 ° C. to evaluate the stress relaxation resistance. The residual stress rate was calculated using the following formula.
Residual stress rate (%) = (1−δ t / δ 0 ) × 100
However,
δ t : Permanent deflection displacement after holding for 1000 h at 150 ° C. (mm) −Permanent deflection displacement after holding for 24 h at room temperature (mm)
δ 0 : Initial deflection displacement (mm)
It is.
Those having a residual stress rate of 70% or more were evaluated as ◯, and those having a residual stress ratio of less than 70% were evaluated as ×.

成分組成、製造条件、評価結果について、表1−6に示す。   It shows in Table 1-6 about a component composition, manufacturing conditions, and an evaluation result.

Figure 2015014020
Figure 2015014020

Figure 2015014020
Figure 2015014020

Figure 2015014020
Figure 2015014020

Figure 2015014020
Figure 2015014020

Figure 2015014020
Figure 2015014020

Figure 2015014020
Figure 2015014020

Ni、Siの含有量が本発明の範囲よりも少ない比較例1においては、耐力、耐応力緩和特性が低かった。
Niの含有量が本発明の範囲よりも多い比較例2においては、熱間圧延時に大きな耳割れが発生したため、その後の工程及び評価を中止した。
Ni、Co、Mn、Feの含有量の合計が本発明の範囲よりも多い比較例3においては、熱間圧延時に大きな耳割れが発生したため、その後の工程及び評価を中止した。
In Comparative Example 1 in which the contents of Ni and Si were less than the range of the present invention, the proof stress and the stress relaxation resistance were low.
In Comparative Example 2 in which the Ni content was larger than the range of the present invention, large ear cracks occurred during hot rolling, and the subsequent processes and evaluation were stopped.
In Comparative Example 3 in which the total content of Ni, Co, Mn, and Fe is larger than the range of the present invention, large ear cracks occurred during hot rolling, and the subsequent steps and evaluation were stopped.

NiとSiの質量比Ni/Siが本発明の範囲よりも小さい比較例4においては、耐力、耐応力緩和特性が低かった。
NiとSiの質量比Ni/Siが本発明の範囲よりも大きい比較例5においては、熱間圧延時に大きな耳割れが発生したため、その後の工程及び評価を中止した。
特殊粒界長さ比率(Lσ/L)及びR{200}が本発明の範囲よりも低い比較例6においては、曲げ加工性、耐応力緩和特性が不十分であった。
特殊粒界長さ比率(Lσ/L)が本発明の範囲よりも低い比較例7においては、曲げ加工性、耐応力緩和特性が不十分であった。
In Comparative Example 4 in which the mass ratio Ni / Si between Ni and Si was smaller than the range of the present invention, the proof stress and the stress relaxation resistance were low.
In Comparative Example 5 in which the mass ratio Ni / Si of Ni and Si was larger than the range of the present invention, large ear cracks occurred during hot rolling, so the subsequent steps and evaluation were stopped.
In Comparative Example 6 in which the special grain boundary length ratio (Lσ / L) and R {200} are lower than the range of the present invention, bending workability and stress relaxation resistance were insufficient.
In Comparative Example 7 in which the special grain boundary length ratio (Lσ / L) is lower than the range of the present invention, the bending workability and the stress relaxation resistance were insufficient.

これに対して、各合金元素の個別の含有量が本発明で規定する範囲内であり、特殊粒界長さ比率(Lσ/L)、及び、材料表面における{200}面のX線回折強度比R{200}が本発明の範囲内とされた本発明例No.1〜41は、いずれも、耐力、導電率、曲げ加工性、耐応力緩和特性に優れていることが確認された。   In contrast, the individual content of each alloy element is within the range defined by the present invention, the special grain boundary length ratio (Lσ / L), and the X-ray diffraction intensity of the {200} plane on the material surface Inventive example No. in which the ratio R {200} is within the scope of the present invention. It was confirmed that all Nos. 1 to 41 were excellent in yield strength, electrical conductivity, bending workability, and stress relaxation resistance.

以上のことから、本発明例によれば、強度、曲げ加工性、耐応力緩和特性に特に優れ、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品に適した電子・電気機器用銅合金を提供することができることが確認された。   As described above, according to the example of the present invention, the electronic / electric equipment is particularly excellent in strength, bending workability and stress relaxation resistance, and suitable for electronic / electric equipment parts such as terminals of connectors, relays, lead frames, etc. It was confirmed that a copper alloy can be provided.

〔仕上熱処理工程:S07〕
中間加工工程S06の後に、再結晶処理のための仕上熱処理を施す。この仕上熱処理を実施することで、ひずみ誘起粒界移動が起こり多数の特殊粒界が形成される。このとき、保持温度、到達温度は一般的な再結晶温度と比較して低温のときにひずみ誘起粒界移動が起こり易いが、低温すぎるとひずみ誘起粒界移動が生じないため好ましくない。
仕上熱処理工程S07の具体的手法としては、Ni及びSiを含有する金属間化合物を析出させるために、バッチ式の加熱炉を用いてもよい。あるいは連続焼鈍ラインを用いて連続的に加熱してもよい。バッチ式の加熱炉を使用する場合は、300〜800℃の温度で、5分〜24時間加熱することが好ましく、400〜700℃の温度で、5分〜24時間加熱することがさらに好ましい。また連続焼鈍ラインを用いる場合は、加熱到達温度500〜800℃とし、かつその範囲内の温度で、保持なし、もしくは1秒〜5分程度保持することが好ましい。
また、仕上熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、還元性雰囲気)とすることが好ましい。
さらに、昇温過程でのひずみの解放を抑制してひずみ誘起粒界移動を生じ易くし、特殊粒界を十分に形成させるためには、200℃から400℃の間の昇温速度を、200℃/min.以上とすることが好ましく、600℃/min.以上とすることがさらに好ましい。
なお、中間加工工程S06と仕上熱処理工程S07を繰り返すことにより、ひずみ誘起粒界移動が促進され、特殊粒界長さ比率(Lσ/L)が増加するため、中間加工工程S06と仕上熱処理工程S07を2回以上繰り返すことが好ましく、3回以上繰り返すことがさらに好ましい。
[Finish heat treatment step: S07]
After the intermediate processing step S06, a finish heat treatment for recrystallization is performed. By performing this finishing heat treatment, strain-induced grain boundary migration occurs and a large number of special grain boundaries are formed. At this time, the holding temperature and the ultimate temperature are likely to cause strain-induced grain boundary migration when the temperature is lower than the general recrystallization temperature, but if the temperature is too low, strain-induced grain boundary migration does not occur.
As a specific method of the finish heat treatment step S07, a batch-type heating furnace may be used to precipitate an intermetallic compound containing Ni and Si. Or you may heat continuously using a continuous annealing line. When using a batch-type heating furnace, it is preferably heated at a temperature of 300 to 800 ° C. for 5 minutes to 24 hours, more preferably at a temperature of 400 to 700 ° C. for 5 minutes to 24 hours. In the case of using a continuous annealing line, and reaches a temperature 500 to 800 ° C. pressurized heat and at a temperature within that range, no hold, or it is good preferable to hold about 1 second to 5 minutes.
The atmosphere for the finish heat treatment is preferably a non-oxidizing atmosphere (nitrogen gas atmosphere, inert gas atmosphere, reducing atmosphere).
Furthermore, in order to suppress the release of strain in the temperature rising process to easily cause strain-induced grain boundary movement and to sufficiently form the special grain boundary, the temperature rising rate between 200 ° C. and 400 ° C. is set to 200 ° C. ° C / min. It is preferable to set it as the above, 600 degreeC / min. More preferably, the above is used.
Note that by repeating the intermediate working step S06 and the finish heat treatment step S07, strain-induced grain boundary movement is promoted and the special grain boundary length ratio (Lσ / L) increases, so the intermediate working step S06 and the finish heat treatment step S07. Is preferably repeated twice or more, more preferably three or more times.

Figure 2015014020
Figure 2015014020

Figure 2015014020
Figure 2015014020

Figure 2015014020
Figure 2015014020

この課題を解決するために、本発明の電子・電気機器用銅合金は、Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上であるとともに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.2以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.7以下であることを特徴としている。 In order to solve this problem, the copper alloy for electronic and electrical equipment of the present invention contains Ni in an amount of 1.0 mass% to 5.0 mass%, Si in an amount of 0.1 mass% to 1.5 mass%, and the rest It consists of Cu and inevitable impurities and has a composition in which Ni / Si (mass ratio) is in the range of 2.0 or more and 6.0 or less, and a measurement area of 1000 μm 2 or more by the EBSD method at a measurement interval of 0.1 μm step. Measured and analyzed with the exception of measurement points with a CI value of 0.1 or less analyzed by the data analysis software OIM, and a crystal grain boundary between the measurement points where the orientation difference between adjacent measurements exceeds 15 °, The special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b to all the grain boundary lengths L, is 30% or more, and the material surface {111} plane in X-ray diffraction intensity from I {111}, X-ray diffraction intensity from {200} plane from I {200}, X-ray diffraction intensity from {220} plane from I {220}, {311} plane X-ray diffraction intensity is I {311}, X-ray diffraction intensity from {331} plane is I {331}, X-ray diffraction intensity from {420} plane is I {420}, X-ray from {200} plane When the ratio R {200} of the diffraction intensity is R {200} = I {200} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}) , R {200} is 0.2 or more , and the ratio R {220} of the X-ray diffraction intensity from the {220} plane is R {220} = I {220} / (I {111} + I {200} + I in case of the {220} + I {311} + I {331} + I {420}), R {220} is 0.7 or less It is characterized by a door.

ここで、{200}面は、曲げ加工の応力方向に対して、滑り系が活動し易い方位関係となるため、局所的な変形を抑制することができる。さらに、結晶性の高い粒界(原子配列の乱れが少ない粒界)が増加することにより、曲げ加工時の破壊の起点となる粒界の割合を少なくなる。本発明の電子・電気機器用銅合金においては、これらの相乗効果によって、耐力―曲げバランスが飛躍的に向上することになる。また、特殊粒界は、ランダム粒界と比べて粒界の拡散が遅いことから、耐応力緩和特性を向上させることができる。
上述の作用効果を確実に奏功せしめるためには、特殊粒界長さ比率(Lσ/L)を45%以上とすることが好ましく、50%以上とすることがさらに好ましい。また、材料表面における{200}面からのX線回折強度の割合R{200}を0.25以上とすることが好ましく、0.3以上とすることがさらに好ましい。
また、{220}面は、圧延集合組織によるものであり、圧延方向に対して曲げ軸が平行になるように曲げ加工を行った場合に、曲げ加工の応力方向に対して滑り系が活動しにくい方位関係となる。よって、曲げ加工時に局所的な変形が生じてクラックが発生しやすくなる。
そこで、材料表面における{220}面からのX線回折強度の割合R{220}を0.7以下と規定することにより、曲げ加工性を向上させることが可能となる。
Here, since the {200} plane has an azimuth relationship in which the sliding system is likely to be active with respect to the stress direction of bending, local deformation can be suppressed. Furthermore, an increase in grain boundaries with high crystallinity (grain boundaries with less disorder of atomic arrangement) reduces the proportion of grain boundaries that are the starting point of fracture during bending. In the copper alloy for electronic and electrical equipment of the present invention, the yield strength-bending balance is drastically improved by these synergistic effects. In addition, the special grain boundary can improve the stress relaxation resistance because the grain boundary diffuses slower than the random grain boundary.
In order to achieve the above-mentioned effects and effects, the special grain boundary length ratio (Lσ / L) is preferably 45% or more, and more preferably 50% or more. The ratio R {200} of the X-ray diffraction intensity from the {200} plane on the material surface is preferably 0.25 or more, and more preferably 0.3 or more.
Also, the {220} plane is due to the rolling texture, and when the bending process is performed so that the bending axis is parallel to the rolling direction, a sliding system is activated in the bending stress direction. It becomes difficult orientation relationship. Therefore, local deformation occurs during bending, and cracks are likely to occur.
Therefore, by defining the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface to 0.7 or less, it becomes possible to improve the bending workability.

また、本発明の電子・電気機器用銅合金は、Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上であるとともに、材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.2以上であり、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.7以下であることを特徴としている。 In addition, the copper alloy for electronic and electrical equipment of the present invention contains 1.0 mass% or more of Ni, and contains one or more of Co, Mn, and Fe, and Ni, Co, Mn , Fe content is 1.0 mass% to 5.0 mass% or less, Si is contained 0.1 mass% or more and 1.5 mass% or less, the remainder is made of Cu and inevitable impurities, and (Ni + Co + Mn + Fe) / Si (Mass ratio) has a composition in the range of 2.0 or more and 6.0 or less, measures the measurement area of 1000μm 2 or more by the EBSD method at the measurement interval of 0.1μm step, and analyzes it by the data analysis software OIM The analysis is performed except for the measurement points having a CI value of 0.1 or less, and the crystal grain boundary is defined as the crystal grain boundary between the measurement points where the orientation difference between adjacent measurements exceeds 15 °. The special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b, is 30% or more, and X from the {111} plane on the material surface X-ray diffraction intensity from I {111}, X-ray diffraction intensity from {200} plane is I {200}, X-ray diffraction intensity from {220} plane is I {220}, X-ray diffraction from {311} plane The intensity is I {311}, the X-ray diffraction intensity from the {331} plane is I {331}, the X-ray diffraction intensity from the {420} plane is I {420}, and the X-ray diffraction intensity from the {200} plane is When the ratio R {200} is R {200} = I {200} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}), R {200 } Is 0.2 or more , and the ratio R {220} of the X-ray diffraction intensity from the {220} plane is set to R {22 0} = I {220} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420}), R {220} is 0.7 or less It is characterized by that.

上述の構成とされた本発明の電子・電気機器用銅合金においては、Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有していることから、Co,Mn,FeがNiの一部を代替することになり、NiSiを主とする金属間化合物からなる析出物粒子を銅の母相中に分散させることができ、高い導電率を確保しつつ強度の向上を図ることができる。
また、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上とされるとともに、材料表面における{200}面からのX線回折強度の割合R{200}が0.2以上とされているので、耐力―曲げバランスを飛躍的に向上させることができるとともに、優れた耐応力緩和特性を得ることができる。
さらに、材料表面における{220}面からのX線回折強度の割合R{220}を0.7以下と規定することにより、曲げ加工性を向上させることが可能となる。
In the copper alloy for electronic and electrical equipment of the present invention configured as described above, Ni is contained in an amount of 1.0 mass% or more, and contains any one or more of Co, Mn, Fe, The total content of Ni, Co, Mn, and Fe is 1.0 mass% and 5.0 mass% or less, Si is contained 0.1 mass% or more and 1.5 mass% or less, and the remainder consists of Cu and inevitable impurities, Since (Ni + Co + Mn + Fe) / Si (mass ratio) has a composition in the range of 2.0 or more and 6.0 or less, Co, Mn, and Fe substitute a part of Ni, and Ni 2 Precipitate particles composed of an intermetallic compound mainly containing Si can be dispersed in a copper matrix, and strength can be improved while ensuring high electrical conductivity.
Further, the special grain boundary length ratio (Lσ / L), which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b to all the grain boundary lengths L, is set to 30% or more. Since the ratio R {200} of the X-ray diffraction intensity from the {200} plane on the material surface is 0.2 or more, the yield strength-bending balance can be dramatically improved and excellent stress resistance Relaxation properties can be obtained.
Furthermore, it is possible to improve the bending workability by defining the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface to 0.7 or less.

さらに、本実施形態である電子・電気機器用銅合金においては、材料表面における{220}面からのX線回折強度の割合R{220}を、R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.7以下とされている。
なお、本実施形態である電子・電気機器用銅合金を圧延板とした場合には、圧延板の板表面(圧延面)において、上述のX線回折強度を測定することになる。
Furthermore, in the copper alloy for electronic / electric equipment according to the present embodiment, the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface is expressed as R {220} = I {220} / (I When {111} + I {200} + I {220} + I {311} + I {331} + I {420}), R {220} is 0.7 or less .
In addition, when the copper alloy for electronic / electrical equipment which is this embodiment is used as a rolled plate, the above-mentioned X-ray diffraction intensity is measured on the plate surface (rolled surface) of the rolled plate.

〔X線回折強度比:R{220}〕
材料表面における{220}面は、圧延集合組織によるものであり、この{220}面の割合が高くなると、圧延方向に対して垂直方向に曲げ加工を行った場合に、曲げ加工の応力方向に対して滑り系が活動しにくい方位関係となる。これにより、曲げ加工時に変形が局所的に発生し、クラックの原因となる。
このため、材料表面における{220}面からのX線回折強度の割合R{220}を0.7以下に抑制することにより、クラックの発生を抑制でき、曲げ加工性が向上するものと考えられる
なお、{220}面からのX線回折強度の割合R{220}の下限には、特に規定はないが、0.1以上とすることが好ましい。
[X-ray diffraction intensity ratio: R {220}]
The {220} plane on the surface of the material is due to the rolling texture. When the ratio of the {220} plane is increased, when the bending process is performed in the direction perpendicular to the rolling direction, the stress direction of the bending process is increased. On the other hand, it becomes an orientation relationship in which the sliding system is difficult to activate. Thereby, a deformation | transformation generate | occur | produces locally at the time of a bending process, and causes a crack.
For this reason, by suppressing the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface to 0.7 or less , it is considered that the occurrence of cracks can be suppressed and the bending workability is improved. .
The lower limit of the ratio R {220} of the X-ray diffraction intensity from the {220} plane is not particularly specified, but is preferably 0.1 or more.

さらに、本実施形態である電子・電気機器用銅合金においては、材料表面(板表面)における{220}面からのX線回折強度の割合R{220}が0.7以下とされているので、材料表面において圧延集合組織である(220)面の存在比率が低くなり、曲げ加工時に局所的な変形が生じてクラックが発生することを抑制でき、曲げ加工性を確実に向上させることが可能となる。 Furthermore, in the copper alloy for electronic / electric equipment according to this embodiment, the ratio R {220} of the X-ray diffraction intensity from the {220} plane on the material surface (plate surface) is 0.7 or less . The ratio of the (220) plane, which is the rolling texture on the surface of the material, is reduced, it is possible to suppress the occurrence of cracks due to local deformation during bending, and the bending workability can be improved reliably. It becomes.

Claims (13)

Niを1.0mass%以上5.0mass%以下、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、Ni/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、
EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上であるとともに、
材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}を、R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.2以上であることを特徴とする電子・電気機器用銅合金。
Ni is contained in an amount of 1.0 mass% to 5.0 mass%, Si is contained in an amount of 0.1 mass% to 1.5 mass%, the remainder is made of Cu and inevitable impurities, and Ni / Si (mass ratio) is 2.0 to 6 Having a composition within the range of 0.0 or less,
The measurement area of 1000 μm 2 or more is measured by the EBSD method at a measurement interval of 0.1 μm, and the analysis is performed except for the measurement point where the CI value analyzed by the data analysis software OIM is 0.1 or less. Special grain boundary length, which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b with respect to all the grain boundary lengths L. The thickness ratio (Lσ / L) is 30% or more,
The X-ray diffraction intensity from the {111} plane on the material surface is I {111}, the X-ray diffraction intensity from the {200} plane is I {200}, and the X-ray diffraction intensity from the {220} plane is I {220}. , The X-ray diffraction intensity from the {311} plane is I {311}, the X-ray diffraction intensity from the {331} plane is I {331}, the X-ray diffraction intensity from the {420} plane is I {420}, { The ratio of the X-ray diffraction intensity from the 200} plane, R {200}, is calculated as R {200} = I {200} / (I {111} + I {200} + I {220} + I {311} + I {331} + I { 420}), R {200} is 0.2 or more, copper alloy for electronic and electrical equipment,
Niを1.0mass%以上含有するとともに、Co,Mn,Feのうちのいずれか1種または2種以上を含有し、Ni,Co,Mn,Feの含有量の合計が1.0mass%超え5.0mass%以下とされ、Siを0.1mass%以上1.5mass%以下含有し、残りがCuおよび不可避不純物からなり、(Ni+Co+Mn+Fe)/Si(質量比)が2.0以上6.0以下の範囲内となる組成を有し、
EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が30%以上であるとともに、
材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{200}面からのX線回折強度の割合R{200}をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{200}が0.2以上であることを特徴とする電子・電気機器用銅合金。
Ni is contained in an amount of 1.0 mass% or more and contains one or more of Co, Mn, and Fe, and the total content of Ni, Co, Mn, and Fe exceeds 1.0 mass%. 0.0 mass% or less, Si is contained in an amount of 0.1 mass% or more and 1.5 mass% or less, the remainder is made of Cu and inevitable impurities, and (Ni + Co + Mn + Fe) / Si (mass ratio) is 2.0 or more and 6.0 or less. Having a composition that falls within the range;
The measurement area of 1000 μm 2 or more is measured by the EBSD method at a measurement interval of 0.1 μm, and the analysis is performed except for the measurement point where the CI value analyzed by the data analysis software OIM is 0.1 or less. Special grain boundary length, which is the ratio of the sum Lσ of the grain boundary lengths of Σ3, Σ9, Σ27a, and Σ27b with respect to all the grain boundary lengths L. The thickness ratio (Lσ / L) is 30% or more,
The X-ray diffraction intensity from the {111} plane on the material surface is I {111}, the X-ray diffraction intensity from the {200} plane is I {200}, and the X-ray diffraction intensity from the {220} plane is I {220}. , The X-ray diffraction intensity from the {311} plane is I {311}, the X-ray diffraction intensity from the {331} plane is I {331}, the X-ray diffraction intensity from the {420} plane is I {420}, { The ratio R {200} of the X-ray diffraction intensity from the 200} plane is changed to R {200} = I {200} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420 }), R {200} is 0.2 or more, copper alloy for electronic and electric equipments characterized by the above-mentioned.
さらに、Ti,Cr,Zr,P,Bののうちのいずれか1種または2種以上を合計で0.01mass%以上2.0mass%以下の範囲内で含んでいることを特徴とする請求項1又は請求項2に記載の電子・電気機器用銅合金。   Further, any one or more of Ti, Cr, Zr, P, and B is included within a total range of 0.01 mass% or more and 2.0 mass% or less. The copper alloy for electronic / electrical equipment of Claim 1 or Claim 2. さらに、Mg,Sn,Zn,Al,Agのうちのいずれか1種または2種以上を合計で0.01mass%以上2.0mass%以下の範囲内で含んでいることを特徴とする請求項1から請求項3のいずれか一項に記載の電子・電気機器用銅合金。   Further, any one or more of Mg, Sn, Zn, Al, and Ag is included within a total range of 0.01 mass% or more and 2.0 mass% or less. The copper alloy for electronic and electrical equipment according to any one of claims 3 to 4. 平均結晶粒径が0.5μm以上100μm以下の範囲内とされていることを特徴とする請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金。   5. The copper alloy for electronic / electric equipment according to claim 1, wherein an average crystal grain size is in a range of 0.5 μm to 100 μm. 0.2%耐力が400MPa以上の機械特性を有することを特徴とする請求項1から請求項5のいずれか一項に記載の電子・電気機器用銅合金。   The copper alloy for electronic / electric equipment according to any one of claims 1 to 5, wherein the 0.2% proof stress has mechanical properties of 400 MPa or more. 材料表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{331}面からのX線回折強度をI{331}、{420}面からのX線回折強度をI{420}、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})とした場合に、R{220}が0.8以下とされていることを特徴とする請求項1から請求項6のいずれか一項に記載の電子・電気機器用銅合金。   The X-ray diffraction intensity from the {111} plane on the material surface is I {111}, the X-ray diffraction intensity from the {200} plane is I {200}, and the X-ray diffraction intensity from the {220} plane is I {220}. , The X-ray diffraction intensity from the {311} plane is I {311}, the X-ray diffraction intensity from the {331} plane is I {331}, the X-ray diffraction intensity from the {420} plane is I {420}, { The ratio R {220} of the X-ray diffraction intensity from the 220} plane is changed to R {220} = I {220} / (I {111} + I {200} + I {220} + I {311} + I {331} + I {420 }), R {220} is 0.8 or less, The copper alloy for electronic / electric equipment according to any one of claims 1 to 6, wherein: 請求項1から請求項7のいずれか一項に記載の電子・電気機器用銅合金の圧延材からなり、厚みが0.01mm以上2.0mm以下の範囲内にあることを特徴とする電子・電気機器用銅合金薄板。   It consists of a rolled material of the copper alloy for electronic / electric equipment as described in any one of Claims 1-7, and thickness exists in the range of 0.01 mm or more and 2.0 mm or less. Copper alloy sheet for electrical equipment. 表面にSnめっきが施されていることを特徴とする請求項8に記載の電子・電気機器用銅合金薄板。   The copper alloy thin plate for electronic / electric equipment according to claim 8, wherein the surface is plated with Sn. 請求項1から請求項7のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする電子・電気機器用部品。   A component for electronic / electric equipment comprising the copper alloy for electronic / electric equipment according to any one of claims 1 to 7. 請求項1から請求項7のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする端子。   A terminal comprising the copper alloy for electronic and electrical equipment according to any one of claims 1 to 7. 請求項8または請求項9に記載の電子・電気機器用銅合金薄板からなることを特徴とする電子・電気機器用部品。   An electronic / electric equipment component comprising the copper alloy thin plate for electronic / electric equipment according to claim 8 or 9. 請求項8または請求項9に記載の電子・電気機器用銅合金薄板からなることを特徴とする端子。   A terminal comprising the copper alloy thin plate for electronic / electrical equipment according to claim 8 or 9.
JP2013139995A 2013-07-03 2013-07-03 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals Active JP5565506B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013139995A JP5565506B1 (en) 2013-07-03 2013-07-03 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
PCT/JP2013/070336 WO2015001683A1 (en) 2013-07-03 2013-07-26 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and component and terminal for electrical and electronic equipment
TW102127116A TW201502294A (en) 2013-07-03 2013-07-29 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, component for electronic/electric device, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139995A JP5565506B1 (en) 2013-07-03 2013-07-03 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals

Publications (2)

Publication Number Publication Date
JP5565506B1 JP5565506B1 (en) 2014-08-06
JP2015014020A true JP2015014020A (en) 2015-01-22

Family

ID=51427130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139995A Active JP5565506B1 (en) 2013-07-03 2013-07-03 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals

Country Status (3)

Country Link
JP (1) JP5565506B1 (en)
TW (1) TW201502294A (en)
WO (1) WO2015001683A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113407A (en) * 2016-03-31 2017-10-12 제이엑스금속주식회사 Copper alloy for electronic materials
KR20170113409A (en) * 2016-03-31 2017-10-12 제이엑스금속주식회사 Copper alloy sheet and method for manufacturing copper alloy sheet
JP2021066902A (en) * 2019-10-18 2021-04-30 株式会社神戸製鋼所 Copper alloy rolled sheet and method for determining quality of the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382726B2 (en) * 2015-01-08 2018-08-29 住友電気工業株式会社 Coil conductor wire and coil wire
CN107326215A (en) * 2017-08-15 2017-11-07 徐高杰 A kind of processing method of slot wedge copper alloy
CN111621841B (en) * 2020-05-21 2022-05-10 南京理工大学 TiAl single crystal EBSD sample-based electrolytic polishing solution and electrolytic method thereof
TWI823044B (en) * 2020-09-28 2023-11-21 財團法人工業技術研究院 Electrolytic copper foil and negative current collector of lithium battery
CN113293323B (en) * 2021-05-27 2022-04-15 宁波金田铜业(集团)股份有限公司 Silicon bronze bar and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302721A (en) * 2001-01-31 2002-10-18 Nippon Mining & Metals Co Ltd Phosphor bronze strip, and terminal and connector using the same
JP4981748B2 (en) * 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
JP5734156B2 (en) * 2010-10-15 2015-06-10 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP5192536B2 (en) * 2010-12-10 2013-05-08 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170113407A (en) * 2016-03-31 2017-10-12 제이엑스금속주식회사 Copper alloy for electronic materials
KR20170113409A (en) * 2016-03-31 2017-10-12 제이엑스금속주식회사 Copper alloy sheet and method for manufacturing copper alloy sheet
KR101866129B1 (en) * 2016-03-31 2018-06-08 제이엑스금속주식회사 Copper alloy for electronic materials
KR102126731B1 (en) 2016-03-31 2020-06-25 제이엑스금속주식회사 Copper alloy sheet and method for manufacturing copper alloy sheet
JP2021066902A (en) * 2019-10-18 2021-04-30 株式会社神戸製鋼所 Copper alloy rolled sheet and method for determining quality of the same
JP7218270B2 (en) 2019-10-18 2023-02-06 株式会社神戸製鋼所 Copper alloy rolled sheet and quality judgment method thereof

Also Published As

Publication number Publication date
TW201502294A (en) 2015-01-16
JP5565506B1 (en) 2014-08-06
WO2015001683A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP5903838B2 (en) Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5565506B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP5776832B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP5690979B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP2014074220A (en) Copper alloy for electronic and electric apparatus, copper alloy thin plate for electronic and electric apparatus, conductive component for electronic and electric apparatus, and terminal
JP5572754B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5417523B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP6221471B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP5417539B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5776833B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2014148748A (en) Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, manufacturing method of copper alloy for electronic and electrical device, and electroconductive component and terminal for electronic and electrical device
JP5957083B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5501495B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5604549B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP6264887B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5776831B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6097575B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP7187989B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP7172089B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP2019173093A (en) Copper alloy for electronic and electric device, copper alloy thin sheet for electronic and electric device, conductive component and terminal for electronic and electric device
JP2014167161A (en) Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, part and terminal for electronic and electrical device
JP2014145096A (en) Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5565506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150