JP4937815B2 - Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same - Google Patents

Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same Download PDF

Info

Publication number
JP4937815B2
JP4937815B2 JP2007092269A JP2007092269A JP4937815B2 JP 4937815 B2 JP4937815 B2 JP 4937815B2 JP 2007092269 A JP2007092269 A JP 2007092269A JP 2007092269 A JP2007092269 A JP 2007092269A JP 4937815 B2 JP4937815 B2 JP 4937815B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
cooling
phase particles
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007092269A
Other languages
Japanese (ja)
Other versions
JP2008248333A (en
Inventor
寛 桑垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2007092269A priority Critical patent/JP4937815B2/en
Priority to TW097108444A priority patent/TW200900515A/en
Priority to CN2008800101753A priority patent/CN101646791B/en
Priority to PCT/JP2008/056142 priority patent/WO2008123436A1/en
Priority to KR1020097021841A priority patent/KR101159562B1/en
Publication of JP2008248333A publication Critical patent/JP2008248333A/en
Application granted granted Critical
Publication of JP4937815B2 publication Critical patent/JP4937815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Description

本発明は析出硬化型銅合金に関し、とりわけ各種電子機器部品に用いるのに好適なCu−Ni−Si−Co系銅合金に関する。   The present invention relates to a precipitation hardening type copper alloy, and more particularly to a Cu—Ni—Si—Co based copper alloy suitable for use in various electronic device parts.

コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子機器部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。   Copper alloys for electronic materials used in various electronic equipment parts such as connectors, switches, relays, pins, terminals, lead frames, etc., can achieve both high strength and high conductivity (or thermal conductivity) as basic characteristics. Required. In recent years, high integration and miniaturization / thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic device components has been increased accordingly.

高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, the amount of precipitation hardening type copper alloys is increasing instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials. . In precipitation-hardened copper alloys, by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

析出硬化型銅合金のうち、コルソン系合金と一般に呼ばれるCu−Ni−Si系銅合金は比較的高い導電性、強度、及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図れる。   Among precipitation hardening copper alloys, Cu-Ni-Si copper alloys, commonly called Corson alloys, are representative copper alloys that have relatively high electrical conductivity, strength, and bending workability, and are currently active in the industry. It is one of the alloys being developed. In this copper alloy, strength and conductivity can be improved by precipitating fine Ni—Si intermetallic compound particles in a copper matrix.

コルソン合金の更なる特性の向上を目的として、Ni及びSi以外の合金成分の添加、特性に悪影響を与える成分の排除、結晶組織の最適化、析出粒子の最適化といった各種の技術開発がなされている。   In order to further improve the properties of the Corson alloy, various technological developments have been made such as addition of alloy components other than Ni and Si, elimination of components that adversely affect the properties, optimization of the crystal structure, and optimization of the precipitated particles. Yes.

例えば、Coを添加することによって特性が向上することが知られている。
特開平11−222641号公報(特許文献1)には、CoはNiと同様にSiと化合物を形成し、機械的強度を向上させ、Cu−Co−Si系は時効処理させた場合に、Cu−Ni−Si系合金より機械的強度、導電性共に僅かに良くなる。そしてコスト的に許されるのであれば、Cu−Co−Si系やCu−Ni−Co−Si系を選択してもよいことが記載されている。
特表2005−532477号公報(特許文献2)には、重量で、ニッケル:1%〜2.5%、コバルト0.5〜2.0%、珪素:0.5%〜1.5%、および、残部としての銅および不可避の不純物から成り、ニッケルとコバルトの合計含有量が1.7%〜4.3%、比(Ni+Co)/Siが2:1〜7:1である鍛錬銅合金が記載されており、該鍛錬銅合金は、40%IACSを超える導電性を有するとされている。コバルトは珪素と組み合わされて、粒子成長を制限し且つ耐軟化性を向上させるために、時効硬化に有効な珪化物を形成するとされている。コバルト含有量が0.5%より少ないと、コバルト含有珪化物第2相の析出が不十分となる。さらに、0.5%の最小コバルト含有量と0.5%の最小珪素含有量とを組み合わせた場合、溶体化後の合金の粒径は20ミクロン以下に保たれる。コバルト含有量が2.5%を超える場合、過剰の第2相粒子が析出して、加工性の減少をもたらし、および銅合金には望ましくない強磁性特性が付与されることが記載されている。
国際公開第2006/101172号パンフレット(特許文献3)には、Coを含むCu−Ni−Si系合金の強度が、ある組成条件の下で飛躍的に向上することが記載されている。具体的にはNi:約0.5〜約2.5質量%、Co:約0.5〜約2.5質量%、及びSi:約0.30〜約1.2質量%を含有し、残部Cuおよび不可避的不純物から構成され、該合金組成中のNiとCoの合計質量のSiに対する質量濃度比([Ni+Co]/Si比)が約4≦[Ni+Co]/Si≦約5であり、該合金組成中のNiとCoの質量濃度比(Ni/Co比)が約0.5≦Ni/Co≦約2である電子材料用銅合金が記載されている。
また、溶体化処理において加熱後の冷却速度を意識的に高くすると、Cu−Ni−Si系銅合金の強度向上効果は更に発揮されることから、冷却速度を毎秒約10℃以上として冷却するのが効果的であることが記載されている。
For example, it is known that the characteristics are improved by adding Co.
In Japanese Patent Application Laid-Open No. 11-222641 (Patent Document 1), Co forms a compound with Si in the same manner as Ni, improves the mechanical strength, and Cu—Co—Si system is Cu-treated. -Slightly better mechanical strength and conductivity than Ni-Si alloys. In addition, it is described that a Cu—Co—Si system or a Cu—Ni—Co—Si system may be selected if allowed by cost.
In Japanese translations of PCT publication No. 2005-532477 (patent document 2), by weight, nickel: 1% to 2.5%, cobalt: 0.5% to 2.0%, silicon: 0.5% to 1.5%, And a wrought copper alloy consisting of the balance copper and inevitable impurities, wherein the total content of nickel and cobalt is 1.7% to 4.3%, and the ratio (Ni + Co) / Si is 2: 1 to 7: 1 The wrought copper alloy is said to have a conductivity greater than 40% IACS. Cobalt is said to combine with silicon to form silicides that are effective for age hardening in order to limit grain growth and improve softening resistance. When the cobalt content is less than 0.5%, the precipitation of the cobalt-containing silicide second phase becomes insufficient. Furthermore, when a minimum cobalt content of 0.5% and a minimum silicon content of 0.5% are combined, the grain size of the alloy after solution treatment is kept below 20 microns. It is described that when the cobalt content exceeds 2.5%, excess second phase particles precipitate, resulting in reduced workability and imparting undesirable ferromagnetic properties to the copper alloy. .
WO 2006/101172 pamphlet (Patent Document 3) describes that the strength of a Cu—Ni—Si based alloy containing Co is drastically improved under certain composition conditions. Specifically, Ni: about 0.5 to about 2.5 mass%, Co: about 0.5 to about 2.5 mass%, and Si: about 0.30 to about 1.2 mass%, It is composed of the balance Cu and unavoidable impurities, and the mass concentration ratio of Ni and Co in the alloy composition to Si ([Ni + Co] / Si ratio) is about 4 ≦ [Ni + Co] / Si ≦ about 5, A copper alloy for electronic materials is described in which the mass concentration ratio of Ni and Co (Ni / Co ratio) in the alloy composition is about 0.5 ≦ Ni / Co ≦ about 2.
In addition, when the cooling rate after heating is consciously increased in the solution treatment, the strength improvement effect of the Cu—Ni—Si based copper alloy is further exerted, so the cooling rate is about 10 ° C. or more per second. Is described as being effective.

銅マトリックス中の粗大な介在物を制御することが良いことも知られている。
特開2001−49369号公報(特許文献4)には、Cu−Ni−Si系合金の成分調整を行った上で、必要に応じMg、Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag、Beを含有させると共に、製造条件を制御・選定してマトリックス中の析出物、晶出物、酸化物等の介在物の分布の制御を行うことにより、電子材料用銅合金として好適な素材を提供できることが記載されている。具体的には、1.0〜4.8wt%のNi及び0.2〜1.4wt%のSiを含有し、残部がCu及び不可避的不純物からなり、そして介在物の大きさが10μm以下であり、且つ5〜10μmの大きさの介在物個数が圧延方向に平行な断面で50個/mm2未満であることを特徴とする強度及び導電性の優れた電子材料用銅合金が記載されている。
また、該文献には半連続鋳造における鋳造時の凝固過程においてNi−Si系の粗大な晶出物及び析出物が生成することがあるため、これを制御する方法について記載があり、「粗大な介在物は800℃以上の温度で1時間以上加熱後に熱間圧延を行ない、終了温度を650℃以上とすることにより、マトリックス中に固溶される。しかし加熱温度が900℃以上になると大量のスケールの発生、熱間圧延時の割れの発生といった問題が生じるため、加熱温度は800℃以上900℃未満とするのが良い。」と記載されている。
It is also known to control coarse inclusions in the copper matrix.
In JP 2001-49369 A (Patent Document 4), after adjusting the components of the Cu—Ni—Si alloy, Mg, Zn, Sn, Fe, Ti, Zr, Cr, Al, Copper alloy for electronic materials by containing P, Mn, Ag, Be and controlling the distribution of inclusions such as precipitates, crystallized substances and oxides in the matrix by controlling and selecting the production conditions It is described that a suitable material can be provided. Specifically, it contains 1.0 to 4.8 wt% Ni and 0.2 to 1.4 wt% Si, the balance is made of Cu and inevitable impurities, and the size of inclusions is 10 μm or less. There is described a copper alloy for electronic materials having excellent strength and conductivity, characterized in that the number of inclusions having a size of 5 to 10 μm is less than 50 / mm 2 in a cross section parallel to the rolling direction. Yes.
In addition, in this document, Ni-Si based coarse crystals and precipitates may be generated in the solidification process during casting in semi-continuous casting. Inclusions are hot-rolled after heating for 1 hour or more at a temperature of 800 ° C. or more, and are dissolved in the matrix by setting the end temperature to 650 ° C. However, if the heating temperature is 900 ° C. or more, a large amount The problem of generation of scale and cracking during hot rolling occurs, so the heating temperature should be 800 ° C. or higher and lower than 900 ° C. ”.

特開平11−222641号公報Japanese Patent Application Laid-Open No. 11-222641 特表2005−532477号公報JP 2005-532477 A 国際公開第2006/101172号パンフレットInternational Publication No. 2006/101172 Pamphlet 特開2001−49369号公報JP 2001-49369 A

このように、Cu−Ni−Si系合金にCoを添加することによって、強度や導電性が向上することが知られているが、本発明者は、Coを添加したCu−Ni−Si系合金の組織を観察すると、添加しない場合よりも粗大な第二相粒子が多く点在することを見出した。この第二相粒子は主にCoのシリサイド(コバルトの珪化物)からなる。粗大な第二相粒子は強度に寄与しないばかりか、曲げ加工性に悪影響を与える。   As described above, it is known that the strength and conductivity are improved by adding Co to the Cu—Ni—Si based alloy. When observing the above structure, it was found that more coarse second-phase particles were scattered than when not added. The second phase particles are mainly composed of Co silicide (cobalt silicide). Coarse second phase particles not only contribute to strength but also adversely affect bending workability.

粗大な第二相粒子の生成は、Coを含有しないCu−Ni−Si系合金であれば抑制可能な条件で製造しても、抑制できない。すなわち、Cu−Ni−Si−Co系合金においては、特許文献4に記載あるような、800℃〜900℃の温度で1時間以上加熱後に熱間圧延を行い、終了温度を650℃以上とする粗大な介在物の生成を抑制する方法によっても、Coシリサイドを主体とする粗大な第二相粒子は充分にマトリックス中に固溶されない。更に、特許文献3に教示されているような、溶体化処理において加熱後の冷却速度を高くする方法でも粗大な第二相粒子は充分に抑制されない。   Generation of coarse second-phase particles cannot be suppressed even if manufactured under conditions that can be suppressed if it is a Cu-Ni-Si-based alloy containing no Co. That is, in the Cu-Ni-Si-Co-based alloy, as described in Patent Document 4, hot rolling is performed at a temperature of 800 ° C to 900 ° C for 1 hour or more, and the end temperature is set to 650 ° C or more. Even by the method for suppressing the formation of coarse inclusions, coarse second-phase particles mainly composed of Co silicide are not sufficiently dissolved in the matrix. Furthermore, coarse second phase particles are not sufficiently suppressed even by the method of increasing the cooling rate after heating in the solution treatment as taught in Patent Document 3.

そこで、本発明は粗大な第二相粒子の生成が抑制されたCu−Ni−Si−Co系合金を提供することを課題とする。また、本発明はそのようなCu−Ni−Si−Co系合金の製造方法を提供することを別の課題とする。   Then, this invention makes it a subject to provide the Cu-Ni-Si-Co type alloy by which the production | generation of the coarse 2nd phase particle | grains was suppressed. Moreover, this invention makes it another subject to provide the manufacturing method of such a Cu-Ni-Si-Co-type alloy.

本発明者は上記課題を解決するために鋭意検討したところ、熱間圧延及び溶体化処理を特定の条件下で行うことによって、粗大な第二相粒子の発生を抑制することが可能であることを見出した。
具体的には、Cu−Ni−Si−Co系合金の製造工程において、
(1)熱間圧延は950℃〜1050℃で1時間以上加熱後に行い、熱間圧延終了時の温度を850℃以上とし、15℃/s以上で冷却すること、
(2)溶体化処理は850℃〜1050℃で行い、15℃/s以上で冷却すること、
の両者を満足することで、強度や曲げ加工性にほとんど悪影響を与えないレベルにまで抑制可能であることを見出した。
The present inventor has intensively studied to solve the above problems, and it is possible to suppress generation of coarse second-phase particles by performing hot rolling and solution treatment under specific conditions. I found.
Specifically, in the manufacturing process of the Cu-Ni-Si-Co alloy,
(1) Hot rolling is performed after heating at 950 ° C. to 1050 ° C. for 1 hour or more, and the temperature at the end of hot rolling is set to 850 ° C. or more and cooled at 15 ° C./s or more.
(2) Solution treatment is performed at 850 ° C. to 1050 ° C. and cooled at 15 ° C./s or more.
By satisfying both, it was found that the strength and bending workability can be suppressed to a level that hardly has an adverse effect.

該製造方法によれば、粒径が10μmを超える第二相粒子をなくし、粒径が5μm〜10μmである第二相粒子を50個/mm2以下に抑制することができる。このような第二相粒子の分布条件であれば、強度や曲げ加工性にほとんど悪影響を与えない。 According to this production method, the second phase particles having a particle diameter exceeding 10 μm can be eliminated, and the second phase particles having a particle diameter of 5 μm to 10 μm can be suppressed to 50 particles / mm 2 or less. With such distribution conditions of the second phase particles, the strength and bending workability are hardly adversely affected.

また、Crを添加することで強度や導電性を向上できることも知られているが、Cu−Ni−Si−Co系合金においてCrを添加すると粗大な第二相粒子が一層生成しやすくなる。Crがシリサイドを形成して容易に粗大化するからである。そのため、例えば特許文献2ではクロム含有量を0.08%以下とすべきであることが記載されている。しかしながら、本発明の製法に従えば、その数倍の量を添加しても粗大なCrシリサイドの生成が抑制できる。そのため、Cr添加による正の側面をより際立たせることになり、Co添加による効果と相まってコルソン合金の特性を更に向上させることができる。   It is also known that strength and conductivity can be improved by adding Cr. However, when Cr is added in a Cu—Ni—Si—Co alloy, coarse second phase particles are more easily generated. This is because Cr forms silicide and easily coarsens. Therefore, for example, Patent Document 2 describes that the chromium content should be 0.08% or less. However, according to the production method of the present invention, the formation of coarse Cr silicide can be suppressed even when several times the amount is added. Therefore, the positive side surface due to the addition of Cr becomes more prominent, and the characteristics of the Corson alloy can be further improved in combination with the effect of the addition of Co.

以上の知見を基礎として完成した本発明は一側面において、Ni:1.0〜2.5質量%、Co:0.5〜2.5質量%、Si:0.30〜1.20質量%を含有し、残部がCu及び不可避的不純物からなる電子材料用銅合金であって、粒径が10μmを超える第二相粒子が存在せず、粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で50個/mm2以下である電子材料用銅合金である。 The present invention completed on the basis of the above knowledge, in one aspect, Ni: 1.0-2.5 mass%, Co: 0.5-2.5 mass%, Si: 0.30-1.20 mass% A second phase particle having a particle size of 5 μm to 10 μm, wherein the balance is Cu and the balance is Cu and inevitable impurities, and the second phase particle having a particle size of more than 10 μm does not exist. It is a copper alloy for electronic materials having a cross section parallel to the rolling direction of 50 pieces / mm 2 or less.

本発明に係る電子材料用銅合金は一実施形態において、粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で25個/mm2以下である In one embodiment of the copper alloy for electronic materials according to the present invention, the number of second phase particles having a particle size of 5 μm to 10 μm is 25 / mm 2 or less in a cross section parallel to the rolling direction.

本発明に係る電子材料用銅合金は一実施形態において、更にCrを最大0.5質量%まで含有する。   In one embodiment, the copper alloy for electronic materials according to the present invention further contains up to 0.5% by mass of Cr.

本発明に係る電子材料用銅合金は別の一実施形態において、更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgよりなる群から選ばれる少なくとも1種の合金元素を合計で最大2.0質量%まで含有する。   In another embodiment, the copper alloy for electronic materials according to the present invention is further selected from the group consisting of Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag. And at least one alloying element in total up to 2.0% by mass.

本発明は別の一側面において、
− 所望の組成をもつインゴットを溶解鋳造する工程と、
− 950℃〜1050℃で1時間以上加熱後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とし、400℃までの平均冷却速度を15℃/s以上として冷却する工程と、
− 冷間圧延工程と、
− 850℃〜1050℃で溶体化処理を行い、400℃までの平均冷却速度を15℃/s以上として冷却する工程と、
− 随意的な冷間圧延工程と、
− 時効処理工程と、
− 随意的な冷間圧延工程と、
を順に行うことを含む上記銅合金の製造方法である。
In another aspect of the present invention,
-Melting and casting an ingot having a desired composition;
A step of performing hot rolling after heating at 950 ° C. to 1050 ° C. for 1 hour or more, cooling to a temperature at the end of hot rolling of 850 ° C. or more, and an average cooling rate up to 400 ° C. of 15 ° C./s or more;
-A cold rolling process;
A solution treatment at 850 ° C. to 1050 ° C. and cooling at an average cooling rate up to 400 ° C. of 15 ° C./s or more;
-An optional cold rolling process;
-An aging treatment process;
-An optional cold rolling process;
It is a manufacturing method of the said copper alloy including performing these in order.

本発明は更に別の一側面において、上記銅合金を用いた伸銅品である。   In still another aspect of the present invention, a copper product using the above copper alloy.

本発明は更に別の一側面において、上記銅合金を用いた電子部品である。   In another aspect of the present invention, an electronic component using the copper alloy is provided.

本発明によれば、粗大な第二相粒子の生成を抑制することができるため、これによる弊害の少ないCu−Ni−Si−Co系合金を提供することが可能となる。すなわち、Co、更にはCrの添加による負の側面が制御されることから、正の側面である合金への特性向上効果が支配的となる。具体的には、例えば導電性や曲げ加工性を犠牲にすることなく強度を向上することができる。   According to the present invention, since it is possible to suppress the generation of coarse second phase particles, it is possible to provide a Cu—Ni—Si—Co based alloy with less adverse effects. That is, since the negative side surface due to the addition of Co and further Cr is controlled, the characteristic improvement effect on the alloy which is the positive side surface becomes dominant. Specifically, for example, the strength can be improved without sacrificing conductivity or bending workability.

第二相粒子の分布条件
コルソン系合金では適当な熱処理を施すことにより金属間化合物を主体とする微細な第二相粒子が析出し、導電率を劣化させずに高強度化が図れる。しかしながら、Co、更にはCrを添加すると第二相粒子が粗大化しやすい。
The distribution condition of the second phase particles In the Corson alloy, fine second phase particles mainly composed of intermetallic compounds are precipitated by performing an appropriate heat treatment, and the strength can be increased without deteriorating the conductivity. However, when Co and further Cr are added, the second phase particles are likely to be coarsened.

粒径が1μm以上の粗大な第2相粒子は強度に寄与しないばかりか、曲げ加工性を低下させる。粒径が特に10μmを超える第二相粒子については曲げ加工性を著しく低下させるため、上限は10μmとする必要がある。ただし、粒径が5μm〜10μmの第二相粒子であっても50個/mm2以内であれば、強度、曲げ加工性を損なわない。 Coarse second phase particles having a particle size of 1 μm or more do not contribute to the strength but also lower the bending workability. In particular, for the second phase particles having a particle size exceeding 10 μm, the upper limit needs to be 10 μm in order to significantly reduce the bending workability. However, even if it is a 2nd phase particle | grain with a particle size of 5 micrometers-10 micrometers, if it is less than 50 piece / mm < 2 >, intensity | strength and bending workability will not be impaired.

本発明によれば、CoシリサイドやCrシリサイドに代表される第二相粒子の粗大化を充分に抑制することができ、第二相粒子の分布に関する上記の要件を満たすことが可能となる。第二相粒子の粒径や個数は、材料の圧延方向に対して平行な断面をエッチング後SEM観察により測定することができる。本発明においては、第2相粒子の粒径とは、かかる条件でSEM観察したときの、該粒子を取り囲む最小円の直径のことを指す。   According to the present invention, the coarsening of the second phase particles represented by Co silicide and Cr silicide can be sufficiently suppressed, and the above-described requirements regarding the distribution of the second phase particles can be satisfied. The particle size and number of the second phase particles can be measured by SEM observation after etching a cross section parallel to the rolling direction of the material. In the present invention, the particle size of the second phase particles refers to the diameter of the smallest circle that surrounds the particles when SEM observation is performed under such conditions.

従って、本発明の一実施形態においては、粒径が10μmを超える第二相粒子が存在せず、粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で50個/mm2以下である。 Therefore, in one embodiment of the present invention, there are no second phase particles having a particle size exceeding 10 μm, and the second phase particles having a particle size of 5 μm to 10 μm are 50 particles / mm in a cross section parallel to the rolling direction. 2 or less.

本発明の好ましい一実施形態においては、粒径が10μmを超える第二相粒子が存在せず、粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で25個/mm2以下である。 In a preferred embodiment of the present invention, there are no second phase particles having a particle size exceeding 10 μm, and the second phase particles having a particle size of 5 μm to 10 μm are 25 particles / mm 2 in a cross section parallel to the rolling direction. It is as follows.

本発明の更に好ましい一実施形態においては、粒径が10μmを超える第二相粒子が存在せず、粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で20個/mm2以下である。 In a further preferred embodiment of the present invention, there are no second phase particles having a particle size of more than 10 μm, and the second phase particles having a particle size of 5 μm to 10 μm are 20 particles / mm in a cross section parallel to the rolling direction. 2 or less.

本発明の更により好ましい一実施形態においては、粒径が10μmを超える第二相粒子が存在せず、粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で15個/mm2以下である。 In an even more preferred embodiment of the present invention, there are no second phase particles having a particle size of more than 10 μm, and there are 15 second phase particles having a particle size of 5 μm to 10 μm in a cross section parallel to the rolling direction. mm 2 or less.

本発明において、第二相粒子とは主にシリサイドを指すが、これに限られるものではなく、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言う。   In the present invention, the second phase particle mainly refers to silicide, but is not limited to this. Crystallized substances generated in the solidification process of melt casting and precipitates generated in the subsequent cooling process, after hot rolling It refers to precipitates generated in the cooling process, precipitates generated in the cooling process after solution treatment, and precipitates generated in the aging process.

Ni、Co及びSiの添加量
Ni、Co及びSiは、適当な熱処理を施すことにより金属間化合物を形成し、導電率を劣化させずに高強度化が図れる。
Ni、Co及びSiの添加量がそれぞれNi:1.0質量%未満、Co:0.5質量%未満、Si:0.3質量%未満では所望の強度が得られず、逆に、Ni:2.5質量%超、Co:2.5質量%超、Si:1.2質量%超では高強度化は図れるが導電率が著しく低下し、更には熱間加工性が劣化する。よってNi、Co及びSiの添加量はNi:1.0〜2.5質量%、Co:0.5〜2.5質量%、Si:0.30〜1.2質量%とした。好ましくは、Ni:1.5〜2.0質量%、Co:0.5〜2.0質量%、Si:0.5〜1.0質量%である。
Addition amounts of Ni, Co, and Si Ni, Co, and Si form an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating conductivity.
When the addition amounts of Ni, Co and Si are less than Ni: 1.0% by mass, Co: less than 0.5% by mass, and Si: less than 0.3% by mass, the desired strength cannot be obtained. If it exceeds 2.5% by mass, Co: more than 2.5% by mass, and Si: more than 1.2% by mass, the strength can be increased, but the conductivity is remarkably lowered, and the hot workability is further deteriorated. Therefore, the addition amounts of Ni, Co, and Si were set to Ni: 1.0 to 2.5 mass%, Co: 0.5 to 2.5 mass%, and Si: 0.30 to 1.2 mass%. Preferably, they are Ni: 1.5-2.0 mass%, Co: 0.5-2.0 mass%, Si: 0.5-1.0 mass%.

Crの添加量
Crは適当な熱処理を施すことにより銅母相中にCr単独でまたはSiとの化合物であるCrシリサイドとして析出し、強度を損なわずに導電率の上昇を図ることができる。従って、本発明に係るCu−Ni−Si−Co系合金にCrを最大で0.5質量%添加してもよい。ただし、0.03質量%未満ではその効果が小さく、0.5質量%を超えると強化に寄与しない未固溶粒子となり、加工性が損なわれるため、好ましくは0.03〜0.5質量%、より好ましくは0.1〜0.3質量%添加する。
The added amount Cr of Cr can be deposited in the copper matrix by Cr alone or as Cr silicide which is a compound with Si, and the conductivity can be increased without impairing the strength. Therefore, you may add 0.5 mass% of Cr at maximum to the Cu-Ni-Si-Co-type alloy which concerns on this invention. However, if the amount is less than 0.03% by mass, the effect is small. If the amount exceeds 0.5% by mass, the solid solution particles do not contribute to strengthening and the workability is impaired. More preferably, 0.1 to 0.3% by mass is added.

その他の添加元素
更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgは所定量を添加することで様々な効果を示すが、相互に補完し、強度、導電率だけでなく曲げ加工性、めっき性や鋳塊組織の微細化による熱間加工性の改善のような製造性をも改善する効果もあるので本発明に係るCu−Ni−Si−Co系合金にこれらの1種以上を求められる特性に応じて適宜添加することができる。そのような場合、その総量は最大で2.0質量%、好ましくは0.001〜2.0質量%、より好ましくは0.01〜1.0質量%である。逆にこれらの元素の総量が0.001質量%未満だと所望の効果が得られず、2.0質量%を超えると導電率の低下や製造性の劣化が顕著になり好ましくない。
Other additive elements Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag show various effects by adding predetermined amounts, but complement each other In addition, there is an effect of improving not only strength and conductivity but also bendability, plating property, and hot workability improvement by refining the ingot structure, so the Cu—Ni— according to the present invention. One or more of these can be appropriately added to the Si—Co alloy depending on the required properties. In such a case, the total amount is at most 2.0 mass%, preferably 0.001-2.0 mass%, more preferably 0.01-1.0 mass%. On the other hand, if the total amount of these elements is less than 0.001% by mass, the desired effect cannot be obtained, and if it exceeds 2.0% by mass, the decrease in conductivity and the deterioration of manufacturability become remarkable.

製造方法
コルソン系銅合金の一般的な製造プロセスでは、まず大気溶解炉を用い、電気銅、Ni、Si、Co等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、約700〜約1000℃の高温で加熱して、Ni−Si系化合物やCo−Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、約350〜約550℃の温度範囲で1時間以上加熱し、溶体化処理で固溶させたNi及びSiの化合物とCo及びSiの化合物を微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行なうことがある。また、時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行なうことがある。
上記各工程の合間には適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等が適宜行なわれる。
Manufacturing Method In a general manufacturing process of a Corson copper alloy, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni, Si, and Co to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of about 700 ° C. to about 1000 ° C. to solid-dissolve the Ni—Si compound or Co—Si compound in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, heating is performed for 1 hour or more in a temperature range of about 350 to about 550 ° C., and Ni and Si compounds and Co and Si compounds dissolved in the solution treatment are precipitated as fine particles. This aging treatment increases strength and conductivity. In order to obtain higher strength, cold rolling may be performed before and / or after aging. Moreover, when performing cold rolling after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.
Between the above steps, grinding, polishing, shot blast pickling and the like for removing oxide scale on the surface are appropriately performed.

本発明に係る銅合金においても上記の製造プロセスを経るが、第二相粒子の粗大化を防止するためには熱間圧延と溶体化処理を厳密に制御して行うことが重要である。鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が不可避的に生成する。そのため、その後の工程においてこれらの第二相粒子を母相中に固溶する必要があるが、950℃〜1050℃で1時間以上保持後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とすればCo、更にはCrを添加した場合であっても母相中に固溶することができる。950℃以上という温度条件は他のコルソン系合金の場合に比較して高い温度設定である。熱間圧延前の保持温度が950℃未満では固溶が不十分であり、1050℃を超えると材料が溶解する可能性がある。また、熱間圧延終了時の温度が850℃未満では固溶した元素が再び析出するため、高い強度を得ることが出来なくなる。   The copper alloy according to the present invention also undergoes the above manufacturing process, but it is important to strictly control the hot rolling and solution treatment in order to prevent the coarsening of the second phase particles. Coarse crystals are inevitably produced during the solidification process during casting, and coarse precipitates are inevitably produced during the cooling process. Therefore, in the subsequent process, it is necessary to dissolve these second phase particles in the matrix phase. However, hot rolling is performed after holding at 950 ° C. to 1050 ° C. for 1 hour or more, and the temperature at the end of hot rolling is set. If it is 850 degreeC or more, even if it is a case where Co and also Cr are added, it can be dissolved in a mother phase. The temperature condition of 950 ° C. or higher is a higher temperature setting than other Corson alloys. If the holding temperature before hot rolling is less than 950 ° C., solid solution is insufficient, and if it exceeds 1050 ° C., the material may be dissolved. Further, when the temperature at the end of hot rolling is less than 850 ° C., the dissolved element is precipitated again, so that high strength cannot be obtained.

上記の第二相粒子を固溶させたとしても、熱間圧延終了後の冷却過程で冷却速度が遅いとCr及び/又はCoのシリサイドが容易に析出してしまう。このような組織で強度上昇を目的とした熱処理(時効処理)を後の工程で行うと、冷却過程で析出した析出物を核として強度に寄与しない粗大な析出物に成長するため高い強度を得ることができない。しかしながら、シリサイドの析出が著しい400℃までの平均冷却速度を高く、具体的には15℃/s以上にすれば該シリサイドの析出を抑制することが可能となる。   Even if the above-mentioned second phase particles are dissolved, if the cooling rate is low in the cooling process after the hot rolling is completed, silicide of Cr and / or Co is easily precipitated. When heat treatment (aging treatment) aimed at increasing the strength in such a structure is performed in a later step, high strength is obtained because it grows into a coarse precipitate that does not contribute to strength with the precipitate precipitated in the cooling process as a nucleus. I can't. However, if the average cooling rate up to 400 ° C. where the precipitation of the silicide is remarkable is high, specifically, 15 ° C./s or more, the precipitation of the silicide can be suppressed.

溶体化処理においても同様に、溶体化処理温度を850℃〜1050にすることで第二相粒子を固溶することができる。溶体化処理後の冷却も上記理由により速くする必要があり、400℃までの平均冷却速度はやはり15℃/s以上にする必要がある。熱間圧延後の冷却速度を管理せずに、容体化処理後の冷却速度のみを制御しても、後の時効処理で粗大な第二相粒子を充分に抑制することはできない。熱間圧延後の冷却速度、及び容体化処理後の冷却速度は共に制御する必要がある。   Similarly, in the solution treatment, the second phase particles can be dissolved by setting the solution treatment temperature to 850 ° C. to 1050. The cooling after the solution treatment needs to be accelerated for the above reason, and the average cooling rate up to 400 ° C. must be 15 ° C./s or more. Even if only the cooling rate after the solidification treatment is controlled without managing the cooling rate after hot rolling, coarse second-phase particles cannot be sufficiently suppressed by the subsequent aging treatment. It is necessary to control both the cooling rate after hot rolling and the cooling rate after the solidification treatment.

熱間圧延終了後及び溶体化処理後における上記平均冷却速度は好ましくは20℃/s以上である。   The average cooling rate after completion of hot rolling and after solution treatment is preferably 20 ° C./s or more.

冷却を速くする方法としては水冷が最も効果的である。ただし、水冷に使用する水の温度により冷却速度が変わるため、水温の管理をすることでより冷却を速くすることができる。水温が25℃以上だと所望の冷却速度を得ることができない場合があるため、25℃以下に保持するのが好ましい。水を溜めた槽内に材料を入れて水冷すると、水の温度は上昇し25℃以上になり易いため、材料が一定の水の温度(25℃以下)で冷却されるように霧状(シャワー状又はミスト状)にして噴霧したり、水槽に常時冷たい水を流すようにしたりして水温上昇を防ぐのが好ましい。また、水冷ノズルの増設や単位時間当たりにおける水量を増加することによっても冷却速度の上昇させることができる。   Water cooling is the most effective method for speeding up the cooling. However, since the cooling rate varies depending on the temperature of the water used for water cooling, the cooling can be further accelerated by managing the water temperature. Since the desired cooling rate may not be obtained when the water temperature is 25 ° C. or higher, it is preferably maintained at 25 ° C. or lower. When a material is placed in a tank in which water is stored and cooled with water, the temperature of the water rises and tends to be 25 ° C. or higher, so that the material is cooled in a mist (shower) at a constant water temperature (25 ° C. or lower). It is preferable to prevent the water temperature from rising by spraying it in the form of a mist or mist) or by allowing cold water to always flow through the water tank. The cooling rate can also be increased by adding water cooling nozzles or increasing the amount of water per unit time.

本発明においては、“400℃までの平均冷却速度”とは材料が熱間圧延終了温度又は溶体化処理温度から400℃まで冷却する時間を計測し、“(溶体化温度−400)(℃)/冷却時間(s)”によって算出した値(℃/s)をいう。   In the present invention, the “average cooling rate up to 400 ° C.” means the time during which the material cools from the hot rolling finish temperature or solution treatment temperature to 400 ° C., and “(solution temperature−400) (° C.)”. / Cooling time (s) "means a value (° C / s) calculated.

なお、時効処理の条件は析出物の微細化に有用であるとして慣用的に行われている条件で構わないが、析出物が粗大化しないように温度及び時間を設定することに留意する。時効処理の条件の一例を挙げると、350〜550℃の温度範囲で1〜24時間であり、より好ましくは400〜500℃の温度範囲で1〜24時間である。なお、時効処理後の冷却速度は析出物の大小にほとんど影響を与えない。   The conditions for the aging treatment may be those conventionally used as useful for refining the precipitates, but note that the temperature and time are set so that the precipitates do not become coarse. If an example of the conditions of an aging treatment is given, it will be 1 to 24 hours in the temperature range of 350-550 degreeC, More preferably, it is 1 to 24 hours in the temperature range of 400-500 degreeC. The cooling rate after the aging treatment hardly affects the size of the precipitates.

本発明のCu−Ni−Si−Co系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明によるCu−Ni−Si−Co系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。   The Cu—Ni—Si—Co based alloy of the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires, and the Cu—Ni—Si—Co based copper according to the present invention. The alloy can be used for electronic components such as lead frames, connectors, pins, terminals, relays, switches, and secondary battery foils.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

表1に記載の各種成分組成の銅合金を、高周波溶解炉で1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃に加熱後、板厚10mmまで種々の上り温度(熱間圧延終了温度)として熱間圧延し、速やかに種々の冷却速度で400℃まで冷却し、最終的に100℃以下にした。その後、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延により厚さ0.3mmの板とした。次に950℃で溶体化処理を120秒行い、これを直ちに種々の冷却速度で400℃まで冷却し、最終的に100℃以下にした。その後0.15mmまで冷間圧延して、最後に500℃で3時間かけて不活性雰囲気中で時効処理を施して、試験片を製造した。   Copper alloys having various component compositions shown in Table 1 were melted at 1300 ° C. in a high-frequency melting furnace and cast into an ingot having a thickness of 30 mm. Next, after heating this ingot to 1000 ° C., it is hot-rolled as various ascending temperatures (hot rolling end temperature) to a plate thickness of 10 mm, rapidly cooled to 400 ° C. at various cooling rates, and finally 100 ° C. It was as follows. Then, after surface chamfering to a thickness of 9 mm for removing scale on the surface, a plate having a thickness of 0.3 mm was formed by cold rolling. Next, a solution treatment was performed at 950 ° C. for 120 seconds, which was immediately cooled to 400 ° C. at various cooling rates, and finally made 100 ° C. or lower. Thereafter, it was cold-rolled to 0.15 mm and finally subjected to aging treatment in an inert atmosphere at 500 ° C. for 3 hours to produce a test piece.

このようにして得られた各試験片につき析出物の分布、強度、導電性及び曲げ加工性の特性評価を以下のようにして行った。   Each test piece obtained in this manner was subjected to the following evaluation of the characteristics of the precipitate distribution, strength, conductivity, and bending workability.

第二相粒子は、材料の圧延方向に平行な断面を、直径1μmのダイヤモンド砥粒を用いた機械研磨により鏡面に仕上げた後、20℃、47°Be(ボーメ)の塩化第二鉄水溶液中に攪拌しながら2分間浸漬した。このエッチング処理によってCuの母地が溶解し、第二相粒子が溶け残って現出した。この断面をFE−SEM〔電解放射型走査電子顕微鏡:PHILIPS社製〕を用い倍率1000倍(監察視野100×120μm)で任意の10箇所を観察し、粒径5〜10μmの析出物の個数と、粒径10μmを超える析出物の個数を数え、1mm2当たりの個数を算出した。第二相粒子がシリサイドであることを、その代表的形態のものをFE−SEMのEDS〔エネルギー分散型X線分析〕を用いて分析することにより確認した。 The second phase particles have a mirror-finished cross section parallel to the rolling direction of the material by mechanical polishing using diamond abrasive grains having a diameter of 1 μm, and then in a ferric chloride aqueous solution at 20 ° C. and 47 ° Be (Baume). For 2 minutes with stirring. By this etching treatment, the base material of Cu was dissolved, and the second phase particles remained undissolved and appeared. This cross section was observed at 10 arbitrary points at a magnification of 1000 times (monitoring field of view 100 × 120 μm) using an FE-SEM (electrolytic emission scanning electron microscope: manufactured by PHILIPS), and the number of precipitates having a particle size of 5 to 10 μm was determined. The number of precipitates having a particle size exceeding 10 μm was counted, and the number per 1 mm 2 was calculated. It was confirmed by analyzing the typical form of the second phase particles by using FE-SEM EDS [energy dispersive X-ray analysis].

強度については圧延平行方向の引っ張り試験を行って0.2%耐力(YS:MPa)を測定した。   For the strength, a tensile test in the rolling parallel direction was performed to measure 0.2% yield strength (YS: MPa).

導電率(EC;%IACS)についてはWブリッジによる体積抵抗率測定により求めた。   The conductivity (EC;% IACS) was determined by volume resistivity measurement using a W bridge.

曲げ加工性の評価は、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験をW字型の金型を用いて試料板厚と曲げ半径の比が1となる条件で90°曲げ加工を行なった。評価は曲げ加工部表面を光学顕微鏡で観察し、クラックが観察されない場合を実用上問題ないと判断して○とし、クラックが認められた場合を×とした。   Evaluation of bending workability is based on a W-bending test of Badway (the bending axis is the same direction as the rolling direction) using a W-shaped mold and bending by 90 ° under the condition that the ratio of the sample plate thickness to the bending radius is 1. Was done. In the evaluation, the surface of the bent portion was observed with an optical microscope, and when the crack was not observed, it was judged that there was no problem in practical use, and the case where the crack was recognized was made x.

結果を表1に示す。
The results are shown in Table 1.

表1中、熱間圧延後の冷却条件である水冷3は試験片の体積(100000mm3)に対して50倍の水量の水槽中へ浸漬した場合、水冷2は水冷3よりも水量を10%増加させた場合、水冷1は水冷3よりも水量を20%増加させ、且つ、流水を用いて水槽中の水温を25℃以下に管理した場合である。空冷は空気中に放置して冷却した場合である。
溶体化処理時の冷却条件である水冷3は試験片の体積(2500mm3)に対して50倍の水量の水槽中へ浸漬した場合、水冷2は水冷3よりも水量を10%増加させた場合、水冷1は水冷3よりも水量を20%増加させ、且つ、流水を用いて水槽中の水温を25℃以下に管理した場合である。空冷は空気中に放置して冷却した場合である。
In Table 1, when water-cooled 3 which is a cooling condition after hot rolling is immersed in a 50-fold water tank with respect to the volume of the test piece (100,000 mm 3 ), water-cooled 2 has 10% more water than water-cooled 3 When increased, water cooling 1 is a case where the amount of water is increased by 20% compared to water cooling 3, and the water temperature in the water tank is controlled to 25 ° C. or lower using running water. Air cooling is the case of cooling in air.
When water-cooled 3 which is a cooling condition at the time of solution treatment is immersed in a water tank 50 times the amount of water (2500 mm 3 ) of the test piece, water-cooled 2 increases the amount of water by 10% compared to water-cooled 3 Water cooling 1 is a case where the amount of water is increased by 20% compared to water cooling 3, and the water temperature in the water tank is controlled to 25 ° C. or lower using running water. Air cooling is the case of cooling in air.

以下に各試験片の説明をする。
No.1〜No.22は本発明の実施例である。強度、導電性、及び曲げ加工性が高い次元で達成されていることが分かる。
No.23はCo及びCrを添加しなかった例である。この場合、熱間圧延後や溶体化処理時の冷却条件を厳密に管理しなくても粗大な析出物は抑制できることが分かる。
No.24から、Coを少量加えただけでも冷却条件及び上り温度が管理されていないと相当量の析出物が生じること、すなわちCoは析出物を生じやすいことが分かる。
No.25は、No.24の試験片に更にCrを微量添加した例であるが、析出物の量が更に増加している。このことから、Crは特に析出物を生じやすいことが分かる。
No.26及びNo.27は熱間圧延後の冷却条件は適切であるが、上り温度及び溶体化処理時の冷却条件が不適切な例である。
No.28は上り温度は適切であるが、熱間圧延後及び溶体化処理時の冷却条件が不適切な例である。
No.29は上り温度及び溶体化処理時の冷却条件は適切であるが、熱間圧延後の冷却条件が不適切な例である。
No.30は組成条件は適切であるものの、冷却条件及び上り温度が共に不適切な例である。
No.31は組成条件は適切であるものの、冷却条件及び上り温度が共に不適切である。
No.32は溶体化処理時の冷却条件は適切であるが、上り温度及び熱間圧延後の冷却条件が不適切な例である。
No.33はNo.31と同様に冷却条件及び上り温度が共に不適切な例であるが、熱間圧延後の冷却速度を更に遅くした例である。
No.34はNo.33に対して更に溶体化処理後の冷却速度を更に遅くした例である。
No.35はCoの量が過剰である上に、冷却条件及び上り温度が共に不適切な例である。
No.36はNo.35の試験片に更にCrを微量添加した例である。
Each test piece is described below.
No. 1-No. 22 is an embodiment of the present invention. It can be seen that strength, conductivity, and bendability are achieved on a high dimension.
No. No. 23 is an example in which Co and Cr were not added. In this case, it can be seen that coarse precipitates can be suppressed without strictly managing the cooling conditions after hot rolling or during solution treatment.
No. From FIG. 24, it can be seen that even if a small amount of Co is added, a considerable amount of precipitates are formed unless the cooling conditions and the rising temperature are controlled, that is, Co is likely to generate precipitates.
No. 25 is No. 25. In this example, a small amount of Cr was added to 24 test pieces, but the amount of precipitates was further increased. From this, it can be seen that Cr is particularly likely to produce precipitates.
No. 26 and no. No. 27 is an example in which the cooling conditions after hot rolling are appropriate, but the ascending temperature and the cooling conditions during solution treatment are inappropriate.
No. No. 28 is an example in which the rising temperature is appropriate, but the cooling conditions after hot rolling and during the solution treatment are inappropriate.
No. No. 29 is an example in which the rising temperature and the cooling conditions during the solution treatment are appropriate, but the cooling conditions after hot rolling are inappropriate.
No. No. 30 is an example in which the composition conditions are appropriate, but the cooling conditions and the rising temperature are both inappropriate.
No. Although the composition conditions of No. 31 are appropriate, both the cooling conditions and the rising temperature are inappropriate.
No. No. 32 is an example in which the cooling conditions during the solution treatment are appropriate, but the ascending temperature and the cooling conditions after hot rolling are inappropriate.
No. 33 is No. 33. Similar to 31, both the cooling conditions and the rising temperature are inappropriate, but the cooling rate after hot rolling is further reduced.
No. 34 is No. 34. This is an example in which the cooling rate after the solution treatment is further reduced with respect to 33.
No. 35 is an example in which the amount of Co is excessive and the cooling condition and the rising temperature are both inappropriate.
No. No. 36 is No. 36. This is an example in which a small amount of Cr is further added to 35 test pieces.

Claims (7)

Ni:1.0〜2.5質量%、Co:0.5〜2.5質量%、Si:0.30〜1.20質量%を含有し、残部がCu及び不可避的不純物からなる電子材料用銅合金であって、粒径が10μmを超える第二相粒子が存在せず、粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で50個/mm2以下である電子材料用銅合金。 An electronic material containing Ni: 1.0 to 2.5% by mass, Co: 0.5 to 2.5% by mass, Si: 0.30 to 1.20% by mass, the balance being Cu and inevitable impurities Copper alloy for use, wherein there are no second phase particles having a particle size exceeding 10 μm, and the second phase particles having a particle size of 5 μm to 10 μm are 50 pieces / mm 2 or less in a cross section parallel to the rolling direction. Copper alloy for electronic materials. 粒径が5μm〜10μmである第二相粒子が圧延方向に平行な断面で25個/mm2以下である請求項1記載の銅合金。 2. The copper alloy according to claim 1, wherein the second phase particles having a particle diameter of 5 μm to 10 μm are 25 particles / mm 2 or less in a cross section parallel to the rolling direction. 更にCrを最大0.5質量%まで含有する請求項1又は2記載の銅合金。   The copper alloy according to claim 1 or 2, further comprising up to 0.5% by mass of Cr. 更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgよりなる群から選ばれる少なくとも1種の合金元素を合計で最大2.0質量%まで含有する請求項1〜3何れか一項記載の銅合金。   Furthermore, a total of at least one alloy element selected from the group consisting of Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag is up to 2.0 mass% in total. The copper alloy as described in any one of Claims 1-3 contained. − 所望の組成をもつインゴットを溶解鋳造する工程と、
− 950℃〜1050℃で1時間以上加熱後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とし、400℃までの平均冷却速度を15℃/s以上として冷却する工程と、
− 冷間圧延工程と、
− 850℃〜1050℃で溶体化処理を行い、400℃までの平均冷却速度を15℃/s以上として冷却する工程と、
− 随意的な冷間圧延工程と、
− 時効処理工程と、
− 随意的な冷間圧延工程と、
を順に行うことを含む請求項1〜4何れか一項記載の銅合金の製造方法。
-Melting and casting an ingot having a desired composition;
A step of performing hot rolling after heating at 950 ° C. to 1050 ° C. for 1 hour or more, cooling to a temperature at the end of hot rolling of 850 ° C. or more, and an average cooling rate up to 400 ° C. of 15 ° C./s or more;
-A cold rolling process;
A solution treatment at 850 ° C. to 1050 ° C. and cooling at an average cooling rate up to 400 ° C. of 15 ° C./s or more;
-An optional cold rolling process;
-An aging treatment process;
-An optional cold rolling process;
The manufacturing method of the copper alloy as described in any one of Claims 1-4 including performing these in order.
請求項1〜4何れか一項記載の銅合金を用いた伸銅品。   A rolled copper product using the copper alloy according to any one of claims 1 to 4. 請求項1〜4何れか一項記載の銅合金を用いた電子部品。   The electronic component using the copper alloy as described in any one of Claims 1-4.
JP2007092269A 2007-03-30 2007-03-30 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same Active JP4937815B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007092269A JP4937815B2 (en) 2007-03-30 2007-03-30 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TW097108444A TW200900515A (en) 2007-03-30 2008-03-11 Cu-Ni-Si-Co-based copper alloy for electronic material, and method for production thereof
CN2008800101753A CN101646791B (en) 2007-03-30 2008-03-28 Cu-ni-si-co-based copper alloy for electronic material, and method for production thereof
PCT/JP2008/056142 WO2008123436A1 (en) 2007-03-30 2008-03-28 Cu-ni-si-co-based copper alloy for electronic material, and method for production thereof
KR1020097021841A KR101159562B1 (en) 2007-03-30 2008-03-28 Cu-ni-si-co-based copper alloy for electronic material, and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007092269A JP4937815B2 (en) 2007-03-30 2007-03-30 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008248333A JP2008248333A (en) 2008-10-16
JP4937815B2 true JP4937815B2 (en) 2012-05-23

Family

ID=39830921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007092269A Active JP4937815B2 (en) 2007-03-30 2007-03-30 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same

Country Status (5)

Country Link
JP (1) JP4937815B2 (en)
KR (1) KR101159562B1 (en)
CN (1) CN101646791B (en)
TW (1) TW200900515A (en)
WO (1) WO2008123436A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194151B1 (en) * 2007-09-28 2014-08-13 JX Nippon Mining & Metals Corporation Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP4596490B2 (en) * 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101331339B1 (en) * 2008-12-01 2013-11-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5261161B2 (en) * 2008-12-12 2013-08-14 Jx日鉱日石金属株式会社 Ni-Si-Co-based copper alloy and method for producing the same
JP4708485B2 (en) 2009-03-31 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5578827B2 (en) * 2009-10-13 2014-08-27 Dowaメタルテック株式会社 High-strength copper alloy sheet and manufacturing method thereof
JP4677505B1 (en) 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5961335B2 (en) 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
JP4830035B2 (en) 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
JP4672804B1 (en) * 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4708497B1 (en) 2010-06-03 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si alloy plate and method for producing the same
JP4834781B1 (en) 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 Cu-Co-Si alloy for electronic materials
JP2012072470A (en) 2010-09-29 2012-04-12 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
CN102560191A (en) * 2010-12-09 2012-07-11 北京有色金属研究总院 High-performance elastic copper alloy and preparation and processing method thereof
JP5441876B2 (en) * 2010-12-13 2014-03-12 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5451674B2 (en) 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP4799701B1 (en) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP6039999B2 (en) 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5647703B2 (en) 2013-02-14 2015-01-07 Dowaメタルテック株式会社 High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
CN106636734B (en) * 2015-10-30 2019-01-15 北京有色金属研究总院 High-intensitive, highly conductive, high resistance to stress relaxation copper alloy elastic material and preparation method thereof
CN105316523A (en) * 2015-12-02 2016-02-10 苏州龙腾万里化工科技有限公司 Durable resistance alloy for milling machine regulator
KR102590060B1 (en) * 2016-03-31 2023-10-18 도와 메탈테크 가부시키가이샤 Cu-Ni-Si based copper alloy sheet and manufacturing method
CN105908015A (en) * 2016-05-05 2016-08-31 太仓小小精密模具有限公司 Anti-oxidization copper alloy mold material
CN106399749B (en) * 2016-10-05 2018-01-05 宁波兴业盛泰集团有限公司 A kind of high strength and high flexibility cupro-nickel Si system alloy material and preparation method thereof
CN106756202A (en) * 2016-11-23 2017-05-31 宁波兴业盛泰集团有限公司 A kind of blaster fuse frame material complicated pluralism Cu alloy material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045698B2 (en) * 1982-01-20 1985-10-11 日本鉱業株式会社 Lead material for semiconductor equipment
JPS63143230A (en) * 1986-12-08 1988-06-15 Nippon Mining Co Ltd Precipitation strengthening high tensile copper alloy having high electrical conductivity
JP3699701B2 (en) * 2002-10-31 2005-09-28 日鉱金属加工株式会社 Easy-to-process high-strength, high-conductivity copper alloy
JP4068626B2 (en) * 2005-03-31 2008-03-26 日鉱金属株式会社 Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
JP2007136467A (en) * 2005-11-15 2007-06-07 Hitachi Cable Ltd Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy

Also Published As

Publication number Publication date
TWI367952B (en) 2012-07-11
CN101646791A (en) 2010-02-10
CN101646791B (en) 2011-11-16
KR101159562B1 (en) 2012-06-26
WO2008123436A1 (en) 2008-10-16
TW200900515A (en) 2009-01-01
KR20090122303A (en) 2009-11-26
JP2008248333A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
KR101297485B1 (en) Cu-ni-si-co-cr alloy for electronic material
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4708485B2 (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2012043170A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same
JP2012224922A (en) Copper alloy, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250