JP2016183418A - Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL - Google Patents

Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL Download PDF

Info

Publication number
JP2016183418A
JP2016183418A JP2016110234A JP2016110234A JP2016183418A JP 2016183418 A JP2016183418 A JP 2016183418A JP 2016110234 A JP2016110234 A JP 2016110234A JP 2016110234 A JP2016110234 A JP 2016110234A JP 2016183418 A JP2016183418 A JP 2016183418A
Authority
JP
Japan
Prior art keywords
mass
temperature
phase particles
strength
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016110234A
Other languages
Japanese (ja)
Inventor
寛 桑垣
Hiroshi Kuwagaki
寛 桑垣
康弘 岡藤
Yasuhiro Okafuji
康弘 岡藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016110234A priority Critical patent/JP2016183418A/en
Publication of JP2016183418A publication Critical patent/JP2016183418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Ni-Si-Co-based copper alloy with improved balance of conductivity, strength and flexure processability.SOLUTION: There is provided a copper alloy for electronic material containing Ni:1.0 to 2.5 mass%, Co:0.5 to 2.5 mass%, Si:0.3 to 1.2 mass% and the balance Cu with inevitable impurities, and having a ratio of the total mass concentration of Ni and Co to the mass concentration of Si, [Ni+Co]/Si, of 3.5≤[Ni+Co]/Si≤5.5, average particle diameter of second particles with particle diameter in a range of 1 to 50 nm on a cross section parallel to a rolling direction of 2 to 15 nm and average distance of the second particles each other of 10 to 50 nm.SELECTED DRAWING: None

Description

本発明は析出硬化型銅合金に関し、とりわけ各種電子部品に用いるのに好適なCu−Ni−Si−Co系銅合金に関する。   The present invention relates to a precipitation hardening type copper alloy, and more particularly to a Cu—Ni—Si—Co based copper alloy suitable for use in various electronic components.

コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。   Copper alloys for electronic materials used in various electronic parts such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Is done. In recent years, high integration and miniaturization / thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic device components has been increased accordingly.

高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, the amount of precipitation hardening type copper alloys is increasing instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials. . In precipitation-hardened copper alloys, by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

析出硬化型銅合金のうち、コルソン系合金と一般に呼ばれるCu−Ni−Si系銅合金は比較的高い導電性、強度、及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図られる。   Among precipitation hardening copper alloys, Cu-Ni-Si copper alloys, commonly called Corson alloys, are representative copper alloys that have relatively high electrical conductivity, strength, and bending workability, and are currently active in the industry. It is one of the alloys being developed. In this copper alloy, strength and electrical conductivity are improved by precipitating fine Ni—Si intermetallic compound particles in a copper matrix.

最近ではCu−Ni−Si系銅合金にCoを添加したCu-Ni-Si-Co系合金が注目されており、技術改良が進められている。特開2009−242890号公報(特許文献1)では、Cu−Ni−Si−Co系合金の強度、導電性及びばね限界値を向上させるため、0.1〜1μmの粒径をもつ第二相粒子の個数密度を5×105〜1×107個/mm2制御した発明が記載されている。
当該文献に記載の銅合金を製造する方法として、
−所望の組成をもつインゴットを溶解鋳造する工程1と、
−950℃以上1050℃以下で1時間以上加熱後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とし、850℃から400℃までの平均冷却速度を15℃/s以上として冷却する工程2と、
−冷間圧延工程3と、
−850℃以上1050℃以下で溶体化処理を行い、材料温度が650℃に低下するまでの平均冷却速度を1℃/s以上15℃/s未満として冷却し、650℃から400℃まで低下するときの平均冷却速度を15℃/s以上として冷却する工程4と、
−425℃以上475℃未満で1〜24時間行う第一の時効処理工程5と、
−冷間圧延工程6と、
−100℃以上350℃未満で1〜48時間行う第二の時効処理工程5と、
を順に行なうことを含む製造方法が開示されている。
Recently, a Cu-Ni-Si-Co-based alloy obtained by adding Co to a Cu-Ni-Si-based copper alloy has attracted attention, and technical improvements are being promoted. In JP 2009-242890 A (Patent Document 1), in order to improve the strength, conductivity and spring limit value of the Cu—Ni—Si—Co alloy, the second phase having a particle diameter of 0.1 to 1 μm. An invention is described in which the number density of particles is controlled from 5 × 10 5 to 1 × 10 7 particles / mm 2 .
As a method for producing the copper alloy described in the document,
-Step 1 of melt casting an ingot having a desired composition;
Hot rolling is performed after heating at −950 ° C. or higher and 1050 ° C. or lower for 1 hour or longer. The temperature at the end of hot rolling is 850 ° C. or higher, and the average cooling rate from 850 ° C. to 400 ° C. is 15 ° C./s or higher. Step 2 to perform,
-Cold rolling process 3;
Solution treatment is performed at −850 ° C. or more and 1050 ° C. or less, and the average cooling rate until the material temperature is reduced to 650 ° C. is reduced to 1 ° C./s or more and less than 15 ° C./s, and the temperature is decreased from 650 ° C. to 400 ° C. Step 4 for cooling at an average cooling rate of 15 ° C./s or more,
A first aging treatment step 5 performed at −425 ° C. or more and less than 475 ° C. for 1 to 24 hours;
-Cold rolling process 6;
A second aging treatment step 5 carried out at -100 ° C or higher and lower than 350 ° C for 1 to 48 hours;
A manufacturing method including sequentially performing the above is disclosed.

特表2005−532477号公報(特許文献2)には、Cu−Ni−Si−Co系合金の製造工程における各焼鈍を段階的焼鈍プロセスとすることができ、典型的には、段階的焼鈍において、第一工程は、第二工程よりも高い温度であり、段階的焼鈍は、一定温度での焼鈍に比べて、強度と導電性のより良好な組合せをもたらしうることが記載されている。   In Japanese translations of PCT publication No. 2005-532477 (patent document 2), each annealing in the manufacturing process of a Cu-Ni-Si-Co-based alloy can be a stepwise annealing process, and typically in stepwise annealing. It is described that the first step is at a higher temperature than the second step, and stepped annealing can result in a better combination of strength and conductivity than annealing at a constant temperature.

特開2009−242890号公報JP 2009-242890 A 特表2005−532477号公報JP 2005-532477 A

このように、Cu−Ni−Si−Co系合金の特性改良が種々提案されているものの、最適な時効処理条件が確立しておらず、第二相粒子の析出状態は未だ改善の余地が残されている。特開2009−242890号公報には強度、導電性及びばね限界値を向上させるため、0.1〜1μmの粒径をもつ第二相粒子の個数密度を5×105〜1×107個/mm2制御した発明が記載されているが、50nm以下の第二相粒子については一切触れていない。特許文献2には段階的焼鈍が提案されているものの、その具体的な条件については一切示されていない。 Although various improvements in the properties of Cu-Ni-Si-Co alloys have been proposed in this way, the optimum aging conditions have not been established, and there is still room for improvement in the precipitation state of the second phase particles. Has been. Japanese Patent Application Laid-Open No. 2009-242890 discloses that the number density of second phase particles having a particle size of 0.1 to 1 μm is 5 × 10 5 to 1 × 10 7 in order to improve strength, conductivity, and spring limit value. Although the invention controlled at / mm 2 is described, the second phase particles of 50 nm or less are not mentioned at all. Although Patent Document 2 proposes stepwise annealing, the specific conditions are not shown at all.

そこで、本発明は、第二相粒子の析出状態を改善することにより、導電性、強度、及び曲げ加工性のバランスが改良されたCu−Ni−Si−Co系合金を提供することを課題とする。   Then, this invention makes it a subject to provide the Cu-Ni-Si-Co type | system | group alloy by which the balance of electroconductivity, intensity | strength, and bending workability was improved by improving the precipitation state of a 2nd phase particle. To do.

本発明者は透過型電子顕微鏡(TEM)を使用して100万倍の倍率で1〜50nm程度の超微細な第二相粒子の分布と合金特性の関係を鋭意研究した結果、このような超微細な第二相粒子の粒径と第二相粒子同士の距離が合金特性に有意に影響を与えていることを見出した。そして、第二相粒子の平均粒径と第二相粒子同士の平均距離を適切な時効処理によって制御することによって、Cu−Ni−Si−Co系合金における導電性、強度、及び曲げ加工性のバランスが改良されることが分かった。   As a result of intensive studies on the relationship between the distribution of ultrafine second phase particles of about 1 to 50 nm at a magnification of 1 million and alloy properties using a transmission electron microscope (TEM), the present inventor It was found that the fine particle size of the second phase particles and the distance between the second phase particles significantly affect the alloy properties. And by controlling the average particle diameter of the second phase particles and the average distance between the second phase particles by an appropriate aging treatment, the conductivity, strength, and bending workability in the Cu-Ni-Si-Co-based alloy are controlled. It was found that the balance was improved.

上記の知見を基礎として完成した本発明は一側面において、Ni:1.0〜2.5質量%、Co:0.5〜2.5質量%、Si:0.3〜1.2質量%を含有し、残部がCu及び不可避的不純物からなり、Siの質量濃度に対するNiとCoの合計質量濃度の比[Ni+Co]/Siが3.5≦[Ni+Co]/Si≦5.5であり、圧延方向に平行な断面において粒径が1〜50nmの範囲にある第二相粒子の平均粒径が2〜15nmであり、且つ、当該第二相粒子同士の平均距離が10〜50nmである電子材料用銅合金である。   In one aspect, the present invention completed based on the above knowledge is as follows: Ni: 1.0 to 2.5 mass%, Co: 0.5 to 2.5 mass%, Si: 0.3 to 1.2 mass% The balance consists of Cu and inevitable impurities, the ratio of the total mass concentration of Ni and Co to the mass concentration of Si [Ni + Co] / Si is 3.5 ≦ [Ni + Co] /Si≦5.5, Electrons in which the average particle size of the second phase particles in the range of 1 to 50 nm in the cross section parallel to the rolling direction is 2 to 15 nm, and the average distance between the second phase particles is 10 to 50 nm It is a copper alloy for materials.

本発明に係る電子材料用銅合金は一実施形態において、圧延方向に対し平行な断面における平均結晶粒径が3〜30μmである。   In one embodiment, the copper alloy for electronic materials according to the present invention has an average crystal grain size of 3 to 30 μm in a cross section parallel to the rolling direction.

本発明に係る銅合金は更に別の一実施形態において、更にCr、Sn、Zn、P、Mg、Mn、Ag、As、Sb、Be、B、Ti、Zr、Al及びFeの群から選ばれる少なくとも1種を総計で最大2.0質量%含有する。   In yet another embodiment, the copper alloy according to the present invention is further selected from the group of Cr, Sn, Zn, P, Mg, Mn, Ag, As, Sb, Be, B, Ti, Zr, Al, and Fe. At least one kind is contained in a maximum of 2.0% by mass in total.

本発明に係る銅合金は更に別の一実施形態において、0.2%耐力(YS)が750〜950MPaである。   In yet another embodiment, the copper alloy according to the present invention has a 0.2% yield strength (YS) of 750 to 950 MPa.

本発明に係る銅合金は更に別の一実施形態において、以下の(1)〜(3)の何れかの特性を有する。
(1)0.2%耐力(YS)が750〜800MPaで、且つ、導電率が50〜55%IACS
(2)0.2%耐力(YS)が800〜850MPaで、且つ、導電率が45〜50%IACS
(3)0.2%耐力(YS)が850〜900MPaで、且つ、導電率が40〜45%IACS
In yet another embodiment, the copper alloy according to the present invention has any of the following characteristics (1) to (3).
(1) 0.2% yield strength (YS) is 750 to 800 MPa, and conductivity is 50 to 55% IACS.
(2) 0.2% yield strength (YS) is 800 to 850 MPa, and conductivity is 45 to 50% IACS.
(3) 0.2% proof stress (YS) is 850 to 900 MPa and conductivity is 40 to 45% IACS.

本発明は別の一側面において、本発明に係る銅合金からなる伸銅品である。   In another aspect, the present invention is a copper drawn product made of the copper alloy according to the present invention.

本発明は更に別の一側面において、本発明に係る銅合金を備えた電子部品である。   In still another aspect, the present invention is an electronic component including the copper alloy according to the present invention.

本発明によれば、強度、導電性、及び曲げ加工性のバランスが向上したCu−Ni−Si−Co系合金が提供される。   According to the present invention, there is provided a Cu—Ni—Si—Co based alloy having an improved balance of strength, conductivity, and bending workability.

1段時効処理により製造した発明例No.1〜18及び比較例No.32〜43について、導電率(EC)と0.2%耐力(YS)の関係をプロットした図である。Invention Example No. manufactured by one-stage aging treatment 1-18 and Comparative Example No. It is the figure which plotted the relationship between electrical conductivity (EC) and 0.2% yield strength (YS) about 32-43. 2段時効処理により製造した発明例No.19〜25び比較例No.44〜45について、導電率(EC)と0.2%耐力(YS)の関係をプロットした図である。Invention Example No. manufactured by two-stage aging treatment 19-25 and Comparative Example No. It is the figure which plotted the relationship between electrical conductivity (EC) and 0.2% yield strength (YS) about 44-45. 3段時効処理により製造した発明例No.26〜31及び比較例No.46〜47について、導電率(EC)と0.2%耐力(YS)の関係をプロットした図である。Invention Example No. manufactured by three-stage aging treatment 26-31 and Comparative Example No. It is the figure which plotted the relationship between electrical conductivity (EC) and 0.2% yield strength (YS) about 46-47. 時効処理の好適条件の境界線を、x軸を材料の保持温度(℃)とし、y軸を保持温度における保持時間(h)としてグラフ化した。The boundary line of the favorable conditions for aging treatment was graphed with the x-axis being the material holding temperature (° C.) and the y-axis being the holding time (h) at the holding temperature.

Ni、Co及びSiの添加量
Ni、Co及びSiは、適当な熱処理を施すことにより金属間化合物を形成し、導電率を劣化させずに高強度化が図れる。
Ni、Co及びSiの添加量がそれぞれNi:1.0質量%未満、Co:0.5質量%未満、Si:0.3質量%未満では所望の強度が得られず、逆に、Ni:2.5質量%超、Co:2.5質量%超、Si:1.2質量%超では高強度化は図れるが導電率が著しく低下し、更には熱間加工性が劣化する。よってNi、Co及びSiの添加量はNi:1.0〜2.5質量%、Co:0.5〜2.5質量%、Si:0.3〜1.2質量%とした。Ni、Co及びSiの添加量は好ましくは、Ni:1.5〜2.0質量%、Co:0.7〜2.0質量%、Si:0.5〜1.0質量%である。
Addition amounts of Ni, Co, and Si Ni, Co, and Si form an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating conductivity.
When the addition amounts of Ni, Co and Si are less than Ni: 1.0% by mass, Co: less than 0.5% by mass, and Si: less than 0.3% by mass, the desired strength cannot be obtained. If it exceeds 2.5% by mass, Co: more than 2.5% by mass, and Si: more than 1.2% by mass, the strength can be increased, but the electrical conductivity is remarkably lowered, and the hot workability is further deteriorated. Therefore, the addition amounts of Ni, Co, and Si were set to Ni: 1.0 to 2.5 mass%, Co: 0.5 to 2.5 mass%, and Si: 0.3 to 1.2 mass%. The addition amounts of Ni, Co and Si are preferably Ni: 1.5 to 2.0 mass%, Co: 0.7 to 2.0 mass%, and Si: 0.5 to 1.0 mass%.

また、Siの質量濃度に対してNiとCoの合計質量濃度の比[Ni+Co]/Siが低すぎる、すなわち、NiとCoに対してSiの比率が高過ぎると、固溶Siにより導電率が低下したり、焼鈍工程において材料表層にSiO2の酸化皮膜を形成して半田付け性が劣化したりする。一方、Siに対するNi及びCoの割合が高くすぎると、シリサイド形成に必要なSiが不足して高い強度が得られにくい。
そのため、合金組成中の[Ni+Co]/Si比は3.5≦[Ni+Co]/Si≦5.5の範囲に制御することが好ましく、4.0≦[Ni+Co]/Si≦5.0の範囲に制御することがより好ましい。
Moreover, if the ratio [Ni + Co] / Si of the total mass concentration of Ni and Co with respect to the mass concentration of Si is too low, that is, if the ratio of Si to Ni and Co is too high, the conductivity will be increased by solute Si. In the annealing process, an oxide film of SiO 2 is formed on the material surface layer and the solderability is deteriorated. On the other hand, if the ratio of Ni and Co to Si is too high, the Si required for silicide formation is insufficient and it is difficult to obtain high strength.
Therefore, the [Ni + Co] / Si ratio in the alloy composition is preferably controlled in the range of 3.5 ≦ [Ni + Co] /Si≦5.5, and the range of 4.0 ≦ [Ni + Co] /Si≦5.0. More preferably, it is controlled.

Crの添加量
Crは溶解鋳造時の冷却過程において結晶粒界に優先析出するため粒界を強化でき、熱間加工時の割れが発生しにくくなり、歩留低下を抑制できる。すなわち、溶解鋳造時に粒界析出したCrは溶体化処理などで再固溶するが、続く時効析出時にCrを主成分としたbcc構造の析出粒子またはSiとの化合物を生成する。通常のCu−Ni−Si系合金では添加したSi量のうち、時効析出に寄与しなかったSiは母相に固溶したまま導電率の上昇を抑制するが、珪化物形成元素であるCrを添加して、珪化物をさらに析出させることにより、固溶Si量を低減でき、強度を損なわずに導電率を上昇できる。しかしながら、Cr濃度が0.5質量%、とりわけ2.0質量%を超えると粗大な第二相粒子を形成しやすくなるため、製品特性を損なう。従って、本発明に係るCu−Ni−Si−Co系合金には、Crを最大で2.0質量%添加することができる。但し、0.03質量%未満ではその効果が小さいので、好ましくは0.03〜0.5質量%、より好ましくは0.09〜0.3質量%添加するのがよい。
The added amount Cr of Cr preferentially precipitates at the grain boundaries in the cooling process during melt casting, so that the grain boundaries can be strengthened, cracks during hot working are less likely to occur, and yield reduction can be suppressed. That is, Cr that has precipitated at the grain boundaries during melt casting is re-dissolved by solution treatment or the like, but during subsequent aging precipitation, precipitated particles having a bcc structure mainly composed of Cr or a compound with Si are generated. In a normal Cu—Ni—Si based alloy, Si that does not contribute to aging precipitation suppresses the increase in conductivity while being dissolved in the matrix, but the silicide forming element Cr is not added. By adding and further depositing silicide, the amount of dissolved Si can be reduced, and the conductivity can be increased without impairing the strength. However, if the Cr concentration exceeds 0.5% by mass, especially 2.0% by mass, coarse second-phase particles are easily formed, which impairs product characteristics. Therefore, Cr can be added up to 2.0 mass% at maximum in the Cu—Ni—Si—Co alloy according to the present invention. However, since the effect is small if it is less than 0.03 mass%, it is preferable to add 0.03-0.5 mass%, more preferably 0.09-0.3 mass%.

Mg、Mn、Ag及びPの添加量
Mg、Mn、Ag及びPは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Mg、Mn、Ag及びPの濃度の総計が0.5質量%、とりわけ2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu−Ni−Si−Co系合金には、Mg、Mn、Ag及びPから選択される1種又は2種以上を総計で最大2.0質量%、好ましくは最大1.5質量%添加することができる。但し、0.01質量%未満ではその効果が小さいので、好ましくは総計で0.01〜1.0質量%、より好ましくは総計で0.04〜0.5質量%添加するのがよい。
Addition amounts of Mg, Mn, Ag and P Mg, Mn, Ag and P improve the product properties such as strength and stress relaxation characteristics without adding a small amount of addition by adding a small amount. The effect of addition is exhibited mainly by solid solution in the matrix phase, but further effects can be exhibited by inclusion in the second phase particles. However, if the total concentration of Mg, Mn, Ag, and P exceeds 0.5% by mass, particularly 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, in the Cu—Ni—Si—Co alloy according to the present invention, a total of one or more selected from Mg, Mn, Ag and P is 2.0% by mass in total, preferably 1. 5% by mass can be added. However, since the effect is small if it is less than 0.01% by mass, it is preferable to add 0.01 to 1.0% by mass in total, more preferably 0.04 to 0.5% by mass in total.

Sn及びZnの添加量
Sn及びZnにおいても、微量の添加で、導電率を損なわずに強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮される。しかしながら、Sn及びZnの総計が2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu−Ni−Si−Co系合金には、Sn及びZnから選択される1種又は2種を総計で最大2.0質量%添加することができる。但し、0.05質量%未満ではその効果が小さいので、好ましくは総計で0.05〜2.0質量%、より好ましくは総計で0.5〜1.0質量%添加するのがよい。
Even in the addition amounts Sn and Zn of Sn and Zn, the addition of a small amount improves product properties such as strength, stress relaxation properties, and plating properties without impairing electrical conductivity. The effect of addition is exhibited mainly by solid solution in the matrix. However, if the total amount of Sn and Zn exceeds 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, one or two selected from Sn and Zn can be added to the Cu—Ni—Si—Co-based alloy according to the present invention in a maximum of 2.0 mass% in total. However, since the effect is small if it is less than 0.05% by mass, it is preferable to add 0.05 to 2.0% by mass in total, and more preferably 0.5 to 1.0% by mass in total.

As、Sb、Be、B、Ti、Zr、Al及びFeの添加量
As、Sb、Be、B、Ti、Zr、Al及びFeにおいても、要求される製品特性に応じて、添加量を調整することで、導電率、強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有され、若しくは新たな組成の第二相粒子を形成することで一層の効果を発揮させることもできる。しかしながら、これらの元素の総計が2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu−Ni−Si−Co系合金には、As、Sb、Be、B、Ti、Zr、Al及びFeから選択される1種又は2種以上を総計で最大2.0質量%添加することができる。但し、0.001質量%未満ではその効果が小さいので、好ましくは総計で0.001〜2.0質量%、より好ましくは総計で0.05〜1.0質量%添加するのがよい。
Addition amounts of As, Sb, Be, B, Ti, Zr, Al, and Fe As, Sb, Be, B, Ti, Zr, Al, and Fe are also adjusted according to required product characteristics. This improves product properties such as conductivity, strength, stress relaxation properties, and plating properties. The effect of addition is exhibited mainly by solid solution in the parent phase, but it can also be exhibited by forming the second phase particles having a new composition or contained in the second phase particles. However, if the total amount of these elements exceeds 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, in the Cu—Ni—Si—Co alloy according to the present invention, a total of one or more selected from As, Sb, Be, B, Ti, Zr, Al and Fe is 2.0 at the maximum. Mass% can be added. However, since the effect is small if it is less than 0.001% by mass, it is preferable to add 0.001-2.0% by mass in total, more preferably 0.05-1.0% by mass in total.

上記したCr、Sn、Zn、P、Mg、Mn、Ag、As、Sb、Be、B、Ti、Zr、Al及びFeの添加量が合計で2.0質量%を超えると製造性を損ないやすいので、好ましくはこれらの合計は2.0質量%以下とし、より好ましくは1.5質量%以下とする。   Manufacturability is likely to be impaired when the total amount of Cr, Sn, Zn, P, Mg, Mn, Ag, As, Sb, Be, B, Ti, Zr, Al, and Fe exceeds 2.0% by mass. Therefore, preferably the total of these is 2.0% by mass or less, more preferably 1.5% by mass or less.

(第二相粒子)
本発明において、第二相粒子とは主にシリサイドを指すが、これに限られるものではなく、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言う。
(Second phase particles)
In the present invention, the second phase particle mainly refers to silicide, but is not limited to this. Crystallized substances generated in the solidification process of melt casting and precipitates generated in the subsequent cooling process, after hot rolling It refers to precipitates generated in the cooling process, precipitates generated in the cooling process after solution treatment, and precipitates generated in the aging process.

本発明においては、圧延方向に平行な断面において粒径が1〜50nmの範囲にある第二相粒子に着目し、その平均粒径及び粒子間の平均距離を規定している。このような超微細な第二相粒子の粒径と第二相粒子同士の距離を制御することによって合金特性が向上する。   In the present invention, attention is focused on second phase particles having a particle diameter in the range of 1 to 50 nm in a cross section parallel to the rolling direction, and the average particle diameter and the average distance between the particles are defined. By controlling the particle diameter of such ultrafine second phase particles and the distance between the second phase particles, the alloy characteristics are improved.

具体的には、圧延方向に平行な断面において粒径が1〜50nmの範囲にある第二相粒子の平均粒径は、大きすぎると十分な強度が得られない傾向にあり、逆に小さすぎると十分な導電率が得られない傾向にある。そこで、当該平均粒径は2〜15nmに制御することが好ましく、5〜10nmに制御することがより好ましい。
また、平均粒径のみならず、当該第二相粒子同士の平均距離を制御することも重要である。第二相粒子同士の平均距離を小さくすると高い強度が得られ、第二相粒子同士の平均距離を50nm以下とするのが好ましく、30nm以下とするのがより好ましい。下限は析出し得る添加元素の量と析出物の径から10nmである。
Specifically, the average particle diameter of the second phase particles having a particle diameter in the range of 1 to 50 nm in a cross section parallel to the rolling direction tends to fail to obtain sufficient strength, and conversely is too small. There is a tendency that sufficient conductivity cannot be obtained. Therefore, the average particle size is preferably controlled to 2 to 15 nm, more preferably 5 to 10 nm.
It is also important to control not only the average particle diameter but also the average distance between the second phase particles. When the average distance between the second phase particles is reduced, high strength is obtained, and the average distance between the second phase particles is preferably 50 nm or less, and more preferably 30 nm or less. The lower limit is 10 nm from the amount of additive element that can be precipitated and the diameter of the precipitate.

本発明においては、第二相粒子の平均粒径は、以下の手順によって測定する。透過電子顕微鏡にて100万倍で1〜50nmの第二相粒子が100個以上含まれるように撮影し、各粒子の長径を測定し、その合計を粒子個数で除した数値を平均粒径とする。長径とは、観察視野中で、各第二相粒子において粒子の輪郭線上にある最も遠い2点を結ぶ線分の長さのことを指す。
本発明においては、第二相粒子同士の平均距離は、以下の手順によって測定する。透過電子顕微鏡にて100万倍で1〜50nmの第二相粒子が100個以上含まれるように撮影し、観察視野内の(観察面積×試料厚み)÷第2相粒子個数を1/3乗することで求められる。
In the present invention, the average particle size of the second phase particles is measured by the following procedure. Photographed with a transmission electron microscope at a magnification of 1,000,000 so that 100 or more second phase particles of 1 to 50 nm are contained, the major axis of each particle was measured, and the value obtained by dividing the total by the number of particles was the average particle size. To do. The major axis means the length of a line segment connecting two farthest points on the particle outline in each second phase particle in the observation field.
In the present invention, the average distance between the second phase particles is measured by the following procedure. Photographed with a transmission electron microscope so that 100 or more second phase particles of 1 to 50 nm are included at 1 million times, and (observation area × sample thickness) ÷ number of second phase particles in observation field is 1/3 power Is required.

(結晶粒径)
結晶粒は、強度に影響を与え、強度が結晶粒の−1/2乗に比例するというホールペッチ則が一般的に成り立つため、結晶粒は小さい方が好ましい。しかしながら、析出強化型の合金においては、第二相粒子の析出状態に留意する必要がある。時効処理においては結晶粒内に析出した第二相粒子は、強度向上に寄与するが、結晶粒界に析出した第二相粒子はほとんど強度向上に寄与しない。したがって、結晶粒が小さいほど、析出反応における粒界反応の割合が高くなるため、強度向上に寄与しない粒界析出が支配的となり、結晶粒径が3μm未満の場合、所望の強度を得ることができない。一方、粗大な結晶粒は、曲げ加工性を低下させる。
そこで、所望の強度および曲げ加工性を得る観点から、圧延方向に対し平行な断面における平均結晶粒径が3〜30μmとするのが好ましい。さらに、平均結晶粒径は、高強度および良好な曲げ加工性の両立という観点から、10〜25μmに制御することがより好ましい。
(Crystal grain size)
The crystal grains affect the strength, and the Hall Petch rule that the strength is proportional to the −1/2 power of the crystal grains generally holds, so that the crystal grains are preferably smaller. However, in the precipitation strengthening type alloy, it is necessary to pay attention to the precipitation state of the second phase particles. In the aging treatment, the second phase particles precipitated in the crystal grains contribute to the strength improvement, but the second phase particles precipitated in the crystal grain boundaries hardly contribute to the strength improvement. Therefore, the smaller the crystal grain, the higher the rate of grain boundary reaction in the precipitation reaction, so the grain boundary precipitation that does not contribute to strength improvement becomes dominant, and when the crystal grain size is less than 3 μm, the desired strength can be obtained. Can not. On the other hand, coarse crystal grains reduce bending workability.
Therefore, from the viewpoint of obtaining desired strength and bending workability, it is preferable that the average crystal grain size in a cross section parallel to the rolling direction is 3 to 30 μm. Furthermore, the average crystal grain size is more preferably controlled to 10 to 25 μm from the viewpoint of achieving both high strength and good bending workability.

(強度、導電性および曲げ加工性)
本発明に係るCu−Ni−Si−Co系合金は一実施形態において、0.2%耐力(YS)が750〜950MPaである。本発明に係るCu−Ni−Si−Co系合金は典型的な実施形態において、0.2%耐力(YS)が750〜800MPaで、且つ、導電率が50〜55%IACSを有することができ、別の典型的な実施形態において、0.2%耐力(YS)が800〜850MPaで、且つ、導電率が45〜50%IACSを有することができ、更に別の典型的な実施形態において、0.2%耐力(YS)が850〜900MPaで、且つ、導電率が40〜45%IACSを有することができる。
(Strength, conductivity and bendability)
In one embodiment, the Cu—Ni—Si—Co alloy according to the present invention has a 0.2% yield strength (YS) of 750 to 950 MPa. In a typical embodiment, the Cu—Ni—Si—Co based alloy according to the present invention may have a 0.2% proof stress (YS) of 750 to 800 MPa and a conductivity of 50 to 55% IACS. In another exemplary embodiment, the 0.2% proof stress (YS) can be 800-850 MPa and the conductivity can be 45-50% IACS. In yet another exemplary embodiment, The 0.2% proof stress (YS) can be 850 to 900 MPa and the conductivity can be 40 to 45% IACS.

(製造方法)
次に本発明に係る銅合金の製造方法に関して説明する。
本発明に係る銅合金は一部の工程に工夫を加える他は、コルソン系合金の製造工程を採用することで製造可能である。
(Production method)
Next, a method for producing a copper alloy according to the present invention will be described.
The copper alloy according to the present invention can be manufactured by adopting the manufacturing process of the Corson alloy except that some processes are devised.

コルソン系銅合金の一般的な製造プロセスでは、まず大気溶解炉を用い、電気銅、Ni、Si、Co等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、約850〜約1000℃の高温で加熱して、第二相粒子をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、約350〜約550℃の温度範囲で1時間以上加熱し、溶体化処理で固溶させた第二相粒子をナノメートルオーダーの微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行なうことがある。また、時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行なうことがある。
上記各工程の合間には適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等が適宜行なわれる。
In a general manufacturing process of a Corson copper alloy, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni, Si, Co, etc. to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of about 850 to about 1000 ° C., so that the second phase particles are dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, the second phase particles heated in a temperature range of about 350 to about 550 ° C. for 1 hour or more and solid-dissolved by the solution treatment are precipitated as fine particles of nanometer order. This aging treatment increases strength and conductivity. In order to obtain higher strength, cold rolling may be performed before and / or after aging. Moreover, when performing cold rolling after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.
Between the above steps, grinding, polishing, shot blast pickling and the like for removing oxide scale on the surface are appropriately performed.

上記の慣例的な製造工程に対して、本発明に係る銅合金を製造する上では以下の点に留意する必要がある。   It is necessary to pay attention to the following points when manufacturing the copper alloy according to the present invention with respect to the conventional manufacturing process.

まず、鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が不可避的に生成するため、その後の工程においてこれらの第二相粒子を母相中に固溶する必要がある。950℃〜1050℃で1時間以上保持後に熱間圧延を行い、熱間圧延を終了後は、速やかに冷却することが望ましい。   First, coarse crystallized products are inevitably generated during the solidification process during casting, and coarse precipitates are inevitably generated during the cooling process, so it is necessary to dissolve these second-phase particles in the matrix during the subsequent steps. There is. It is desirable to perform hot rolling after holding at 950 ° C. to 1050 ° C. for 1 hour or longer, and cool rapidly after the hot rolling is finished.

熱間圧延を行った後、冷間圧延、溶体化処理の順で実施する。溶体化処理では、十分な固溶により粗大な第二相粒子の数を低減し、且つ、結晶粒粗大化を防止することが重要となる。具体的には、溶体化処理温度は850℃〜1050℃に設定して第二相粒子を固溶させる。溶体化処理後の冷却も速いほうが好ましく、具体的には10℃/sec以上とするのが望ましい。   After hot rolling, cold rolling and solution treatment are performed in this order. In the solution treatment, it is important to reduce the number of coarse second-phase particles by sufficient solid solution and to prevent coarsening of crystal grains. Specifically, the solution treatment temperature is set to 850 ° C. to 1050 ° C., and the second phase particles are dissolved. It is preferable that the cooling after the solution treatment is also fast, and specifically, it is desirable to set it to 10 ° C./sec or more.

また、材料温度が最高到達温度に保持されている適切な時間はNi、CoおよびSi濃度、および最高到達温度によって異なるが、再結晶およびその後の結晶粒の成長による結晶粒の粗大化を防ぐため、典型的には材料温度が最高到達温度に保持されている時間を480秒以下、好ましくは240秒以下、更に好ましくは120秒以下に制御する。ただし、材料温度が最高到達温度に保持されている時間が短すぎると粗大な第二相粒子の数を低減することができない場合があるため、10秒以上とするのが好ましく、30秒以上とするのがより好ましい。   In addition, the appropriate time during which the material temperature is maintained at the maximum temperature is different depending on the Ni, Co and Si concentrations and the maximum temperature, but in order to prevent grain growth due to recrystallization and subsequent crystal grain growth. Typically, the time during which the material temperature is maintained at the maximum temperature is controlled to 480 seconds or less, preferably 240 seconds or less, and more preferably 120 seconds or less. However, since the number of coarse second-phase particles may not be reduced if the time during which the material temperature is maintained at the maximum temperature is too short, it is preferably 10 seconds or more, and 30 seconds or more. More preferably.

溶体化処理工程後は、時効処理を行う。本発明に係る銅合金を製造する上では時効処理の条件を厳密に制御することが望まれる。時効処理が第二相粒子の分布状態の制御に最も大きな影響を与えるからである。具体的な時効処理条件については以下に説明する。
まず、材料温度が300℃から保持温度まで到達するときの昇温速度は、高すぎると析出サイトが少ないため、第二相粒子の数が少なくなり第二相粒子の粒子間距離が大きくなりやすい。一方で、低すぎると昇温中に第二相粒子が大きくなる。そこで、10〜160℃/h、好ましくは10〜100℃/h、より好ましくは10〜50℃/hとする。昇温速度は、(保持温度−300℃)/(材料温度が300℃から保持温度まで上昇するのに要した時間)で与えられる。
次に、材料の保持温度(℃)をx、保持温度における保持時間(h)をyとした場合に、次式:5.0×1014×exp(−0.0745x)≦y≦2.0×1017×exp(−0.0745x)を満たすように保持温度及び保持時間を設定する。y>2.0×1017×exp(−0.0745x)となると、第二相粒子が成長し過ぎて平均粒径が15nm超となる傾向にあり、5.0×1014×exp(−0.0745x)>yとなると、第二相粒子の成長が不十分で平均粒径が2nm未満になる傾向にある。
時効処理は、好ましくは次式:8.0×1015×exp(−0.0745x)≦y≦5.0×1016×exp(−0.0745x)を満たすように保持温度及び保持時間を設定する。当該条件で時効処理を実施すると第二相粒子の平均粒径が5〜9nmに入りやすい。
図4に、上記の式を、x軸を材料の保持温度(℃)とし、y軸を保持温度における保持時間(h)としてグラフに表した。
最後に、材料温度が保持温度から300℃まで低下するときの降温速度は、低くすることで導電率の向上が見込める。ただし、低すぎると強度が低下する。そこで、5〜100℃/h、好ましくは5〜50℃/h、より好ましくは5〜25℃/hとする。降温速度は、(保持温度−300℃)/(降温を開始した後、材料温度が保持温度から300℃まで低下するのに要した時間)で与えられる。
An aging treatment is performed after the solution treatment step. In producing the copper alloy according to the present invention, it is desirable to strictly control the conditions of the aging treatment. This is because the aging treatment has the greatest influence on the control of the distribution state of the second phase particles. Specific aging treatment conditions will be described below.
First, when the material temperature reaches the holding temperature from 300 ° C., if the temperature rises too high, the number of second phase particles tends to decrease because the number of precipitation sites is small, and the interparticle distance between the second phase particles tends to increase. . On the other hand, if it is too low, the second phase particles become larger during the temperature rise. Therefore, it is 10 to 160 ° C./h, preferably 10 to 100 ° C./h, more preferably 10 to 50 ° C./h. The temperature increase rate is given by (holding temperature−300 ° C.) / (Time required for the material temperature to rise from 300 ° C. to the holding temperature).
Next, when the retention temperature (° C.) of the material is x and the retention time (h) at the retention temperature is y, the following formula: 5.0 × 10 14 × exp (−0.0745x) ≦ y ≦ 2. The holding temperature and holding time are set so as to satisfy 0 × 10 17 × exp (−0.0745x). When y> 2.0 × 10 17 × exp (−0.0745x), the second phase particles tend to grow too much and the average particle size tends to exceed 15 nm, and 5.0 × 10 14 × exp (− When 0.0745x)> y, the growth of the second phase particles is insufficient and the average particle size tends to be less than 2 nm.
The aging treatment is preferably performed at a holding temperature and a holding time so as to satisfy the following formula: 8.0 × 10 15 × exp (−0.0745x) ≦ y ≦ 5.0 × 10 16 × exp (−0.0745x) Set. When the aging treatment is carried out under the conditions, the average particle diameter of the second phase particles tends to fall within 5 to 9 nm.
In FIG. 4, the above equation is represented in a graph with the x axis as the material holding temperature (° C.) and the y axis as the holding time (h) at the holding temperature.
Finally, an improvement in conductivity can be expected by lowering the rate of temperature drop when the material temperature decreases from the holding temperature to 300 ° C. However, when too low, strength will fall. Therefore, 5 to 100 ° C./h, preferably 5 to 50 ° C./h, more preferably 5 to 25 ° C./h. The temperature lowering rate is given by (holding temperature−300 ° C.) / (Time required for the material temperature to drop from the holding temperature to 300 ° C. after the start of temperature lowering).

時効処理は多段時効を行うと更に良好な特性が得られる。
詳細な条件としては、1段目の時効処理を上記条件で行った後、段間の温度差を20℃〜150℃、各段の保持時時間を1〜30hとして低温側に向かって多段時効を行うのが好ましい。
In the aging treatment, better characteristics can be obtained by performing multi-stage aging.
As detailed conditions, after performing the first stage aging treatment under the above conditions, the temperature difference between the stages is 20 ° C. to 150 ° C., the holding time of each stage is 1 to 30 hours, and the multi-stage aging is performed toward the low temperature side. Is preferably performed.

段間の温度差を20℃〜150℃に設定したのは、温度差が20℃未満だと第二相粒子が成長しすぎて強度が低下する一方で、温度差が150℃を超えると析出速度が遅すぎて効果が小さいからである。段間の温度差は好ましくは30〜120℃であり、より好ましくは40〜100℃である。例えば、1段目の時効処理を460℃で行った場合、2段目の時効処理をそれよりも20〜150℃低い保持温度である310〜440℃で行うことができる。3段目以降も同様である。なお、保持温度が300℃未満となる時効処理を行っても第二相粒子の分布状態はほとんど変化しないので、時効処理の段数を必要以上に多く設定する必要はない。好適な段数は2段又は3段であり、3段がより好ましい。   The temperature difference between the stages was set to 20 ° C. to 150 ° C. The reason is that if the temperature difference is less than 20 ° C., the second phase particles grow too much and the strength decreases, while if the temperature difference exceeds 150 ° C., precipitation occurs. This is because the speed is too slow and the effect is small. The temperature difference between the stages is preferably 30 to 120 ° C, more preferably 40 to 100 ° C. For example, when the first aging treatment is performed at 460 ° C., the second aging treatment can be performed at 310 to 440 ° C., which is a holding temperature lower by 20 to 150 ° C. The same applies to the third and subsequent stages. In addition, since the distribution state of the second phase particles hardly changes even when the aging treatment is performed at a holding temperature of less than 300 ° C., it is not necessary to set the number of stages of the aging treatment more than necessary. A suitable number of stages is two or three, and three is more preferable.

各段の保持時間を1〜30hに設定したのは、保持時間が1h未満だと効果が得られない一方で、30hを超えると時効時間が長くなりすぎて製造コストが増加するからである。保持時間は好ましくは2〜20hであり、より好ましくは5〜15hである。   The reason why the holding time of each stage is set to 1 to 30 h is that, if the holding time is less than 1 h, the effect cannot be obtained, while if it exceeds 30 h, the aging time becomes too long and the manufacturing cost increases. The holding time is preferably 2 to 20 hours, more preferably 5 to 15 hours.

材料温度が保持温度から300℃まで低下するときの降温速度について先述したが、多段時効を行う場合であっても、材料温度が300℃以上にあるときは、同様の降温速度で行うことが好ましい。多段時効する場合の降温速度は(1段目の保持温度−300℃)/(1段目終了後に降温を開始した後、材料温度が保持温度から300℃まで低下するのに要した時間−各段における保持時間)で与えられる。すなわち、各段における保持時間は降温時間から控除して降温速度を計算する。   Although the temperature decreasing rate when the material temperature decreases from the holding temperature to 300 ° C. is described above, even when multi-stage aging is performed, it is preferable to perform at the same temperature decreasing rate when the material temperature is 300 ° C. or higher. . In the case of multi-stage aging, the temperature lowering rate is (first stage holding temperature−300 ° C.) / (The time required for the material temperature to drop from the holding temperature to 300 ° C. after starting the temperature lowering after the end of the first stage−each Retention time in the stage). That is, the temperature drop rate is calculated by subtracting the holding time in each stage from the temperature drop time.

時効処理の後は、必要に応じて冷間圧延を行う。圧延加工度は10〜40%が好ましい。冷間圧延の後は、必要に応じて歪取り焼鈍を行う。焼鈍温度は300〜600℃で5秒〜1時間が好ましい。   After the aging treatment, cold rolling is performed as necessary. The rolling degree is preferably 10 to 40%. After cold rolling, strain relief annealing is performed as necessary. The annealing temperature is preferably 300 to 600 ° C. and 5 seconds to 1 hour.

本発明のCu−Ni−Si−Co系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明によるCu−Ni−Si−Co系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。   The Cu—Ni—Si—Co based alloy of the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires, and the Cu—Ni—Si—Co based copper according to the present invention. The alloy can be used for electronic components such as lead frames, connectors, pins, terminals, relays, switches, and secondary battery foils.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

<例1>
表1に記載の質量濃度のNi、Co及びSiを含有し、残部がCu及び不可避的不純物からなる成分組成を有するCu−Ni−Si−Co系銅合金を、高周波溶解炉を用いてAr雰囲気中で1300℃で溶製し、厚さ30mmのインゴットに鋳造した。
次いで、このインゴットを1000℃に加熱して3時間保持後、板厚10mmまで熱間圧延した。熱間圧延終了時の材料温度は850℃であった。その後、水冷した。
次いで、第一冷間圧延を95%以上の加工度で実施した。
次いで、溶体化処理をNi+Co濃度が1.0質量%以上2.0質量%未満のものは材料温度850℃、加熱時間100秒、Ni+Co濃度が2.0質量%以上3.0質量%未満のものは材料温度900℃、加熱時間100秒、Ni+Co濃度が3.0質量%以上4.0質量%未満のものは加熱温度950℃、加熱時間100秒の条件で実施し、その後は水冷した。
次いで、時効処理を表1に記載の条件で実施した。
次いで、第二冷間圧延を圧下率20%の条件で実施し、板厚0.08mmを得た。
最後に、歪み取り焼鈍を材料温度350℃、加熱時間30秒の条件で実施して、各試験片とした。
<Example 1>
A Cu—Ni—Si—Co based copper alloy having a composition of Ni, Co and Si having a mass concentration shown in Table 1 and having the balance consisting of Cu and unavoidable impurities in an Ar atmosphere using a high frequency melting furnace It was melted at 1300 ° C. and cast into an ingot having a thickness of 30 mm.
Next, this ingot was heated to 1000 ° C. and held for 3 hours, and then hot-rolled to a plate thickness of 10 mm. The material temperature at the end of hot rolling was 850 ° C. Then, it cooled with water.
Next, the first cold rolling was performed at a workability of 95% or more.
Next, in the solution treatment, when the Ni + Co concentration is 1.0 mass% or more and less than 2.0 mass%, the material temperature is 850 ° C., the heating time is 100 seconds, and the Ni + Co concentration is 2.0 mass% or more and 3.0 mass%. Less than mass%, material temperature is 900 ° C, heating time is 100 seconds, Ni + Co concentration is 3.0 mass% or more and less than 4.0 mass%, heating temperature is 950 ° C, heating time is 100 seconds. After that, it was cooled with water.
Next, an aging treatment was performed under the conditions described in Table 1.
Next, the second cold rolling was performed under the condition of a reduction rate of 20%, and a plate thickness of 0.08 mm was obtained.
Finally, strain relief annealing was carried out under conditions of a material temperature of 350 ° C. and a heating time of 30 seconds to obtain test pieces.

このようにして得られた各試験片につき各種の特性評価を以下のように行った。
(1)0.2%耐力(YS)及び引張強さ(TS)
強度についてはJIS Z2241に準拠して圧延平行方向の引っ張り試験を行って0.2%耐力(YS:MPa)及び引張強さ(TS;MPa)を測定した。
(2)導電率(EC)
導電率(EC;%IACS)についてはダブルブリッジによる体積抵抗率測定により求めた。
(3)平均結晶粒径(GS)
試験片を観察面が圧延方向に対し平行な厚み方向の断面となるように樹脂埋めし、観察面を機械研磨にて鏡面仕上げを行い、続いて水100容量部に対して質量濃度36%の塩酸10容量部の割合で混合した溶液に、その溶液の重量に対して5%の重量の塩化第二鉄を溶解させた。こうして出来上がった溶液中に、試料を10秒間浸漬して金属組織を現出させた。次に、この金属組織を光学顕微鏡で200倍に拡大して観察視野0.5mm2の範囲の写真を撮った。続いて、当該写真に基づいて個々の結晶粒の圧延方向の最大径と厚み方向の最大径との平均を各結晶について求め、各観察視野に対して平均値を算出し、さらに観察視野15箇所の平均値を平均結晶粒径とした。
(4)曲げ加工性
曲げ加工性については、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験として、W字型の金型を用いて試料板厚と曲げ半径の比が1となる条件で90°曲げ加工を行った。続いて、曲げ加工部表面を光学顕微鏡で観察し、クラックが観察されない場合を実用上問題ないと判断して○(良好)とし、クラックが認められた場合を×(不良)とした。
(5)粒径が1〜50nmの範囲にある第二相粒子の平均粒径及び平均距離
各試験片の一部を用いて、ツインジェット式電解研磨装置によって、厚み10〜100nmの観察用試料の作成を行い、透過型電子顕微鏡(HITACHI−H−9000)により先述した方法に従って測定した。10視野の平均値を測定値とした。
本実施例では、透過型電子顕微鏡の試料作成において一般に用いられる電解研磨法を使用したが、FIB(Focused Ion Beam:集束イオンビーム)による薄膜作成を行って測定しても良い。
Various characteristics of the test pieces thus obtained were evaluated as follows.
(1) 0.2% yield strength (YS) and tensile strength (TS)
As for strength, a tensile test in the rolling parallel direction was performed according to JIS Z2241, and 0.2% yield strength (YS: MPa) and tensile strength (TS; MPa) were measured.
(2) Conductivity (EC)
The conductivity (EC;% IACS) was determined by volume resistivity measurement using a double bridge.
(3) Average crystal grain size (GS)
The test piece was resin-filled so that the observation surface had a cross section in the thickness direction parallel to the rolling direction, the observation surface was mirror-finished by mechanical polishing, and subsequently a mass concentration of 36% with respect to 100 parts by volume of water. In a solution mixed with 10 parts by volume of hydrochloric acid, ferric chloride having a weight of 5% with respect to the weight of the solution was dissolved. The sample was immersed in the resulting solution for 10 seconds to reveal the metal structure. Next, this metal structure was magnified 200 times with an optical microscope, and a photograph was taken in the range of an observation visual field of 0.5 mm 2 . Subsequently, the average of the maximum diameter in the rolling direction and the maximum diameter in the thickness direction of each crystal grain is obtained for each crystal based on the photograph, the average value is calculated for each observation field, and further 15 observation fields Was the average crystal grain size.
(4) Bending workability As for the bending workability, the ratio of the sample plate thickness to the bending radius is 1 using a W-shaped mold as a W-bending test of Badway (the bending axis is the same direction as the rolling direction). 90 ° bending was performed under the conditions. Subsequently, the surface of the bent portion was observed with an optical microscope, and when no crack was observed, it was judged that there was no problem in practical use.
(5) Average particle diameter and average distance of second phase particles having a particle diameter in the range of 1 to 50 nm A sample for observation having a thickness of 10 to 100 nm by a twin jet electrolytic polishing apparatus using a part of each test piece Was measured using a transmission electron microscope (HITACHI-H-9000) according to the method described above. The average value of 10 fields of view was taken as the measured value.
In this embodiment, an electropolishing method generally used in the preparation of a transmission electron microscope sample is used, but measurement may be performed by forming a thin film by FIB (Focused Ion Beam).

結果を表2に示した。以下に、各試験片の結果説明をする。
No.1〜31は発明例であり、溶体化処理後に行った時効処理条件が適切であったため、強度、導電率、及び曲げ加工性のバランスに優れていた。また、時効処理の段数を増やすことでこのバランスが更に向上したことが分かる。
一方、No.32はNi濃度、Si濃度及びCo濃度が低かったため、発明例に比べて特性のバランスが劣った。
No.33は、時効処理時の温度が低かったために、に第二相粒子の成長が不十分で平均粒子径が2nm以下となった。そのため、発明例に比べて特性のバランスが劣った。
No.34は、時効処理時の温度に対して、時間が短かったために第二相粒子の成長が不十分で平均粒子径が2nm以下となった。そのため、発明例に比べて特性のバランスが劣った。
No.35は、時効処理時の温度に対して、時間が長かったために第二相粒子が成長し過ぎて平均粒子径が15nm超、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
No.36とNo.37は、時効処理時の温度が高かったために、第二相粒子が成長し過ぎて平均粒子径が15nm超、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
No.38は、時効処理時の昇温速度が低すぎたために昇温中に第2相粒子が成長し過ぎて平均粒子径が15nm超、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
No.39は、時効処理時の昇温速度が高すぎたために析出サイトの数が少なくなり、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
No.40は、時効処理時の降温速度が高すぎたために降温中に第二相粒子が析出せず、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
No.41は、時効処理時の降温速度が低すぎたために、降温中に第二相粒子が成長してしまい、平均粒子径が15nm超、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
No.42とNo.43はNi濃度もしくはCo濃度が高すぎたため、発明例に比べて特性のバランスが劣った。
No.44は、No.33に対して二段目の時効処理を追加した例であるが、一段目の時効処理時の温度が低く、時間も短かったために第二相粒子の成長が不十分で平均粒子径が2nm未満となった。そのため、発明例に比べて特性のバランスが劣った。
No.45は、No.37に対して二段目の時効処理を追加した例であるが、一段目の時効処理時の温度が高く、時間も長かったために第二相粒子が成長し過ぎて平均粒子径が15nm超、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
No.46は、No.33に対して二段目及び三段目の時効処理を追加した例であるが、一段目の時効処理時の温度が低く、時間も短かったために第二相粒子の成長が不十分で粒子径が2nm未満となった。そのため、発明例に比べて特性のバランスが劣った。
No.47は、No.37に対して二段目及び三段目の時効処理を追加した例であるが、一段目の時効処理時の温度が高く、時間も長かったために第二相粒子が成長し過ぎて平均粒子径が15nm超、粒子間距離が50nm超となった。そのため、発明例に比べて特性のバランスが劣った。
The results are shown in Table 2. The results of each test piece will be described below.
No. 1 to 31 are invention examples, and the aging treatment conditions performed after the solution treatment were appropriate, and therefore, the balance of strength, conductivity, and bending workability was excellent. It can also be seen that this balance was further improved by increasing the number of stages of aging treatment.
On the other hand, no. No. 32 had a lower Ni concentration, Si concentration, and Co concentration, so the balance of characteristics was inferior to that of the inventive example.
No. In No. 33, since the temperature during the aging treatment was low, the growth of the second phase particles was insufficient and the average particle size was 2 nm or less. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. In No. 34, the time was short with respect to the temperature during the aging treatment, so that the growth of the second phase particles was insufficient, and the average particle size was 2 nm or less. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. In No. 35, since the time was long with respect to the temperature at the aging treatment, the second phase particles grew too much, and the average particle diameter exceeded 15 nm and the interparticle distance exceeded 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. 36 and no. In No. 37, since the temperature during the aging treatment was high, the second phase particles grew too much, resulting in an average particle diameter exceeding 15 nm and an interparticle distance exceeding 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. In No. 38, the rate of temperature increase during the aging treatment was too low, so the second phase particles grew too much during the temperature increase, and the average particle size exceeded 15 nm and the interparticle distance exceeded 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. In No. 39, the temperature increase rate during the aging treatment was too high, so the number of precipitation sites was reduced, and the interparticle distance was more than 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. In No. 40, the temperature drop rate during the aging treatment was too high, so that the second phase particles did not precipitate during the temperature drop, and the inter-particle distance exceeded 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. In No. 41, since the temperature lowering rate during the aging treatment was too low, the second phase particles grew during the temperature lowering, and the average particle diameter exceeded 15 nm and the interparticle distance exceeded 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. 42 and no. No. 43 was inferior in the balance of characteristics as compared with the inventive examples because the Ni concentration or the Co concentration was too high.
No. 44 is No. 44. This is an example in which a second stage aging treatment is added to 33, but the temperature during the first stage aging treatment is low and the time is short, so that the growth of the second phase particles is insufficient and the average particle size is less than 2 nm. It became. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. 45 is No. 45. In this example, the second aging treatment was added to 37, but the temperature during the first aging treatment was high and the time was long, so the second phase particles grew too much and the average particle diameter exceeded 15 nm. The inter-particle distance was over 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. 46 is No. 46. This is an example in which the second and third aging treatments are added to 33, but the temperature during the first aging treatment is low and the time is short, so the growth of the second phase particles is insufficient and the particle size is small. Was less than 2 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.
No. 47 is No. 47. In this example, the second and third aging treatments were added to 37, but the temperature during the first aging treatment was high and the time was long, so the second phase particles grew too much and the average particle size Was over 15 nm, and the inter-particle distance was over 50 nm. Therefore, the balance of characteristics was inferior compared to the inventive examples.

<例2>
表3に記載の質量濃度のNi、Co、Si及びその他の元素を含有し、残部がCu及び不可避的不純物からなる成分組成を有するCu−Ni−Si−Co系銅合金について、例1のNo.29と同様の製造方法によって試験片を製造した。得られた試験片について、例1と同様に特性評価を行った。結果を表4に示す。各種の元素を添加しても本発明の効果が得られることが分かる。
<Example 2>
No. of Example 1 about Cu-Ni-Si-Co type copper alloy which contains Ni, Co, Si, and other elements of mass concentration of Table 3, and has the composition which the remainder consists of Cu and an unavoidable impurity . The test piece was manufactured by the manufacturing method similar to 29. About the obtained test piece, the characteristic evaluation was performed similarly to Example 1. The results are shown in Table 4. It can be seen that the effects of the present invention can be obtained even when various elements are added.

Claims (1)

本明細書に記載の発明。   The invention described herein.
JP2016110234A 2016-06-01 2016-06-01 Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL Pending JP2016183418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016110234A JP2016183418A (en) 2016-06-01 2016-06-01 Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016110234A JP2016183418A (en) 2016-06-01 2016-06-01 Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011246515A Division JP6222885B2 (en) 2011-11-10 2011-11-10 Cu-Ni-Si-Co based copper alloy for electronic materials

Publications (1)

Publication Number Publication Date
JP2016183418A true JP2016183418A (en) 2016-10-20

Family

ID=57242629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016110234A Pending JP2016183418A (en) 2016-06-01 2016-06-01 Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Country Status (1)

Country Link
JP (1) JP2016183418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609801A (en) * 2018-12-06 2019-04-12 宁波博威合金材料股份有限公司 High property copper alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609801A (en) * 2018-12-06 2019-04-12 宁波博威合金材料股份有限公司 High property copper alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4440313B2 (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6306632B2 (en) Copper alloy for electronic materials
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2018062705A (en) Copper alloy for electronic material
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP2013117060A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL
TWI391952B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017