JP4779100B2 - Manufacturing method of copper alloy material - Google Patents

Manufacturing method of copper alloy material Download PDF

Info

Publication number
JP4779100B2
JP4779100B2 JP2004359350A JP2004359350A JP4779100B2 JP 4779100 B2 JP4779100 B2 JP 4779100B2 JP 2004359350 A JP2004359350 A JP 2004359350A JP 2004359350 A JP2004359350 A JP 2004359350A JP 4779100 B2 JP4779100 B2 JP 4779100B2
Authority
JP
Japan
Prior art keywords
temperature
warm
copper alloy
working
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004359350A
Other languages
Japanese (ja)
Other versions
JP2006169548A (en
Inventor
維林 高
義統 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2004359350A priority Critical patent/JP4779100B2/en
Publication of JP2006169548A publication Critical patent/JP2006169548A/en
Application granted granted Critical
Publication of JP4779100B2 publication Critical patent/JP4779100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コネクター、リードフレーム、リレー、スイッチなどの通電部材に適した析出強化型銅合金材料であって、特に導電性、強度、曲げ加工性を改善した銅合金材料、およびその製造法に関する。   The present invention relates to a precipitation-strengthened copper alloy material suitable for current-carrying members such as connectors, lead frames, relays and switches, and more particularly to a copper alloy material with improved conductivity, strength and bending workability, and a method for producing the same. .

電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチなどの通電部品には、通電によるジュール熱の発生を抑制するために良好な「導電性」が要求されると同時に、電気・電子機器の組立時や作動時に付与される応力に耐え得る「強度」が要求される。従来、このような通電部品には、用途に応じて「導電性」または「強度」の良好な材料が適宜選択されて使用されている。   Electrical components such as connectors, lead frames, relays, and switches that make up electrical and electronic components are required to have good “conductivity” in order to suppress the generation of Joule heat due to energization. Therefore, “strength” that can withstand the stress applied during assembly and operation is required. Conventionally, materials having good “conductivity” or “strength” are appropriately selected and used for such energized parts depending on applications.

ところが近年、電気・電子部品は高集積化、小型化、軽量化が進展しており、それに伴って通電部品には薄肉化の要求が高まっている。強度を重視する用途では850MPa以上の引張強さが望まれる場合がある。一方、例えば45%IACS以上あるいは更に50%IACS以上といった高い導電性を必要とする用途でも、700MPa以上の引張強さを維持することが望まれる。また電気・電子部品の小型化に対応するには設計自由度を拡大することが極めて有利であり、そのためには通電部品の「加工性」の向上が不可欠である。リードフレームの材料では曲げ加工性に優れることも重要となる。しかし、「強度」と「加工性」、あるいは「強度」と「導電性」の間にはトレードオフの関係があり、一般的にこれらの特性を同時に高めることは容易でない。   However, in recent years, electrical and electronic parts have been highly integrated, miniaturized, and lightened, and accordingly, there is an increasing demand for thinning of energized parts. In applications where strength is important, a tensile strength of 850 MPa or more may be desired. On the other hand, it is desirable to maintain a tensile strength of 700 MPa or more even in applications requiring high conductivity such as 45% IACS or more or even 50% IACS or more. In order to cope with the miniaturization of electric / electronic parts, it is extremely advantageous to increase the degree of design freedom. To that end, it is essential to improve the “workability” of the current-carrying parts. It is also important that the lead frame material has excellent bending workability. However, there is a trade-off relationship between “strength” and “workability” or “strength” and “conductivity”, and it is generally not easy to improve these characteristics at the same time.

銅合金の強化機構として、「固溶強化」、「析出強化」、「加工硬化」、「細粒強化(粒界強化)」が挙げられる。このうち「固溶強化」と「加工硬化」は導電性と加工性の低下を招きやすい。銅合金の導電性を高レベルに維持しながら高強度化を実現するには「析出強化」を利用することが有利である。   Examples of the strengthening mechanism of the copper alloy include “solid solution strengthening”, “precipitation strengthening”, “work hardening”, and “fine grain strengthening (grain boundary strengthening)”. Among these, “solid solution strengthening” and “work hardening” tend to cause a decrease in conductivity and workability. It is advantageous to use “precipitation strengthening” to achieve high strength while maintaining the conductivity of the copper alloy at a high level.

析出強化型銅合金としては、従来からCu−Cr(−Zr)系、Cu−Fe−P系、Cu−Mg−P系、Cu−Ni−Si系などの合金が実用化されている。中でも、Cu−Ni−Si合金(いわゆるコルソン合金)は強度と導電率のバランスに優れた合金として近年注目されている。   Conventionally, Cu-Cr (-Zr) -based, Cu-Fe-P-based, Cu-Mg-P-based, Cu-Ni-Si-based alloys and the like have been put to practical use as precipitation strengthened copper alloys. Among these, a Cu—Ni—Si alloy (so-called Corson alloy) has recently attracted attention as an alloy having an excellent balance between strength and conductivity.

しかしながら、析出強化型銅合金の特性を十分に引き出すためには、「溶体化処理」および「時効処理」を含む多くの製造工程が必要となり、しかも各工程での製造条件を厳しく管理しなければならないのが現状である。このため必然的に製造コストが高くなっている。具体的には、熱間圧延、冷間圧延、溶体化処理(または中間焼鈍)、冷間圧延、時効処理、仕上圧延、低温焼鈍の工程をとるのが一般的である。更に必要に応じて多回熱処理(溶体化、焼鈍、時効など)を採用したり熱処理と冷間圧延を繰り返したりする場合もある。   However, in order to fully exploit the properties of precipitation-strengthened copper alloys, many manufacturing processes including “solution treatment” and “aging treatment” are required, and the manufacturing conditions in each process must be strictly controlled. The current situation is not. This inevitably increases the manufacturing cost. Specifically, the steps of hot rolling, cold rolling, solution treatment (or intermediate annealing), cold rolling, aging treatment, finish rolling, and low temperature annealing are generally taken. Furthermore, if necessary, multiple heat treatments (solution treatment, annealing, aging, etc.) may be employed, or heat treatment and cold rolling may be repeated.

析出強化型銅合金の製造で必要とされる「溶体化処理」は、合金を析出物の固溶限界温度以上に加熱保持したのち急冷して過飽和固溶体を作る工程であり、溶体化条件を厳しく管理する必要がある。すなわち、溶体化温度が低いと再結晶が発生しないか部分的な発生となるので、均一な再結晶組織が得られない。またCuマトリックス中への析出元素の固溶量が少なくなり、析出物を十分生成させることが難しくなる。逆に溶体化温度が高いと短時間で結晶粒が粗大化しやすく、最終製品の曲げ加工性を安定して改善することが難しくなる。つまり、溶体化条件は狭い範囲でコントロールしなければならず、少しでも逸脱すると特性バラツキが大きくなりやすい。加えて、溶体化処理においては通常、急冷操作が要求される。したがって、量産現場で安定した溶体化処理の操業を行うには、高度な条件制御が可能な大型の専用炉を設ける必要がある。   The “solution treatment” required for the production of precipitation-strengthened copper alloys is a process in which the alloy is heated and held above the solid solution limit temperature of the precipitate and then rapidly cooled to form a supersaturated solid solution. Need to manage. That is, when the solution temperature is low, recrystallization does not occur or occurs partially, so that a uniform recrystallization structure cannot be obtained. In addition, the amount of the precipitated element dissolved in the Cu matrix decreases, and it becomes difficult to sufficiently generate the precipitate. On the other hand, when the solution temperature is high, the crystal grains are likely to become coarse in a short time, and it becomes difficult to stably improve the bending workability of the final product. In other words, the solution treatment conditions must be controlled within a narrow range, and if they deviate even a little, the characteristic variation tends to increase. In addition, a rapid cooling operation is usually required in the solution treatment. Therefore, in order to perform a stable solution treatment operation at a mass production site, it is necessary to provide a large dedicated furnace capable of advanced condition control.

また、析出強化型銅合金の製造で必要な「時効処理」は、溶体化処理後の合金を固溶限界温度未満の適正温度に加熱保持して、析出相を生成させる工程である。時効処理温度が低いと析出を十分に進行させるのに要する時間が長くなり、製造性が低下する。時効処理温度が高い場合や、時効処理前に大加工率の冷間加工を行っている場合は加熱時間の短縮化が可能であるが、反面、析出物の粗大化や強度低下を招きやすい。したがって、時効処理にも高度な条件管理が必要であり、製造コストを増大させる一因となっている。   The “aging treatment” necessary for the production of the precipitation strengthened copper alloy is a step in which the alloy after the solution treatment is heated and held at an appropriate temperature below the solid solution limit temperature to generate a precipitation phase. When the aging treatment temperature is low, the time required to sufficiently advance the precipitation becomes long, and the productivity is lowered. When the aging treatment temperature is high, or when cold working at a large working rate is performed before the aging treatment, the heating time can be shortened, but on the other hand, the precipitates are likely to be coarsened and the strength is lowered. Therefore, advanced condition management is also required for the aging treatment, which contributes to an increase in manufacturing cost.

Cu−Ni−Si系合金の場合、従来の溶体化処理、冷間圧延、時効処理による製造工程をとった場合、時効時間の経過に伴って強度が増大し、あるピーク点を過ぎたのち単調に低下する(すなわち析出物粗大化の過時効状態となる)。700MPa程度の高い引張強さを得ようとすると導電率は30〜40%IACSのレベルに落ち、逆に、導電率を50%IACS以上に引き上げようとすると引張強さは650MPa以下に落ちてしまう。つまり、単に「析出強化」を利用するだけでは、高い導電率(例えば45%IACS以上あるいは50%IACS以上)を保ちながら高強度化(例えば引張強さ700MPa以上)を達成するのは実際上不可能である。また、時効処理後に更に冷間圧延と低温焼鈍を施すと、強度は多少改善できるが、曲げ加工性が低下する場合がある。   In the case of a Cu-Ni-Si alloy, when the conventional solution treatment, cold rolling, and aging treatment are used, the strength increases with the passage of aging time and monotonously after a certain peak point. (I.e., an over-aged state of coarse precipitates). If an attempt is made to obtain a high tensile strength of about 700 MPa, the conductivity will drop to a level of 30-40% IACS, and conversely, if an attempt is made to raise the conductivity to 50% IACS or more, the tensile strength will drop to 650 MPa or less. . In other words, it is practically impossible to achieve high strength (for example, tensile strength of 700 MPa or more) while maintaining high conductivity (for example, 45% IACS or more or 50% IACS or more) simply by using “precipitation strengthening”. Is possible. Further, when cold rolling and low-temperature annealing are further performed after the aging treatment, the strength can be slightly improved, but the bending workability may be lowered.

特許文献1にはCu−Ni−Si系合金の製造工程を減少させる手法として、薄い鋳片を冷間圧延と時効処理で製造する方法が示されている。しかし、導電率は50〜60%IACSが得られるものの、その場合の硬度は200〜140HV(推定引張強さ650〜450MPa)程度に止まっている。   Patent Document 1 discloses a method of manufacturing a thin slab by cold rolling and aging treatment as a technique for reducing the manufacturing process of a Cu—Ni—Si alloy. However, although conductivity of 50-60% IACS is obtained, the hardness in that case is limited to about 200-140 HV (estimated tensile strength 650-450 MPa).

特許文献2にはCu−Ni−Si系合金の導電性と強度を同時に改善する手法として、多回時効処理法が開示されている。特許文献3には冷間圧延と時効処理を繰り返す方法が開示されている。しかし、加工性をも同時に改善することについては配慮されていない。また工程増によりコスト的にも有利とは言えない。   Patent Document 2 discloses a multiple aging treatment method as a method for simultaneously improving the conductivity and strength of a Cu-Ni-Si alloy. Patent Document 3 discloses a method of repeating cold rolling and aging treatment. However, no consideration is given to improving the workability at the same time. Moreover, it cannot be said that it is advantageous in terms of cost due to the increased number of processes.

一方、結晶粒微細化による「細粒強化(粒界強化)」を利用すれば、導電率を損なうことなく強度向上でき、かつ加工性の向上にもつながることが期待される。しかし、通常の加工熱処理法(冷間圧延+再結晶焼鈍)による結晶粒微細化手法では、銅および銅合金の場合、一般に数μm程度の結晶粒径に微細化するのが限界である。これでは強度と加工性の改善が不十分となる。   On the other hand, if “fine grain strengthening (grain boundary strengthening)” by refining crystal grains is used, it is expected that the strength can be improved without impairing the electrical conductivity and the workability can be improved. However, in the grain refinement method by the usual thermomechanical processing method (cold rolling + recrystallization annealing), in the case of copper and copper alloy, it is generally limited to refinement to a crystal grain size of about several μm. This results in insufficient strength and processability.

そこで最近では、冷間での強加工により結晶粒を微細化する研究が進められている。強加工によれば銅合金の結晶粒径を1μm以下に微細化することが可能である。そのメカニズムは以下のように説明される。すなわち、強変形により大量転位を導入し、転位の相互もつれによって転位セルを形成させる。導入された転位の密度が高いほど、転位セルのサイズは小さくなる。動的回復によって転位セルが亜結晶粒(subgrain)へと変化しながら、亜結晶粒間の方位差が増大する。方位差が約15°以上になったら、亜結晶粒はその場(in site)で結晶粒になる。   Therefore, recently, research for refining crystal grains by intense cold processing is underway. According to strong processing, the crystal grain size of the copper alloy can be reduced to 1 μm or less. The mechanism is explained as follows. That is, a large amount of dislocation is introduced by strong deformation, and a dislocation cell is formed by mutual entanglement of the dislocation. The higher the density of dislocations introduced, the smaller the size of the dislocation cells. While dislocation cells change to subgrains due to dynamic recovery, the orientation difference between the subgrains increases. When the misorientation is about 15 ° or more, the sub-crystal grains become in-situ crystal grains.

この場合、再結晶粒は亜結晶粒の方位差の連続増加によって生成するので、このような再結晶の現象は「連続再結晶」と呼ばれる。この再結晶粒は亜結晶粒と同等なサイズを有し、1μm以下の微細化が可能となる。
これに対し、冷間圧延後の再結晶焼鈍などで生じる通常の再結晶のメカニズムでは、亜結晶粒がそれ自体を核として成長し、成長に伴って方位差を有する再結晶粒になるので、この再結晶の現象は「不連続再結晶」と呼ばれる。この場合、再結晶粒は亜結晶粒の少なくとも数倍以上のサイズを有し、実質的には2〜3μm程度まで細粒化するのが限界とされる。なお、本明細書では単に「再結晶」というときは通常の「不連続再結晶」のことを意味する。
In this case, since the recrystallized grains are generated by continuously increasing the orientation difference of the sub-crystal grains, such a recrystallization phenomenon is called “continuous recrystallization”. The recrystallized grains have the same size as the sub-crystal grains and can be refined to 1 μm or less.
On the other hand, in the normal recrystallization mechanism that occurs in recrystallization annealing after cold rolling, etc., the sub-crystal grains grow as themselves as nuclei, and become recrystallized grains that have an orientation difference with the growth. This phenomenon of recrystallization is called “discontinuous recrystallization”. In this case, the recrystallized grains have a size at least several times larger than the sub-crystal grains, and the limit is that the recrystallized grains can be substantially reduced to about 2 to 3 μm. In the present specification, simply “recrystallization” means ordinary “discontinuous recrystallization”.

特許文献4には95%以上の強加工により銅合金の結晶粒径を1μm以下に微細化する手法が開示されている。この方法に従うと、Cu−Ni−Si系合金の場合、導電率50%IACS弱のもので引張強さ800MPa以上の強度が得られている。しかし、強加工を行うための工程に加え、溶体化処理と時効処理の工程も必要としており、製造コストの増大は避けられない。また発明者らの検討によれば、このような強加工によって得られた組織は、ところどころ大きな結晶粒の混じった「混粒組織」となりやすく、異方性の少ない曲げ加工性を得ることが難しい。   Patent Document 4 discloses a technique for refining the crystal grain size of a copper alloy to 1 μm or less by strong processing of 95% or more. According to this method, in the case of a Cu—Ni—Si based alloy, a tensile strength of 800 MPa or more is obtained with a conductivity of less than 50% IACS. However, in addition to a process for performing strong processing, a solution treatment process and an aging process are also required, and an increase in manufacturing cost is inevitable. Further, according to the study by the inventors, the structure obtained by such strong working tends to be a “mixed grain structure” in which large crystal grains are mixed, and it is difficult to obtain bending workability with little anisotropy. .

特開平9−176808号公報JP-A-9-176808 特開平10−152737号公報JP-A-10-152737 特開平7−41887号公報JP 7-41887 A 特開2002−356728号公報JP 2002-356728 A

以上のように、従来知られている固溶強化、析出強化、加工硬化、細粒強化(粒界強化)のいずれの手法を用いても、銅合金材料の導電性、強度、加工性を同時にバランス良く改善することは困難である。また、析出強化型銅合金を使用した場合は導電性をあまり低下させずに高強度化を図ることは可能であるが、工程増や製造条件の厳密な管理によるコスト増が避けられないのが現状である。   As described above, the conductivity, strength, and workability of the copper alloy material can be improved at the same time using any of the conventionally known methods such as solid solution strengthening, precipitation strengthening, work hardening, and fine grain strengthening (grain boundary strengthening). It is difficult to improve in a balanced manner. In addition, when precipitation-strengthened copper alloys are used, it is possible to increase the strength without significantly reducing the electrical conductivity, but it is inevitable that the cost will increase due to increased processes and strict management of manufacturing conditions. Currently.

そこで本発明は、コネクター、リードフレーム、リレー、スイッチなどの通電部品に適した銅合金材料の製造において、導電性、強度、加工性の改善と、工程の簡素化を一挙に達成することを目的とする。   Therefore, the present invention aims to achieve improvements in conductivity, strength, workability, and simplification of the process at the same time in the manufacture of copper alloy materials suitable for current-carrying parts such as connectors, lead frames, relays, and switches. And

発明者らは種々検討の結果、「析出強化型銅合金」と「温間加工」を組み合わせたとき、析出強化と細粒強化の相乗作用によって導電性、強度、加工性を同時にバランス良く改善することが可能になることを見出した。このとき、溶体化処理や冷間加工の工程を省略でき、工程簡略化にも成功した。本発明はこのような知見に基づいて完成したものである。   As a result of various studies, the inventors have improved the conductivity, strength, and workability in a balanced manner by the synergistic action of precipitation strengthening and fine grain strengthening when combining "precipitation strengthened copper alloy" and "warm processing". I found out that it would be possible. At this time, the solution treatment process and the cold working process can be omitted, and the process can be simplified. The present invention has been completed based on such findings.

すなわち、上記目的は、析出強化型銅合金材料の製造において、熱間加工後に、再結晶温度未満の温度に加熱して温間加工を行い平均結晶粒径1μm以下の組織とすることを特徴とする銅合金材料の製造法によって達成される。温間加工前には溶体化処理を施す必要はない。温間加工は85%以上の加工率とすることができ、特に、時効析出温度域を含む温度域で温間加工を行うことが好ましい。また、温間加工後に再結晶温度未満の温度で加熱処理(低温焼鈍)を行うこともできる。
ここで、析出強化型銅合金とは、時効析出物を生成させることができ、それにより強度向上作用が得られるタイプの銅合金である。
That is, the above object is characterized in that in the production of a precipitation-strengthened copper alloy material, after hot working, it is heated to a temperature lower than the recrystallization temperature and warm worked to obtain a structure having an average crystal grain size of 1 μm or less. This is achieved by a method for producing a copper alloy material. It is not necessary to perform solution treatment before warm working. Warm working can be performed at a working rate of 85% or more, and it is particularly preferable to perform warm working in a temperature range including an aging precipitation temperature range. In addition, heat treatment (low temperature annealing) can be performed at a temperature lower than the recrystallization temperature after warm working.
Here, the precipitation-strengthened copper alloy is a type of copper alloy that can generate an aging precipitate and thereby obtain a strength improving action.

平均結晶粒径1μm以下の超微細結晶粒組織は、例えば走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)または電子後方散乱回折像(EBSP)で確認できる。
温間加工とは、再結晶温度未満の温度域に加熱して行う加工であり、冷間加工より高温、熱間加工より低温である点でそれらの加工と区別される。
The ultrafine crystal grain structure having an average crystal grain size of 1 μm or less can be confirmed by, for example, a scanning electron microscope (SEM), a transmission electron microscope (TEM), or an electron backscatter diffraction image (EBSP).
Warm processing is processing performed by heating to a temperature range lower than the recrystallization temperature, and is distinguished from these processing in that the temperature is higher than cold processing and lower than hot processing.

本発明では以下のような組成をもつCu−Ni−Si系合金を対象とする。
量%で、Ni:1.03.5%好ましくは2.48〜3.20%、Si:0.1〜1.2%、Mg:0〜0.3%、Sn:0〜0.25%、Zn:0〜0.8%、Co:0〜0.16%、Cr:0〜0.10%、P:0〜0.02%、B:0〜0.005%、Al:0〜0.12%、Fe:0〜0.16%、Zr:0〜0.03%、Ti:0〜0.08%、Mn:0〜0.14%、残部Cuおよび不可避的不純物からなる銅合金。
ここで、元素含有量の下限の「0%」は、当該元素の含有量(または当該元素群に属する元素の合計含有量)が一般的な銅合金の分析手法で測定限界以下となる場合である。
The present invention is directed to a Cu—Ni—Si alloy having the following composition .
In mass%, Ni: 1.0 ~ 3.5% preferably 2.48~3.20%, Si: 0.1~1.2%, Mg: 0~0.3%, Sn: 0~ 0.25% , Zn : 0 to 0.8% , Co : 0 to 0.16% , Cr : 0 to 0.10% , P : 0 to 0.02% , B : 0 to 0.005% , Al : 0 to 0.12% , Fe : 0 to 0.16% , Zr : 0 to 0.03% , Ti : 0 to 0.08% , Mn : 0 to 0.14% , balance Cu and inevitable Copper alloy consisting of impurities.
Here, “0%” of the lower limit of the element content is when the content of the element (or the total content of the elements belonging to the element group) falls below the measurement limit in a general copper alloy analysis technique. is there.

u−Ni−Si系合金においては、温間加工を600℃以下の温度で行う。その場合、少なくとも300〜600℃の時効析出温度域での加工を含めることができ、また温間加工温度を250〜600℃の範囲にコントロールすることが好ましい。温間加工後には550℃以下好ましくは250〜550℃の温度で加熱処理(低温焼鈍)を行うことができる。 In the Cu-Ni-Si-based alloy, warm working is performed at a temperature of 600 ° C or lower. In that case, it is possible to include processing in an aging precipitation temperature range of at least 300 to 600 ° C, and it is preferable to control the warm processing temperature in the range of 250 to 600 ° C. After the warm working, heat treatment (low temperature annealing) can be performed at a temperature of 550 ° C. or less, preferably 250 to 550 ° C.

本発明によれば、従来の析出強化型銅合金のコストを上昇させる要因になっている溶体化処理や時効処理を行うことなく、引張強さ850MPa以上の高強度銅合金材料、または導電率45%IACS以上あるいは更に50%IACS以上、引張強さ700MPa以上、伸び5%以上の特性バランスに優れた銅合金材料が提供可能になった。特に後者では曲げ加工性の異方性も顕著に改善された。しかも、本発明の製造法では温間加工を利用するので、冷間強加工を必要とする従来法と比べ設備負担が軽減され、実施化が比較的容易である。
したがって本発明は、コネクター、リードフレーム、リレー、スイッチなどの通電部品材料の提供を通じて、今後ますます進展が予想される電気・電子部品の小型化、薄肉化のニーズに対応し得るものである。
According to the present invention, a high-strength copper alloy material having a tensile strength of 850 MPa or more, or an electrical conductivity of 45, without performing solution treatment or aging treatment, which is a factor that increases the cost of conventional precipitation strengthened copper alloys. It has become possible to provide a copper alloy material having an excellent property balance of% IACS or more, or even 50% IACS or more, a tensile strength of 700 MPa or more, and an elongation of 5% or more. In particular, the anisotropy of bending workability was remarkably improved in the latter case. In addition, since the manufacturing method of the present invention uses warm processing, the equipment burden is reduced compared to the conventional method requiring strong cold processing, and implementation is relatively easy.
Therefore, the present invention can meet the needs for miniaturization and thinning of electric / electronic parts, which are expected to be further developed in the future, by providing materials for energizing parts such as connectors, lead frames, relays and switches.

上記課題を解決するための素材として「析出強化型銅合金」を用いることができる。特に、再結晶温度未満の温度域(すなわち温間加工温度域)において時効析出が生じる合金が好適な対象となる。例えば、Cu−Cr(−Zr)系、Cu−Fe−P系、Cu−Mg−P系、Cu−Ni−Si系(本発明対象)などが採用できる。これらの合金の溶製は一般的な方法で行うことができる。 “Precipitation strengthened copper alloy” can be used as a material for solving the above problems . In particular, an alloy in which aging precipitation occurs in a temperature range below the recrystallization temperature (that is, a warm processing temperature range) is a suitable target. For example, a Cu-Cr (-Zr) system, a Cu-Fe-P system, a Cu-Mg-P system, a Cu-Ni-Si system (the subject of the present invention), etc. can be employed. Melting of these alloys can be performed by a general method.

まず、鋳片を熱間加工に供し、鋳造過程で生じる晶出相を消失させると同時に、再結晶によって鋳造組織を破壊し再結晶粒組織の均一化を図る。この熱間加工は析出物の固溶温度域で行うことが望ましい。そして熱間加工終了後は直ちに水冷等により急冷することが望ましい。このような処理により過飽和固溶体を作ることができ、溶体化処理の役割も同時に兼ねることができる。   First, the slab is subjected to hot working so that the crystallization phase generated in the casting process disappears, and at the same time, the cast structure is destroyed by recrystallization to make the recrystallized grain structure uniform. This hot working is desirably performed in the solid solution temperature range of the precipitate. And it is desirable to quench immediately by the water cooling etc. immediately after completion | finish of hot processing. By such treatment, a supersaturated solid solution can be produced, and the role of solution treatment can be simultaneously performed.

熱間加工後の結晶粒径は35μm以下、好ましくは15μm以下に調整することが望ましい。熱間加工後の結晶粒径が大きくなると後工程の温間加工の条件管理幅が狭くなる。結晶粒径は圧下率や加工温度によりコントロールできる。熱間での仕上加工温度が高い場合や、加工率が低い場合は結晶粒が大きくなりやすいので注意を要する。熱間加工率は断面減少率で概ね65%以上を確保すればよい。後工程の温間加工で所望の加工率が確保できるように熱間加工率を調整する必要がある。熱間加工後は必要に応じて面削や酸洗を行うことができる。   The crystal grain size after hot working is desirably adjusted to 35 μm or less, preferably 15 μm or less. When the crystal grain size after hot working becomes large, the condition control range of warm working in the subsequent process becomes narrow. The crystal grain size can be controlled by the rolling reduction and processing temperature. Care must be taken when the hot finishing temperature is high or the processing rate is low because the crystal grains are likely to be large. The hot working rate may be approximately 65% or more in terms of the cross-sectional reduction rate. It is necessary to adjust the hot working rate so that a desired working rate can be ensured by warm working in the subsequent process. After hot working, chamfering or pickling can be performed as necessary.

続いて、温間加工を行う。温間加工は再結晶温度未満の温度範囲に加熱して行う加工である。温間加工の一部または全部を時効析出温度域で行うことが望ましい。時効析出温度域で温間加工を行うことにより、加工中に連続導入される転位と空孔を析出サイトとして、微細かつ均一な析出物が形成され、かつ析出物の成長が抑制される。このような析出形態は導電率と強度の同時向上に有利に働く。この温間加工では、転位の導入と動的再結晶が同時に起こることにより動的「連続再結晶」が生じ、十分に回復された鮮明な粒界を有する、熱的に安定な、平均結晶粒径1μm以下の超微細結晶粒組織が非常に均一に形成される。これにより顕著な「細粒強化」が実現れる。また組織の均一化は異方性軽減にも有利に働く。このような組織状態は冷間強加工では得られないものである。   Subsequently, warm processing is performed. Warm processing is processing performed by heating to a temperature range below the recrystallization temperature. It is desirable to perform part or all of the warm working in the aging precipitation temperature range. By performing warm working in the aging precipitation temperature range, fine and uniform precipitates are formed using dislocations and vacancies continuously introduced during the processing as precipitation sites, and the growth of the precipitates is suppressed. Such a precipitation form is advantageous for simultaneous improvement of conductivity and strength. In this warm working, the introduction of dislocations and dynamic recrystallization occur simultaneously, resulting in dynamic “continuous recrystallization” and a thermally stable, average grain with a well-recovered sharp grain boundary. An ultrafine crystal grain structure having a diameter of 1 μm or less is formed very uniformly. As a result, remarkable “fine grain reinforcement” is realized. Further, the homogenization of the structure also works to reduce anisotropy. Such a structural state cannot be obtained by cold strong working.

温間加工率は断面減少率で85%以上とすることが好ましい。それより加工率が低いと超微細結晶粒の形成が不十分となりやすく、良好な加工性(例えば曲げ加工性)が得られにくい。また、温間加工中に温度が低下してくると動的「連続再結晶」が起こりにくくなり、冷間加工的要素が強くなる。温間加工中の温度低下は概ね80℃程度まで許容できるが、できれば200℃以上の温度域で温間加工の全部を終了することが望ましい。温間加工中の温度低下を防止するためには、加工途中に材料を炉に入れて中間加熱する方法が採用できる。なお、前述の温間加工による効果を十分に得るためには、時効析出温度域で50%以上の加工率(断面減少率)を確保することが望ましい。温間加工の全加工を時効析出温度域で行うことが一層好ましい。   The warm working rate is preferably 85% or more in terms of the cross-sectional reduction rate. If the processing rate is lower than that, the formation of ultrafine crystal grains tends to be insufficient, and it is difficult to obtain good workability (for example, bending workability). In addition, when the temperature is lowered during warm working, dynamic “continuous recrystallization” is less likely to occur, and the cold working factor becomes stronger. The temperature drop during the warm working can be tolerated to about 80 ° C., but it is desirable to finish all the warm working in a temperature range of 200 ° C. or higher if possible. In order to prevent a temperature drop during the warm working, a method of putting the material in a furnace during the working and performing intermediate heating can be employed. In order to sufficiently obtain the effect of the above-described warm working, it is desirable to ensure a working rate (cross-sectional reduction rate) of 50% or more in the aging precipitation temperature range. It is more preferable to perform all the warm working in the aging precipitation temperature range.

次いで、必要に応じて再結晶温度未満の温度域で加熱処理(低温焼鈍)を実施する。この加熱処理によって超微細粒界の形成に寄与しない残留転位を除去することができ、導電性と加工性を更に向上させることができる。加熱温度を時効析出温度域にすると、マトリックス中にまだ過飽和に固溶している元素の析出が進行し、導電性と加工性の向上に一層有利となる。加熱温度が低すぎるとこれらの効果が得られにくいので、概ね200℃以上とすることが望ましく、250℃以上再結晶温度未満とすることがより好ましい。加熱時間は少なくとも30秒以上は確保すべきであるが、あまり長時間の加熱は不経済であり、通常8時間以内で十分である。   Next, heat treatment (low temperature annealing) is performed in a temperature range below the recrystallization temperature as necessary. Residual dislocations that do not contribute to the formation of ultrafine grain boundaries can be removed by this heat treatment, and conductivity and workability can be further improved. When the heating temperature is set to the aging precipitation temperature range, the precipitation of elements that are still supersaturated in the matrix proceeds, which is further advantageous in improving the conductivity and workability. Since these effects are difficult to obtain if the heating temperature is too low, it is preferably about 200 ° C. or higher, more preferably 250 ° C. or higher and lower than the recrystallization temperature. Although the heating time should be secured for at least 30 seconds or more, heating for too long is uneconomical and usually within 8 hours is sufficient.

以下、本発明対象の銅合金であるCu−Ni−Si系合金を用いた場合の製造条件について説明する。
〔化学組成〕
NiとSiを複合添加すると、NiとSiの化合物を主体とする析出物(以下「Ni−Si系析出物」という)の析出に伴ってNiとSiの固溶量が減少し、高導電率を保ちながら強度を向上する上で有利となる。特に、Ni−Si系析出物の析出温度域で温間加工を行うと、温間加工中に析出する析出物は温間加工によって導入される転位の密度を増大させ、超微細結晶粒の形成を促進させる一方で、析出過程における加工は析出物を更に十分生成させながら粗大化を防止する効果を発揮する。すなわちNiとSiの複合添加は、温間加工との組み合わせによって、時効析出による導電率および強度の一層の向上と、結晶粒の超微細化による強度および加工性(例えば曲げ加工性)の向上をもたらす。
Hereinafter, manufacturing conditions in the case of using a Cu—Ni—Si alloy which is a copper alloy of the present invention will be described.
[Chemical composition]
When Ni and Si are added in combination, the solid solution amount of Ni and Si decreases with the precipitation of Ni and Si compounds (hereinafter referred to as "Ni-Si system precipitates"), resulting in high conductivity. This is advantageous for improving the strength while maintaining the strength. In particular, when warm working is performed in the precipitation temperature range of Ni-Si based precipitates, the precipitates precipitated during warm working increase the density of dislocations introduced by warm working and form ultrafine crystal grains. On the other hand, the processing in the precipitation process exerts the effect of preventing coarsening while further generating precipitates. In other words, the combined addition of Ni and Si improves the electrical conductivity and strength by aging precipitation in combination with warm working, and improves the strength and workability (for example, bending workability) by ultra-fine crystal grains. Bring.

Ni含有量が0.4質量%未満、またはSi含有量が0.1質量%未満では、上記効果を有効に引き出すことが難しい。他方、Ni含有量が4.8質量%を超えるか、またはSi含有量が1.2質量%を超えると、導電率が低下するとともに(析出物が粗大化しやすいので)強度も低下しやすく、また温間加工性が低下する。このためNi含有量は0.4〜4.8質量%、Si含有量は0.1〜1.2質量%とすることが望ましい。本発明ではNi含有量1.0〜3.5質量%とする。より好ましいSi含有量は0.2〜0.8質量%である。 When the Ni content is less than 0.4% by mass or the Si content is less than 0.1% by mass, it is difficult to effectively bring out the above effects. On the other hand, if the Ni content exceeds 4.8% by mass or the Si content exceeds 1.2% by mass, the electrical conductivity decreases (because the precipitate tends to coarsen) and the strength tends to decrease. Moreover, warm workability falls. Therefore, it is desirable that the Ni content is 0.4 to 4.8% by mass and the Si content is 0.1 to 1.2% by mass. In the present invention, the Ni content is 1.0 to 3.5% by mass . A more preferable Si content is 0.2 to 0.8% by mass.

また、NiとSiの質量比(Ni/Si)は3.5〜6.0の範囲内とすることが望ましい。この範囲を外れると、Ni−Si系析出物の形成に利用されなかったNiあるいはSiの固溶量が多くなり、導電率が低下することがある。より好ましいNi/Siの範囲は4.0〜5.5である。   The mass ratio of Ni and Si (Ni / Si) is preferably in the range of 3.5 to 6.0. Outside this range, the solid solution amount of Ni or Si that was not used for the formation of Ni—Si-based precipitates increases, and the conductivity may decrease. A more preferable range of Ni / Si is 4.0 to 5.5.

Mgは、Ni−Si系析出物の粗大化を防止する作用を有する。また、耐応力緩和性を向上させる作用も有する。これらの作用を十分に発揮させるには、0.01質量%以上のMg含有量を確保することが望ましい。ただし、Mg含有量が0.3質量%を超えると、鋳造性、熱間加工性が著しく低下し、また、コスト的にも不利である。このため、Mgを添加する場合は0.3質量%以下の範囲で行うべきである。より好ましいMg含有量の範囲は0.05〜0.2質量%である。   Mg has the effect of preventing the coarsening of Ni—Si system precipitates. It also has an effect of improving stress relaxation resistance. In order to fully exhibit these actions, it is desirable to ensure an Mg content of 0.01% by mass or more. However, if the Mg content exceeds 0.3% by mass, the castability and hot workability are remarkably lowered, and the cost is disadvantageous. For this reason, when adding Mg, it should carry out in the range of 0.3 mass% or less. The range of more preferable Mg content is 0.05-0.2 mass%.

Ni、Si以外の残部、あるいはNi、Si、Mg以外の残部はCuと不可避的不純物で構成すればよい。ただし、必要に応じてその他の合金元素を添加してもよい。例えば、Sn、Zn、Co、Cr、P、B、Al、Fe、Zr、Ti、Mnは合金強度をさらに高め、かつ応力緩和を小さくする作用を有する。また温間加工性を向上させ超微細粒の形成を一層促進させる。Co、Cr、B、Zr、Ti、Mnは不可避的不純物として存在するS、Pbなどと高融点化合物を形成しやすく、熱間加工性の改善に寄与しうる。SnとZnは冷間加工性を向上する作用を有する。   The remainder other than Ni and Si, or the remainder other than Ni, Si and Mg may be composed of Cu and inevitable impurities. However, other alloy elements may be added as necessary. For example, Sn, Zn, Co, Cr, P, B, Al, Fe, Zr, Ti, and Mn have the effect of further increasing the alloy strength and reducing the stress relaxation. It also improves warm workability and further promotes the formation of ultrafine grains. Co, Cr, B, Zr, Ti, and Mn can easily form a high melting point compound with S, Pb, and the like that are unavoidable impurities, and can contribute to improvement of hot workability. Sn and Zn have the effect of improving cold workability.

これらの元素の1種または2種以上を添加する場合は、その作用を十分に得るために総量が0.01質量%以上となるように添加することが望ましい。ただし、総量が3質量%を超えると、熱間、温間または冷間加工性が低下する場合がある。また、経済的にも不利になる。したがって、その総量は3質量%以下の範囲とすることが望ましく、2質量%以下の範囲がより好ましく、1質量%以下の範囲がより一層好ましく、0.5質量%以下の範囲がさらに一層好ましい。   When one or more of these elements are added, it is desirable to add so that the total amount becomes 0.01% by mass or more in order to sufficiently obtain the action. However, when the total amount exceeds 3% by mass, hot work, warm work or cold workability may be deteriorated. It is also economically disadvantageous. Accordingly, the total amount is preferably in the range of 3% by mass or less, more preferably in the range of 2% by mass or less, still more preferably in the range of 1% by mass or less, and still more preferably in the range of 0.5% by mass or less. .

本発明では以下の合金組成を採用する
量%で、Ni:1.03.5%好ましくは2.48〜3.20%、Si:0.1〜1.2%、Mg:0〜0.3%、Sn:0〜0.25%、Zn:0〜0.8%、Co:0〜0.16%、Cr:0〜0.10%、P:0〜0.02%、B:0〜0.005%、Al:0〜0.12%、Fe:0〜0.16%、Zr:0〜0.03%、Ti:0〜0.08%、Mn:0〜0.14%、残部Cuおよび不可避的不純物。
In the present invention, the following alloy composition is adopted .
In mass%, Ni: 1.0 ~ 3.5% preferably 2.48~3.20%, Si: 0.1~1.2%, Mg: 0~0.3%, Sn: 0~ 0.25% , Zn : 0 to 0.8% , Co : 0 to 0.16% , Cr : 0 to 0.10% , P : 0 to 0.02% , B : 0 to 0.005% , Al : 0 to 0.12% , Fe : 0 to 0.16% , Zr : 0 to 0.03% , Ti : 0 to 0.08% , Mn : 0 to 0.14% , balance Cu and inevitable impurities.

〔熱間加工〕
上記Cu−Ni−Si系合金を熱間圧延する場合、650℃未満の温度域では粗大なNiとSiの化合物の生成により熱間割れが生じやすくなるので950〜650℃の範囲で熱間圧延を行い、最終パス終了後に水冷することが好ましい。熱間圧延率は概ね65〜95%とすればよい。
[Hot processing]
When hot rolling the above Cu-Ni-Si alloy, hot cracking tends to occur due to the formation of coarse Ni and Si compounds in the temperature range below 650 ° C, so hot rolling in the range of 950-650 ° C. It is preferable to perform water cooling after the final pass. The hot rolling rate may be approximately 65 to 95%.

〔温間圧延〕
上記Cu−Ni−Si系合金を温間圧延する場合、加熱抽出温度を600℃以下とすることが好ましい。600℃を超える温度域では通常の不連続再結晶の発生により結晶粒が粗大化しやすく、また、粗大なNiとSiの化合物の生成による割れが生じやすい。温間圧延中の温度低下は80℃程度まで許容できるが、300〜600℃の時効析出温度域で50%以上の圧下率を稼ぐことが望ましい。できれば全圧延パスを250℃以上で行うことが望ましい。全圧延パスを250〜600℃の間で行うことが更に好ましく、250〜550℃の間で行うことが一層好ましい。温間圧延中の温度低下を防止するには、途中の段階で板を炉に入れて再加熱すればよい。巻取加熱炉を備えた圧延機が好適に使用できる。温間圧延率は80%以上を確保することが好ましい。85%以上が一層好ましい。
(Warm rolling)
When warm-rolling the Cu—Ni—Si alloy, the heating extraction temperature is preferably 600 ° C. or less. In the temperature range exceeding 600 ° C., the crystal grains are likely to be coarsened due to the occurrence of normal discontinuous recrystallization, and cracking due to the formation of coarse Ni and Si compounds is likely to occur. Although the temperature drop during warm rolling can be tolerated to about 80 ° C., it is desirable to obtain a reduction rate of 50% or more in the aging precipitation temperature range of 300 to 600 ° C. If possible, it is desirable to perform all rolling passes at 250 ° C. or higher. More preferably, the entire rolling pass is performed between 250 and 600 ° C, more preferably between 250 and 550 ° C. In order to prevent a temperature drop during warm rolling, the plate may be placed in a furnace in the middle and reheated. A rolling mill equipped with a winding heating furnace can be suitably used. The warm rolling rate is preferably 80% or more. 85% or more is more preferable.

〔加熱処理(低温焼鈍)〕
温間圧延後のCu−Ni−Si系合金は必要に応じて550℃以下の温度範囲で加熱処理することができる。550℃を超えると短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じやすくなる。ただし、加熱温度が低すぎると結晶粒界の制御に要する時間が長くなって不経済であるため、250℃以上とすることが望ましい。350℃以上とすることが一層好ましい。加熱時間は30秒以上確保することが望ましく、通常3時間以内の範囲で導電率と加工性を十分改善することができる。
[Heat treatment (low temperature annealing)]
The Cu—Ni—Si based alloy after the warm rolling can be heat-treated at a temperature range of 550 ° C. or less as necessary. If it exceeds 550 ° C., it softens in a short time, and variations in characteristics are likely to occur in both batch and continuous systems. However, if the heating temperature is too low, it takes a long time to control the grain boundaries, which is uneconomical. It is still more preferable to set it as 350 degreeC or more. It is desirable to secure a heating time of 30 seconds or longer. Usually, the conductivity and workability can be sufficiently improved within a range of 3 hours or less.

表1に示す銅合金を溶製し、縦型の小型連続鋳造機を用いて鋳造した。鋳片の断面寸法は35×70mmである。   The copper alloys shown in Table 1 were melted and cast using a vertical small continuous casting machine. The cross-sectional dimension of the slab is 35 × 70 mm.

Figure 0004779100
Figure 0004779100

各鋳片を950℃に加熱し、950〜700℃の温度範囲で厚さ3〜12mmに熱間圧延し、その後急冷(水冷)した。熱間圧延後の結晶粒径はいずれも35μm以下であった。
次いで、一部の比較例を除き、表2に示す条件で厚さ0.25mmまで仕上圧延を行った。表2中、仕上圧延の温度の欄に「常温」と記載したものは冷間圧延を行ったものである。それ以外の温度を記載したものは温間圧延を行ったものであり、表記の温度は加熱温度である。温間圧延は、全圧延パスを加熱温度〜250℃の範囲で実施した。圧延温度が250℃を下回らないように、必要に応じて途中のパス間で中間加熱を行った。中間加熱温度は初期加熱温度と同じである。
その後、一部は更に表2に示す温度および時間で低温焼鈍した。
また比較のため、一部の材料では熱間圧延後に溶体化処理および時効処理を行い、温間圧延を実施しなかった。
Each slab was heated to 950 ° C., hot-rolled to a thickness of 3 to 12 mm in a temperature range of 950 to 700 ° C., and then rapidly cooled (water cooled). The crystal grain size after hot rolling was 35 μm or less.
Next, except for some comparative examples, finish rolling was performed to a thickness of 0.25 mm under the conditions shown in Table 2. In Table 2, what is described as “normal temperature” in the column of finish rolling temperature is cold-rolled. What indicated temperature other than that is what performed warm rolling, and the temperature of description is heating temperature. In the warm rolling, the entire rolling pass was performed in the range of the heating temperature to 250 ° C. Intermediate heating was performed between intermediate passes as necessary so that the rolling temperature did not fall below 250 ° C. The intermediate heating temperature is the same as the initial heating temperature.
After that, some were further annealed at the temperatures and times shown in Table 2.
For comparison, some materials were subjected to solution treatment and aging treatment after hot rolling, and warm rolling was not performed.

このようにして得られた最終工程終了材(時効処理材、冷間圧延材、温間圧延材または低温焼鈍材)から、金属組織観察用試料、導電率測定用試料、引張試験片、硬度測定用試料、曲げ加工性試験片を採取した。   From the final process finished material (aging-treated material, cold-rolled material, warm-rolled material or low-temperature annealed material) obtained in this way, a sample for metallographic structure observation, a sample for conductivity measurement, a tensile test piece, hardness measurement Samples for bending and test pieces for bending workability were collected.

金属組織観察は、圧延板の板厚方向に垂直な断面について、走査型電子顕微鏡(倍率500〜10000倍)を用いて行った。平均結晶粒径は観察視野でJIS H0501の切断法によって求めた。
導電率の測定は、JIS H0505に従って行った。
引張試験は、圧延方向に対し平行方向の試験片を用いてJIS Z2241に従って行い、引張強さおよび破断伸びを求めた。
硬さの測定は、圧延板表面について、JIS Z2244に従って行い、ビッカース硬さを求めた。
The metal structure observation was performed using a scanning electron microscope (magnification 500 to 10000 times) for a cross section perpendicular to the thickness direction of the rolled sheet. The average crystal grain size was determined by the cutting method of JIS H0501 in the observation field.
The conductivity was measured according to JIS H0505.
The tensile test was performed according to JIS Z2241 using a test piece parallel to the rolling direction, and the tensile strength and elongation at break were determined.
The hardness was measured according to JIS Z2244 for the surface of the rolled plate, and the Vickers hardness was determined.

曲げ加工性は、曲げ軸が圧延方向に対し直角方向(G.W.)および平行方向(B.W.)の90°W曲げ試験(JIS H3110に準拠、板厚t=0.25mm、幅W=10mm)を実施し、曲げ部表面および断面を光学顕微鏡にて100倍の倍率で観察することにより、割れが発生しない最小のR/tを求めて評価した。ここでRは内曲げ半径、tは板厚である。この最小のR/tが小さい程、曲げ加工性は良好である。
各工程の製造条件を表2に、試験結果を表3に示す。
Bending workability is 90 ° W bending test (based on JIS H3110, plate thickness t = 0.25 mm, width when the bending axis is perpendicular to the rolling direction (GW) and parallel (BW). W = 10 mm) was performed, and the surface and cross section of the bent portion were observed with an optical microscope at a magnification of 100 times, and the minimum R / t at which no crack was generated was determined and evaluated. Here, R is the inner bending radius, and t is the plate thickness. The smaller the minimum R / t, the better the bending workability.
Table 2 shows the manufacturing conditions for each step, and Table 3 shows the test results.

Figure 0004779100
Figure 0004779100

Figure 0004779100
Figure 0004779100

表1〜3から判るように、本発明例のうちNo.1〜5の温間圧延材は引張強さが850MPa以上と高く、ICリードフレーム材のように高強度を重視する通電部品に最適である。本発明例No.6〜10の低温焼鈍材は導電率45%IACS以上、引張強さ700MPa以上、伸び5%以上を十分にクリアした。曲げ加工性も最小R/t1.0以下をクリアし、曲げ加工性の異方性も改善された。すなわち、導電性、強度、加工性を高レベルでバランス良く改善した材料が得られた。   As can be seen from Tables 1 to 3, the warm rolled materials of Nos. 1 to 5 in the examples of the present invention have a high tensile strength of 850 MPa or more, and are optimal for current-carrying parts that emphasize high strength like IC lead frame materials. It is. The low temperature annealing materials of Invention Examples No. 6 to 10 sufficiently cleared the electrical conductivity of 45% IACS or higher, the tensile strength of 700 MPa or higher, and the elongation of 5% or higher. The bending workability also cleared the minimum R / t 1.0 or less, and the anisotropy of bending workability was also improved. That is, a material having improved conductivity and strength and workability at a high level in a well-balanced manner was obtained.

これに対し、比較例のNo.21、22はCu−Ni−Si系合金においてNi含有量が低すぎたため析出物の量が少なく、温間圧延で超微細化を図ることができなかった。その結果、引張強さ、曲げ加工性に劣った。No.23は逆にNiおよびSi含有量が高すぎたため析出物の粗大化が起こり、それに伴って一旦生成した超微細粒が成長して通常の不連続再結晶が生じた。その結果、強度および曲げ加工性が悪かった。No.24はNiおよびSi含有量がさらに高すぎたため温間圧延途中に激しい割れが発生し、最終特性の評価ができなかった。   On the other hand, Nos. 21 and 22 of the comparative examples had a low Ni content in the Cu—Ni—Si based alloy, so the amount of precipitates was small, and it was not possible to achieve ultrafineness by warm rolling. As a result, the tensile strength and bending workability were inferior. On the contrary, in No. 23, since the Ni and Si contents were too high, the precipitates were coarsened, and the ultrafine grains once formed grew and normal discontinuous recrystallization occurred. As a result, strength and bending workability were poor. In No. 24, since the Ni and Si contents were too high, severe cracks occurred during warm rolling, and the final characteristics could not be evaluated.

No.25〜28は合金Bの熱間圧延材を用いて、溶体化処理、冷間圧延、時効処理を経て、温間加工せずに製造したもの(従来工程材)である。このうちNo.25〜27は時効処理のままの材料であり、時効時間によって導電率と強度がトレードオフの関係になっていることがわかる。すなわち、これらにおいては導電性と強度を同時に高レベルに改善することができなかった。No.28は更に冷間圧延と低温焼鈍を行ったものであるが、強度が低かった。   Nos. 25 to 28 are manufactured using a hot-rolled material of alloy B, subjected to solution treatment, cold rolling, and aging treatment, and without being hot-worked (conventional process materials). Of these, Nos. 25 to 27 are materials that have been subjected to aging treatment, and it can be seen that the electrical conductivity and strength are in a trade-off relationship depending on the aging time. That is, in these, the electrical conductivity and strength could not be simultaneously improved to a high level. No. 28 was further subjected to cold rolling and low temperature annealing, but the strength was low.

No.29、30は合金Bの熱間圧延材を用いて、仕上圧延を冷間強圧下で行ったものであるが、超微細粒が部分的に生成した混粒組織となり、加工性に劣った。No.31、32は合金Bの熱間圧延材を温間圧延したものであるが、温間圧延率が低すぎたため、超微細粒の生成が少なく混粒組織となり、加工性あるいは更に導電性に劣った。   Nos. 29 and 30 were obtained by performing hot rolling under a cold strong pressure using a hot rolled material of alloy B, but with a mixed grain structure in which ultrafine grains were partially formed, resulting in poor workability. It was. Nos. 31 and 32 are obtained by warm rolling the hot rolled material of alloy B. However, because the warm rolling rate was too low, the formation of ultrafine grains was reduced, resulting in a mixed grain structure, workability or further conductivity. Inferior to

Claims (7)

質量%で、Ni:1.0〜3.5%、Si:0.1〜1.2%、Mg:0〜0.3%、Sn:0〜0.25%、Zn:0〜0.8%、Co:0〜0.16%、Cr:0〜0.10%、P:0〜0.02%、B:0〜0.005%、Al:0〜0.12%、Fe:0〜0.16%、Zr:0〜0.03%、Ti:0〜0.08%、Mn:0〜0.14%、残部Cuおよび不可避的不純物からなる銅合金材料の製造において、熱間加工後に、600℃以下の温度に加熱して温間加工を行い平均結晶粒径1μm以下の組織とすることを特徴とする銅合金材料の製造法。   In mass%, Ni: 1.0 to 3.5%, Si: 0.1 to 1.2%, Mg: 0 to 0.3%, Sn: 0 to 0.25%, Zn: 0 to 0.3. 8%, Co: 0 to 0.16%, Cr: 0 to 0.10%, P: 0 to 0.02%, B: 0 to 0.005%, Al: 0 to 0.12%, Fe: In the production of a copper alloy material comprising 0 to 0.16%, Zr: 0 to 0.03%, Ti: 0 to 0.08%, Mn: 0 to 0.14%, the balance Cu and unavoidable impurities, A method for producing a copper alloy material, characterized in that after hot working, the hot working is performed at a temperature of 600 ° C. or lower to obtain a structure having an average crystal grain size of 1 μm or less. 質量%で、Ni:2.48〜3.20%、Si:0.1〜1.2%、Mg:0〜0.3%、Sn:0〜0.25%、Zn:0〜0.8%、Co:0〜0.16%、Cr:0〜0.10%、P:0〜0.02%、B:0〜0.005%、Al:0〜0.12%、Fe:0〜0.16%、Zr:0〜0.03%、Ti:0〜0.08%、Mn:0〜0.14%、残部Cuおよび不可避的不純物からなる銅合金材料の製造において、熱間加工後に、600℃以下の温度に加熱して温間加工を行い平均結晶粒径1μm以下の組織とすることを特徴とする銅合金材料の製造法。   In mass%, Ni: 2.48 to 3.20%, Si: 0.1 to 1.2%, Mg: 0 to 0.3%, Sn: 0 to 0.25%, Zn: 0 to 0.3. 8%, Co: 0 to 0.16%, Cr: 0 to 0.10%, P: 0 to 0.02%, B: 0 to 0.005%, Al: 0 to 0.12%, Fe: In the production of a copper alloy material comprising 0 to 0.16%, Zr: 0 to 0.03%, Ti: 0 to 0.08%, Mn: 0 to 0.14%, the balance Cu and unavoidable impurities, A method for producing a copper alloy material, characterized in that after hot working, the hot working is performed at a temperature of 600 ° C. or lower to obtain a structure having an average crystal grain size of 1 μm or less. 更に温間加工後に550℃以下の温度で加熱処理を行う請求項1または2に記載の銅合金材料の製造法。   Furthermore, the manufacturing method of the copper alloy material of Claim 1 or 2 which heat-processes at the temperature of 550 degrees C or less after warm processing. 温間加工において、少なくとも300〜600℃の温度域での加工を含める請求項1〜3のいずれかに記載の銅合金材料の製造法。   The method for producing a copper alloy material according to any one of claims 1 to 3, which includes processing in a temperature range of at least 300 to 600 ° C in warm processing. 温間加工を250〜600℃の範囲で行う請求項1〜3のいずれかに記載の銅合金材料の製造法。   The method for producing a copper alloy material according to any one of claims 1 to 3, wherein the warm working is performed in a range of 250 to 600 ° C. 温間加工を85%以上の加工率で行う請求項1〜3のいずれかに記載の銅合金材料の製造法。   The method for producing a copper alloy material according to any one of claims 1 to 3, wherein the warm working is performed at a working rate of 85% or more. 温間加工後の加熱処理を250〜550℃の範囲で行う請求項3に記載の銅合金材料の製造法。   The manufacturing method of the copper alloy material of Claim 3 which performs the heat processing after a warm process in 250-550 degreeC.
JP2004359350A 2004-12-13 2004-12-13 Manufacturing method of copper alloy material Active JP4779100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359350A JP4779100B2 (en) 2004-12-13 2004-12-13 Manufacturing method of copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359350A JP4779100B2 (en) 2004-12-13 2004-12-13 Manufacturing method of copper alloy material

Publications (2)

Publication Number Publication Date
JP2006169548A JP2006169548A (en) 2006-06-29
JP4779100B2 true JP4779100B2 (en) 2011-09-21

Family

ID=36670610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359350A Active JP4779100B2 (en) 2004-12-13 2004-12-13 Manufacturing method of copper alloy material

Country Status (1)

Country Link
JP (1) JP4779100B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100561417B1 (en) 2004-02-09 2006-03-16 삼성전자주식회사 Information storage medium recorded interactive graphic stream for the transition of AV data reproducing state, and reproducing method and apparatus thereof
JP5140045B2 (en) * 2009-08-06 2013-02-06 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy plate or strip for electronic materials
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
KR101274063B1 (en) * 2013-01-22 2013-06-12 한국기계연구원 A metal matrix composite with two-way shape precipitation and method for manufacturing thereof
JP6607429B2 (en) * 2014-01-22 2019-11-20 大日本印刷株式会社 Lead frame and manufacturing method thereof, and semiconductor device and manufacturing method thereof
WO2022004791A1 (en) * 2020-06-30 2022-01-06 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
CN115404376B (en) * 2021-05-26 2023-05-05 叶均蔚 High-strength abrasion-resistant multi-element copper alloy and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2863627B2 (en) * 1990-11-28 1999-03-03 中越合金鋳工株式会社 Manufacturing method of mold material for continuous casting
KR940010455B1 (en) * 1992-09-24 1994-10-22 김영길 Copper alloy and making method thereof
JP2961263B1 (en) * 1998-08-28 1999-10-12 大阪大学長 Manufacturing method of ultra-fine structure high strength metal sheet by repeated lap joint rolling
JP3765718B2 (en) * 2000-09-22 2006-04-12 日鉱金属加工株式会社 Copper alloy foil for high frequency circuits
JP4225733B2 (en) * 2001-03-27 2009-02-18 日鉱金属株式会社 Terminal, connector, lead frame material plate

Also Published As

Publication number Publication date
JP2006169548A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5028657B2 (en) High-strength copper alloy sheet with little anisotropy and method for producing the same
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5961335B2 (en) Copper alloy sheet and electrical / electronic components
JP5578827B2 (en) High-strength copper alloy sheet and manufacturing method thereof
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP4563495B1 (en) Copper alloy sheet and manufacturing method thereof
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
JP5261122B2 (en) Copper alloy sheet and manufacturing method thereof
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
CN112853149A (en) Copper-nickel-silicon-aluminum alloy and preparation method thereof
JP4779100B2 (en) Manufacturing method of copper alloy material
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP4904455B2 (en) Copper alloy and manufacturing method thereof
JP2010121166A (en) Copper alloy having high strength and high electric conductivity
JP6045635B2 (en) Method for producing copper alloy sheet
JP2000129376A (en) Reinforced brass and its manufacture
JP2004353069A (en) Copper alloy for electronic material
JP2012211350A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250