JP2018162510A - Copper alloy for electronic material, and electronic component - Google Patents
Copper alloy for electronic material, and electronic component Download PDFInfo
- Publication number
- JP2018162510A JP2018162510A JP2017061800A JP2017061800A JP2018162510A JP 2018162510 A JP2018162510 A JP 2018162510A JP 2017061800 A JP2017061800 A JP 2017061800A JP 2017061800 A JP2017061800 A JP 2017061800A JP 2018162510 A JP2018162510 A JP 2018162510A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- copper alloy
- strength
- kam value
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 46
- 239000012776 electronic material Substances 0.000 title claims abstract description 25
- 238000005259 measurement Methods 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 238000001887 electron backscatter diffraction Methods 0.000 claims abstract description 16
- 239000010949 copper Substances 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052802 copper Inorganic materials 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052718 tin Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 238000005452 bending Methods 0.000 description 50
- 230000032683 aging Effects 0.000 description 32
- 239000000463 material Substances 0.000 description 24
- 239000000956 alloy Substances 0.000 description 23
- 230000035882 stress Effects 0.000 description 22
- 238000000137 annealing Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 18
- 238000005096 rolling process Methods 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 16
- 238000005097 cold rolling Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 229910018098 Ni-Si Inorganic materials 0.000 description 10
- 229910018529 Ni—Si Inorganic materials 0.000 description 10
- 238000005098 hot rolling Methods 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000265 homogenisation Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 229910020711 Co—Si Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000011856 silicon-based particle Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004881 precipitation hardening Methods 0.000 description 5
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
この発明は、各種電子部品に用いることに好適な析出硬化型銅合金であるCu−Co−Ni−Si系合金に関するものであり、特には、電子材料に好適な0.2%耐力、導電率を有し、曲げ加工性及び疲労特性を向上させた、信頼性の高い電子材料用銅合金を提案するものである。 The present invention relates to a Cu—Co—Ni—Si alloy which is a precipitation hardening type copper alloy suitable for use in various electronic components, and in particular, 0.2% proof stress and conductivity suitable for electronic materials. The present invention proposes a highly reliable copper alloy for electronic materials having improved bending workability and fatigue characteristics.
コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。そして、近年は、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに伴って電子機器部品に使用される銅合金に対する要求はさらに高度化している。特にコネクタを大型化させないためには、650MPa以上の圧延平行方向の0.2%耐力と50%IACS以上の導電率が望まれる。 Copper alloys for electronic materials used in various electronic parts such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Is done. In recent years, electronic parts have been highly integrated, miniaturized and thinned, and the demand for copper alloys used in electronic equipment parts has further increased. In particular, in order not to increase the size of the connector, a 0.2% proof stress in the rolling parallel direction of 650 MPa or more and a conductivity of 50% IACS or more are desired.
高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に代えて、析出硬化型銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。 From the viewpoint of high strength and high conductivity, the amount of precipitation hardening type copper alloys used in place of solid solution strengthened copper alloys represented by conventional phosphor bronze, brass, etc. is increasing as copper alloys for electronic materials. . In precipitation-hardened copper alloys, by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, it is possible to obtain a material having excellent mechanical properties such as springiness and excellent electrical conductivity and thermal conductivity.
析出硬化型銅合金のうち、コルソン系合金と一般に称されるCu−Ni−Si系合金は比較的高い導電性、強度、及び曲げ加工性を有する代表的な銅合金であり、当業界では現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることにより、強度と導電率の向上を図ることができる。
このようなコルソン系合金では、更なる特性の改善を目的として、Coを添加し、またはNiをCoに置き換えたCu−Co−Si系合金が提案されている。
Of the precipitation hardening type copper alloys, Cu—Ni—Si alloys generally referred to as Corson alloys are representative copper alloys having relatively high electrical conductivity, strength, and bending workability. It is one of the actively developed alloys. In this copper alloy, strength and conductivity can be improved by precipitating fine Ni—Si intermetallic compound particles in a copper matrix.
In such a Corson alloy, a Cu—Co—Si alloy in which Co is added or Ni is replaced with Co has been proposed for the purpose of further improving the characteristics.
例えば、特許文献1(特開2013−067849)では、Co:0.5〜3.0質量%,Si:0.1〜1.0質量%を含有し、Co/Siの質量比:3.0〜5.0であって、残部が銅および不可避的不純物からなるCu−Co−Si系銅合金条について、銅合金条の圧延平行方向RDの厚み中央Cの組織M1の硬さB(Hv)を低くし、表面の組織M2の硬さA(Hv)を高くし、比A/Bを1.03以上としている。このようにすると、銅合金条の表面が中央より硬くなり、疲労特性が良好となると記載されている。 For example, in patent document 1 (Unexamined-Japanese-Patent No. 2013-067849), it contains Co: 0.5-3.0 mass%, Si: 0.1-1.0 mass%, Co / Si mass ratio: 3. For Cu—Co—Si based copper alloy strips of 0 to 5.0, the balance being copper and inevitable impurities, the hardness B (Hv of the structure M1 of the thickness center C in the rolling parallel direction RD of the copper alloy strips ) Is decreased, the hardness A (Hv) of the surface tissue M2 is increased, and the ratio A / B is set to 1.03 or more. If it does in this way, the surface of a copper alloy strip will become harder than the center, and it is described that a fatigue characteristic becomes favorable.
また、特許文献2(特許第5468798号)には、時効処理時に銅合金中の結晶粒界近傍に形成される無析出帯(Precipitate Free Zone:PFZ)の幅を制御した銅合金材料が記載されている。この無析出帯は粒内に比較し低強度であるため、銅合金に加工や繰り返し応力を加えた場合に優先的に変形が起こり曲げ加工性および耐疲労特性を劣化させる。この無析出帯の幅を狭くすればこれらの劣化を阻止し得るとの知見に基づき、粒界上に存在する化合物の粒子径や、結晶粒径を合わせて制御することで、高強度を有し、曲げ加工性に優れ、且つ、耐疲労特性にも優れる銅合金板材が得られることが記載されている。 Patent Document 2 (Japanese Patent No. 5468798) describes a copper alloy material in which the width of a precipitate free zone (PFZ) formed in the vicinity of a grain boundary in a copper alloy during aging treatment is controlled. ing. Since this precipitation-free zone is lower in strength than in the grains, deformation occurs preferentially when bending or repeated stress is applied to the copper alloy, degrading bending workability and fatigue resistance. Based on the knowledge that narrowing the width of this precipitation-free zone can prevent these deteriorations, it has high strength by controlling the particle size of the compound present on the grain boundary and the crystal grain size together. In addition, it is described that a copper alloy sheet having excellent bending workability and excellent fatigue resistance can be obtained.
また、特許文献3(特許第5224415号)には、高い導電性、高い強度、良好な曲げ加工性のすべてを満足するため、Cu−Co−Si系銅合金の結晶粒径の値が所定範囲に制御された銅合金材料が記載されている。具体的には、Co(コバルト)を0.7〜2.0質量%、Si(ケイ素)を0.1〜0.5質量%それぞれ含み、残部Cu(銅)及び不可避不純物からなる組成を有し、CoのSiに対する質量比(Co/Si)が3以上5以下である電気電子部品用銅合金材料であって、母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であって、前記標準偏差が前記算術平均よりも小さく、CoとSiからなる析出物の粒子径が5〜50nmで、前記析出物の密度が1×108〜1×1010個/mm2であり、かつ、銅合金材料としての引張強度が570MPa以上、導電率が60%IACS以上である。 In Patent Document 3 (Patent No. 5224415), in order to satisfy all of high conductivity, high strength, and good bending workability, the value of the crystal grain size of the Cu—Co—Si based copper alloy is within a predetermined range. The controlled copper alloy material is described. Specifically, it has a composition comprising 0.7 to 2.0% by mass of Co (cobalt) and 0.1 to 0.5% by mass of Si (silicon), and the balance Cu (copper) and inevitable impurities. A copper alloy material for electrical and electronic parts having a mass ratio of Co to Si (Co / Si) of 3 or more and 5 or less, wherein the arithmetic average of the crystal grain size of the base copper alloy is 3 to 20 μm, the standard deviation Is 8 μm or less, the standard deviation is smaller than the arithmetic mean, the particle diameter of the precipitate composed of Co and Si is 5 to 50 nm, and the density of the precipitate is 1 × 10 8 to 1 × 10 10 / Mm 2 , and the tensile strength as a copper alloy material is 570 MPa or more, and the conductivity is 60% IACS or more.
また、特許文献4(特開2013−095976)には、合金としてCu−Co−Si系合金に着目し、その結晶方位制御だけでなく、さらに加工硬化指数(n値)を制御することにより、優れた曲げ加工性が得られることが記載されている。具体的には、0.5〜3.0質量%のCo及び0.1〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、EBSD(Electron Back−Scatter Diffraction:電子後方散乱回折)測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>の面積率が5%以上、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 1 2}<1 1 1>の面積率が20%以下であり、加工硬化指数が0.2以下である。 Patent Document 4 (Japanese Patent Laid-Open No. 2013-095976) focuses on Cu—Co—Si based alloys as an alloy, and controls not only the crystal orientation but also the work hardening index (n value). It is described that excellent bending workability can be obtained. Specifically, it contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, and the balance is made of copper and inevitable impurities. EBSD (Electron Back-Scatter Diffraction: When the electron orientation is analyzed and the crystal orientation is analyzed, the area ratio of the Cube orientation {0 0 1} <1 0 0> is 5% or more, and the Brass orientation {1 1 0} <1 1 2> The area ratio is 20% or less, the Copper azimuth {1 1 2} <1 1 1> is 20% or less, and the work hardening index is 0.2 or less.
しかしながら、電子部品の軽薄化、短小化が進んでおり、それに伴い電子材料用金属部品に求められる曲げ加工性及び疲労特性も上昇傾向にある。そのため、0.2%耐力及び導電性を高いレベルに維持しつつ、曲げ加工性及び疲労特性をさらに改良した銅合金板材が希求されている。 However, electronic parts are becoming lighter and shorter, and accordingly, bending workability and fatigue characteristics required for metal parts for electronic materials are also increasing. Therefore, there is a demand for a copper alloy sheet material that further improves bending workability and fatigue characteristics while maintaining 0.2% proof stress and conductivity at a high level.
特許文献1に係る銅合金条は、確かに疲労特性に優れているが、今後疲労特性に対する要求がさらに厳格になることが予想されるためこれに対応するには十分ではない。また、曲げ加工性の維持及び向上に関して具体的な提案がされていない。
特許文献2に係る銅合金板材は、曲げ加工性及び疲労特性の改善がみられるが、より高強度の材料で曲げ加工性、疲労特性の両立が求められる場合、十分に対応できないと思われる。
特許文献3及び特許文献4には、銅合金材料の疲労特性の維持及び向上に関して具体的な提案がされていないうえ、曲げ加工性に関しても今後の要求には十分に応えられない可能性がある。
Although the copper alloy strip according to Patent Document 1 is certainly excellent in fatigue characteristics, it is expected that demands for fatigue characteristics will become more stringent in the future, which is not sufficient to cope with this. In addition, no specific proposal has been made regarding the maintenance and improvement of bending workability.
Although the copper alloy sheet according to Patent Document 2 is improved in bending workability and fatigue characteristics, it is considered that the copper alloy sheet material cannot sufficiently cope with a higher strength material when both bending workability and fatigue characteristics are required.
In Patent Document 3 and Patent Document 4, no specific proposal is made regarding the maintenance and improvement of the fatigue properties of copper alloy materials, and there is a possibility that future requirements regarding bending workability may not be sufficiently met. .
銅合金材料の強度と疲労特性等の両立が難しい理由は、以下のように考えられる。
材料の疲労特性は静的引張強度の上昇とともに向上するが、一方で表層付近に応力集中源が存在した場合、そこを起点として疲労亀裂は進展するため、材料の疲労強度は低下する。材料中の微小欠陥、析出物、微視的な表面凹凸がこのような応力集中源となりうる。また金属組織が不均一な場合も、特定の箇所への応力集中により材料の疲労強度は低下する。
強度の高い材料では上記のような応力集中源となりうる因子の影響が大きくなるため、材料の静的強度を上昇させるだけでは疲労強度を有効に向上させることが難しい。Cu−Co−Si合金やCu−Co−Ni−Si合金は比較的高い導電性、強度、及び曲げ加工性を有するが、第二相粒子の組成の固溶限温度が高いため、高温での溶体化処理を行わなければならず、不均一な金属組織が生じやすい。よって従来技術では導電性、強度、曲げ加工性、疲労特性に優れたCu−Co−Si合金やCu−Co−Ni−Si合金を得ることができなかった。
The reason why it is difficult to achieve both strength and fatigue characteristics of the copper alloy material is considered as follows.
The fatigue properties of the material improve as the static tensile strength increases. On the other hand, if a stress concentration source exists near the surface layer, the fatigue cracks start from there and the fatigue strength of the material decreases. Micro-defects, precipitates, and microscopic surface irregularities in the material can be a source of such stress concentration. Even when the metal structure is non-uniform, the fatigue strength of the material decreases due to stress concentration at a specific location.
Since a material having high strength is greatly affected by the above-described factors that can become a stress concentration source, it is difficult to effectively improve the fatigue strength only by increasing the static strength of the material. Cu-Co-Si alloys and Cu-Co-Ni-Si alloys have relatively high conductivity, strength, and bending workability, but the high solubility limit temperature of the composition of the second phase particles is high. Solution treatment must be performed, and a non-uniform metal structure is likely to occur. Therefore, in the prior art, a Cu—Co—Si alloy or a Cu—Co—Ni—Si alloy excellent in conductivity, strength, bending workability, and fatigue characteristics could not be obtained.
本発明は、このような問題を解決することを課題とするものであり、その目的は、電子材料に用いて好適な0.2%耐力、導電率を有し、曲げ加工性及び疲労特性を向上させた、信頼性の高い電子材料用銅合金を提供することにある。 The object of the present invention is to solve such problems, and its purpose is to have 0.2% proof stress and conductivity suitable for use in electronic materials, and to provide bending workability and fatigue characteristics. An object is to provide an improved and highly reliable copper alloy for electronic materials.
発明者は鋭意検討の結果、Cu−Co−Si系合金のCoの一部をNiに置換したCu−Co−Ni−Si系合金において、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定から得られる隣接測定点間の方位差(KAM値)及びその標準偏差を制御することで、0.2%耐力及び導電率を高いレベルに維持しつつ、曲げ加工性及び疲労特性を向上させることができることを見出した。そして、このようなKAM値及びその標準偏差の制御は、時効処理、バフ研磨、歪取焼鈍時など処理条件を調節することにより実現できるとの新たな知見を得た。 As a result of intensive studies, the inventor of the Cu-Co-Ni-Si-based alloy in which a part of Co in the Cu-Co-Si-based alloy is replaced with Ni is measured from EBSD (Electron Back Scatter Diffraction) measurement. By controlling the azimuth difference (KAM value) and the standard deviation between adjacent measurement points obtained, it is possible to improve bending workability and fatigue characteristics while maintaining 0.2% proof stress and conductivity at a high level. I found out that I can do it. And the new knowledge that such control of such KAM value and its standard deviation was realizable by adjusting processing conditions, such as the time of aging treatment, buffing, and strain relief annealing was acquired.
本発明は、0.5〜3.0質量%のCo、0.1〜1.0質量%のNi、0.1〜1.5質量%のSiを含有し、Coに対するNiの質量比(Ni/Co)が0.1〜1.0であり、質量割合で(Ni+Co)/Siが3〜5であり、残部が銅および不可避的不純物からなり、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定から得られる隣接測定点間の方位差(KAM値)が1.4〜2.6であり、かつ、当該KAM値の標準偏差が1.2以下である電子材料用銅合金である。 The present invention contains 0.5 to 3.0 mass% Co, 0.1 to 1.0 mass% Ni, 0.1 to 1.5 mass% Si, and the mass ratio of Ni to Co ( (Ni / Co) is 0.1 to 1.0, (Ni + Co) / Si is 3 to 5 by mass ratio, the balance is made of copper and inevitable impurities, and EBSD (Electron Back Scatter Diffraction: electron backscattering) This is a copper alloy for electronic materials in which the azimuth difference (KAM value) between adjacent measurement points obtained from diffraction) measurement is 1.4 to 2.6, and the standard deviation of the KAM value is 1.2 or less. .
本発明の電子材料用銅合金は、さらにCr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上の合計が1.0質量%以下であることが好ましい。 In the copper alloy for electronic materials according to the present invention, the total of at least one selected from Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B is 1.0% by mass or less. Preferably there is.
さらに、本発明は、本発明の電子材料用銅合金を備えた電子部品も提供する。 Furthermore, this invention also provides the electronic component provided with the copper alloy for electronic materials of this invention.
電子材料に用いて好適な0.2%耐力、導電率を有し、曲げ加工性及び疲労特性を向上させた信頼性の高い電子材料用銅合金を提供することができる。 It is possible to provide a highly reliable copper alloy for electronic materials having 0.2% proof stress and electrical conductivity suitable for use in electronic materials and having improved bending workability and fatigue characteristics.
以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態の電子材料用銅合金は、0.5〜3.0質量%のCo、0.1〜1.0質量%のNi、0.1〜1.5質量%のSiを含有し、Coに対するNiの質量比(Ni/Co)が0.1〜1.0であり、質量割合で(Ni+Co)/Siが3〜5であり、残部が銅および不可避的不純物からなり、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定から得られる隣接測定点間の方位差(KAM値)が1.4〜2.6であり、かつ、当該KAM値の標準偏差が1.2以下である。
Hereinafter, embodiments of the present invention will be described in detail.
The copper alloy for electronic materials according to one embodiment of the present invention includes 0.5 to 3.0 mass% Co, 0.1 to 1.0 mass% Ni, and 0.1 to 1.5 mass% Si. The mass ratio of Ni to Co (Ni / Co) is 0.1 to 1.0, the mass ratio is (Ni + Co) / Si is 3 to 5, and the balance is made of copper and inevitable impurities. , The azimuth difference (KAM value) between adjacent measurement points obtained from EBSD (Electron Back Scatter Diffraction) measurement is 1.4 to 2.6, and the standard deviation of the KAM value is 1. 2 or less.
(Co、Ni、Siの添加量)
Co、NiおよびSiは、適当な熱処理を施すことによりCo2SiやNi2Siとして母相中に析出し、導電率を劣化させずに高強度化が図れる。ただし、Ni濃度が0.1質量%未満の場合、Co濃度が0.5質量%未満の場合、またはSi濃度が0.1質量%未満の場合は、析出硬化が不十分となり、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が1.0質量%を超える場合、Co濃度が3.0質量%を超える場合、またはSi濃度が1.5質量%を超える場合は十分な強度が得られるものの、導電性や曲げ加工性、熱間加工性が低下する。
好ましくは、0.2〜0.8質量%のNi、1.0〜2.5質量%のCo、0.3〜1.0質量%のSiとする。
(Addition amount of Co, Ni, Si)
Co, Ni, and Si are precipitated in the parent phase as Co 2 Si or Ni 2 Si by performing an appropriate heat treatment, and the strength can be increased without deteriorating the conductivity. However, when the Ni concentration is less than 0.1% by mass, the Co concentration is less than 0.5% by mass, or the Si concentration is less than 0.1% by mass, the precipitation hardening becomes insufficient, and the other component However, the desired strength cannot be obtained even with the addition of. Further, when the Ni concentration exceeds 1.0% by mass, the Co concentration exceeds 3.0% by mass, or the Si concentration exceeds 1.5% by mass, sufficient strength can be obtained. Bending workability and hot workability are reduced.
Preferably, Ni is 0.2 to 0.8 mass%, Co is 1.0 to 2.5 mass%, and Si is 0.3 to 1.0 mass%.
(Coに対するNiの濃度比(Ni/Co))
Ni/Coを調整することにより、強度と導電率の両立を図る。Niの比率を高くする(Coの比率を低くする)と、強度は高くなり、導電率は低下する。一方、Coの比率を高くする(Niの比率を低くする)と、強度は低下し、導電率は高くなる。圧延方向に平行な方向での0.2%耐力を650MPa以上とし、かつ、導電率を50%IACS以上とするためには、Ni/Coを0.1〜1.0、好ましくは0.2〜0.7となるように調整しておくとよい。
(Concentration ratio of Ni to Co (Ni / Co))
By adjusting Ni / Co, both strength and electrical conductivity are achieved. Increasing the Ni ratio (lowering the Co ratio) increases the strength and decreases the conductivity. On the other hand, when the Co ratio is increased (Ni ratio is decreased), the strength decreases and the conductivity increases. In order to set the 0.2% proof stress in the direction parallel to the rolling direction to 650 MPa or more and the conductivity to 50% IACS or more, Ni / Co is 0.1 to 1.0, preferably 0.2. It is good to adjust so that it may be set to -0.7.
Co、Ni及びSiは質量割合で(Ni+Co)/Siが3〜5である。上記割合とすれば、析出硬化後の強度と導電率を共に向上させることができる。上記割合が5を超えると、時効処理でのCo2SiやNi2Siの析出が不十分になり、強度が低下する。上記割合が3未満であると、Co2SiやNi2Siとして析出しないSiが母相中に固溶し、導電率が低下する。 Co, Ni, and Si are (Ni + Co) / Si in a mass ratio of 3 to 5. If it is set as the said ratio, both the intensity | strength and electrical conductivity after precipitation hardening can be improved. When the ratio exceeds 5, the precipitation of Co 2 Si and Ni 2 Si in the aging treatment becomes insufficient and the strength is lowered. When the ratio is less than 3, Si that does not precipitate as Co 2 Si or Ni 2 Si is solid-solved in the matrix phase and the electrical conductivity is lowered.
(Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBの添加量)
Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Alは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBの濃度が合計1.0質量%を超えると曲げ特性および疲労特性が低下するうえ、製造性も損なう。従って、本発明では、Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBを合計1.0質量%以下添加することが好ましい。また、Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBの合計は、0.7質量%以下がさらに好ましく、0.5質量%以下がさらに好ましい。但し、Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBの合計が0.01質量%未満ではその効果が小さいので、Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBの合計は、好ましくは0.01質量%以上である。また、0.05質量%以上がさらに好ましく、0.1質量%以上がさらに好ましい。
(Addition amount of Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B)
Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, and Al improve the product characteristics such as strength and stress relaxation characteristics without adding a small amount of addition by adding a small amount. P has a deoxidizing effect, B has an effect of refining the cast structure, and has an effect of improving hot workability. The effect of addition is exhibited mainly by solid solution in the matrix phase, but further effects can be exhibited by inclusion in the second phase particles. However, if the concentration of Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, Al, P, and B exceeds 1.0% by mass in total, bending characteristics and fatigue characteristics are deteriorated and manufacturability is also impaired. Therefore, in this invention, it is preferable to add Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, Al, P, and B in total 1.0 mass% or less. The total of Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B is more preferably 0.7% by mass or less, and further preferably 0.5% by mass or less. However, since the effect is small if the total of Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, Al, P and B is less than 0.01% by mass, Cr, Zr, Zn, Sn, Mg, Mn , Fe, Ti, Al, P and B are preferably 0.01% by mass or more. Moreover, 0.05 mass% or more is more preferable, and 0.1 mass% or more is further more preferable.
(0.2%耐力)
コネクタ等の所定の電子材料で要求される特性を満たすため、圧延平行方向の0.2%耐力は好ましくは650MPa以上、より好ましくは680MPa以上とする。0.2%耐力の上限値は、特に規制されないが、50%IACS以上の導電率となるには、典型的には850MPa以下である。
0.2%耐力は、引張試験機を用いてJIS Z2241に準拠して測定する。
(0.2% yield strength)
In order to satisfy characteristics required for a predetermined electronic material such as a connector, the 0.2% proof stress in the rolling parallel direction is preferably 650 MPa or more, more preferably 680 MPa or more. The upper limit value of the 0.2% proof stress is not particularly limited, but is typically 850 MPa or less in order to obtain a conductivity of 50% IACS or more.
The 0.2% proof stress is measured according to JIS Z2241 using a tensile tester.
(導電率)
導電率は好ましくは50%IACS以上とする。これにより、電子材料として有効に用いることができる。導電率はJIS H0505に準拠して4端子法で測定することができる。導電率は、55%IACS以上であることが好ましい。
(conductivity)
The conductivity is preferably 50% IACS or more. Thereby, it can use effectively as an electronic material. The conductivity can be measured by a four-terminal method in accordance with JIS H0505. The conductivity is preferably 55% IACS or more.
(KAM値)
図1に例示する六角形のピクセルはEBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定の各測定点を示しており、KAM値は測定点Aと隣接する測定点1〜6との方位差の平均値として定義される。このKAM値は転位密度と相関があり、KAM値が高いほど転位による方位変化が大きい。本発明者が鋭意検討を重ねた結果、材料のKAM値が1.4〜2.6かつKAM値の標準偏差が1.2以下であるときに、0.2%耐力が高くかつ疲労特性、曲げ加工性に優れることを見出した。
KAM値の標準偏差を上記範囲にする理由について、特定の理論によって本発明が限定されることを意図するものではないが、KAM値の標準偏差が大きい場合は歪が多く蓄積された部分と歪がほとんど蓄積されていない部分が不均一に存在することになり、疲労亀裂はそれらの不均一な歪帯を起点として進展するため、KAM値の標準偏差を小さくすることで疲労特性が向上すると考えられる。
上記観点から、KAM値の標準偏差は1.0以下が好ましく、0.9以下がさらに好ましい。前記の範囲を満たさない場合、疲労特性および曲げ加工性が低下する。またKAM値は1.5〜2.5が好ましく、1.6〜2.4がより好ましい。KAM値が前記の範囲より低い場合、0.2%耐力が低下する。またKAM値が前記の範囲より高い場合、疲労特性および曲げ加工性が低下する。
(KAM value)
The hexagonal pixel illustrated in FIG. 1 indicates each measurement point of EBSD (Electron Back Scatter Diffraction) measurement, and the KAM value is an azimuth difference between measurement point A and adjacent measurement points 1 to 6. Is defined as the average value of This KAM value has a correlation with the dislocation density, and the higher the KAM value, the greater the change in orientation due to dislocation. As a result of intensive studies by the present inventors, when the KAM value of the material is 1.4 to 2.6 and the standard deviation of the KAM value is 1.2 or less, the 0.2% proof stress is high and the fatigue characteristics, It has been found that bending workability is excellent.
The reason why the standard deviation of the KAM value is in the above range is not intended to limit the present invention by a specific theory. However, when the standard deviation of the KAM value is large, a portion where the distortion is accumulated and the distortion As the fatigue crack propagates starting from these non-uniform strain bands, the fatigue characteristics will be improved by reducing the standard deviation of the KAM value. It is done.
From the above viewpoint, the standard deviation of the KAM value is preferably 1.0 or less, and more preferably 0.9 or less. When the above range is not satisfied, fatigue characteristics and bending workability are deteriorated. The KAM value is preferably 1.5 to 2.5, and more preferably 1.6 to 2.4. When the KAM value is lower than the above range, the 0.2% yield strength decreases. Further, when the KAM value is higher than the above range, the fatigue characteristics and the bending workability are deteriorated.
(製造方法)
上述したようなCu−Co−Ni−Si系合金は、インゴットを製造する工程、均質化焼鈍工程、熱間圧延工程、第1時効処理工程、中間冷間圧延工程、バフ研磨工程、溶体化処理工程、第2時効処理工程、最終冷間圧延工程、歪取焼鈍工程を順次に行うことにより製造することができる。なお熱間圧延後、必要に応じて面削を行うことが可能である。また上記各工程の合間には、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等を適宜行うことができる。
(Production method)
The Cu—Co—Ni—Si alloy as described above is a process for producing an ingot, a homogenization annealing process, a hot rolling process, a first aging treatment process, an intermediate cold rolling process, a buff polishing process, and a solution treatment. It can manufacture by performing a process, a 2nd aging treatment process, a final cold rolling process, and a strain relief annealing process one by one. In addition, after hot rolling, it is possible to chamfer as necessary. In addition, between the above steps, grinding, polishing, shot blast pickling and the like for removing oxide scale on the surface can be appropriately performed.
具体的には、まず大気溶解炉等を用いて電気銅、Co、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そしてこの溶湯をインゴットに鋳造する。その後、均質化焼鈍、熱間圧延を行い、第1時効処理(350〜450℃で4〜8時間)、中間冷間圧延、バフ研磨、溶体化処理、第2時効処理、最終冷間圧延、歪取焼鈍を行う。 Specifically, first, raw materials such as electrolytic copper, Co, Ni, and Si are melted using an air melting furnace or the like to obtain a molten metal having a desired composition. This molten metal is cast into an ingot. Then, homogenization annealing and hot rolling are performed, the first aging treatment (350 to 450 ° C. for 4 to 8 hours), intermediate cold rolling, buffing, solution treatment, second aging treatment, final cold rolling, Perform strain relief annealing.
ここで、この製造方法では、インゴット製造の後に、所定の条件の第1時効処理工程、バフ研磨及び歪取焼鈍を行うことが肝要である。従来技術では、これらの工程の条件が最適化されず、この発明のような特性を得ることができず、特に曲げ加工性及び疲労特性が十分でなかった。
以下に、これらの第1時効処理工程、バフ研磨及び歪取焼鈍の各工程を中心に詳細に述べる。なおその他の工程は、Cu−Co−Ni−Si系合金の製造工程において通常採用される条件とすることが可能である。
Here, in this manufacturing method, it is important to perform the first aging treatment step, buffing and strain relief annealing under predetermined conditions after manufacturing the ingot. In the prior art, the conditions of these processes are not optimized, the characteristics as in the present invention cannot be obtained, and particularly the bending workability and fatigue characteristics are not sufficient.
Hereinafter, the first aging treatment process, the buffing process, and the strain relief annealing process will be described in detail. Note that the other steps can be the conditions normally employed in the manufacturing process of the Cu—Co—Ni—Si alloy.
<インゴット製造>
溶解鋳造は一般的には大気溶解炉で行うが、真空中又は不活性ガス雰囲気中で行うことも可能である。電気銅を溶解した後に、Co、Ni、Si等各試料の組成に応じて原料を添加し、撹拌後一定時間保持して、所望の組成の溶湯を得る。そして、この溶湯を1250℃以上に調整した後、インゴットに鋳造する。Ni、Co、Si以外、Cr、Zr、Zn、Sn、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上を合計1.0質量%以下になるように添加することもできる。
<Ingot manufacturing>
Melting and casting is generally performed in an atmospheric melting furnace, but can also be performed in a vacuum or in an inert gas atmosphere. After the electrolytic copper is melted, raw materials are added according to the composition of each sample such as Co, Ni, Si, and held for a certain time after stirring to obtain a molten metal having a desired composition. And after adjusting this molten metal to 1250 degreeC or more, it casts to an ingot. In addition to Ni, Co, and Si, at least one selected from Cr, Zr, Zn, Sn, Mg, Mn, Fe, Ti, Al, P, and B is added so that the total amount is 1.0% by mass or less. You can also
<均質化焼鈍>
鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が生成する。均質化焼鈍を適切な温度・時間で行った後に熱間圧延を行うことで、これらの第二相粒子を母相に再固溶させる。均質化焼鈍温度が低すぎる場合は粗大な第二相粒子を母相に再固溶させることができず、製品強度や曲げ加工性が損なわれる。均質化焼鈍温度が高すぎる場合は材料が溶解する可能性があるため好ましくない。具体的には均質化温度は950〜1025℃が、時間は1〜24hが好ましい。
<Homogenization annealing>
Coarse crystals are produced during the solidification process during casting, and coarse precipitates are produced during the cooling process. These second phase particles are re-dissolved in the matrix phase by performing hot rolling after performing homogenization annealing at an appropriate temperature and time. When the homogenization annealing temperature is too low, coarse second-phase particles cannot be re-dissolved in the parent phase, and product strength and bending workability are impaired. If the homogenization annealing temperature is too high, the material may be dissolved, which is not preferable. Specifically, the homogenization temperature is preferably 950 to 1025 ° C., and the time is preferably 1 to 24 hours.
<熱間圧延>
均質化焼鈍終了後のインゴットを炉から抽出して熱間圧延を行う。液体金属脆化を防止するために、960℃以下の温度域で熱間圧延を開始することが好ましい。また熱間圧延後は速やかに冷却することが望ましい。冷却速度が遅い場合、粗大な第二相粒子が析出してしまう。熱間圧延終了後400℃以下まで急冷(=水冷)することにより、この第二相粒子の析出を抑制することができる。具体的には400℃までの冷却速度は15℃/sec以上が好ましい。
<Hot rolling>
The ingot after completion of homogenization annealing is extracted from the furnace and hot rolled. In order to prevent liquid metal embrittlement, it is preferable to start hot rolling in a temperature range of 960 ° C. or lower. Moreover, it is desirable to cool rapidly after hot rolling. When the cooling rate is low, coarse second-phase particles are precipitated. By rapid cooling (= water cooling) to 400 ° C. or less after the hot rolling is completed, precipitation of the second phase particles can be suppressed. Specifically, the cooling rate to 400 ° C. is preferably 15 ° C./sec or more.
<第1時効処理>
熱間圧延後に適切な温度・時間で第1時効処理を行うことで、合金中に微細なCo−Ni−Si粒子を析出させることができる。次工程の中間冷間圧延において、このCo−Ni−Si粒子にトラップされる形で合金中により多くの歪が導入され、後に溶体化処理時においてこの歪エネルギーを駆動力として均一な再結晶粒が得られる。このような再結晶粒の下では不均一な歪の蓄積が起こりにくいため、製品においてKAM値の標準偏差が小さくなる。このように中間圧延前のCo−Ni−Si粒子の析出状態によって溶体化後の金属組織、ひいては製品の歪分布が変化するため、第1時効処理を適切な温度・時間で行うことが重要である。第1時効処理の条件は350〜450℃で4〜8時間、より好ましくは375〜425℃で4〜8時間とする。この時効処理を行わない場合、製品のKAM値の標準偏差が大きくなり、疲労特性、曲げ加工性が損なわれる。時効処理温度が低すぎる、もしくは時効時間が短すぎる場合も同様に疲労特性、曲げ加工性が損なわれる。時効処理温度が高すぎる、もしくは時効時間が長すぎる場合は粗大なCo−Ni−Si粒子が合金中に析出する。これらの粗大粒子は後述の溶体化処理では固溶させることができず、また歪を十分に蓄積させることができないため、製品の平均KAM値が低くなり製品の強度および疲労特性が低下する。
また、第1時効処理はAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<First aging treatment>
By performing the first aging treatment at an appropriate temperature and time after hot rolling, fine Co—Ni—Si particles can be precipitated in the alloy. In the next intermediate cold rolling, more strain is introduced into the alloy in a form trapped by the Co—Ni—Si particles, and uniform recrystallized grains using this strain energy as a driving force later during solution treatment. Is obtained. Under such recrystallized grains, non-uniform strain accumulation is unlikely to occur, so the standard deviation of the KAM value in the product is small. As described above, since the metal structure after solution treatment, and hence the strain distribution of the product, changes depending on the precipitation state of Co-Ni-Si particles before intermediate rolling, it is important to perform the first aging treatment at an appropriate temperature and time. is there. The conditions for the first aging treatment are 350 to 450 ° C. for 4 to 8 hours, more preferably 375 to 425 ° C. for 4 to 8 hours. If this aging treatment is not performed, the standard deviation of the KAM value of the product is increased, and the fatigue characteristics and bending workability are impaired. If the aging treatment temperature is too low or the aging time is too short, the fatigue characteristics and bending workability are similarly impaired. When the aging temperature is too high or the aging time is too long, coarse Co—Ni—Si particles are precipitated in the alloy. These coarse particles cannot be made into a solid solution by the solution treatment described later, and strain cannot be sufficiently accumulated. Therefore, the average KAM value of the product is lowered, and the strength and fatigue characteristics of the product are lowered.
The first aging treatment is preferably performed in an inert atmosphere such as Ar, N 2 , H 2 or the like.
<中間冷間圧延>
第1時効処理終了後のインゴットにについて中間冷間圧延を行う。ここで、十分な加工歪を蓄積するため、中間冷間圧延の加工度は95%以上が望ましい。
<Intermediate cold rolling>
Intermediate cold rolling is performed on the ingot after completion of the first aging treatment. Here, in order to accumulate sufficient work distortion, the workability of intermediate cold rolling is desirably 95% or more.
<バフ研磨>
中間冷間圧延後にバフ研磨を行うことで、材料表層付近により多くの加工歪を蓄積させ、溶体化処理時の均一な再結晶粒形成を励起することができる。またバフ研磨を行うことにより材料の表面粗さが大きくなるため、溶体化処理時の加熱効率が上がるという点でもメリットがある。バフ研磨に用いるバフ材は、ナイロン繊維不織布にアルミナ製の砥粒を含有させたものを用いた。砥粒の番手は#1500〜#4000が好ましい。ここで砥粒の番手は、JIS R6001に規定する方法で定められる。研磨後はただちに水洗を実施する。
<Buffing>
By buffing after intermediate cold rolling, a larger amount of processing strain can be accumulated near the surface layer of the material, and uniform recrystallized grain formation during solution treatment can be excited. Further, since the surface roughness of the material is increased by performing the buffing, there is an advantage in that the heating efficiency at the time of the solution treatment is increased. The buffing material used for buffing was a nylon fiber nonwoven fabric containing alumina abrasive grains. The number of the abrasive grains is preferably # 1500 to # 4000. Here, the count of the abrasive grains is determined by a method defined in JIS R6001. Immediately after polishing, wash with water.
<溶体化処理>
溶体化処理の目的は、溶解鋳造時の晶出粒子や熱間圧延時に析出したCo−Ni−Si粒子を固溶させ、溶体化処理以降の時効硬化能を高めることである。温度が低すぎるとこれらの析出物を十分に固溶させることができず、所定の強度が得られない。温度が高すぎると析出物による粒界のピン止め効果がなくなり、結晶粒が粗大化して強度が低下する。溶体化処理の際は、溶体化処理前の銅合金素材が第二相粒子組成の固溶限付近の温度になるまで加熱することが好ましい。具体的には、850〜1000℃で0.5〜10min加熱する。また、第二相粒子の析出や再結晶粒の粗大化を防止する観点から、溶体化処理後の冷却速度はできるだけ速い方が好ましい。具体的には、材料温度が溶体化処理温度から400℃まで低下するときの平均冷却速度を15℃/sec以上とするのが好ましく、50℃/sec以上とするのがより好ましい。
<Solution treatment>
The purpose of the solution treatment is to solidify crystallization particles during melt casting and Co—Ni—Si particles precipitated during hot rolling to enhance age hardening ability after the solution treatment. If the temperature is too low, these precipitates cannot be sufficiently dissolved, and a predetermined strength cannot be obtained. If the temperature is too high, the grain boundary pinning effect due to precipitates is lost, the crystal grains become coarse and the strength decreases. In the solution treatment, it is preferable to heat until the copper alloy material before the solution treatment reaches a temperature near the solid solution limit of the second phase particle composition. Specifically, heating is performed at 850 to 1000 ° C. for 0.5 to 10 minutes. Further, from the viewpoint of preventing the precipitation of the second phase particles and the coarsening of the recrystallized grains, the cooling rate after the solution treatment is preferably as fast as possible. Specifically, the average cooling rate when the material temperature decreases from the solution treatment temperature to 400 ° C. is preferably 15 ° C./sec or more, and more preferably 50 ° C./sec or more.
<第2時効処理>
適切な大きさの析出物が均一に分布するように第2時効処理を行うことで、所望の強度および導電率が得られる。第2時効処理の温度は、450℃より低いと導電率が低くなり、550℃より高いと強度が低下するので、450〜550℃とすることが好ましい。また時効処理の時間は1〜24hが好ましい。第2時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Second aging treatment>
By performing the second aging treatment so that precipitates of an appropriate size are uniformly distributed, desired strength and electrical conductivity can be obtained. When the temperature of the second aging treatment is lower than 450 ° C., the conductivity is lowered, and when it is higher than 550 ° C., the strength is lowered. The aging treatment time is preferably 1 to 24 hours. The second aging treatment is preferably performed in an inert atmosphere of Ar, N 2 , H 2 or the like in order to suppress the generation of an oxide film.
<最終冷間圧延>
時効処理後に引き続いて最終の冷間圧延を行うことで、転位を導入し強度上昇をはかる。圧延加工度が高いほど高強度の材料が得られるが、圧延加工度が高すぎると歪分布が不均一な部分が生じ、局所的に歪の多い部分から曲げ割れおよび疲労破壊が進展しやすい。強度と曲げ加工性の良好なバランスを得るために、圧延加工度を10〜50%、好ましくは20〜40%とする。
<Final cold rolling>
By performing the final cold rolling after the aging treatment, dislocation is introduced and the strength is increased. The higher the rolling degree is, the higher the strength of the material is obtained. However, when the rolling degree is too high, a portion having a non-uniform strain distribution is generated, and bending cracks and fatigue fracture tend to progress from a portion having a large strain. In order to obtain a good balance between strength and bending workability, the rolling degree is set to 10 to 50%, preferably 20 to 40%.
<歪取焼鈍>
歪取焼鈍を行うことによって、加工中に材料に生じた残留応力を取り除くことができ、ばね性が向上する。本発明の歪取焼鈍は連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が変形を起こし材料に反りが生じるため好ましくない。
歪取焼鈍時の保持温度は450〜550℃、より好ましくは460〜530℃とする。また保持時間は0.5〜5min、より好ましくは1〜3minとする。保持温度が高すぎると、または保持時間が長すぎると粗大なCo−Ni−Si粒子が析出して、製品の平均KAM値が低くなり強度および疲労特性が低下する。保持温度が低すぎると、または保持時間が短すぎると曲げ加工性および疲労特性が低下する。
歪取焼鈍時の昇温速度も材料特性に大きな影響を与える。昇温速度は60℃/sec以下が好ましく、50℃/sec以下がより好ましい。60℃/secを上回る場合は、不均一な歪の分布が解消されず、製品のKAM値標準偏差が大きくなって曲げ加工性および疲労特性が低下する。昇温速度の下限は特に限定されないが、昇温速度が遅すぎる場合は生産効率が低下するので、一般的には20℃/sec以上が好ましい。
また材料の炉内張力は5〜10MPaとする。この範囲を満たさない条件では、曲げ加工性および疲労特性が低下するおそれがある。
炉内の雰囲気はAr等の不活性雰囲気とすることが好ましい。
<Strain relief annealing>
By performing strain relief annealing, residual stress generated in the material during processing can be removed, and the spring property is improved. The strain relief annealing of the present invention is performed using a continuous annealing furnace. In the case of a batch furnace, since the material is heated in a state of being wound in a coil shape, the material is deformed during the heating and the material is warped, which is not preferable.
The holding temperature during strain relief annealing is 450 to 550 ° C, more preferably 460 to 530 ° C. The holding time is 0.5 to 5 minutes, more preferably 1 to 3 minutes. If the holding temperature is too high, or if the holding time is too long, coarse Co—Ni—Si particles are precipitated, the average KAM value of the product is lowered, and the strength and fatigue characteristics are lowered. If the holding temperature is too low, or if the holding time is too short, bending workability and fatigue characteristics will be reduced.
The rate of temperature rise during strain relief annealing also has a significant effect on material properties. The heating rate is preferably 60 ° C./sec or less, and more preferably 50 ° C./sec or less. When it exceeds 60 ° C./sec, the uneven strain distribution is not eliminated, and the standard deviation of the KAM value of the product is increased, so that the bending workability and the fatigue characteristics are deteriorated. The lower limit of the rate of temperature increase is not particularly limited, but if the rate of temperature increase is too slow, the production efficiency is lowered, and therefore generally 20 ° C./sec or more is preferable.
The furnace tension of the material is 5 to 10 MPa. Under conditions that do not satisfy this range, bending workability and fatigue characteristics may be reduced.
The atmosphere in the furnace is preferably an inert atmosphere such as Ar.
この発明のCu−Co−Ni−Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、このCu−Co−Ni−Si系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。 The Cu—Co—Ni—Si based alloy of the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires, and this Cu—Co—Ni—Si based copper alloy It can be used for electronic components such as lead frames, connectors, pins, terminals, relays, switches, and foil materials for secondary batteries.
次に、この発明の電子材料用銅合金を試作し、その性能を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的とするものであり、それに限定されることを意図するものではない。 Next, a copper alloy for electronic materials according to the present invention was prototyped and its performance was confirmed, which will be described below. However, the description here is for illustrative purposes only and is not intended to be limiting.
表1に示す成分組成の銅合金を、高周波溶解炉を用いて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットに対し950℃で3h均質化焼鈍を行った後、板厚10mmまで熱間圧延し、速やかに水中冷却を行った。そして、表面のスケール除去のため厚さ9mmまで面削を施した後、表1に示す条件で第1時効処理を行い、中間冷却圧延を実施した後、表1に示すように一部についてバフ処理を行い、900℃で5minの溶体化処理、500℃で12hの条件で第2時効処理した後、最終冷間圧延により厚さ0.1mmの板とした。最後に、表1に示す条件で歪取焼鈍を行った。
このようにして得られた各試験片に対し、以下の特性評価を行った。その結果を表2に示す。
Copper alloys having the component compositions shown in Table 1 were melted at 1300 ° C. using a high-frequency melting furnace, and cast into 30 mm thick ingots. Next, the ingot was subjected to homogenization annealing at 950 ° C. for 3 hours, and then hot-rolled to a plate thickness of 10 mm and quickly cooled in water. Then, after chamfering to a thickness of 9 mm to remove the scale on the surface, the first aging treatment was performed under the conditions shown in Table 1, and after intermediate cooling rolling, a part of the buffing was performed as shown in Table 1. After the treatment, a solution treatment at 900 ° C. for 5 minutes and a second aging treatment at 500 ° C. for 12 hours were performed, and a plate having a thickness of 0.1 mm was obtained by final cold rolling. Finally, strain relief annealing was performed under the conditions shown in Table 1.
The following characteristics evaluation was performed on each test piece thus obtained. The results are shown in Table 2.
<強度(0.2%耐力)>
引張方向が圧延方向と平行になるようにJIS13B号試験片を作製し、JIS Z2241に準拠して、引張試験機により圧延方向と平行に引張試験を行い、0.2%耐力を測定した。
<導電率>
試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
<KAM値>
KAM値はEBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定を用いて算出した。まず試験片を20mm四方に切り出し、圧延面表面をリン酸67%+硫酸10%溶液中で15Vの電圧下で60sec電解研磨して、組織を現出させた。測定には日本電子株式会社製JXA8500Fを用い、試験片の圧延面法線方向(ND:Normal Direction)を入射電子線に対して70°傾け、圧延平行方向(RD:Rolling Direction)を試料ホルダーの傾斜方向に合わせて設置し、その傾斜面にフォーカスした電子線を照射した。加速電圧:20kV、照射電流量:5×10-8A、ワーキングディスタンス25mmとし、観察視野200μm×200μm(ステップ幅0.5μm)でn=5で測定を行い、KAM値の平均値および標準偏差を算出した。測定プログラムはTSL OIM data collection、解析プログラムはTSL OIM Analysisを用いた。
<疲労特性>
JIS Z2273に従い、各試料について圧延平行方向に200MPaの両振り応力を107回繰り返して加えて試験し、破断の無かったものを○、破断したものを×とした。
<曲げ加工性>
曲げ加工時の割れも疲労破壊と同様に歪分布が不均一な部分から進展するため、KAM値の標準偏差を特定の範囲に制御することは曲げ加工性の向上にも効果がある。本発明は、より厳しい条件での曲げ加工を想定し、180°曲げ試験により曲げ加工性を評価した。
幅10mm、長さ30mmに切り出した試験片を用いて180°曲げ加工性を評価した。R/t=1.0となるような所定の曲げ半径(R)でBadway(曲げ軸が圧延方向と平行)方向に170°程度曲げた後、曲げ内側半径(R)の2倍の厚さの挟み物をし試験片の両端を押し曲げて180°曲げを行った。曲げ部分の外面の亀裂の有無を目視判定し、以下の基準で評価した。評価が○であれば、曲げ加工性が良好である。
○:曲げ部分の外面の亀裂が見られない
×:曲げ部分の外面の亀裂が見られる
<Strength (0.2% yield strength)>
A JIS No. 13B test piece was prepared so that the tensile direction was parallel to the rolling direction, and a tensile test was performed in parallel with the rolling direction using a tensile tester in accordance with JIS Z2241, and 0.2% yield strength was measured.
<Conductivity>
The test piece was collected so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity (EC:% IACS) was measured by a four-terminal method in accordance with JIS H0505.
<KAM value>
The KAM value was calculated using EBSD (Electron Back Scatter Diffraction) measurement. First, a test piece was cut into a 20 mm square, and the rolled surface was electropolished in a 67% phosphoric acid + 10% sulfuric acid solution at a voltage of 15 V for 60 seconds to reveal a structure. JXA8500F manufactured by JEOL Ltd. was used for the measurement, the rolling surface normal direction (ND: Normal Direction) of the test piece was tilted by 70 ° with respect to the incident electron beam, and the rolling parallel direction (RD: Rolling Direction) was set on the sample holder. It was installed according to the inclination direction, and the focused electron beam was irradiated onto the inclined surface. Acceleration voltage: 20 kV, irradiation current amount: 5 × 10 −8 A, working distance 25 mm, measurement with observation field of 200 μm × 200 μm (step width 0.5 μm), n = 5, average value and standard deviation of KAM values Was calculated. The measurement program was TSL OIM data collection, and the analysis program was TSL OIM Analysis.
<Fatigue properties>
According to JIS Z2273, each sample was tested by repeatedly applying a swinging stress of 200 MPa 10 7 times in the direction parallel to the rolling.
<Bending workability>
Since cracks at the time of bending progress from a portion where the strain distribution is not uniform as in the case of fatigue failure, controlling the standard deviation of the KAM value within a specific range is also effective in improving the bending workability. In the present invention, bending workability was evaluated by a 180 ° bending test, assuming bending work under more severe conditions.
180 ° bending workability was evaluated using a test piece cut to a width of 10 mm and a length of 30 mm. After bending about 170 ° in the Badway (bending axis is parallel to the rolling direction) direction with a predetermined bending radius (R) such that R / t = 1.0, the thickness is twice the bending inner radius (R) The both ends of the test piece were pressed and bent at 180 ° and bent. The presence or absence of cracks on the outer surface of the bent portion was visually determined and evaluated according to the following criteria. If evaluation is (circle), bending workability is favorable.
○: No cracks on the outer surface of the bent part are observed ×: Cracks on the outer surface of the bent part are observed
表1、2に示すように、発明例1〜21はいずれも、所定の条件の第1時効処理工程、バフ研磨及び歪取焼鈍等を行ったことにより、好適な0.2%耐力、導電率を有し、曲げ加工性及び疲労特性を向上させることができた。 As shown in Tables 1 and 2, all of Invention Examples 1 to 21 have a suitable 0.2% proof stress and conductivity by performing the first aging treatment step, buffing and strain relief annealing under predetermined conditions. The bending workability and fatigue characteristics could be improved.
比較例1は、第1時効処理を行わなかったため、KAM値の標準偏差が所定の範囲から外れ、疲労特性と曲げ加工性が悪化した。
比較例2は、第1時効処理を行ったが、温度が高すぎたため、KAM値が所定の範囲から外れ、0.2%耐力が低下し、疲労特性が悪化した。
比較例3は、バフ処理を行わなかったので、KAM値の標準偏差が所定の範囲から外れ、疲労特性と曲げ加工性が悪化した。
比較例4〜8は、所定の条件で歪取処理を行わなかったため、KAM値もしくはKAM値の標準偏差が所定の範囲から外れ、疲労特性と曲げ加工性が悪化した。
比較例9〜18は、添加元素の量が所定の範囲から外れたため、所要の特性を十分に達成することができなかった。
比較例19は特許文献1、比較例20は特許文献2、比較例21は特許文献3、比較例22は特許文献4に記載の工程に従ってそれぞれ製造したものであるが、いずれも疲労特性と曲げ加工性が悪化した。
In Comparative Example 1, since the first aging treatment was not performed, the standard deviation of the KAM value was out of the predetermined range, and the fatigue characteristics and the bending workability were deteriorated.
In Comparative Example 2, the first aging treatment was performed, but since the temperature was too high, the KAM value was out of the predetermined range, the 0.2% proof stress was lowered, and the fatigue characteristics were deteriorated.
In Comparative Example 3, since the buffing was not performed, the standard deviation of the KAM value was out of the predetermined range, and the fatigue characteristics and the bending workability were deteriorated.
In Comparative Examples 4 to 8, since the strain removing process was not performed under a predetermined condition, the KAM value or the standard deviation of the KAM value was out of the predetermined range, and the fatigue characteristics and the bending workability were deteriorated.
In Comparative Examples 9 to 18, since the amount of the additive element was out of the predetermined range, the required characteristics could not be sufficiently achieved.
Comparative Example 19 was manufactured according to the process described in Patent Document 1, Comparative Example 20 was Patent Document 2, Comparative Example 21 was Patent Document 3, and Comparative Example 22 was manufactured according to the process described in Patent Document 4, both of which were fatigue characteristics and bending. Workability deteriorated.
以上より、この発明によれば、電子材料に用いて好適な0.2%耐力、導電率を有し、曲げ加工性及び疲労特性を向上させた信頼性の高い電子材料用銅合金が得られることがわかった。 As described above, according to the present invention, a highly reliable copper alloy for electronic materials having 0.2% proof stress and electrical conductivity suitable for electronic materials and improved bending workability and fatigue characteristics can be obtained. I understood it.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017061800A JP6494681B2 (en) | 2017-03-27 | 2017-03-27 | Copper alloy and electronic parts for electronic materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017061800A JP6494681B2 (en) | 2017-03-27 | 2017-03-27 | Copper alloy and electronic parts for electronic materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018162510A true JP2018162510A (en) | 2018-10-18 |
JP6494681B2 JP6494681B2 (en) | 2019-04-03 |
Family
ID=63859724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017061800A Active JP6494681B2 (en) | 2017-03-27 | 2017-03-27 | Copper alloy and electronic parts for electronic materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6494681B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023106262A1 (en) * | 2021-12-08 | 2023-06-15 | 古河電気工業株式会社 | Copper alloy sheet material and method for manufacturing same, electronic component, and raising-processed article |
JP7307297B1 (en) * | 2022-02-18 | 2023-07-11 | 古河電気工業株式会社 | Copper alloy sheet material and manufacturing method thereof |
WO2023149121A1 (en) * | 2022-02-04 | 2023-08-10 | 古河電気工業株式会社 | Copper alloy sheet material, and drawn component produced using copper alloy sheet material |
WO2023157614A1 (en) * | 2022-02-18 | 2023-08-24 | 古河電気工業株式会社 | Copper alloy sheet material and method for manufacturing same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009007666A (en) * | 2007-05-31 | 2009-01-15 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment |
JP2012122114A (en) * | 2010-12-10 | 2012-06-28 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY SHEET HAVING EXCELLENT DEEP DRAWABILITY AND FATIGUE RESISTANCE, AND METHOD FOR PRODUCING THE SAME |
JP2012126930A (en) * | 2010-12-13 | 2012-07-05 | Kobe Steel Ltd | Copper alloy |
JP2012177153A (en) * | 2011-02-25 | 2012-09-13 | Kobe Steel Ltd | Copper alloy |
JP2013163853A (en) * | 2012-02-13 | 2013-08-22 | Furukawa Electric Co Ltd:The | Copper alloy sheet material and method for producing the same |
JP2014084512A (en) * | 2012-10-25 | 2014-05-12 | Jx Nippon Mining & Metals Corp | High-strength titanium-copper |
JP2016060958A (en) * | 2014-09-19 | 2016-04-25 | Jx金属株式会社 | Titanium copper for electronic component |
-
2017
- 2017-03-27 JP JP2017061800A patent/JP6494681B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009007666A (en) * | 2007-05-31 | 2009-01-15 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment |
JP2012122114A (en) * | 2010-12-10 | 2012-06-28 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY SHEET HAVING EXCELLENT DEEP DRAWABILITY AND FATIGUE RESISTANCE, AND METHOD FOR PRODUCING THE SAME |
JP2012126930A (en) * | 2010-12-13 | 2012-07-05 | Kobe Steel Ltd | Copper alloy |
JP2012177153A (en) * | 2011-02-25 | 2012-09-13 | Kobe Steel Ltd | Copper alloy |
JP2013163853A (en) * | 2012-02-13 | 2013-08-22 | Furukawa Electric Co Ltd:The | Copper alloy sheet material and method for producing the same |
JP2014084512A (en) * | 2012-10-25 | 2014-05-12 | Jx Nippon Mining & Metals Corp | High-strength titanium-copper |
JP2016060958A (en) * | 2014-09-19 | 2016-04-25 | Jx金属株式会社 | Titanium copper for electronic component |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023106262A1 (en) * | 2021-12-08 | 2023-06-15 | 古河電気工業株式会社 | Copper alloy sheet material and method for manufacturing same, electronic component, and raising-processed article |
JP7328471B1 (en) * | 2021-12-08 | 2023-08-16 | 古河電気工業株式会社 | Copper alloy sheet material, manufacturing method thereof, electronic component and drawn product |
WO2023149121A1 (en) * | 2022-02-04 | 2023-08-10 | 古河電気工業株式会社 | Copper alloy sheet material, and drawn component produced using copper alloy sheet material |
JP7328472B1 (en) * | 2022-02-04 | 2023-08-16 | 古河電気工業株式会社 | Copper alloy sheet materials and drawn parts made from copper alloy sheet materials |
KR20240124905A (en) | 2022-02-04 | 2024-08-19 | 후루카와 덴키 고교 가부시키가이샤 | Copper alloy sheet and drawing machined parts manufactured using copper alloy sheet |
JP7307297B1 (en) * | 2022-02-18 | 2023-07-11 | 古河電気工業株式会社 | Copper alloy sheet material and manufacturing method thereof |
WO2023157614A1 (en) * | 2022-02-18 | 2023-08-24 | 古河電気工業株式会社 | Copper alloy sheet material and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP6494681B2 (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5312920B2 (en) | Copper alloy plate or strip for electronic materials | |
TWI439556B (en) | Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same | |
KR101331339B1 (en) | Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor | |
KR101161597B1 (en) | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy | |
JP4937815B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
TWI422692B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
TWI381397B (en) | Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method | |
JP5225787B2 (en) | Cu-Ni-Si alloy plate or strip for electronic materials | |
KR102126731B1 (en) | Copper alloy sheet and method for manufacturing copper alloy sheet | |
JP5654571B2 (en) | Cu-Ni-Si alloy for electronic materials | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP5140045B2 (en) | Cu-Ni-Si alloy plate or strip for electronic materials | |
JP6494681B2 (en) | Copper alloy and electronic parts for electronic materials | |
JP2012046774A (en) | Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL | |
JP2013104068A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP5544316B2 (en) | Cu-Co-Si-based alloys, copper products, electronic parts, and connectors | |
WO2018174081A1 (en) | Copper alloy strip exhibiting improved dimensional accuracy after press-working | |
JP2013104082A (en) | Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP2016050326A (en) | Copper alloy for electronic and electric device, copper alloy thin sheet for electronic and electric device, component and terminal for electronic and electric device | |
JP2011246740A (en) | Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL | |
JP2022042515A (en) | Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component | |
JP6246174B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP6246173B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP4987155B1 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP2016183418A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190305 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6494681 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |