JP5578827B2 - High-strength copper alloy sheet and manufacturing method thereof - Google Patents

High-strength copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5578827B2
JP5578827B2 JP2009236707A JP2009236707A JP5578827B2 JP 5578827 B2 JP5578827 B2 JP 5578827B2 JP 2009236707 A JP2009236707 A JP 2009236707A JP 2009236707 A JP2009236707 A JP 2009236707A JP 5578827 B2 JP5578827 B2 JP 5578827B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
alloy sheet
precipitates
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009236707A
Other languages
Japanese (ja)
Other versions
JP2011084764A (en
Inventor
維林 高
章 菅原
久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2009236707A priority Critical patent/JP5578827B2/en
Publication of JP2011084764A publication Critical patent/JP2011084764A/en
Application granted granted Critical
Publication of JP5578827B2 publication Critical patent/JP5578827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、コネクタ、ソケット、リードフレーム、リレー、スイッチなどの電気・電子部品に適した銅合金板材であって、特に高強度と良好な導電性を維持しながら、優れた曲げ加工性および対応力緩和特性を呈する銅合金板材、およびその製造法に関する。   The present invention is a copper alloy sheet material suitable for electrical and electronic parts such as connectors, sockets, lead frames, relays, switches, etc., and particularly excellent bending workability and response while maintaining high strength and good conductivity. The present invention relates to a copper alloy sheet material exhibiting force relaxation characteristics and a method for producing the same.

コネクタ、ソケット、リードフレーム、リレー、スイッチなどの通電部品として電気電子部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な「導電性」が要求されるとともに、電気・電子機器の組立時や作動時に付与される応力に耐え得る高い「強度」が要求される。また、コネクタなどの電気・電子部品は、一般にプレス打ち抜き後に曲げ加工により成形されることから、優れた曲げ加工性も要求される。   Materials used for electrical and electronic parts as current-carrying parts such as connectors, sockets, lead frames, relays, and switches are required to have good “conductivity” in order to suppress the generation of Joule heat due to current flow.・ High “strength” is required to withstand the stress applied during assembly and operation of electronic equipment. In addition, since electrical / electronic components such as connectors are generally formed by bending after press punching, excellent bending workability is also required.

更に、電気・電子部品が過酷な環境で使用される用途の増加に伴い「耐応力緩和性」に対する要求も厳しくなっている。例えば、自動車用コネクタのように高温に曝される環境下で使用される場合は「耐応力緩和特性」が特に重要となる。応力緩和とは、電気・電子部品を構成する素材のばね部の接触圧力が、常温では一定の状態に維持されても、比較的高温(例えば100〜200℃)の環境下では時間とともに低下するという、一種のクリープ現象である。すなわち、金属材料に応力が付与されている状態において、マトリックスを構成する原子の自己拡散や固溶原子の拡散によって転位が移動して、塑性変形が生じることにより、付与されている応力が緩和される現象である。   Furthermore, the demand for “stress relaxation resistance” has become stricter as the use of electrical and electronic parts in harsh environments increases. For example, “stress relaxation resistance” is particularly important when used in an environment exposed to high temperatures, such as an automobile connector. Stress relaxation means that even if the contact pressure of the spring portion of the material constituting the electric / electronic component is kept constant at room temperature, it decreases with time in a relatively high temperature (for example, 100 to 200 ° C.) environment. It is a kind of creep phenomenon. In other words, in the state where stress is applied to the metal material, dislocations move due to self-diffusion of atoms constituting the matrix or diffusion of solute atoms, and plastic deformation occurs, thereby relaxing the applied stress. It is a phenomenon.

特に近年、コネクタなどの電気・電子部品は、小型化および軽量化が進む傾向にあり、それに伴って、素材である銅合金の板材には、薄肉化の要求(例えば、板厚が0.15mm以下、更に0.10mm以下)が高まっている。そのため、素材に要求される強度レベルは一層厳しくなっている。具体的には0.2%耐力800MPa以上、好ましくは850MPa以上、更に好ましくは900MPa以上の強度レベルが望まれる。
また、コネクタやリードフレームなどの電気・電子部品は、高集積化、密装化および大電流化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材には、高導電率の要求が高まっている。具体的には30%IACS以上、好ましくは35%IACS以上、更に好ましくは40%IACS以上の導電率レベルが望まれる。
Particularly, in recent years, electrical and electronic parts such as connectors tend to be reduced in size and weight, and accordingly, a copper alloy plate material is required to be thin (for example, a plate thickness of 0.15 mm). Hereinafter, 0.10 mm or less) is increasing. For this reason, the strength level required for the material is becoming stricter. Specifically, a 0.2% yield strength of 800 MPa or more, preferably 850 MPa or more, more preferably 900 MPa or more is desired.
In addition, electrical and electronic parts such as connectors and lead frames tend to be highly integrated, densely packed, and have a high current. Accordingly, copper and copper alloy plates, which are materials, have high conductivity. The demand is growing. Specifically, a conductivity level of 30% IACS or higher, preferably 35% IACS or higher, more preferably 40% IACS or higher is desired.

高強度銅合金は、Cu−Be系合金、例えば、C17200(Cu−2wt%Be)、Cu−Ti系銅合金、例えば、C19900(Cu−3.2wt%Ti)、Cu−Ni−Sn系銅合金、例えば、C72700(Cu−9wt%Ni−6wt%Sn)が挙げられる。
しかしながら、コストと環境負荷の視点から近年Cu−Be系合金を敬遠する傾向(いわゆる、脱ベリ志向)にある。また、Cu−Ti系銅合金およびCu−Ni−Sn系銅合金は、固溶元素濃度が母相内で周期的に変動する変調構造(スピノーダル構造)を有しているため、強度は高いものの、導電率が低い(10〜15%IACS程度)という特徴がある。
High-strength copper alloys include Cu-Be based alloys such as C17200 (Cu-2 wt% Be), Cu-Ti based copper alloys such as C19900 (Cu-3.2 wt% Ti), Cu-Ni-Sn based copper. An alloy, for example, C72700 (Cu-9 wt% Ni-6 wt% Sn) may be mentioned.
However, in recent years, there is a tendency to avoid Cu-Be alloys (so-called de-verification orientation) from the viewpoint of cost and environmental load. Cu-Ti copper alloys and Cu-Ni-Sn copper alloys have a modulation structure (spinodal structure) in which the concentration of solid solution elements periodically varies in the matrix phase, so that the strength is high. The electrical conductivity is low (about 10 to 15% IACS).

Cu−Ni−Si系合金(所謂コルソン合金)は、強度と導電性の間の特性バランスが比較的に優れた材料として注目されている。例えば、Cu−Ni−Si系銅合金板材は、溶体化処理、冷間圧延、時効処理、仕上げ冷間圧延および低温焼鈍を基本とする工程により、比較的高い導電率(30〜50%IACS)を維持しながら、700MPa以上の0.2%耐力を有することができる。しかし、Cu−Ni−Si系合金板材は、更なる強度の向上(例えば、800MPa以上の0.2%耐力を達成)を達成することは困難であることが一般的に知られている。   Cu-Ni-Si-based alloys (so-called Corson alloys) are attracting attention as materials having a relatively excellent balance of properties between strength and conductivity. For example, Cu—Ni—Si based copper alloy sheet material has a relatively high conductivity (30 to 50% IACS) by processes based on solution treatment, cold rolling, aging treatment, finish cold rolling and low temperature annealing. While maintaining the above, it can have a 0.2% proof stress of 700 MPa or more. However, it is generally known that it is difficult for a Cu—Ni—Si based alloy sheet to achieve further improvement in strength (for example, achieving 0.2% proof stress of 800 MPa or more).

Cu−Ni−Si系銅合金板材において、高強度化の手段として、Ni、Siの多量添加や時効処理後の仕上げ圧延(調質処理)率の増大などの手法が広く知られている。
しかしながら、Ni、Siの添加量の増加に伴い、強度は増大するが、一定量(例えば、3質量%のNi、0.7質量%のSi程度)以上になると、強度の増大が飽和する傾向にあり、800MPa以上の0.2%耐力を達成することは困難である。また、Ni、Siの過剰添加は導電率の低下を伴うとともに、Ni−Si系析出物が粗大化しやすく曲げ加工性が低下しやすい。
また時効処理後の仕上げ圧延率の増大により、強度は向上できるが、銅合金板材の曲げ加工性、特に圧延方向を曲げ軸とする曲げ(いわゆる、BadWay曲げ)加工性が著しく悪化する。
そのため、強度レベルが高く(例えば、850MPa以上の0.2%耐力を達成できることになって)ても電気・電子部品に加工できなくなる場合がある。
In the Cu—Ni—Si based copper alloy sheet material, as means for increasing the strength, techniques such as addition of a large amount of Ni and Si and an increase in the finish rolling (tempering treatment) rate after aging treatment are widely known.
However, the strength increases as the addition amount of Ni and Si increases, but if the amount exceeds a certain amount (for example, about 3 mass% Ni, about 0.7 mass% Si), the increase in strength tends to be saturated. Therefore, it is difficult to achieve a 0.2% proof stress of 800 MPa or more. Further, excessive addition of Ni and Si is accompanied by a decrease in electrical conductivity, and Ni—Si based precipitates are likely to be coarsened, and bending workability is likely to be reduced.
Further, although the strength can be improved by increasing the finish rolling ratio after the aging treatment, the bending workability of the copper alloy sheet, particularly the bending (so-called Bad Way bending) workability with the rolling direction as the bending axis is remarkably deteriorated.
For this reason, even if the strength level is high (for example, 0.2% proof stress of 850 MPa or more can be achieved), it may be impossible to process the electrical / electronic component.

近年、Cu−Ni−Si系銅合金板材の高強度化のために、Coを比較的に多量(例えば、0.5〜2.0wt%Co以上)に添加する銅合金板材、いわゆるCu−Ni−Co−Si系銅合金が提案されている(例えば、特許文献1〜3)。   In recent years, in order to increase the strength of a Cu—Ni—Si based copper alloy sheet, a copper alloy sheet in which Co is added in a relatively large amount (for example, 0.5 to 2.0 wt% Co or more), so-called Cu—Ni. -Co-Si based copper alloys have been proposed (for example, Patent Documents 1 to 3).

よく知られているように、Cu−Ni−Si系銅合金の場合、合金の強化は主にNi−Si系化合物の析出および圧延に伴う加工硬化によるものである。そのうち加工硬化による強化は曲げ加工性の低下を招きやすいので、圧延率をできるだけ下げる必要がある。
従って、Cu−Ni−Si系銅合金の強度を向上させるには、Ni−Si系化合物の析出量および析出物のサイズを制御することが最も重要になる。Ni−Si系化合物の最適な時効温度は450℃前後(一般に425〜475℃)であり、時効温度が高すぎると、Ni−Si系析出物が粗大化(所謂、過時効)しやすく、ピーク硬さは低くなる。一方、時効温度が低すぎると、析出速度が遅いために析出物は粗大化しないが、析出物の生成が遅く乃至生成しない可能性もある。
As is well known, in the case of a Cu—Ni—Si based copper alloy, the strengthening of the alloy is mainly due to precipitation of Ni—Si based compounds and work hardening accompanying rolling. Among them, strengthening by work hardening tends to cause a decrease in bending workability, so it is necessary to reduce the rolling rate as much as possible.
Therefore, in order to improve the strength of the Cu—Ni—Si based copper alloy, it is most important to control the amount of precipitation of the Ni—Si based compound and the size of the precipitate. The optimum aging temperature for Ni-Si compounds is around 450 ° C (generally 425 to 475 ° C). If the aging temperature is too high, Ni-Si-based precipitates are likely to become coarse (so-called overaging), and peak. Hardness decreases. On the other hand, if the aging temperature is too low, the precipitate is not coarsened because the precipitation rate is slow, but the formation of the precipitate is slow or may not be generated.

一方、Coを添加する場合、すなわちCu−Ni−Co−Si系銅合金の析出物は、主にNi−Si系化合物とCo−Si系化合物の2種類がある。従って、Cu−Ni−Co−Si系銅合金において、Ni−Si系析出物とCo−Si系析出物の両方の析出物の制御が極めて重要となる。しかしながら、Ni−Si系化合物とCo−Si系化合物の析出を最適化するに際し、従来の溶体化処理、場合によっては冷間圧延加工、時効処理、冷間圧延加工、低温焼鈍に代表される加工、熱処理工程では、各工程条件をいかに最適化しても0.2%耐力が900MPaを超すことができなかった。   On the other hand, when Co is added, that is, there are mainly two types of precipitates of Cu—Ni—Co—Si based copper alloys, Ni—Si based compounds and Co—Si based compounds. Therefore, in the Cu—Ni—Co—Si based copper alloy, it is very important to control both the Ni—Si based precipitate and the Co—Si based precipitate. However, when optimizing the precipitation of Ni-Si compounds and Co-Si compounds, conventional solution treatment, depending on the case, cold rolling, aging, cold rolling, and processing represented by low temperature annealing In the heat treatment process, the 0.2% proof stress could not exceed 900 MPa, no matter how the process conditions were optimized.

〔Co−Si系化合物の最適化〕
Co−Si系化合物の析出温度はNi−Si系化合物よりも高く、具体的には520℃前後(一般に500〜550℃)である。
従って、Cu−Ni−Co−Si系銅合金において、Ni−Si系化合物の最適時効温度である450℃前後で時効する場合、Co−Si系化合物の析出量は少なく、一方、Co−Si系化合物の最適時効温度である520℃前後の温度で時効する場合、Ni−Si系析出物が粗大化してしまう。いずれの時効条件も二種類の析出物を同時に活用できていない。また、それぞれの最適時効温度の中間温度(例えば、480℃)で時効する場合でも、二種類の析出物の最適状態を同時に達成することが難しい。(例えば、析出の状態を亜時効−ピーク時効−過時効の3段階に分ければ、時効時間が短い場合、Ni−Si系析出物がピーク時効で、Co−Si系析出物は亜時効で析出物量が少ない。より長時間時効を行いCo−Si系析出物がピーク時効になると、今度はNi−Si系析出物が過時効で粗大化してしまい強度に寄与しない)。
[Optimization of Co-Si compounds]
The deposition temperature of the Co—Si-based compound is higher than that of the Ni—Si-based compound, specifically, around 520 ° C. (generally 500 to 550 ° C.).
Therefore, when Cu-Ni-Co-Si-based copper alloy is aged at around 450 ° C, which is the optimum aging temperature for Ni-Si-based compounds, the amount of precipitation of Co-Si-based compounds is small. In the case of aging at a temperature around 520 ° C. which is the optimum aging temperature of the compound, the Ni—Si based precipitate is coarsened. None of the aging conditions can utilize the two types of precipitates at the same time. Further, even when aging is performed at an intermediate temperature between the respective optimum aging temperatures (for example, 480 ° C.), it is difficult to simultaneously achieve the optimum state of the two types of precipitates. (For example, if the precipitation state is divided into three stages of sub-aging, peak aging and overaging, when the aging time is short, Ni-Si based precipitates are peak aging, and Co-Si based precipitates are sub-aged. If the aging is longer and the Co-Si-based precipitates become peak aging, the Ni-Si-based precipitates become coarse due to overaging and do not contribute to the strength.

特許文献1では、粗大析出物の抑制により第二相密度を制御して特性を向上したCu−Ni−Co−Si系銅合金を提案している。導電率が41%IACS以上と比較高く、曲げ加工性が優れるものの、0.2%耐力が600〜770MPaという強度レベルである。   Patent Document 1 proposes a Cu-Ni-Co-Si-based copper alloy whose characteristics are improved by controlling the density of the second phase by suppressing coarse precipitates. Although the conductivity is higher than 41% IACS and higher and the bending workability is excellent, the 0.2% proof stress is a strength level of 600 to 770 MPa.

特許文献2では、平均結晶粒および集合組織の制御により特性を向上したCu−Ni−Co−Si系銅合金を提案している。強度レベルは0.2%耐力が652〜862MPaであり、900MPa以上には至っていない。   Patent Document 2 proposes a Cu—Ni—Co—Si based copper alloy whose characteristics are improved by controlling average crystal grains and texture. As for the strength level, the 0.2% proof stress is 652 to 862 MPa and does not reach 900 MPa or more.

特許文献3では、溶体化処理の冷却速度を10℃/s以上に制御し、強度を向上したCu−Ni−Co−Si系銅合金(強度810〜920MPa)を提案しているが、0.2%耐力が900MPa以上には至っていない。   Patent Document 3 proposes a Cu—Ni—Co—Si based copper alloy (strength 810 to 920 MPa) with improved strength by controlling the cooling rate of the solution treatment to 10 ° C./s or more. The 2% proof stress has not reached 900 MPa or more.

したがって、従来方法では880MPaを超える、さらには900MPa以上の高い0.2%耐力は得ることができず、さらにコネクタ材料などの電子材料として必要となる35%IACS以上の導電率、且つ良好な曲げ加工性の全てを満たすことについて開示がない。
更に別の課題として、Coを含有するCu−Ni−Co−Si系銅合金は、理由は解明されていないが、Coを含有しないCu−Ni−Si系銅合金に比べて、耐応力緩和特性が悪い傾向にあり、この点について、特許文献1〜3では改善策が提示されていない。
すなわち、上述の通り、35%IACS以上の導電率、900MPa以上の0.2%耐力、良好な曲げ加工性、それに加えて優れた耐応力緩和特性を有する銅合金板材を作製するためには何らかの技術的なブレークスルーが必要である。
Therefore, the conventional method cannot obtain a high 0.2% proof stress exceeding 880 MPa, and more than 900 MPa, and further has a conductivity of 35% IACS or more required as an electronic material such as a connector material, and good bending. There is no disclosure about satisfying all processability.
As yet another problem, the reason for the Cu-Ni-Co-Si based copper alloy containing Co has not been elucidated, but compared with the Cu-Ni-Si based copper alloy not containing Co, the stress relaxation resistance However, in this respect, Patent Documents 1 to 3 do not provide any improvement measures.
That is, as described above, in order to produce a copper alloy sheet material having an electrical conductivity of 35% IACS or higher, a 0.2% proof stress of 900 MPa or higher, good bending workability, and excellent stress relaxation resistance, A technical breakthrough is required.

特開2007−169765号公報JP 2007-169765 A 特開2008−248333号公報JP 2008-248333 A 国際公開番号 WO 2006/101172 A1International Publication Number WO 2006/101172 A1

本発明は、このような従来の問題点に鑑み、導電率30%IACS以上、好ましくは35%IACS以上、更に好ましくは40%IACS以上、且つ0.2%耐力が880MPaを超え、好ましくは900MPa以上の特性を具備し、さらに好ましくは異方性が少なく、優れた曲げ加工性を有し、車載用コネクタ等の過酷な使用環境での信頼性を担う「耐応力緩和特性」を同時に具備する銅合金板材およびその製造方法を提供することを目的とする。   In view of such a conventional problem, the present invention has a conductivity of 30% IACS or more, preferably 35% IACS or more, more preferably 40% IACS or more, and 0.2% proof stress exceeding 880 MPa, preferably 900 MPa. It has the above characteristics, more preferably less anisotropy, excellent bending workability, and simultaneously has "stress relaxation resistance" that bears reliability in harsh usage environments such as in-vehicle connectors. It aims at providing a copper alloy plate material and its manufacturing method.

本発明者らはCu−Ni−Co−Si系銅合金において0.2%耐力をより向上させる可能性について鋭意研究の結果、Ni−Si系化合物とCo−Si系化合物の両方の析出物の効果を最大限に発揮させることにより、導電率を維持したままで900MPa以上の0.2%耐力、良好な曲げ加工性および耐応力緩和特性を得ることができることを見いだし、本発明の完成に至った。
すなわち、Cu−Ni−Co−Si系銅合金において、Ni−Si系化合物とCo−Si系化合物の最適な時効温度(析出温度)と時効時間(析出時間)が異なるために従来充分に制御できなかった析出物について、後に述べる製造方法を採用することにより、全析出物に占めるNi−Si系とCo−Si系化合物の析出物の数の比率、析出物の粒径を最適化でき、0.2%耐力が880MPaを超え、900MPa以上とすることができ、且つ良好な曲げ加工性および耐応力緩和特性を得ることができることを見いだした。
さらに、Ni−Si系化合物と最適な時効温度、時効時間が異なり、Co−Si系化合物に近い最適な時効温度、時効時間を有するFe、Cr、Mn、Ti、V、Zrについて、Coと同様に析出を制御でき、Coと同様の効果を有することを見いだした。本願ではCoまたはCoに加えFe、Cr、Mn、Ti、V、Zrの元素(群)を便宜上Xとし、本発明合金をCu−Ni−X−Si系合金と表すことがある。
また、異方性の少ない{200}方位(Cube方位)を有する結晶粒の割合を増大させることは、曲げ加工性を向上させることができると同時に曲げ加工性の異方性を顕著に改善できるので好ましい。更に、結晶粒の内部の双晶密度を高めることによって、応力緩和特性と曲げ加工性を同時に顕著に改善できることを見出した。よって双晶密度を高めることが好ましい。
これらの構成によって銅合金板材の導電率を維持したまま強度、0.2%耐力を向上させ,さらに好ましくは耐応力緩和特性,曲げ加工性およびその異方性を同時に且つ著しく改善できることを見出した。
As a result of intensive studies on the possibility of further improving the 0.2% proof stress in Cu-Ni-Co-Si based copper alloys, the present inventors have found that both precipitates of Ni-Si based compounds and Co-Si based compounds are present. By maximizing the effect, it was found that 0.2% proof stress of 900 MPa or more, good bending workability and stress relaxation resistance can be obtained while maintaining the conductivity, and the present invention was completed. It was.
In other words, in Cu-Ni-Co-Si-based copper alloys, the optimum aging temperature (precipitation temperature) and aging time (precipitation time) of Ni-Si compounds and Co-Si compounds are different, which can be controlled sufficiently in the past. By adopting the production method described later for the precipitates that did not exist, the ratio of the number of Ni-Si-based and Co-Si-based compounds in the total precipitates, the particle size of the precipitates can be optimized, 0.2 It has been found that the% yield strength exceeds 880 MPa and can be set to 900 MPa or more, and good bending workability and stress relaxation resistance can be obtained.
Furthermore, Fe, Cr, Mn, Ti, V, Zr, which have different optimum aging temperatures and aging times from Ni-Si compounds and have optimum aging temperatures and aging times similar to Co-Si compounds, are the same as Co It was found that the precipitation can be controlled and that it has the same effect as Co. In the present application, in addition to Co or Co, an element (group) of Fe, Cr, Mn, Ti, V, and Zr is sometimes referred to as X for convenience, and the alloy of the present invention may be expressed as a Cu—Ni—X—Si alloy.
Further, increasing the proportion of crystal grains having {200} orientation (Cube orientation) with little anisotropy can improve bending workability and at the same time remarkably improve anisotropy of bending workability. Therefore, it is preferable. Furthermore, it has been found that stress relaxation characteristics and bending workability can be significantly improved simultaneously by increasing the twin density inside the crystal grains. Therefore, it is preferable to increase the twin density.
It has been found that with these configurations, the strength and 0.2% proof stress can be improved while maintaining the conductivity of the copper alloy sheet, and more preferably, the stress relaxation resistance, bending workability and its anisotropy can be improved simultaneously and significantly. .

すなわち、本発明は、0.8〜3.5質量%のNiと0.3〜2.0質量%のSi、0.5〜2.0質量%のCoを含み、残部がCuおよび不可避不純物からなる銅合金であって、XをCoとすると、前記Xの質量とNiの質量の比X/Niが0.3〜1.5の範囲、Niの質量と前記Xの質量の和とSiの質量の比(Ni+X)/Siが3〜6の範囲であり、単位面積あたりの析出物の数をN、前記析出物のうちNi−Si系析出物の数をNN、平均粒径をdN、前記析出物のうちX−Si系析出物の数をNX、平均粒径をdXとしたときに、下記数1を満たす析出物の数と、下記数2を満たす析出物の平均粒径を有し、下記数3を満たす結晶配向を有し、0.2%耐力が900MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材である。 That is, the present invention includes 0.8 to 3.5 mass% Ni, 0.3 to 2.0 mass% Si, 0.5 to 2.0 mass% Co, with the balance being Cu and inevitable impurities. When X is Co, the ratio of the mass of X to the mass of Ni is in the range of 0.3 to 1.5, the sum of the mass of Ni and the mass of X and Si The mass ratio (Ni + X) / Si is in the range of 3-6, the number of precipitates per unit area is N, the number of Ni—Si based precipitates among the precipitates is N N , the average particle size is d N , X-Si based precipitates the number of N X of the precipitates, the average particle diameter is taken as d X, it possesses the precipitation the number satisfying the following Equation 1, the average particle size of the precipitates which satisfies the following Expression 2, the following has a crystal orientation satisfying Expression 3, 0.2% proof stress above 900 MPa, conductivity, characterized in der Rukoto least 30% IACS Is a copper alloy sheet to be.

ここで、析出物成分のTEM−EDS(エネルギー分散型X線分析)により、50質量%以上のNiを含有する析出物をNi−Si系析出物、50質量%以上のXを含有する析出物をX−Si系析出物とする。   Here, by TEM-EDS (energy dispersive X-ray analysis) of the precipitate component, a precipitate containing 50 mass% or more of Ni is converted into a Ni-Si based precipitate, and a precipitate containing 50 mass% or more of X. Is an X-Si-based precipitate.

また、前記銅合金板材が、必要に応じてFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素を合計2.0質量%以下の範囲で含み、前記XをCoに加えFe、Cr、Mn、Ti、V、Zrとしても良い。
すなわち、0.8〜3.5質量%のNiと0.3〜2.0質量%のSi、0.5〜2.0質量%のCo、さらにFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素を合計2.0質量%以下の範囲で含み、XをCoに加えFe、Cr、Mn、Ti、V、Zrとすると、前記Xに含まれる元素の質量の合計とNiの質量の比X/Niが0.3〜1.5の範囲、Niの質量と前記Xに含まれる元素の質量の合計の和とSiの質量の比(Ni+X)/Siが3〜6の範囲であり、残部がCuおよび不可避不純物からなる銅合金であって、単位面積あたりの析出物の数をN、前記析出物のうちNi−Si系析出物の数をNN、平均粒径をdN、前記析出物のうちX−Si系析出物の数をNX、平均粒径をdXとしたときに、下記数1を満たす析出物の数と、下記数2を満たす析出物の平均粒径を有することを特徴とする銅合金板材である。
Further, the copper alloy sheet material contains one or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr as required in a total range of 2.0% by mass or less, and the X In addition to Co, Fe, Cr, Mn, Ti, V, and Zr may be used.
That is, 0.8 to 3.5% by mass of Ni, 0.3 to 2.0% by mass of Si, 0.5 to 2.0% by mass of Co, and Fe, Cr, Mn, Ti, V, Zr When one or more elements selected from the group consisting of: in the range of 2.0% by mass or less and X is added to Co and Fe, Cr, Mn, Ti, V, Zr, The ratio of the total mass and the mass of Ni X / Ni is in the range of 0.3 to 1.5, the sum of the mass of Ni and the mass of the elements contained in X and the ratio of the mass of Si (Ni + X) / Si Is a copper alloy consisting of Cu and inevitable impurities, wherein the number of precipitates per unit area is N, the number of Ni-Si-based precipitates among the precipitates is N N , and the average particle size the d N, a X-Si based precipitates the number of the precipitates N X, the mean particle size is taken as d X, below And precipitation the number satisfying 1, a copper alloy sheet and having an average particle size of the precipitates satisfies the following equation (2).

Figure 0005578827
Figure 0005578827

Figure 0005578827
Figure 0005578827

さらに前記銅合金板材は、板材表面(圧延面)においてX線回折を行ったときの{hkl}回折ピークの積分強度をI{hkl}とすると、数3を満たす結晶配向を有することが好ましい。   Furthermore, it is preferable that the copper alloy sheet has a crystal orientation satisfying Equation 3 when the integrated intensity of the {hkl} diffraction peak when X-ray diffraction is performed on the sheet surface (rolled surface) is I {hkl}.

Figure 0005578827
Figure 0005578827

ここで、I{200}は当該銅合金板材の板面における{200}結晶面のX線回折ピークの積分強度、I0{200}は純銅標準粉末の{200}結晶面のX線回折ピークの積分強度である。 Here, I {200} is the integrated intensity of the X-ray diffraction peak of the {200} crystal plane on the plate surface of the copper alloy sheet, and I 0 {200} is the X-ray diffraction peak of the {200} crystal plane of the pure copper standard powder. Is the integrated intensity of.

また前記銅合金板材は、数4を満たす結晶粒内双晶密度を有することをことが好ましい。   Moreover, it is preferable that the said copper alloy board | plate material has a crystal grain twin density which satisfy | fills number four.

Figure 0005578827
Figure 0005578827

ここで、NG は結晶粒当たりの平均双晶密度である。DとDT はそれぞれJIS H0501の切断法を用いて双晶境界を含めないで測定した平均結晶粒径と、双晶境界を結晶粒界とみなして測定した平均結晶粒径である。
また、平均結晶粒径Dが5〜30μmであることが好ましい。
Here, NG is the average twin density per crystal grain. D and D T are the average crystal grain size measured without using the twin boundary and the average crystal grain size measured by regarding the twin boundary as a grain boundary using the cutting method of JIS H0501.
Moreover, it is preferable that the average crystal grain diameter D is 5-30 micrometers.

また前記銅合金板材は、必要に応じ、さらにSn、Zn、Mg、Al、B、P、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計1質量%以下の範囲で含む組成を有してもよい。
また、前記銅合金板材が、0.2%耐力が880MPaを超え、好ましくは900MPa以上、導電率が30%IACS以上、さらには35%IACS以上であることが好ましい。
Moreover, the said copper alloy board | plate material is further in the range of 1 mass% or less in total of 1 or more types of elements chosen from the group which consists of Sn, Zn, Mg, Al, B, P, Ag, Be, and Misch metal as needed. You may have the composition which contains.
The copper alloy sheet preferably has a 0.2% proof stress exceeding 880 MPa, preferably 900 MPa or more, and a conductivity of 30% IACS or more, and more preferably 35% IACS or more.

また、本発明による銅合金板材の製造方法は、0.8〜3.5質量%のNiと0.3〜2.0質量%のSi、0.5〜2.0質量%のCoを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造する溶解および鋳造工程と、この溶解および鋳造工程の後に熱間圧延を行う熱間圧延工程と、この熱間圧延工程の後に冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度450〜600℃で熱処理を行う中間焼鈍工程と、この中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に350〜520℃で時効処理を行う時効処理工程とを備え、前記溶体化処理工程において、加熱温度を800〜1020℃とし、次いで500〜800℃まで急冷する工程、500〜800℃で10〜600秒保持する工程、その後300℃以下まで急冷する工程を備えた溶体化処理を施すことを特徴とする。   Moreover, the manufacturing method of the copper alloy plate material by this invention contains 0.8-3.5 mass% Ni, 0.3-2.0 mass% Si, 0.5-2.0 mass% Co. A melting and casting step for melting and casting a copper alloy raw material having a composition in which the balance is Cu and inevitable impurities, a hot rolling step for performing hot rolling after the melting and casting step, and this hot rolling A first cold rolling process in which cold rolling is performed after the process, an intermediate annealing process in which heat treatment is performed at a heating temperature of 450 to 600 ° C. after the first cold rolling process, and a rolling rate after the intermediate annealing process. A second cold rolling process for performing cold rolling at 70% or more, a solution treatment process for performing a solution treatment after the second cold rolling process, and 350 to 520 ° C. after the solution treatment process. An aging treatment step in which the aging treatment is performed in the solution treatment step. Then, the solution temperature is set to 800 to 1020 ° C., then rapidly cooled to 500 to 800 ° C., held at 500 to 800 ° C. for 10 to 600 seconds, and then rapidly cooled to 300 ° C. or lower. It is characterized by that.

前記銅合金板材の製造方法は、中間焼鈍工程において、中間焼鈍前後の導電率をそれぞれEbおよびEa、ビッカース硬さをそれぞれHbおよびHaとして、Ea/Eb≧1.5かつHa/Hb≦0.8を満たすように450〜600℃で1〜20時間で熱処理を実施するのが好ましい。   In the method of manufacturing the copper alloy sheet, in the intermediate annealing step, Eb / Ea and Vickers hardness before and after the intermediate annealing are Eb / Ea, Hb and Ha, respectively, and Ea / Eb ≧ 1.5 and Ha / Hb ≦ 0. It is preferable to perform the heat treatment at 450 to 600 ° C. for 1 to 20 hours so as to satisfy 8.

また前記溶体化処理後の平均結晶粒径Dが5〜30μmとなるように、溶体化処理工程の条件を制御するのが好ましい。   Moreover, it is preferable to control the conditions of the solution treatment step so that the average crystal grain size D after the solution treatment is 5 to 30 μm.

この銅合金板材の製造方法は、時効処理工程の後に圧延率50%以下で冷間圧延を行う仕上げ冷間圧延工程を備えているのが好ましく、仕上げ冷間圧延工程の後に150〜550℃で加熱処理を行う低温焼鈍工程を備えているのが好ましい。 The copper alloy sheet manufacturing method preferably includes a finish cold rolling step in which cold rolling is performed at a rolling rate of 50% or less after the aging treatment step, and is 150 to 550 ° C. after the finish cold rolling step. It is preferable to provide a low-temperature annealing step for performing heat treatment.

また、前記の銅合金板材の製造方法において、銅合金板材が、さらに必要に応じてFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素を合計2.0質量%以下の範囲で含む組成を有してもよく、必要に応じてSn、Zn、Mg、Al、B、P、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計1質量%以下の範囲で更に含む組成を有してもよい。   In the method for producing a copper alloy sheet, the copper alloy sheet further contains one or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr, if necessary, in total 2.0 mass. %, And may contain a composition containing at least one element selected from the group consisting of Sn, Zn, Mg, Al, B, P, Ag, Be, and Misch metal as required. You may have the composition further included in the range of the mass% or less.

さらに、本発明による電気・電子部品は、上記の銅合金板材を材料として用いたことを特徴とする。この電気・電子部品が、コネクタ、ソケット、リードフレーム、リレーまたはスイッチであるのが好ましい。   Furthermore, an electrical / electronic component according to the present invention is characterized by using the above-described copper alloy sheet as a material. This electrical / electronic component is preferably a connector, socket, lead frame, relay or switch.

本発明によれば、導電率30%IACS以上、好ましくは35%IACS以上、更に好ましくは40%IACS以上、且つ0.2%耐力が880MPaを超え、好ましくは900MPa以上の高強度を保持する特性を具備し、前記導電率と0.2%耐力を保持したまま、優れた曲げ加工性と耐応力緩和特性を同時に有し、更に特性の異方性が少なく、GoodWayとBadWayのいずれの曲げ加工性も優れた銅合金板材及びその製造方法を提供することができる。   According to the present invention, the electrical conductivity is 30% IACS or higher, preferably 35% IACS or higher, more preferably 40% IACS or higher, and 0.2% proof stress is higher than 880 MPa, preferably 900 MPa or higher. It has both the above-mentioned conductivity and 0.2% proof stress while having excellent bending workability and stress relaxation resistance at the same time, and also has little anisotropy in characteristics, and either bending work of GoodWay or BadWay It is possible to provide a copper alloy sheet having excellent properties and a method for producing the same.

本発明による銅合金板材の実施の形態は、0.8〜3.5質量%のNiと0.3〜2.0質量%のSi、0.5〜2.0質量%のCoを含み、さらに必要に応じてFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素を合計2.0質量%以下の範囲で含み、さらに必要に応じてSn、Zn、Mg、Al、B、P、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計1質量%以下の範囲で含み、残部がCuおよび不可避不純物からなる銅合金であって、XをCoまたはXをCoに加えFe、Cr、Mn、Ti、V、Zrとすると、前記Xの元素の質量の合計とNiの質量の比X/Niが0.3〜1.5、Niの質量と前記Xの元素の質量の合計の和とSiの質量の比(Ni+X)/Siが3〜6であり、単位面積あたりの析出物の数をN、前記析出物のうちNi−Si系析出物の数をNN、平均粒径をdN、前記析出物のうちX−Si系析出物の数をNX、平均粒径をdXとしたときに、下記数1を満たす析出物の数と、下記数2を満たす析出物の平均粒径を有する。 Embodiments of the copper alloy sheet according to the present invention include 0.8 to 3.5 mass% Ni, 0.3 to 2.0 mass% Si, 0.5 to 2.0 mass% Co, Further, it contains one or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr as required in a total range of 2.0% by mass or less, and further contains Sn, Zn, Mg as required. A copper alloy containing one or more elements selected from the group consisting of Al, B, P, Ag, Be and Misch metal in a total amount of 1% by mass or less, with the balance being Cu and inevitable impurities, When Co is added to Co or X is added to Co, and Fe, Cr, Mn, Ti, V, and Zr, the ratio X / Ni of the total mass of the elements of X to the mass of Ni is 0.3 to 1.5; The ratio of the sum of the mass and the mass of the element X to the mass of Si (Ni + X) / Si is 3 to 3. , And the precipitation the number per unit area N, the Ni-Si based precipitate the number N N of the precipitates, the average particle diameter d N, NX the X-Si based precipitates the number of the precipitates, the average particle When the diameter is d X , the number of precipitates satisfying the following formula 1 and the average particle diameter of the precipitates satisfying the following formula 2 are included.

Figure 0005578827
Figure 0005578827

Figure 0005578827
Figure 0005578827

ここで、析出物成分のTEM−EDS(エネルギー分散型X線分析)により、50質量%以上のNiを含有する析出物をNi−Si系析出物、50質量%以上のXを含有する析出物をX−Si系析出物とした。   Here, by TEM-EDS (energy dispersive X-ray analysis) of the precipitate component, a precipitate containing 50 mass% or more of Ni is converted into a Ni-Si based precipitate, and a precipitate containing 50 mass% or more of X. Was X-Si based precipitate.

前記銅合金板材は、板面においてX線回折を行ったときの{hkl}回折ピークの積分強度をI{hkl}とすると、数3を満たす結晶配向を有することが好ましい。   The copper alloy plate preferably has a crystal orientation satisfying Equation 3 when the integrated intensity of the {hkl} diffraction peak when X-ray diffraction is performed on the plate surface is I {hkl}.

Figure 0005578827
Figure 0005578827

ここで、I{200}は当該銅合金板材の板面における{200}結晶面のX線回折ピークの積分強度、I0{200}は純銅標準粉末の{200}結晶面のX線回折ピークの積分強度である。 Here, I {200} is the integrated intensity of the X-ray diffraction peak of the {200} crystal plane on the plate surface of the copper alloy sheet, and I 0 {200} is the X-ray diffraction peak of the {200} crystal plane of the pure copper standard powder. Is the integrated intensity of.

また、前記銅合金板材は、数4を満たす結晶粒内双晶密度を有することが好ましい。   Moreover, it is preferable that the said copper alloy board | plate material has the twin density in a crystal grain which satisfy | fills number four.

Figure 0005578827
Figure 0005578827

ここで、NGは結晶粒当たりの平均双晶密度である。DとDTはそれぞれJIS H0501の切断法を用いて双晶境界を含めないで測定した平均結晶粒径Dと、双晶境界を結晶粒界とみなして測定した平均結晶粒径DTである。また、平均結晶粒径Dが5〜30μmであることが好ましい。 Here, NG is the average twin density per crystal grain. D and D T are an average crystal grain size D measured by using the cutting method of JIS H0501 without including a twin boundary, and an average crystal grain size D T measured by regarding the twin boundary as a grain boundary. . Moreover, it is preferable that the average crystal grain diameter D is 5-30 micrometers.

また、前記銅合金板材が、0.2%耐力が880MPaを超え、導電率が30%IACS以上であることが好ましい。
以下、本発明の銅合金板材およびその製造方法について詳細に説明する。
The copper alloy sheet preferably has a 0.2% proof stress exceeding 880 MPa and a conductivity of 30% IACS or more.
Hereinafter, the copper alloy sheet of the present invention and the manufacturing method thereof will be described in detail.

[合金組成]
本発明ではCu−Ni−X−Si系銅合金(XはCoまたはCoに加えてFe、Cr、Mn、Ti、V、Zrの元素から構成される)を採用する。すなわち、前記Cu−Ni−X−Si系銅合金は、Cu−Ni−Co−Si系合金及びCu−Ni−Co−(Fe、Cr、Mn、Ti、V、Zrの群から選ばれる1種以上の元素)−Si系合金を指す。さらに前記Cu−Ni−X−Si系銅合金の基本成分にSn、Zn、Mg、その他の合金元素を添加した銅合金も、本明細書では包括的にCu−Ni−X−Si系銅合金と称している。
上述の通り便宜上XをCoまたはCoに加えてFe、Cr、Mn、Ti、V、Zrの元素から構成されるものとしたのは、X−Si系の析出物がNi−Si系析出物より析出温度が高く、且つ本発明の必須成分であるCoにかかわるCo−Si系化合物と析出温度が近く、また同様の特性上の効果が得られるためである。
[Alloy composition]
In the present invention, a Cu—Ni—X—Si based copper alloy (X is composed of Fe, Cr, Mn, Ti, V, and Zr in addition to Co or Co) is employed. That is, the Cu—Ni—X—Si based copper alloy is a Cu—Ni—Co—Si based alloy and Cu—Ni—Co— (one kind selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr). The above element) refers to a Si-based alloy. Furthermore, a copper alloy in which Sn, Zn, Mg, and other alloy elements are added to the basic component of the Cu—Ni—X—Si based copper alloy is also comprehensively referred to in this specification as a Cu—Ni—X—Si based copper alloy. It is called.
As described above, for convenience, X is added to Co or Co and composed of Fe, Cr, Mn, Ti, V, and Zr elements. X-Si based precipitates are more than Ni-Si based precipitates. This is because the deposition temperature is high, the deposition temperature is close to that of the Co—Si-based compound related to Co, which is an essential component of the present invention, and the same effect on characteristics can be obtained.

Niは、Ni−Si系析出物を形成して、銅合金板材の強度、0.2%耐力と導電性を向上させる効果を有する。Ni含有量が0.8質量%未満の場合には、この効果を十分に発揮させるのは困難である。そのため、Ni含有量は、0.8質量%以上必要であり、1.0質量%以上にするのが好ましく、1.5質量%以上にするのが更に好ましく、2.0質量%以上にするのが最も好ましい。一方、Ni含有量が高過ぎると、強度向上効果が飽和する一方で、導電率の低下や、粗大な析出物が生成し易く、曲げ加工時の割れの原因になる。そのため、Ni含有量は、3.5質量%以下にするのが好ましく、3.0質量%以下にするのが更に好ましい。   Ni has the effect of forming Ni—Si based precipitates and improving the strength, 0.2% proof stress and conductivity of the copper alloy sheet. When the Ni content is less than 0.8% by mass, it is difficult to sufficiently exhibit this effect. Therefore, the Ni content needs to be 0.8% by mass or more, preferably 1.0% by mass or more, more preferably 1.5% by mass or more, and 2.0% by mass or more. Is most preferred. On the other hand, if the Ni content is too high, the effect of improving the strength is saturated, but the conductivity is reduced and coarse precipitates are easily generated, which causes cracks during bending. Therefore, the Ni content is preferably 3.5% by mass or less, and more preferably 3.0% by mass or less.

Coは、Co−Si系の析出物を形成して、銅合金板材の強度、0.2%耐力、と導電性を向上させる効果を有し、またNi−Si系析出物を分散させる効果があり、二種類の析出物が共存すれば、強度向上の相乗効果がある。これらの作用を十分に発揮させるには、0.5質量%以上のCo含有量を確保することが望ましい。ただし、含有量が2.0質量%以上になると、完全固溶は困難であり、未固溶の部分は強度に寄与しない。また、二種類の析出物の共存による強度向上の相乗効果を発揮するために、Coの質量とNiの質量の質量比Co/Niを0.3〜1.5であることが必要であり、0.5〜1.2にするのが好ましい。このため、Co含有量は2.0質量%以下にするのが好ましく、1.5質量%以下にするのが更に好ましい。Co含有量は0.5〜1.5質量%の範囲に調整することが一層好ましい。
また、XをCoとしたとき、Coの質量とNiの質量の質量比X/Niが0.3〜1.5であり、0.5〜1.2であることが好ましい。
Co has the effect of improving the strength, 0.2% yield strength, and conductivity of the copper alloy sheet by forming a Co—Si based precipitate, and also has the effect of dispersing the Ni—Si based precipitate. Yes, if two kinds of precipitates coexist, there is a synergistic effect of strength improvement. In order to fully exhibit these effects, it is desirable to secure a Co content of 0.5 mass% or more. However, when the content is 2.0% by mass or more, complete solid solution is difficult, and the undissolved portion does not contribute to the strength. Moreover, in order to exhibit the synergistic effect of strength improvement by the coexistence of two kinds of precipitates, the mass ratio Co / Ni of the mass of Co and the mass of Ni needs to be 0.3 to 1.5, It is preferable to make it 0.5-1.2. For this reason, the Co content is preferably 2.0% by mass or less, and more preferably 1.5% by mass or less. More preferably, the Co content is adjusted to a range of 0.5 to 1.5 mass%.
When X is Co, the mass ratio X / Ni of the mass of Co and the mass of Ni is 0.3 to 1.5, and preferably 0.5 to 1.2.

さらに前記銅合金板材に、必要に応じてFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素を添加してもよく、これらの元素はSiとの析出物を形成して、前記Coとほぼ同様な効果を有し、高価なCoの一部を置換できる。これらの元素は、合計含有量が2.0質量%以上になると、完全固溶は困難である。すなわち、Fe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素の合計は2.0質量%以下とする。XをCo、Fe、Cr、Mn、Ti、V、Zr(からなる群の元素で構成される)としたときに、銅合金中の前記Xに含まれる元素の質量の合計とNiの質量との質量比X/Niが0.3〜1.5であり、0.5〜1.2にするのが好ましい。   Furthermore, one or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr may be added to the copper alloy sheet as necessary, and these elements are precipitated with Si. When formed, it has substantially the same effect as Co, and a part of expensive Co can be replaced. When these elements have a total content of 2.0% by mass or more, it is difficult to completely dissolve them. That is, the total of one or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr is 2.0% by mass or less. When X is Co, Fe, Cr, Mn, Ti, V, Zr (consisting of elements of the group consisting of), the total mass of elements contained in X in the copper alloy and the mass of Ni The mass ratio X / Ni is 0.3 to 1.5, preferably 0.5 to 1.2.

Siは、Ni−Si系析出物及びX−Si系析出物を生成する。Ni−Si系析出物はNi2Siを主体とする化合物であり、X−Si系析出物はXmSinの形式(XがCo、Fe、Cr、Mn、Ti、V、Zrの場合にそれぞれCo2Si、FeSi、Cr3Si、Mn5Si3、Ti5Si3、V5Si3、Zr5Si3などを主体とする化合物)であると考えられる。但し、合金中のNi、XおよびSiは、時効処理によって全てが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNi、XおよびSiは、銅合金板材の強度を若干向上させるが、析出状態と比べてその効果は小さく、また、導電率を低下させる要因になる。そのため、Siの含有量は、できるだけ析出物Ni2Si及びXmSinの組成比に近づけるのが好ましい。したがって、Niの質量とXの質量(XがCoの場合はCoの質量、XがCoに加えFe、Cr、Mn、Ti、V、Zrの場合はXに含まれる全ての元素の質量の合計)の和とSiの質量の質量比(Ni+X)/Si3〜6に調整する必要があり、3.5〜5.0に調整するのが好ましい。従って、Si含有量は0.3〜2.0質量%の範囲であり、0.5〜1.2質量%の範囲にするのが好ましい。 Si produces Ni—Si based precipitates and X—Si based precipitates. The Ni—Si based precipitate is a compound mainly composed of Ni 2 Si, and the X—Si based precipitate is in the form of X m Si n (when X is Co, Fe, Cr, Mn, Ti, V, Zr). It is considered that the compounds are mainly composed of Co 2 Si, FeSi, Cr 3 Si, Mn 5 Si 3 , Ti 5 Si 3 , V 5 Si 3 , Zr 5 Si 3, and the like. However, Ni, X, and Si in the alloy are not necessarily all precipitated by the aging treatment, and exist to some extent in a solid solution state in the Cu matrix. Ni, X, and Si in the solid solution state slightly improve the strength of the copper alloy sheet, but the effect is small compared to the precipitation state, and also causes a decrease in conductivity. Therefore, the Si content is preferably as close to the composition ratio of the precipitates Ni 2 Si and X m Si n as possible. Therefore, the mass of Ni and the mass of X (when X is Co, the mass of Co, when X is Co, Fe, Cr, Mn, Ti, V, Zr, the total mass of all elements contained in X) ) And the mass ratio of the mass of Si (Ni + X) / Si 3-6, and preferably 3.5-5.0. Therefore, the Si content is in the range of 0.3 to 2.0% by mass, and preferably in the range of 0.5 to 1.2% by mass.

必要に応じて銅合金板材に、Sn、Zn、Mg、Al、B、P、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を添加してもよい。例えば、Snは耐応力緩和特性向上の効果があり、Znは銅合金板材のはんだ付け性および鋳造性を改善する効果を有する。またMgも耐応力緩和特性を向上させる作用を有する。そのほかに、Agは、導電率を大きく低下させずに固溶強化を発現させる効果を有する。Pは溶解・鋳造時に脱酸効果を有し、Bは鋳造組織の微細化効果や熱間加工性を向上させる効果を有する。更に、Ce、La、Dy、Nd、Yなどの希土類元素の混合物であるミッシュメタルは、結晶粒の微細化効果や、析出物の分散化の効果を有する。   If necessary, one or more elements selected from the group consisting of Sn, Zn, Mg, Al, B, P, Ag, Be, and Misch metal may be added to the copper alloy sheet. For example, Sn has an effect of improving stress relaxation resistance, and Zn has an effect of improving solderability and castability of a copper alloy sheet. Mg also has the effect of improving the stress relaxation resistance. In addition, Ag has the effect of developing solid solution strengthening without significantly reducing the electrical conductivity. P has a deoxidizing effect during melting and casting, and B has an effect of refining the cast structure and improving hot workability. Furthermore, misch metal, which is a mixture of rare earth elements such as Ce, La, Dy, Nd, and Y, has an effect of refining crystal grains and an effect of dispersing precipitates.

なお、銅合金板材がSn、Zn、Mg、Al、B、P、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上を含有する場合には、各元素を添加した効果を十分に得るために、これらの総量が0.01質量%以上であるのが好ましい。しかし、総量が1質量%を超えると、導電率の低下、熱間加工性または冷間加工性に悪影響を与え、コスト的にも不利になる。したがって、これらの元素の総量は、1質量%以下であるのが好ましく、0.5質量%以下であるのが更に好ましい。   In addition, when a copper alloy board | plate material contains 1 or more types chosen from the group which consists of Sn, Zn, Mg, Al, B, P, Ag, Be, and a misch metal, the effect which added each element is fully acquired. Therefore, the total amount of these is preferably 0.01% by mass or more. However, if the total amount exceeds 1% by mass, the electrical conductivity is lowered, hot workability or cold workability is adversely affected, and the cost is disadvantageous. Therefore, the total amount of these elements is preferably 1% by mass or less, and more preferably 0.5% by mass or less.

〔析出物〕
Cu−Ni−X−Si系銅合金(XはCoまたはCoに加えてFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素から構成される)には、一般にNi−Si系析出物、X−Si系析出物、Ni−X−Si系析出物が存在する。従来の一般的な製造工程では、それらのうちNi−X−Si系析出物の割合が多い。実際、TEM観察で確認される析出物をTEM−EDS分析により同定すると、Ni−Si系析出物、X−Si系析出物に比べて明らかに粗大なNi−X−Si系析出物が同一視野内で多数観察される。このような粗大な析出物は強度向上には寄与しないため、その存在比率を低下させる必要がある。
従って、本発明の銅合金板材は単位面積あたりに観察される析出物の数をN、前記析出物のうちNi−Si系析出物の数をNN、前記析出物のうちX−Si系析出物の数をNXとしたとき、Ni−Si系析出物とX−Si系析出物の数の割合が数1を満たすことを特徴とする。
(Precipitate)
For Cu-Ni-X-Si based copper alloys (X is composed of one or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V and Zr in addition to Co or Co), Ni-Si based precipitates, X-Si based precipitates, and Ni-X-Si based precipitates exist. In the conventional general manufacturing process, the ratio of Ni—X—Si based precipitates is large among them. In fact, when the precipitate confirmed by TEM observation is identified by TEM-EDS analysis, the Ni-Si-based precipitate is clearly coarser than the Ni-Si-based precipitate and X-Si-based precipitate. Many are observed within. Since such a coarse precipitate does not contribute to the strength improvement, it is necessary to reduce the abundance ratio.
Therefore, in the copper alloy sheet of the present invention, the number of precipitates observed per unit area is N, the number of Ni—Si based precipitates among the precipitates is N N , and the number of X—Si based precipitates among the precipitates is N X. In this case, the ratio of the number of Ni—Si based precipitates to the number of X—Si based precipitates satisfies Formula 1.

Figure 0005578827
Figure 0005578827

ここで、析出物成分のTEM−EDS(エネルギー分散型X線分析)により、50質量%以上のNiを含有する析出物をNi−Si系析出物、50質量%以上のXを含有する析出物をX−Si系析出物とする。
また、Niが50質量%未満、且つXが50質量%未満の析出物はNi−X−Si系析出物とみなされる。
Here, by TEM-EDS (energy dispersive X-ray analysis) of the precipitate component, a precipitate containing 50 mass% or more of Ni is converted into a Ni-Si based precipitate, and a precipitate containing 50 mass% or more of X. Is an X-Si-based precipitate.
Further, a precipitate in which Ni is less than 50% by mass and X is less than 50% by mass is regarded as a Ni—X—Si based precipitate.

更に、前述の通り、Ni−Si系析出物とX−Si系析出物の最適析出温度(例えば時効温度)、最適熱処理時間(時効時間、析出時間)がずれているため、従来の製造方法ではこの二種類の析出物の粒径分布が大きく異なり、強度向上の相乗効果が低下してしまう。本発明の銅合金板材では、後述する製造方法によって、いずれの析出物も細かく析出させることができ、両者の析出物の平均粒径の差を小さくすることができたため、また、前述のNi−X−Si系析出物を減少させることができるため、従来得ることができなかった導電率が30%IACS以上で880MPaを超える0.2%耐力の大きい銅合金板材、さらには35%IACS以上で900MPa以上の0.2%耐力を有し、前記導電率と0.2%耐力を保持したまま、優れた曲げ加工性と耐応力緩和特性を同時に有し、更に異方性が少なくGoodWayとBadWayのいずれの曲げ加工性も優れた銅合金板材を提供することができる。
そのため、本発明の銅合金板材では単位面積あたりに観察されるNi−Si系析出物の平均粒径をdN、前記単位面積あたりのX−Si系析出物の平均粒径をdXとしたときに、数2で表されるように両者の析出物粒径の偏差が小さいことを特徴とする。
Furthermore, as described above, since the optimum precipitation temperature (for example, aging temperature) and optimum heat treatment time (aging time, precipitation time) of the Ni—Si based precipitate and the X—Si based precipitate are shifted, The particle size distribution of the two kinds of precipitates is greatly different, and the synergistic effect of improving the strength is lowered. In the copper alloy sheet of the present invention, any of the precipitates can be finely precipitated by the manufacturing method described later, and the difference in average particle diameter between the two precipitates can be reduced. Since X-Si based precipitates can be reduced, a copper alloy plate having a 0.2% proof stress exceeding 30% IACS and exceeding 880 MPa, which has not been obtained in the past, and further 35% IACS or more. It has a 0.2% proof stress of 900 MPa or more, has excellent bending workability and stress relaxation resistance at the same time while maintaining the conductivity and 0.2% proof stress, and has less anisotropy. Good Way and Bad Way Thus, it is possible to provide a copper alloy sheet having excellent bending workability.
Therefore, in the copper alloy sheet of the present invention, the average particle diameter of the Ni—Si-based precipitates observed per unit area is d N , and the average particle diameter of the X-Si-based precipitates per unit area is d X. Sometimes, as expressed by Equation 2, there is a small deviation between the precipitate particle sizes of the two.

Figure 0005578827
Figure 0005578827

なお、前記と同様にこれらの析出物の判別は、析出物成分のTEM−EDS(エネルギー分散型X線分析)により、50質量%以上のNiを含有する析出物をNi−Si系析出物、50質量%以上のXを含有する析出物をX−Si系析出物とする。   In the same manner as described above, these precipitates are identified by TEM-EDS (energy dispersive X-ray analysis) of a precipitate component. A precipitate containing 50% by mass or more of Ni is converted into a Ni-Si-based precipitate, A precipitate containing 50% by mass or more of X is defined as an X-Si based precipitate.

〔結晶方位〕
{200}結晶面({100}<001>方位)はCube方位と呼ばれ、板厚方向(圧延表面に垂直な方向)ND,圧延方向LD,圧延方向と板厚方向に垂直な方向TDの三つの方向に同様な特性を示す。また、LD:<001>とTD:<010>のいずれもすべりに寄与し得る。更に{200}結晶面上のすべり線は、曲げ軸に対して45°および135°と対称性が良好であるため、せん断帯を形成することなく曲げ変形が可能である。すなわち、Cube方位を有する結晶粒はGoodWayの曲げ加工性,BadWayの曲げ加工性ともに良好であり、異方性がないという特徴がある。
そのため、数3を満たす結晶配向を有することが好ましく、数5を満たす結晶配向を有することが望ましい。
(Crystal orientation)
The {200} crystal plane ({100} <001> orientation) is called the Cube orientation, and has a plate thickness direction (direction perpendicular to the rolling surface) ND, a rolling direction LD, and a direction TD perpendicular to the rolling direction and the plate thickness direction. Similar characteristics are shown in the three directions. Also, both LD: <001> and TD: <010> can contribute to the slip. Furthermore, since the slip line on the {200} crystal plane has good symmetry with respect to the bending axis at 45 ° and 135 °, it can be bent without forming a shear band. That is, crystal grains having a Cube orientation are characterized by good GoodWay bending property and BadWay bending property and no anisotropy.
For this reason, it is preferable to have a crystal orientation satisfying Equation 3, and it is desirable to have a crystal orientation satisfying Equation 5.

Figure 0005578827
Figure 0005578827

Figure 0005578827
Figure 0005578827

ここで、I{200}は当該銅合金板材の板面(圧延面)における{200}結晶面のX線回折ピークの積分強度、I0{200}は純銅標準粉末の{200}結晶面のX線回折ピークの積分強度である。 Here, I {200} is the integrated intensity of the X-ray diffraction peak of the {200} crystal plane on the plate surface (rolled surface) of the copper alloy sheet, and I 0 {200} is the {200} crystal plane of the pure copper standard powder. This is the integrated intensity of the X-ray diffraction peak.

Cube方位は純銅型再結晶集合組織の主方位であることが良く知られているが、銅合金においては、一般的な工程条件でCube方位を発達させることは困難である。しかしながら、本発明では、後記の製造工程に示すように、特定条件下での中間焼鈍工程と適切な溶体化条件とを組合せることにより、前記数3、数5を満たす結晶配向を有する板材を得ることができた。   Although it is well known that the Cube orientation is the main orientation of a pure copper-type recrystallized texture, it is difficult to develop a Cube orientation under general process conditions in a copper alloy. However, in the present invention, as shown in the manufacturing process described later, by combining an intermediate annealing step under a specific condition and an appropriate solution treatment condition, a plate material having a crystal orientation satisfying the equations 3 and 5 is obtained. I was able to get it.

〔双晶密度〕
双晶とは、隣接する二つの結晶粒の結晶格子が、ある面(双晶境界という、一般に{111}面である)に関して鏡映対称の関係にある一対の結晶粒を言う。銅及び銅合金中の最も一般的な双晶は結晶粒中に二つの平行な双晶境界で挟まれた部分(双晶帯と呼ばれる)である。
双晶境界は粒界エネルギーが最も低い粒界であり、粒界としての曲げ加工性向上の役割を十分に果すことがある一方、粒界に比べて境界に沿った原子配列の乱れが少なく構造的に緻密であり、原子の拡散や不純物の偏析や析出物の形成がしにくく、境界に沿って破壊しにくいなどの性質を持つ。
すなわち、双晶境界が多いほど、応力緩和特性および曲げ加工性の向上に有利である。
[Twin density]
The twin crystal refers to a pair of crystal grains in which the crystal lattice of two adjacent crystal grains is in a mirror-symmetrical relationship with respect to a certain plane (a twin boundary, which is generally a {111} plane). The most common twins in copper and copper alloys are the parts sandwiched between two parallel twin boundaries in the grains (called twin zones).
The twin boundary is the grain boundary with the lowest grain boundary energy, and it may play a role in improving the bending workability as a grain boundary. On the other hand, there is less disorder of atomic arrangement along the boundary than the grain boundary. It is dense and has properties such as diffusion of atoms, segregation of impurities, formation of precipitates, and failure to break along the boundary.
That is, the more twin boundaries, the more advantageous for improving stress relaxation characteristics and bending workability.

従って双晶の密度NGは、数4を満たすことが好ましく、数6を満たす双晶密度であることが更に一層好ましい。 Therefore, it is preferable that the twin density NG satisfies the equation (4), and it is even more preferable that the twin density satisfies the equation (6).

Figure 0005578827
Figure 0005578827

Figure 0005578827
Figure 0005578827

ここで、NGは結晶粒当たりの平均双晶密度である。DとDTはそれぞれJIS H0501の切断法を用いて双晶境界を含めないで測定した平均結晶粒径Dと、双晶境界を結晶粒界とみなして測定した平均結晶粒径DTである。例えば、D=2DT、NG=1の場合は平均的に1個の結晶粒に1個の双晶との意味である。 Here, NG is the average twin density per crystal grain. D and D T are an average crystal grain size D measured by using the cutting method of JIS H0501 without including a twin boundary, and an average crystal grain size D T measured by regarding the twin boundary as a grain boundary. . For example, in the case of D = 2D T and N G = 1, it means that one twin per crystal grain on average.

面心立方結晶(fcc)の銅合金では、双晶はほとんど再結晶中に生成するものであり、すなわち焼鈍双晶である。焼鈍双晶の形成のメカニズムは現在解明できていないが、本発明者らの調査により、溶体化(再結晶)処理前の合金元素の存在状態(固溶か析出か)と溶体化処理条件に左右されることが判明した。最終的な双晶の密度は、溶体化処理後の段階における双晶の密度によってほぼ決まってくる。したがって、双晶の密度のコントロールは後述の溶体化処理前の中間焼鈍条件および溶体化処理条件によって行うことができる。   In face-centered cubic (fcc) copper alloys, twins are mostly formed during recrystallization, that is, annealed twins. The mechanism of the formation of annealing twins has not been elucidated at present, but the present inventors have investigated the state of alloying elements (solid solution or precipitation) before solution treatment (recrystallization) and solution treatment conditions. It turned out to be influenced. The final twin density is almost determined by the twin density in the stage after the solution treatment. Accordingly, the twin density can be controlled by the intermediate annealing conditions and the solution treatment conditions before the solution treatment described later.

[平均結晶粒径]
平均結晶粒径が小さいほど曲げ加工性の向上に有利であるが、小さすぎると耐応力緩和特性が悪くなりやすい。また最終的な平均結晶粒径は、溶体化処理後の段階における結晶粒径によってほぼ決まってくる。従って、溶体化処理工程において平均結晶粒径を過度に小さく調整すると、溶体化処理時に溶質元素が十分固溶されず、最終的に得られる銅合金銅材の強度が低くなる可能性が高い。種々検討の結果、最終的にJIS H0501の切断法を用いて双晶境界を含めないで測定した平均結晶粒径Dが5μm以上の値、好ましくは8μmを超える値であれば、車載用コネクタなど厳しい用途でも満足できるレベルの耐応力緩和特性を確保でき、好適である。ただし、あまり平均結晶粒径が大きくなりすぎると曲げ部表面の肌荒を起こりやすく、曲げ加工性の低下を招く場合があるので、30μm以下の範囲とすることが望ましく、8〜20μmの範囲に調整することがより好ましい。最終的な平均結晶粒径Dは、溶体化処理後の段階における結晶粒径によってほぼ決まってくる。したがって、平均結晶粒径のコントロールは後述の溶体化処理条件によって行うことができる。
[Average crystal grain size]
A smaller average crystal grain size is advantageous for improving the bending workability, but if it is too small, the stress relaxation resistance tends to deteriorate. The final average crystal grain size is almost determined by the crystal grain size in the stage after the solution treatment. Therefore, if the average crystal grain size is adjusted to be too small in the solution treatment step, the solute element is not sufficiently dissolved during the solution treatment, and the strength of the finally obtained copper alloy copper material is likely to be low. As a result of various studies, if the average grain size D finally measured using the cutting method of JIS H0501 without including the twin boundary is a value of 5 μm or more, preferably a value exceeding 8 μm, an in-vehicle connector or the like A stress relaxation resistance level that can be satisfied even in severe applications can be secured, which is preferable. However, if the average crystal grain size becomes too large, the surface of the bent portion is likely to be rough and may cause a decrease in bending workability. Therefore, the range is preferably 30 μm or less, and in the range of 8 to 20 μm. It is more preferable to adjust. The final average crystal grain size D is almost determined by the crystal grain size in the stage after the solution treatment. Therefore, the average crystal grain size can be controlled by the solution treatment conditions described later.

[特性]
コネクタなどの電気・電子部品を小型化および薄肉化するためには、素材である銅合金板材の0.2%耐力を850MPa以上にするのが好ましく、900MPa以上にするのが更に好ましい。また、時効硬化を利用して高強度化するため、この銅合金板材は、時効処理された金属組織を有している。コネクタなどはその製造工程に曲げ加工工程を有するため、銅合金板材の曲げ加工性は、GoodWayおよびBadWayのいずれも、90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが1.0以下であるのが好ましく、0.5以下であるのが更に好ましい。
また、コネクタなどの電気・電子部品は、高集積化、密装化および大電流化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材には、高導電率の要求が高まっている。具体的には30%IACS以上は必要であり、35%IACS以上が好ましく、更に好ましくは40%IACS以上の導電率が望まれる。
[Characteristic]
In order to reduce the size and thickness of electrical / electronic components such as connectors, the 0.2% proof stress of the copper alloy sheet material is preferably 850 MPa or more, and more preferably 900 MPa or more. Moreover, in order to increase the strength by using age hardening, the copper alloy sheet has a metal structure that has been subjected to an aging treatment. Since connectors and the like have a bending process in their manufacturing process, the bending workability of the copper alloy sheet is such that the ratio R / t between the minimum bending radius R and the sheet thickness t in the 90 ° W bending test is good for both GoodWay and BadWay. It is preferably 1.0 or less, and more preferably 0.5 or less.
In addition, electrical and electronic parts such as connectors tend to be highly integrated, densely packed, and have a large current. Accordingly, copper and copper alloy plate materials are required to have high electrical conductivity. It is growing. Specifically, 30% IACS or more is necessary, 35% IACS or more is preferable, and conductivity of 40% IACS or more is more desirable.

耐応力緩和特性は、車載用コネクタなどの用途ではTDの値が特に重要であるため、長手方向がTD(圧延方向LDと板厚方向NDに直角な方向)である試験片を用いた応力緩和率で応力緩和特性を評価することが望ましい。板材表面の最大負荷応力が0.2%耐力の80%である状態にして、150℃で1000時間保持した場合に、応力緩和率が5%以下であることが好ましい。   For stress relaxation resistance, since the value of TD is particularly important for applications such as in-vehicle connectors, stress relaxation using a test piece whose longitudinal direction is TD (direction perpendicular to the rolling direction LD and the plate thickness direction ND). It is desirable to evaluate the stress relaxation characteristics by the rate. It is preferable that the stress relaxation rate is 5% or less when the maximum load stress on the surface of the plate is 80% of 0.2% proof stress and held at 150 ° C. for 1000 hours.

[製造方法]
上述したような銅合金板材は、本発明による銅合金板材の製造方法の実施の形態によって製造することができる。本発明による銅合金板材の製造方法の実施の形態は、上述した組成を有する銅合金の原料を溶解して鋳造する溶解・鋳造工程と、この溶解・鋳造工程の後に熱間圧延を行う熱間圧延工程と、この熱間圧延工程の後に冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度450〜600℃で熱処理を行う中間焼鈍工程と、この中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に350〜520℃で時効処理を行う時効処理工程とを備え、前記溶体化処理工程において、加熱温度を800〜1020℃とし、次いで500〜800℃まで急冷する工程、500〜800℃で10〜600秒保持する工程、その後300℃以下まで急冷する工程を備えたことを特徴とする。
[Production method]
The copper alloy sheet as described above can be produced by the embodiment of the method for producing a copper alloy sheet according to the present invention. An embodiment of a method for producing a copper alloy sheet according to the present invention includes a melting / casting process in which a raw material of a copper alloy having the above-described composition is melted and cast, and a hot rolling in which hot rolling is performed after the melting / casting process. A rolling process, a first cold rolling process in which cold rolling is performed after the hot rolling process, an intermediate annealing process in which heat treatment is performed at a heating temperature of 450 to 600 ° C. after the first cold rolling process, A second cold rolling step in which cold rolling is performed at a rolling rate of 70% or more after the intermediate annealing step, a solution treatment step in which solution treatment is performed after the second cold rolling step, and this solution treatment An aging treatment step of performing an aging treatment at 350 to 520 ° C. after the treatment step, and in the solution treatment step, a heating temperature is set to 800 to 1020 ° C., and then rapidly cooled to 500 to 800 ° C., 500 to 800 ° C. Hold for 10 to 600 seconds Process, comprising the step of quenching to then 300 ° C. or less.

なお、前記中間焼鈍工程の際に、前記中間焼鈍前後の導電率をそれぞれEbおよびEa、ビッカース硬さをそれぞれHbおよびHaとして、Ea/Eb≧1.5かつHa/Hb≦0.8を満たすように、450〜600℃で1〜20時間熱処理を実施することが好ましい。また、前記時効工程の後に圧延率50%以下の仕上げ冷間圧延工程を備えることが好ましく、仕上げ冷間圧延工程の後に、更に150〜550℃で加熱処理(低温焼鈍)を施すのが好ましい。また、熱間圧延後には、必要に応じて面削を行い、熱処理後には、必要に応じて酸洗、研磨、脱脂を行ってもよい。以下、これらの工程について詳細に説明する。   In the intermediate annealing step, the electrical conductivity before and after the intermediate annealing is Eb and Ea, the Vickers hardness is Hb and Ha, respectively, and Ea / Eb ≧ 1.5 and Ha / Hb ≦ 0.8 are satisfied. Thus, it is preferable to implement heat processing at 450-600 degreeC for 1 to 20 hours. Moreover, it is preferable to provide the finishing cold rolling process of 50% or less of rolling rate after the said aging process, and it is preferable to heat-process (low-temperature annealing) at 150-550 degreeC after a finishing cold rolling process. Further, after hot rolling, chamfering may be performed as necessary, and after heat treatment, pickling, polishing, and degreasing may be performed as necessary. Hereinafter, these steps will be described in detail.

(溶解・鋳造工程)
一般的な銅合金の溶製方法と同様の方法により、銅合金の原料を溶解した後、連続鋳造や半連続鋳造などにより鋳片を製造する。溶解・鋳造は通常大気中で行われるが、X元素の酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うことも可能である。
(Melting and casting process)
A slab is produced by continuous casting or semi-continuous casting after the raw material of the copper alloy is melted by the same method as a general copper alloy melting method. Melting / casting is usually carried out in the atmosphere, but in order to prevent oxidation of the X element, it can also be carried out in an inert gas atmosphere or a vacuum melting furnace.

(熱間圧延工程)
鋳片の熱間圧延は、900℃以上、望ましくは980℃以上から500℃に温度を下げながら好ましくは数〜十数パスに分けて行う。トータルの圧延率は、概ね80〜95%にすればよい。熱間圧延終了後には、水冷などにより急冷するのが好ましい。また、熱間加工後には、必要に応じて面削や酸洗を行ってもよい。
(Hot rolling process)
The hot-rolling of the slab is preferably performed in several to a dozen or more passes while the temperature is lowered from 900 ° C. or higher, desirably from 980 ° C. or higher to 500 ° C. The total rolling ratio may be approximately 80 to 95%. After the hot rolling is completed, it is preferable to quench by water cooling or the like. In addition, after hot working, chamfering or pickling may be performed as necessary.

(第1の冷間圧延工程)
この冷間圧延工程では、圧延率を70%以上にすることが好ましく、80%以上にするのが更に好ましい。このような圧延率で加工された材料に対して、次工程で中間焼鈍工程を施すことにより、析出物の量を増加させることができる。
(First cold rolling process)
In this cold rolling step, the rolling rate is preferably 70% or more, and more preferably 80% or more. By subjecting the material processed at such a rolling rate to an intermediate annealing step in the next step, the amount of precipitates can be increased.

(中間焼鈍工程)
次に、析出を目的として中間焼鈍工程熱処理を行う。通常の製造工程では、この中間焼鈍工程を行わないか、または次工程における圧延負荷を軽減させるために、板材が軟化あるいは再結晶する比較的高温で行う。いずれの場合も、次の溶体化工程後に再結晶粒内の焼鈍双晶の密度や{200}結晶面(Cube方位)を主方位成分とする再結晶集合組織の形成が不十分になる。
(Intermediate annealing process)
Next, an intermediate annealing process heat treatment is performed for the purpose of precipitation. In a normal manufacturing process, this intermediate annealing process is not performed, or is performed at a relatively high temperature at which the plate material is softened or recrystallized in order to reduce the rolling load in the next process. In either case, after the next solution treatment step, the formation of a recrystallized texture whose main orientation component is the density of annealing twins in the recrystallized grains and the {200} crystal plane (Cube orientation) becomes insufficient.

本発明者らが詳細に調査・研究した結果、再結晶過程中の焼鈍双晶及びCube方位の形成は再結晶直前の母相の積層欠陥エネルギーの影響を受ける。積層欠陥エネルギーが低い方が焼鈍双晶を形成しやすい。逆に、積層欠陥エネルギーが高いとCube方位を形成しやすい。例えば、純アルミ、純銅、黄銅の順で積層欠陥エネルギーの低くなり、焼鈍双晶の密度は高くなるが、Cube方位は形成しにくい。すなわち、積層欠陥エネルギーが純銅に近い銅合金では、焼鈍双晶とCube方位の密度ともに高くなる可能性が高い。
焼鈍双晶およびCube方位の密度ともに高くするためには、中間焼鈍工程でNi、X、Siなどの析出によって固溶元素量を減少させ、積層欠陥エネルギーを高くすることで達成できる。この中間焼鈍工程を450〜600℃の温度範囲で、熱処理時間を1〜20時間の範囲内として「過時効」となるよう熱処理条件を選定することで目的とする焼鈍状態が得られる。
焼鈍温度が低すぎるまたは焼鈍時間が短すぎると、析出が不十分なために固溶元素量が高く(導電率の回復が不十分で)、積層欠陥エネルギーの増加が少ない。逆に焼鈍温度が高すぎると、固溶元素の固溶限も高くなるため、この場合も十析出が不十分となる。
具体的には、中間焼鈍工程の際に、中間焼鈍前後の導電率をそれぞれEbおよびEa、ビッカース硬さをそれぞれHbおよびHaとして、Ea/Eb≧1.5かつHa/Hb≦0.8を満たすようにすることが好ましい。
また、この中間焼鈍工程により、ビッカース硬さが80%以下に軟化するため、次工程における圧延負荷が軽減される効果もある。
As a result of detailed investigations and studies by the present inventors, the formation of annealing twins and Cube orientation during the recrystallization process is affected by the stacking fault energy of the parent phase immediately before the recrystallization. The lower the stacking fault energy, the easier it is to form annealing twins. Conversely, when the stacking fault energy is high, the Cube orientation is likely to be formed. For example, the stacking fault energy decreases in the order of pure aluminum, pure copper, and brass, and the density of annealing twins increases, but the Cube orientation is difficult to form. That is, in a copper alloy whose stacking fault energy is close to that of pure copper, there is a high possibility that both the annealing twins and the density of the Cube orientation will be high.
In order to increase both the density of annealing twins and the Cube orientation, it can be achieved by reducing the amount of solid solution elements by precipitation of Ni, X, Si, etc. in the intermediate annealing process and increasing the stacking fault energy. The intermediate annealing step is performed in a temperature range of 450 to 600 ° C., and the heat treatment time is set in the range of 1 to 20 hours, and the heat treatment conditions are selected so as to obtain the intended annealing state.
When the annealing temperature is too low or the annealing time is too short, the amount of solid solution elements is high because of insufficient precipitation (insufficient recovery of conductivity), and the stacking fault energy is little increased. On the other hand, if the annealing temperature is too high, the solid solubility limit of the solid solution element also becomes high, and in this case, too much precipitation is insufficient.
Specifically, during the intermediate annealing step, the electrical conductivity before and after the intermediate annealing is Eb and Ea, the Vickers hardness is Hb and Ha, respectively, and Ea / Eb ≧ 1.5 and Ha / Hb ≦ 0.8. It is preferable to satisfy.
Moreover, since the Vickers hardness is softened to 80% or less by this intermediate annealing step, there is also an effect that the rolling load in the next step is reduced.

(第2の冷間圧延工程)
続いて、2度目の冷間圧延を行う。この冷間圧延では、圧延率を70%以上にするのが好ましい。この冷間圧延工程では、前工程の析出物の存在により、効率よく歪エネルギーを導入することができる。歪エネルギーが不足すると、溶体化処理時に生じる再結晶粒径が不均一となる可能性があるとともに、{200}結晶面を主方位成分とする再結晶集合組織の形成が不十分になる。すなわち、再結晶集合組織は、再結晶前の析出物の分散状態と量、更には冷間圧延における圧延率に依存する。なお、この冷間圧延における圧延率の上限は、特に規定する必要はないが、前工程により軟化しているため、更に圧延率80%以上の強圧延を施すことも可能である。
(Second cold rolling process)
Subsequently, the second cold rolling is performed. In this cold rolling, the rolling rate is preferably set to 70% or more. In this cold rolling process, strain energy can be efficiently introduced due to the presence of precipitates from the previous process. If the strain energy is insufficient, the recrystallized grain size generated during the solution treatment may be non-uniform, and the formation of the recrystallized texture having the {200} crystal plane as the main orientation component becomes insufficient. That is, the recrystallization texture depends on the dispersion state and amount of precipitates before recrystallization, and further on the rolling rate in cold rolling. The upper limit of the rolling rate in this cold rolling need not be specified, but since it has been softened by the previous process, it is possible to further perform strong rolling with a rolling rate of 80% or more.

(溶体化処理工程)
従来の溶体化処理は「溶質元素のマトリックス中への再固溶」と「再結晶化」を主目的とするが、本発明では更に「高い密度の焼鈍双晶の形成」および「{200}を主方位成分とする再結晶集合組織の形成」をも重要な目的とする。
この溶体化処理は、成分に応じ、800〜1020℃で、10秒〜10分間の加熱処理を行うのが好ましい。温度が低すぎると再結晶が不完全な上、溶質元素の固溶も不十分となる。また、焼鈍双晶の密度が低いと{200}結晶面の主方位成分が低くなる傾向があり、最終的に曲げ加工性の優れた高強度の銅合金板材を得るのが困難になる。一方、温度が高すぎると結晶粒が粗大化してしまい、曲げ加工性の低下を招き易い。
(Solution treatment process)
The conventional solution treatment mainly aims at “re-solution dissolution of solute elements in a matrix” and “recrystallization”, but in the present invention, “formation of high density annealing twins” and “{200} Another important objective is the formation of a recrystallized texture having a main orientation component.
The solution treatment is preferably performed at 800 to 1020 ° C. for 10 seconds to 10 minutes depending on the components. If the temperature is too low, recrystallization will be incomplete and solute elements will not be sufficiently dissolved. Further, if the density of the annealing twins is low, the main orientation component of the {200} crystal plane tends to be low, and it becomes difficult to finally obtain a high-strength copper alloy sheet material excellent in bending workability. On the other hand, if the temperature is too high, the crystal grains are coarsened, which tends to cause a decrease in bending workability.

具体的に、この溶体化処理は、再結晶粒の平均結晶粒径(双晶境界を結晶粒界とみなさない)が5〜30μmとなるように800〜1020℃域の到達温度および保持時間を設定して熱処理を実施することが望ましく、8〜20μmとなるように調整することが一層好ましい。再結晶粒径が微細になりすぎると、焼鈍双晶の密度が低くなる。また、耐応力緩和特性を向上させる上でも不利となる。再結晶粒径が粗大になりすぎると、曲げ加工部の表面肌荒が発生し易い。再結晶粒径は、溶体化処理前の冷間圧延率や化学組成によって変動するが、予め実験によりそれぞれの合金について溶体化処理ヒートパターンと平均結晶粒径との関係を求めておくことにより、800〜1020℃域の到達温度および保持時間を設定することができる。具体的には、本発明で規定する化学組成の合金では、800〜980℃の温度で10sec〜10min保持する加熱条件において適正条件を設定できる。   Specifically, in this solution treatment, the ultimate temperature and the holding time in the range of 800 to 1020 ° C. are set so that the average crystal grain size of recrystallized grains (the twin boundary is not regarded as a grain boundary) is 5 to 30 μm. It is desirable to set and perform the heat treatment, and it is more preferable to adjust so as to be 8 to 20 μm. If the recrystallized grain size becomes too fine, the density of the annealing twins becomes low. It is also disadvantageous in improving the stress relaxation resistance. If the recrystallized grain size becomes too large, surface roughness of the bent portion is likely to occur. The recrystallized grain size varies depending on the cold rolling rate and chemical composition before the solution treatment, but by previously obtaining the relationship between the solution treatment heat pattern and the average crystal grain size for each alloy by experiment, The ultimate temperature and holding time in the range of 800 to 1020 ° C. can be set. Specifically, in an alloy having a chemical composition defined in the present invention, appropriate conditions can be set under heating conditions in which the alloy is held at a temperature of 800 to 980 ° C. for 10 seconds to 10 minutes.

(溶体化処理後の冷却工程)
溶体化処理後の冷却は、冷却途中に化合物の析出を極力に避けるため、析出が起こらない温度まで一気に急冷するのが一般的である。しかしながら、本特許記載の方法では、急冷過程の特定温度域において一定時間保持した後、再度急冷する冷却パターンを用いる。前述のようにNi−Si系化合物とX−Si系化合物の最適な析出温度と時間が一致しない(ずれる)ことにより、二種類の析出物を同時に十分活用できていないことが、導電率を保持したまま900MPa以上の高い耐力と、さらには良好な曲げ加工性、耐応力緩和特性を同時に実現できない原因であるので、予めNi−Si系化合物がほとんど析出しない温度域で、X−Si系化合物を微細に析出させるために、このような冷却パターンを用いる。具体的には、800〜1020℃の加熱温度で溶体化処理を行った後に、500〜800℃の温度域まで10℃/s以上、好ましくは50℃/s以上、さらに好ましくは100℃/s以上の冷却速度で急冷して、500〜800℃の温度域で10〜600秒保持し、その後300℃以下まで再び10℃/s以上、好ましくは50℃/s以上、さらに好ましくは100℃/s以上の冷却速度で急冷する冷却パターンが好ましい。すなわち、500〜800℃で10〜600秒の範囲で行う保持は、Ni−Si系化合物がほとんど析出しない温度域で、X−Si系化合物を微細に析出させるためのものである。その保持温度が高すぎると、X−Si化合物の析出の駆動力が小さくなり、析出物が少なくなる一方で粗大化しやすい。逆に、その保持温度が低すぎると、X−Si系化合物は析出するのに長時間を要するため、実質上析出が起こらず、通常の製造方法と同様に二種類の析出物を同時に十分活用できない。従って、前述の数1を満たすことができなくなり、最終的に良好な導電率を保持したまま900MPa以上の高い耐力と良好な曲げ加工性および優れた耐応力緩和特性を全て満たすことができなくなってしまう。
(Cooling process after solution treatment)
In order to avoid the precipitation of the compound as much as possible during the cooling, the cooling after the solution treatment is generally rapidly cooled to a temperature at which no precipitation occurs. However, in the method described in this patent, a cooling pattern is used in which the sample is held for a certain time in a specific temperature range of the rapid cooling process and then rapidly cooled again. As described above, the optimal precipitation temperature and time of Ni-Si compound and X-Si compound do not match (displace), so that the two types of precipitates cannot be fully utilized at the same time. As a result, it is a cause that the high yield strength of 900 MPa or more, and further good bending workability and stress relaxation resistance cannot be realized at the same time. Therefore, in the temperature range in which the Ni—Si based compound hardly precipitates in advance, the X—Si based compound is used. In order to deposit finely, such a cooling pattern is used. Specifically, after performing the solution treatment at a heating temperature of 800 to 1020 ° C., the temperature range of 500 to 800 ° C. is 10 ° C./s or more, preferably 50 ° C./s or more, more preferably 100 ° C./s. It is rapidly cooled at the above cooling rate and held at a temperature range of 500 to 800 ° C. for 10 to 600 seconds, and then again to 300 ° C. or less, again 10 ° C./s or more, preferably 50 ° C./s or more, more preferably 100 ° C. / A cooling pattern that rapidly cools at a cooling rate of s or more is preferred. That is, the holding performed at 500 to 800 ° C. for 10 to 600 seconds is for finely depositing the X-Si compound in a temperature range where the Ni—Si compound is hardly precipitated. When the holding temperature is too high, the driving force for the precipitation of the X-Si compound is reduced, and the precipitates are reduced while being easily coarsened. On the other hand, if the holding temperature is too low, the X-Si compound takes a long time to precipitate, so substantially no precipitation occurs, and two types of precipitates are fully utilized at the same time as in the normal manufacturing method. Can not. Therefore, the above-mentioned number 1 cannot be satisfied, and finally it is impossible to satisfy all of the high proof stress of 900 MPa or more, the good bending workability and the excellent stress relaxation property while maintaining a good electrical conductivity. End up.

また、保持時間が長すぎると、X−Si系析出物が粗大化しやすく、熱処理時間が短すぎると、X−Si系析出物が少なくなる。
具体的には、本発明で規定する化学組成の合金では、500〜800℃の温度で10〜600秒保持する条件において適正条件を設定できる。550℃〜750℃の温度(または550℃を超え750℃以下の温度)で20〜300秒保持、さらに好ましくは50〜300秒保持する条件が一層好ましい。
また、500〜800℃の温度より高いおよび低い温度域で急冷を行わないと、前者では結晶粒の粗大化やX−Si系化合物が析出・粗大化しやすく、後者ではNi−Si系化合物が析出・粗大化してしまい、最終的に高い耐力と良好な曲げ加工性および優れた耐応力緩和特性を全て満たすことができなくなってしまう。
Further, if the holding time is too long, the X-Si based precipitates are likely to be coarsened, and if the heat treatment time is too short, the X-Si based precipitates are reduced.
Specifically, in an alloy having a chemical composition defined in the present invention, an appropriate condition can be set under the condition of holding at a temperature of 500 to 800 ° C. for 10 to 600 seconds. The condition of holding at a temperature of 550 ° C. to 750 ° C. (or a temperature exceeding 550 ° C. and not higher than 750 ° C.) for 20 to 300 seconds, more preferably 50 to 300 seconds is more preferable.
In addition, if the quenching is not performed in a temperature range higher and lower than 500 to 800 ° C., the former tends to cause the coarsening of crystal grains and the precipitation and coarsening of the X—Si compound, and the Ni—Si compound precipitates in the latter. -It will become coarse and will eventually fail to meet all of its high yield strength, good bending workability and excellent stress relaxation properties.

以上の溶体化処理およびその後の冷却、保持、冷却工程は、例えば通常の加熱ゾーン、冷却ゾーンで構成される溶体化処理炉を改造して、加熱ゾーン、冷却ゾーン、保温ゾーン、冷却ゾーンの四ゾーンで構成される溶体化処理炉で実施することができる。板材の加熱ゾーンと保温ゾーンの滞在時間はゾーンの長さと通板速度の調整で制御できる。また冷却ゾーンでの冷却速度は冷却ファンの回転速度で制御することも可能である。
なお、冷却方法は上記に限定されることなく、水冷、油冷、ガス急冷、ソルトバスによる冷却など冷却速度を制御できれば良い。
The above solution treatment and the subsequent cooling, holding, and cooling steps are carried out by modifying a solution treatment furnace composed of, for example, a normal heating zone and a cooling zone, so that a heating zone, a cooling zone, a heat retention zone, and a cooling zone can be used. It can be implemented in a solution treatment furnace composed of zones. The staying time of the heating zone and the heat insulation zone of the plate material can be controlled by adjusting the length of the zone and the plate passing speed. Further, the cooling rate in the cooling zone can be controlled by the rotation speed of the cooling fan.
The cooling method is not limited to the above, and it is sufficient that the cooling rate can be controlled, such as water cooling, oil cooling, gas rapid cooling, or cooling with a salt bath.

(時効処理工程)
続いて、時効処理を行う。この時効処理では、Ni−Si系化合物の析出が主な目的になる。時効処理温度が高くなり過ぎると、Ni−Si系析出物が粗大化しやすく、同時に前述の溶体化処理後の冷却工程で生成されたX−Si系析出物も粗大化しやくなる。一方、加熱温度が低過ぎると、Ni−Si系化合物が十分に析出せず、また時効時間が長くなりすぎて生産性の面で不利になる。よって、合金組成に応じて時効で硬さがピークになる温度、時間を予め調整して条件を決めるのが好ましい。具体的には、350〜520℃の温度であり、400℃〜500℃で行うのが好ましく、425〜475℃の温度で行うのが更に好ましい。時効処理時間は、概ね1〜10時間程度で良好な結果が得られる。
(Aging process)
Subsequently, an aging process is performed. In this aging treatment, precipitation of Ni—Si compounds is the main purpose. When the aging treatment temperature is too high, the Ni—Si based precipitates are likely to be coarsened, and at the same time, the X—Si based precipitates generated in the cooling step after the solution treatment are also easily coarsened. On the other hand, if the heating temperature is too low, the Ni—Si compound is not sufficiently precipitated, and the aging time becomes too long, which is disadvantageous in terms of productivity. Therefore, it is preferable to determine the conditions by adjusting in advance the temperature and time at which the hardness reaches its peak due to aging according to the alloy composition. Specifically, the temperature is 350 to 520 ° C., preferably 400 to 500 ° C., more preferably 425 to 475 ° C. The aging treatment time is about 1 to 10 hours, and good results are obtained.

(仕上げ冷間圧延工程)
この仕上げ冷間圧延では、強度レベルの向上を図るとともに、{220}結晶面を主方位成分とする圧延集合組織を発達させる。仕上げ冷間圧延の圧延率が低過ぎると、強度を高める効果を十分に得ることができない。一方、仕上げ冷間圧延の圧延率が高過ぎると、{220}結晶面を主方位成分とする圧延集合組織が相対的に優勢になり過ぎ、強度と曲げ加工性を両立できる中間的な結晶配向を実現することができない。
(Finish cold rolling process)
In this finish cold rolling, the strength level is improved and a rolling texture having a {220} crystal plane as a main orientation component is developed. If the rolling rate of finish cold rolling is too low, the effect of increasing the strength cannot be obtained sufficiently. On the other hand, if the rolling ratio of finish cold rolling is too high, the rolling texture having the {220} crystal plane as the main orientation component becomes relatively dominant, and an intermediate crystal orientation that can achieve both strength and bending workability. Cannot be realized.

この仕上げ冷間圧延の圧延率は、10%以上にすることが好ましい。但し、仕上げ冷間圧延の圧延率の上限は50%を超えないように設定することが好ましく、45%以下がさらに好ましい。
最終的な板厚としては、概ね0.05〜1.0mmにするのが好ましく、0.06〜0.5mmにするのが更に好ましい。
The rolling rate of this finish cold rolling is preferably 10% or more. However, the upper limit of the finish cold rolling ratio is preferably set so as not to exceed 50%, and more preferably 45% or less.
The final plate thickness is preferably about 0.05 to 1.0 mm, more preferably 0.06 to 0.5 mm.

(低温焼鈍工程)
仕上げ冷間圧延工程の後には、低温焼鈍硬化による強度の向上、板条材の残留応力の低減、ばね限界値と耐応力緩和特性の向上を目的として、低温焼鈍を施すのが好ましい。加熱温度は、150〜550℃になるように設定するのが好ましい。これにより板材内部の残留応力が低減され、導電率を向上させる効果もある。この加熱温度が高過ぎると、短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じ易くなる。一方、加熱温度が低過ぎると、上述した特性を改善する効果が十分に得られない。加熱時間は、5秒以上にするのが好ましく、通常1時間以内で良好な結果が得られる。
(Low temperature annealing process)
After the finish cold rolling step, it is preferable to perform low-temperature annealing for the purpose of improving the strength by low-temperature annealing hardening, reducing the residual stress of the strip material, and improving the spring limit value and the stress relaxation resistance. The heating temperature is preferably set to 150 to 550 ° C. Thereby, the residual stress inside the plate material is reduced, and there is an effect of improving the electrical conductivity. If this heating temperature is too high, it softens in a short time, and variations in characteristics are likely to occur in both batch and continuous systems. On the other hand, if the heating temperature is too low, the above-described effect of improving the characteristics cannot be obtained sufficiently. The heating time is preferably 5 seconds or longer, and usually good results are obtained within 1 hour.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the copper alloy sheet material and the manufacturing method thereof according to the present invention will be described in detail.

表1に示す組成の原料をそれぞれ溶製し、縦型半連続鋳造機を用いて鋳造して鋳片を得た。   The raw materials having the compositions shown in Table 1 were melted and cast using a vertical semi-continuous casting machine to obtain slabs.

Figure 0005578827
Figure 0005578827

それぞれの鋳片を980℃に加熱し、980℃から500℃まで温度を下げながら熱間圧延を行って厚さ10mmの板材にした後、水冷(100℃/s以上の冷却速度)によって急冷し、その後、表層の酸化層を機械研磨により除去(面削)した。   Each slab is heated to 980 ° C., hot rolled while lowering the temperature from 980 ° C. to 500 ° C. to form a plate having a thickness of 10 mm, and then rapidly cooled by water cooling (cooling rate of 100 ° C./s or more). Thereafter, the surface oxide layer was removed (faced) by mechanical polishing.

次いで、それぞれ圧延率86%で第1の冷間圧延を行った後、それぞれ520〜570℃で6〜8時間の中間焼鈍熱処理を行った。
中間焼鈍前後の導電率をそれぞれEbおよびEa、ビッカース硬さをそれぞれHbおよびHaとして、いずれもEa/Ebが2.0前後(1.8〜2.5)で、Ha/Hbが0.5前後(0.39〜0.62)であった。その後、それぞれ圧延率80〜90%で第2の冷間圧延を行った。
Next, after performing the first cold rolling at a rolling rate of 86%, an intermediate annealing heat treatment was performed at 520 to 570 ° C. for 6 to 8 hours, respectively.
The electrical conductivity before and after the intermediate annealing is Eb and Ea, the Vickers hardness is Hb and Ha, respectively, Ea / Eb is around 2.0 (1.8 to 2.5), and Ha / Hb is 0.5 Before and after (0.39 to 0.62). Thereafter, second cold rolling was performed at a rolling rate of 80 to 90%.

次いで、圧延板の表面における(JIS H0501の切断法による)平均結晶粒径が5μmより大きく且つ30μm以下になるように、合金の組成に応じて860〜1000℃の範囲内で調整した温度で1分間保持して溶体化処理を行った。この溶体化処理における保持温度と保持時間は、それぞれの実施例の合金の組成に応じて最適な温度と時間を予備実験により求め、決定した。   Next, at a temperature adjusted within the range of 860 to 1000 ° C. according to the composition of the alloy so that the average crystal grain size (by the cutting method of JIS H0501) on the surface of the rolled plate is greater than 5 μm and 30 μm or less. The solution treatment was performed by holding for a minute. The holding temperature and holding time in the solution treatment were determined by determining the optimum temperature and time by preliminary experiments according to the composition of the alloy of each example.

次いで、溶体化処理後に、700℃の温度までソルトバスの浸漬により15℃/s以上の冷却速度で急冷してから、700℃の温度で52秒保持した後、50℃/s以上の冷却速度で室温まで急冷(水冷)した。その後、450℃で3〜8時間の時効処理を行った。時効処理時間は、合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。   Next, after the solution treatment, after quenching at a cooling rate of 15 ° C./s or more by immersion in a salt bath to a temperature of 700 ° C., holding at a temperature of 700 ° C. for 52 seconds, and then a cooling rate of 50 ° C./s or more. And cooled rapidly to room temperature (water cooling). Thereafter, an aging treatment was performed at 450 ° C. for 3 to 8 hours. The aging treatment time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition.

次いで、それぞれ圧延率20〜40%で仕上げ冷間圧延を行って、最後に425℃で1minの低温焼鈍を行って、実施例1〜11の銅合金板材を得た。なお、必要に応じて途中で面削を行い、または、第2の冷間圧延工程で、圧延率を80〜90%に調整して、銅合金板材の板厚を0.15mmに揃えた。   Subsequently, finish cold rolling was performed at a rolling rate of 20 to 40%, respectively, and finally low temperature annealing was performed at 425 ° C. for 1 minute to obtain copper alloy sheet materials of Examples 1 to 11. In addition, chamfering was performed in the middle as needed, or the rolling rate was adjusted to 80 to 90% in the second cold rolling step, and the thickness of the copper alloy sheet was adjusted to 0.15 mm.

詳細な工程条件を表2に示す。   Detailed process conditions are shown in Table 2.

Figure 0005578827
Figure 0005578827

次に、得られた銅合金板材から試料を採取し、TEM−EDS、結晶粒組織、X線回折強度、導電率、0.2%耐力、曲げ加工性、耐応力緩和特性を以下のように調べた。   Next, a sample is taken from the obtained copper alloy sheet, and the TEM-EDS, crystal grain structure, X-ray diffraction intensity, conductivity, 0.2% proof stress, bending workability, and stress relaxation resistance are as follows. Examined.

日本電子(株)製透過電子顕微鏡(TEM)JEM−2010を用いて、30万倍で析出物を観察した。また、EDS(エネルギー分散型X線分析)により、析出物の成分を分析した。50質量%以上のNiを含有する析出物をNi−Si系析出物、50質量%以上のXを含有する析出物はX−Si系析出物として、観察された全ての析出物の数をN、該析出物のうちNi−Si系析出物の数をNN、平均粒径をdN、該析出物のうちX−Si系析出物の数をNX、平均粒径をdXとし、(NN+NX)/N、およびNi−Si系析出物とX−Si系析出物の平均粒径の差の絶対値とNi−Si系析出物の平均粒径との比|dN―dX |/dN を求めた。
なお、Xは、銅合金板材の原料がCu、Ni、Co、Si及び不可避不純物であるときはCo、銅合金板材の原料がCu、Ni、Co、SiとさらにFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素及び不可避不純物であるとき、XはCo、Fe、Cr、Mn、Ti、V、Zrとする。
Precipitates were observed at a magnification of 300,000 times using a transmission electron microscope (TEM) JEM-2010 manufactured by JEOL Ltd. Moreover, the component of the deposit was analyzed by EDS (energy dispersive X-ray analysis). A precipitate containing 50 mass% or more of Ni is a Ni-Si-based precipitate, a precipitate containing 50 mass% or more of X is an X-Si-based precipitate, and the number of all observed precipitates is N, Of the precipitates, the number of Ni—Si-based precipitates is N N , the average particle size is d N , and the number of X-Si-based precipitates of the precipitates is N X , and the average particle size is d X, and (N N + N X ) / N, and the ratio of the absolute value of the difference between the average particle diameters of the Ni—Si based precipitate and the X—Si based precipitate to the average particle diameter of the Ni—Si based precipitate | d N −d X | / d N Asked.
X is Co when the raw material of the copper alloy sheet is Cu, Ni, Co, Si and inevitable impurities, and the raw material of the copper alloy sheet is Cu, Ni, Co, Si and further Fe, Cr, Mn, Ti, When it is one or more elements selected from the group consisting of V and Zr and inevitable impurities, X is Co, Fe, Cr, Mn, Ti, V, and Zr.

圧延板表面を研磨したのちエッチングし、その面を光学顕微鏡で観察し、平均結晶粒径をJIS H0501の切断法で求めた。双晶境界を含めないで測定した平均結晶粒径D、双晶境界を結晶粒界とみなして測定した平均結晶粒径DTから、NG=(D−DT)/DT を用いて双晶密度を求めた。 The surface of the rolled plate was polished and etched, the surface was observed with an optical microscope, and the average crystal grain size was determined by the cutting method of JIS H0501. N G = (D−D T ) / D T is used from the average crystal grain size D measured without including the twin boundary and the average crystal grain size D T measured by regarding the twin boundary as the grain boundary. Twin density was determined.

X線回折強度(X線回折積分強度)の測定は、X線回折装置(XRD)を用いて、Mo−Kα1およびKα2線、管電圧40kV、管電流30mAの条件で、試料の板面(圧延面)について{200}面の回折ピークの積分強度I{200}を測定した。また、上記と同じX線回折装置を用いて、上記と同じ測定条件で純銅標準粉末の{200}面のX線回折強度を測定した。これらの測定値を用いて数3中に示されるX線回折強度比I{200}/I0{200}を求めた。 The X-ray diffraction intensity (X-ray diffraction integrated intensity) was measured using an X-ray diffractometer (XRD) under the conditions of Mo-Kα1 and Kα2 rays, tube voltage 40 kV, tube current 30 mA (rolling). Plane), the integrated intensity I {200} of the diffraction peak of the {200} plane was measured. Further, using the same X-ray diffractometer as described above, the X-ray diffraction intensity of the {200} plane of pure copper standard powder was measured under the same measurement conditions as described above. Using these measured values, the X-ray diffraction intensity ratio I {200} / I 0 {200} shown in Equation 3 was determined.

銅合金板材の導電率は、JIS H0505の導電率測定方法に従って測定した。   The conductivity of the copper alloy sheet was measured according to the conductivity measurement method of JIS H0505.

銅合金板材の0.2%耐力として、銅合金板材のLD(圧延方向)の引張試験用の試験片(JIS Z2241の5号試験片)をそれぞれ3個ずつ採取し、JIS Z2241に準拠した引張試験を行い、その平均値によって0.2%耐力を求めた。   As a 0.2% proof stress of the copper alloy sheet, three specimens for tensile test of LD (rolling direction) of the copper alloy sheet (sample No. 5 of JIS Z2241) were sampled and tensile according to JIS Z2241. The test was conducted, and the 0.2% yield strength was determined by the average value.

銅合金板材の曲げ加工性を評価するために、銅合金板材から長手方向がLD(圧延方向)の曲げ試験片(幅10mm)とTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片(幅10mm)をそれぞれ3個ずつ採取し、それぞれの試験片について、JIS H3110に準拠した90°W曲げ試験を行った。この試験後の試験片について、曲げ加工部の表面および断面を光学顕微鏡によって50倍の倍率で観察して、割れが発生しない最小曲げ半径Rを求め、この最小曲げ半径Rを銅合金板材の板厚tで除することによって、LDとTDのそれぞれのR/t値を求めた。LDおよびTDのそれぞれ3個の試験片のうち、それぞれ最も悪い結果の試験片の結果を採用してR/t値とした。   In order to evaluate the bending workability of the copper alloy sheet material, a bending test piece (width 10 mm) whose longitudinal direction is LD (rolling direction) and TD (direction perpendicular to the rolling direction and sheet thickness direction) from the copper alloy sheet material Three bending test pieces (width 10 mm) were sampled, and a 90 ° W bending test based on JIS H3110 was performed on each test piece. For the test piece after this test, the surface and cross section of the bent portion were observed with an optical microscope at a magnification of 50 times to determine the minimum bending radius R at which no cracks occurred, and this minimum bending radius R was determined from the copper alloy sheet. By dividing by the thickness t, each R / t value of LD and TD was determined. Among the three test pieces of LD and TD, the result of the worst test piece was adopted to obtain the R / t value.

各供試材から長手方向がTDの曲げ試験片(幅10mm)を採取し、試験片の長手方向における中央部の表面応力が0.2%耐力の80%の大きさとなるようにアーチ曲げした状態で固定した。上記表面応力(MPa)は6Etδ/L0 2 として定まる。ただし、Eは弾性係数(MPa)、tは試料の厚さ(mm)、δは試料のたわみ高さ(mm)である。
この状態の試験片を大気中150℃の温度で1000時間保持した後の曲げ癖から応力緩和率(%)を(L1−L2)/(L1−L0)×100として算出した。
ただし、L0は治具の長さ、すなわち試験中に固定されている試料端間の水平距離(mm)、L1は試験開始時の試料長さ(mm)、L2は試験後の試料端間の水平距離(mm)である。
A bending test piece (width: 10 mm) having a longitudinal direction of TD was taken from each test material, and arch-bending was performed so that the surface stress of the central portion in the longitudinal direction of the test piece was 80% of 0.2% proof stress. Fixed in state. The surface stress (MPa) is determined as 6 Etδ / L 0 2 . Where E is the elastic modulus (MPa), t is the thickness (mm) of the sample, and δ is the deflection height (mm) of the sample.
The stress relaxation rate (%) was calculated as (L 1 −L 2 ) / (L 1 −L 0 ) × 100 from the bending habit after holding the test piece in this state at a temperature of 150 ° C. in the atmosphere for 1000 hours.
However, L 0 is the length of the jig, that is, the horizontal distance (mm) between the sample ends fixed during the test, L 1 is the sample length (mm) at the start of the test, and L 2 is the sample after the test. Horizontal distance (mm) between ends.

析出物、平均結晶粒径、X線回折強度、導電率、強度(0.2%耐力)、曲げ加工性、耐応力緩和特性などの評価結果を表3に示す。   Table 3 shows evaluation results such as precipitates, average crystal grain size, X-ray diffraction intensity, electrical conductivity, strength (0.2% yield strength), bending workability, and stress relaxation resistance.

Figure 0005578827
Figure 0005578827

表3に示すように、本発明の実施例1〜11はいずれも、900MPa以上の0.2%耐力、35%IACS以上の導電率、5%以下の応力緩和率、最小曲げ半径Rと板厚tの比R/tが1.0以下の曲げ加工性を有する。   As shown in Table 3, in Examples 1 to 11 of the present invention, 0.2% proof stress of 900 MPa or more, conductivity of 35% IACS or more, stress relaxation rate of 5% or less, minimum bending radius R and plate Bending workability with a ratio R / t of thickness t of 1.0 or less.

[比較例1]
実施例2と同じ組成の銅合金を使用し、溶体化処理後に室温まで15℃/sで急冷を行った以外は実施例2と同様の工程条件で製造した銅合金板材である。
得られた銅合金板材の数2にかかわる|dN―dX |/dNは76%と高く本発明の範囲外であった。
450℃で6時間の時効処理ではCo−Si系析出物が少なく、結果的に導電率と0.2%耐力ともに低かった。
[Comparative Example 1]
A copper alloy sheet produced under the same process conditions as in Example 2 except that a copper alloy having the same composition as in Example 2 was used, and the solution was rapidly cooled to room temperature at 15 ° C./s after the solution treatment.
| D N −d X | / d N related to the number 2 of the obtained copper alloy sheet was as high as 76%, which was outside the scope of the present invention.
In the aging treatment at 450 ° C. for 6 hours, there were few Co—Si based precipitates, and as a result, both conductivity and 0.2% proof stress were low.

[比較例2]
比較例1の時効温度をCo−Si系化合物の最適時効温度と考えられる500℃で6時間時効処理した以外は、比較例1と同様の工程で銅合金板材を製造した。
得られた銅合金板材の数2にかかわる|dN―dX |/dNは43%で本発明の範囲外であり、Ni−Si系析出物が既に粗大化していた。
結果的に比較例1より導電率、0.2%耐力が高くなった。しかし0.2%耐力は783MPaであり、本発明合金と比べ大幅に劣っていた。
[Comparative Example 2]
A copper alloy sheet was produced in the same process as in Comparative Example 1 except that the aging temperature of Comparative Example 1 was aged for 6 hours at 500 ° C., which is considered to be the optimum aging temperature of the Co—Si compound.
| D N −d X | / d N related to the number 2 of the obtained copper alloy sheet was 43%, which is outside the range of the present invention, and the Ni—Si based precipitates were already coarsened.
As a result, the conductivity and 0.2% proof stress were higher than those of Comparative Example 1. However, the 0.2% proof stress was 783 MPa, which was significantly inferior to the alloy of the present invention.

[比較例3]
比較例1と同じ組成の銅合金を使用し、時効温度を比較例1と2の中間程度の475℃で時効処理した以外は比較例1と同様の工程で銅合金板材を製造した。
得られた銅合金板材の数1にかかわる(NN+NX)/Nが54%と低く、粗大化しやすいNi−Co−Si系析出物の割合が比較高いことが推定される。
0.2%耐力が839MPaまで向上したが、実施例2よりも60MPa程度低い。原因としては粗大化しやすい前記Ni−Co−Si系析出物の割合が高いことが考えられる。
[Comparative Example 3]
A copper alloy sheet was produced in the same process as in Comparative Example 1 except that a copper alloy having the same composition as Comparative Example 1 was used and the aging temperature was aging at 475 ° C., which was about the middle of Comparative Examples 1 and 2.
It is estimated that (N N + N x ) / N related to the number 1 of the obtained copper alloy sheet is as low as 54%, and the proportion of Ni—Co—Si based precipitates that are likely to be coarsened is relatively high.
Although the 0.2% proof stress was improved to 839 MPa, it was lower than Example 2 by about 60 MPa. The cause is considered to be a high proportion of the Ni-Co-Si-based precipitates that are likely to be coarsened.

[比較例4]
比較例4はNiが1.46質量%、Siが0.82質量%、Coが2.46質量%、残部Cu及び不可避不純物からなる組成の原料を溶製し、縦型半連続鋳造機を用いて鋳造して鋳片を得た。
Coが2.0質量を超えており添加量が多すぎたため、鋳造過程中に形成した粗大な晶出物が熱間圧延前の加熱中に固溶していないので、熱延途中に激しく割れて、その後の工程を中断した。
[Comparative Example 4]
In Comparative Example 4, a raw material having a composition of 1.46% by mass of Ni, 0.82% by mass of Si, 2.46% by mass of Co, the balance Cu and inevitable impurities was melted, and a vertical semi-continuous casting machine was prepared. The slab was obtained by casting.
Since Co exceeds 2.0 mass and the addition amount is too large, coarse crystals formed during the casting process are not dissolved during heating before hot rolling, so cracks violently during hot rolling The subsequent process was interrupted.

[比較例5]
比較例5はNiが1.56質量%、Siが0.98質量%、Coが0.51質量%、Crが2.03質量%、残部Cu及び不可避不純物からなる組成の原料を溶製し、縦型半連続鋳造機を用いて鋳造して鋳片を得た。
Crが2.0質量を超えており添加量が多すぎたため、鋳造過程中に形成した粗大な晶出物が熱間圧延前の加熱中に固溶していないので、熱延途中に激しく割れて、その後の工程を中断した。
[Comparative Example 5]
In Comparative Example 5, a raw material having a composition comprising 1.56% by mass of Ni, 0.98% by mass of Si, 0.51% by mass of Co, 2.03% by mass of Cr, the balance Cu and unavoidable impurities is melted. The slab was obtained by casting using a vertical semi-continuous casting machine.
Since Cr exceeds 2.0 mass and the addition amount is too large, the coarse crystallized product formed during the casting process is not dissolved during heating before hot rolling. The subsequent process was interrupted.

[比較例6]
実施例2と同じ組成の銅合金を使用しており、中間焼鈍条件が異なる以外は実施例2と同様の製造方法で銅合金板材を作製した。これにより、導電率が46.2%IACS、0.2%耐力が891MPaと良好であった。しかし、中間焼鈍の条件が適切な条件でなかったので、結果的にI{200}/I0{200}および結晶粒内双晶密度NGともに低くなり、BWの曲げ加工性と耐応力緩和特性がともに悪くなった。
[Comparative Example 6]
A copper alloy sheet having the same composition as in Example 2 was used, and a copper alloy sheet was produced by the same manufacturing method as in Example 2 except that the intermediate annealing conditions were different. As a result, the conductivity was 46.2% IACS and the 0.2% proof stress was 891 MPa. However, since the conditions for the intermediate annealing were not appropriate, both I {200} / I 0 {200} and the intragranular twin density NG decreased, resulting in BW bending workability and stress relaxation. Both characteristics deteriorated.

[比較例7]
比較例7はNiが1.80質量%、Siが0.75質量%、Coが1.45質量%、Crが0.2質量%、Mgが0.05質量%、残部Cu及び不可避不純物からなる組成の銅合金を、実施例1と同様に鋳造した後、1000℃に加熱して900℃まで温度を下げながら熱間圧延を行って厚さ10mmの板材にした後、水冷(100℃/s以上の冷却速度)によって急冷し、その後、表層の酸化層を機械研磨により除去(面削)した。
次いで、冷間圧延により厚さ0.3mmの板とした。次に950℃で溶体化処理を2分行い、これをおよそ20℃/sの冷却速度(ガス冷却)で400℃以下まで冷却し、その後室温まで冷却した。その後0.15mmまで冷間圧延して、最後に500℃で3時間時効処理を施した。これにより、導電率が46.2%IACS、0.2%耐力が897MPaと良好であった。しかし、中間焼鈍がなく、溶体化後の冷却過程において、500〜800℃でのX−Si系析出物の析出制御がなかったので、結果的に析出物の比が本発明の範囲外で、I{200}/I0{200}および結晶粒内双晶密度NGともに低くなり、BWの曲げ加工性と耐応力緩和特性がともに悪くなった。
[Comparative Example 7]
In Comparative Example 7, 1.80% by mass of Ni, 0.75% by mass of Si, 1.45% by mass of Co, 0.2% by mass of Cr, 0.05% by mass of Mg, the balance Cu and inevitable impurities A copper alloy having a composition as described above was cast in the same manner as in Example 1, then heated to 1000 ° C. and hot-rolled while lowering the temperature to 900 ° C. to form a plate material having a thickness of 10 mm, and then water-cooled (100 ° C. / (cooling rate of s or more) and then the surface oxide layer was removed (faced) by mechanical polishing.
Subsequently, it was set as the board of thickness 0.3mm by cold rolling. Next, solution treatment was performed at 950 ° C. for 2 minutes, and the solution was cooled to 400 ° C. or lower at a cooling rate (gas cooling) of about 20 ° C./s, and then cooled to room temperature. Thereafter, it was cold-rolled to 0.15 mm and finally subjected to aging treatment at 500 ° C. for 3 hours. As a result, the conductivity was 46.2% IACS and the 0.2% yield strength was 897 MPa. However, there was no intermediate annealing, and there was no precipitation control of X-Si based precipitates at 500 to 800 ° C. in the cooling process after solutionization. As a result, the ratio of the precipitates was outside the scope of the present invention. Both I {200} / I 0 {200} and intragranular twin density NG were lowered, and both BW bending workability and stress relaxation resistance were deteriorated.

これらの実施例および比較例の組成,製造条件をそれぞれ表1および表2に示す。また組織および特性についての評価結果を表3に示す。
以上より、比較例1〜7は組成、製造工程、または工程条件の不適切であったことにより、本発明の銅合金板材の構成を具備することができず、またいずれの比較例も実施例1〜11と比較して特性が大きく劣っていることがわかった。
The compositions and production conditions of these examples and comparative examples are shown in Table 1 and Table 2, respectively. Table 3 shows the evaluation results for the structure and characteristics.
From the above, Comparative Examples 1 to 7 cannot be provided with the configuration of the copper alloy sheet of the present invention due to inappropriate composition, manufacturing process, or process conditions, and any of the comparative examples is an example. It turned out that the characteristic is greatly inferior compared with 1-11.

Claims (14)

0.8〜3.5質量%のNiと0.3〜2.0質量%のSi、0.5〜2.0質量%のCoを含み、残部がCuおよび不可避不純物からなる銅合金であって、XをCoとすると、前記Xの質量とNiの質量の比X/Niが0.3〜1.5の範囲、Niの質量と前記Xの質量の和とSiの質量の比(Ni+X)/Siが3〜6の範囲であり、単位面積あたりの析出物の数をN、前記析出物のうちNi−Si系析出物の数をNN、平均粒径をdN、前記析出物のうちX−Si系析出物の数をNX、平均粒径をdXとしたときに、下記数1を満たす析出物の数と、下記数2を満たす析出物の平均粒径を有し、下記数3を満たす結晶配向を有し、0.2%耐力が900MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材。
Figure 0005578827
Figure 0005578827
ここで、析出物成分のTEM−EDS(エネルギー分散型X線分析)により、50質量%以上のNiを含有する析出物をNi−Si系析出物、50質量%以上のXを含有する析出物をX−Si系析出物とする。
Figure 0005578827
ここで、I{200}は当該銅合金板材の板材表面における{200}結晶面のX線回折ピークの積分強度、I0{200}は純銅標準粉末の{200}結晶面のX線回折ピークの積分強度である。
A copper alloy containing 0.8 to 3.5% by mass of Ni, 0.3 to 2.0% by mass of Si, 0.5 to 2.0% by mass of Co, with the balance being Cu and inevitable impurities. When X is Co, the ratio of the mass of X to the mass of Ni, X / Ni is in the range of 0.3 to 1.5, the ratio of the mass of Ni, the mass of X, and the mass of Si (Ni + X ) / Si is in the range of 3 to 6, the number of precipitates per unit area is N, the number of Ni—Si based precipitates among the precipitates is N N , the average particle size is d N , and the number X− When the number of Si-based precipitates is N X and the average particle size is d X , the number of precipitates satisfying the following Equation 1 and the average particle size of precipitates satisfying the following Equation 2 and the crystal orientation satisfying the following Equation 3 A copper alloy sheet having a 0.2% proof stress of 900 MPa or more and an electrical conductivity of 30% IACS or more.
Figure 0005578827
Figure 0005578827
Here, by TEM-EDS (energy dispersive X-ray analysis) of the precipitate component, a precipitate containing 50 mass% or more of Ni is converted into a Ni-Si based precipitate, and a precipitate containing 50 mass% or more of X. Is an X-Si-based precipitate.
Figure 0005578827
Here, I {200} is the integrated intensity of the X-ray diffraction peak of the {200} crystal plane on the surface of the copper alloy sheet, and I 0 {200} is the X-ray diffraction peak of the {200} crystal plane of the pure copper standard powder. Is the integrated intensity of.
Fe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素を合計2.0質量%以下の範囲で含み、前記XがCoに加えFe、Cr、Mn、Ti、V、Zrを含むことを特徴とする請求項1記載の銅合金板材。 One or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr are included in a total range of 2.0% by mass or less, and X is added to Co, Fe, Cr, Mn, Ti, V The copper alloy sheet according to claim 1, comprising Zr. 板材表面において、JIS H0501の切断法を用いて双晶境界を含めないで測定した平均結晶粒径Dが5〜30μmである請求項1または2に記載の銅合金板材。 3. The copper alloy sheet according to claim 1, wherein an average crystal grain size D measured on the surface of the sheet without using twin boundaries is 5 to 30 μm using a cutting method of JIS H0501. 下記数4を満たす結晶粒内双晶密度を有する請求項1、2または3に記載の銅合金板材。
Figure 0005578827
ここで、NGは結晶粒当たりの平均双晶密度である。DとDTはそれぞれJIS H0501の切断法を用いて双晶境界を含めないで測定した平均結晶粒径Dと、双晶境界を結晶粒界とみなして測定した平均結晶粒径DTである。
The copper alloy sheet according to claim 1, 2 or 3, having an intragranular twin density that satisfies the following formula 4.
Figure 0005578827
Here, NG is the average twin density per crystal grain. D and D T are an average crystal grain size D measured by using the cutting method of JIS H0501 without including a twin boundary, and an average crystal grain size D T measured by regarding the twin boundary as a grain boundary. .
前記銅合金板材が、さらにSn、Zn、Mg、Al、B、P、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計1質量%以下の範囲で含む組成を有する請求項1、2、3または4に記載の銅合金板材。 The said copper alloy board | plate material has a composition which further contains 1 or more types of elements chosen from the group which consists of Sn, Zn, Mg, Al, B, P, Ag, Be, and a misch metal in the range of a total of 1 mass% or less. Item 5. A copper alloy sheet according to item 1, 2, 3 or 4. 0.8〜3.5質量%のNiと0.3〜2.0質量%のSi、0.5〜2.0質量%のCoを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造する溶解および鋳造工程と、この溶解および鋳造工程の後に熱間圧延を行う熱間圧延工程と、この熱間圧延工程の後に冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度450〜600℃で熱処理を行う中間焼鈍工程と、この中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に350〜520℃で時効処理を行う時効処理工程とを備え、前記溶体化処理工程において、加熱温度を800〜1020℃とし、次いで500〜800℃まで急冷する工程、500〜800℃で10〜600秒保持する工程、その後300℃以下まで急冷する工程を備えたことを特徴とする銅合金板材の製造方法。 Copper having a composition containing 0.8 to 3.5 mass% Ni, 0.3 to 2.0 mass% Si, 0.5 to 2.0 mass% Co, the balance being Cu and inevitable impurities A melting and casting process for melting and casting an alloy raw material, a hot rolling process for performing hot rolling after the melting and casting process, and a first cold for performing cold rolling after the hot rolling process A rolling process, an intermediate annealing process in which heat treatment is performed at a heating temperature of 450 to 600 ° C. after the first cold rolling process, and a second cold in which cold rolling is performed at a rolling rate of 70% or more after the intermediate annealing process. An intermediate rolling step, a solution treatment step for performing a solution treatment after the second cold rolling step, and an aging treatment step for performing an aging treatment at 350 to 520 ° C. after the solution treatment step, In the solution treatment step, the heating temperature is set to 800 to 1020 ° C. In the step of rapid cooling to 500 to 800 ° C., the step of holding 10 to 600 seconds at 500 to 800 ° C., the manufacturing method of the copper alloy sheet, characterized in that it comprises a step of quenching thereafter until 300 ° C. or less. 前記中間焼鈍工程の際に、前記中間焼鈍前後の導電率をそれぞれEbおよびEa、ビッカース硬さをそれぞれHbおよびHaとして、Ea/Eb≧1.5かつHa/Hb≦0.8を満たすように、450〜600℃で1〜20時間熱処理を実施することを特徴とする、請求項6に記載の銅合金板材の製造方法。 In the intermediate annealing step, the electrical conductivity before and after the intermediate annealing is Eb and Ea, and the Vickers hardness is Hb and Ha, respectively, so that Ea / Eb ≧ 1.5 and Ha / Hb ≦ 0.8 are satisfied. The method for producing a copper alloy sheet according to claim 6, wherein the heat treatment is performed at 450 to 600 ° C. for 1 to 20 hours. 前記溶体化処理工程において、溶体化処理後の平均結晶粒径が5〜30μmである請求項6または7に記載の銅合金板材の製造方法。 In the said solution treatment process, the average crystal grain diameter after solution treatment is 5-30 micrometers, The manufacturing method of the copper alloy board | plate material of Claim 6 or 7. 前記時効処理工程の後に圧延率50%以下で冷間圧延を行う仕上げ冷間圧延工程を備えたことを特徴とする、請求項6、7または8に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 6, 7 or 8, further comprising a finish cold rolling step in which cold rolling is performed at a rolling rate of 50% or less after the aging treatment step. 前記仕上げ冷間圧延工程の後に150〜550℃で加熱処理を行う低温焼鈍工程を備えたことを特徴とする請求項9に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 9, further comprising a low-temperature annealing step in which heat treatment is performed at 150 to 550 ° C after the finish cold rolling step. 前記銅合金板材が、さらにFe、Cr、Mn、Ti、V、Zrからなる群から選ばれる1種以上の元素を合計2.0質量%以下の範囲で含む組成を有することを特徴とする、請求項6、7、8、9または10に記載の銅合金板材の製造方法。 The copper alloy sheet has a composition further including one or more elements selected from the group consisting of Fe, Cr, Mn, Ti, V, and Zr in a total range of 2.0% by mass or less. The method for producing a copper alloy sheet according to claim 6, 7, 8, 9 or 10. 前記銅合金板材が、さらにSn、Zn、Mg、Al、B、P、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計1質量%以下の範囲で含む組成を有することを特徴とする、請求項6、7、8、9、10または11に記載の銅合金板材の製造方法。 The copper alloy sheet has a composition further containing one or more elements selected from the group consisting of Sn, Zn, Mg, Al, B, P, Ag, Be, and Misch metal in a total range of 1% by mass or less. The method for producing a copper alloy sheet according to claim 6, 7, 8, 9, 10 or 11. 請求項1、2、3、4または5に記載の銅合金板材を材料として用いたことを特徴とする電気・電子部品。 An electrical / electronic component using the copper alloy sheet according to claim 1 as a material. 前記電気・電子部品が、コネクタ、ソケット、リードフレーム、リレーまたはスイッチであることを特徴とする請求項13に記載の電気・電子部品。 The electrical / electronic component according to claim 13, wherein the electrical / electronic component is a connector, a socket, a lead frame, a relay, or a switch.
JP2009236707A 2009-10-13 2009-10-13 High-strength copper alloy sheet and manufacturing method thereof Active JP5578827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236707A JP5578827B2 (en) 2009-10-13 2009-10-13 High-strength copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236707A JP5578827B2 (en) 2009-10-13 2009-10-13 High-strength copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011084764A JP2011084764A (en) 2011-04-28
JP5578827B2 true JP5578827B2 (en) 2014-08-27

Family

ID=44077932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236707A Active JP5578827B2 (en) 2009-10-13 2009-10-13 High-strength copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5578827B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961335B2 (en) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
JP5827530B2 (en) * 2011-09-16 2015-12-02 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP6222885B2 (en) * 2011-11-10 2017-11-01 Jx金属株式会社 Cu-Ni-Si-Co based copper alloy for electronic materials
JP5988745B2 (en) * 2012-07-18 2016-09-07 三菱伸銅株式会社 Cu-Ni-Si based copper alloy plate with Sn plating and method for producing the same
JP6039999B2 (en) 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
KR101274063B1 (en) * 2013-01-22 2013-06-12 한국기계연구원 A metal matrix composite with two-way shape precipitation and method for manufacturing thereof
JP5647703B2 (en) * 2013-02-14 2015-01-07 Dowaメタルテック株式会社 High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
JP6696720B2 (en) * 2013-07-11 2020-05-20 古河電気工業株式会社 Copper alloy sheet and method for producing the same
JP6223057B2 (en) 2013-08-13 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6050738B2 (en) * 2013-11-25 2016-12-21 Jx金属株式会社 Copper alloy sheet with excellent conductivity, moldability and stress relaxation properties
JP6317967B2 (en) * 2014-03-25 2018-04-25 Dowaメタルテック株式会社 Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP6317966B2 (en) * 2014-03-25 2018-04-25 Dowaメタルテック株式会社 Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP6730784B2 (en) * 2015-03-19 2020-07-29 Jx金属株式会社 Cu-Ni-Co-Si alloy for electronic parts
JP6246173B2 (en) * 2015-10-05 2017-12-13 Jx金属株式会社 Cu-Co-Ni-Si alloy for electronic parts
JP6385382B2 (en) * 2016-03-31 2018-09-05 Jx金属株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP6385383B2 (en) * 2016-03-31 2018-09-05 Jx金属株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP6378819B1 (en) * 2017-04-04 2018-08-22 Dowaメタルテック株式会社 Cu-Co-Si-based copper alloy sheet, manufacturing method, and parts using the sheet
KR102021442B1 (en) 2019-07-26 2019-09-16 주식회사 풍산 A method of manufacturing a copper alloy sheet material excellent in strength and conductivity and a copper alloy sheet material produced therefrom
CN111500893A (en) * 2020-06-10 2020-08-07 铜陵高铜科技有限公司 Ultrahigh-strength copper alloy plate strip and manufacturing method thereof
CN112251629B (en) * 2020-10-21 2022-05-27 有研工程技术研究院有限公司 Copper alloy material for 6G communication connector and preparation method thereof
CN112921257B (en) * 2021-01-25 2022-02-01 安德伦(重庆)材料科技有限公司 Heat treatment method and forming method of beryllium-free high-strength copper alloy part
CN113862511B (en) * 2021-10-09 2022-07-12 浙江惟精新材料股份有限公司 Cu-Ni-Mn-P alloy and preparation method thereof
KR102403910B1 (en) * 2021-11-29 2022-06-02 주식회사 풍산 Method for manufacturing a copper alloy sheet material for automobiles or electric and electronic parts with excellent strength, electrical conductivity and bendability and copper alloy sheet material manufactured therefrom
CN114855026B (en) * 2022-03-25 2023-02-14 宁波博威合金材料股份有限公司 High-performance precipitation strengthening type copper alloy and preparation method thereof
CN115821110B (en) * 2022-12-08 2024-01-30 大连交通大学 C70350 alloy for establishing ingredient cooperative change relation based on cluster method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4937815B2 (en) * 2007-03-30 2012-05-23 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4981748B2 (en) * 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
JP4596490B2 (en) * 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4440313B2 (en) * 2008-03-31 2010-03-24 日鉱金属株式会社 Cu-Ni-Si-Co-Cr alloy for electronic materials
JP4837697B2 (en) * 2008-03-31 2011-12-14 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same

Also Published As

Publication number Publication date
JP2011084764A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5578827B2 (en) High-strength copper alloy sheet and manufacturing method thereof
JP5961335B2 (en) Copper alloy sheet and electrical / electronic components
JP4563495B1 (en) Copper alloy sheet and manufacturing method thereof
KR102222540B1 (en) Cu-Ni-Co-Si BASED COPPER ALLOY SHEET MATERAL AND METHOD FOR PRODUCING THE SAME
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
KR100709847B1 (en) Copper alloy having bendability and stress relaxation property
JP5261122B2 (en) Copper alloy sheet and manufacturing method thereof
WO2006093140A1 (en) Copper alloy
JP5466879B2 (en) Copper alloy sheet and manufacturing method thereof
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP3977376B2 (en) Copper alloy
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP2006265731A (en) Copper alloy
JPWO2009123159A1 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP6045635B2 (en) Method for producing copper alloy sheet
WO2015004940A1 (en) Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP4779100B2 (en) Manufacturing method of copper alloy material
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5578827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250