JP5261122B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5261122B2
JP5261122B2 JP2008258837A JP2008258837A JP5261122B2 JP 5261122 B2 JP5261122 B2 JP 5261122B2 JP 2008258837 A JP2008258837 A JP 2008258837A JP 2008258837 A JP2008258837 A JP 2008258837A JP 5261122 B2 JP5261122 B2 JP 5261122B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
mass
cold rolling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008258837A
Other languages
Japanese (ja)
Other versions
JP2010090408A (en
Inventor
智胤 青山
維林 高
久 須田
宏人 成枝
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2008258837A priority Critical patent/JP5261122B2/en
Publication of JP2010090408A publication Critical patent/JP2010090408A/en
Application granted granted Critical
Publication of JP5261122B2 publication Critical patent/JP5261122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Ni-Si based copper alloy sheet having little anisotropy while holding high strength of &ge;700 MPa tensile strength and excellent bending workability, and a method for manufacturing therefor. <P>SOLUTION: The copper alloy sheet includes the composition composed, by mass%, of 0.7-4% Ni, 0.2-1.0% Si and if necessary, one or more of 0.1-1.2% Sn, &le;2.0% Zn, and &le;1.0% Mg, and furthermore, &le;3% total of one or more elements selected from group composed of Co, Cr, B, P, Fe, Zr, Ti, Mn, Ag, Be and misch metal and the balance Cu with inevitable impurities. In the copper alloy sheet, in the case of being an integral intensity of ähkl} diffraction peak when an X-ray diffraction is applied on the sheet surface, is Iähkl}, this copper alloy sheet includes a crystal orientation satisfying Iä200}/Iä422}&ge;15. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、銅合金板材およびその製造方法に関し、コネクタ、リードフレーム、リレー、スイッチなどの電気電子部品に使用するCu−Ni−Si系銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a manufacturing method thereof, and relates to a Cu—Ni—Si based copper alloy sheet used for electrical and electronic parts such as connectors, lead frames, relays, and switches, and a manufacturing method thereof.

コネクタ、リードフレーム、リレー、スイッチなどの通電部品として電気電子部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な導電性が要求されるとともに、電気電子機器の組立時や作動時に付与される応力に耐え得る高い強度が要求される。また、コネクタなどの電気電子部品は、一般にプレス打ち抜き後に曲げ加工により成形されることから、優れた曲げ加工性も要求される。   Materials used for electrical and electronic parts as current-carrying parts such as connectors, lead frames, relays, and switches are required to have good conductivity in order to suppress the generation of Joule heat due to current conduction. High strength is required to withstand the stress applied at the time and during operation. In addition, since electrical and electronic parts such as connectors are generally formed by bending after press punching, excellent bending workability is also required.

近年、コネクタなどの電気電子部品は、高集積化、小型化および軽量化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材には、薄肉化の要求が高まっている。そのため、素材に要求される強度レベルは一層厳しくなっている。しかし、一般に銅合金板材の強度と導電性の間や強度と曲げ加工性の間には、それぞれトレードオフの関係があるので、これらを同時に満足する銅合金板材を得るのは難しいとされている。このような銅合金板材の中で、Cu−Ni−Si系合金(所謂コルソン合金)は、強度と導電性の間の特性バランスに比較的優れた材料として注目されている。例えば、Cu−Ni−Si系銅合金板材は、溶体化処理、冷間圧延、時効処理、仕上げ冷間圧延および低温焼鈍を基本とする工程により、比較的高い導電率(30〜50%IACS)を維持しながら、700MPa以上の強度にすることができる。しかし、Cu−Ni−Si系銅合金板材は、高強度であるが故に、その曲げ加工性が必ずしも良好であるとは限らない。   In recent years, electrical and electronic parts such as connectors tend to be highly integrated, miniaturized, and lightened, and accordingly, there is an increasing demand for thinning of copper and copper alloy plate materials. For this reason, the strength level required for the material is becoming stricter. However, in general, there is a trade-off relationship between the strength and conductivity of the copper alloy sheet and the strength and bending workability, and it is difficult to obtain a copper alloy sheet that satisfies these simultaneously. . Among such copper alloy sheet materials, a Cu—Ni—Si-based alloy (so-called Corson alloy) has attracted attention as a material that is relatively excellent in the property balance between strength and conductivity. For example, Cu—Ni—Si based copper alloy sheet material has a relatively high conductivity (30 to 50% IACS) by processes based on solution treatment, cold rolling, aging treatment, finish cold rolling and low temperature annealing. The strength of 700 MPa or more can be achieved while maintaining the above. However, since Cu—Ni—Si based copper alloy sheet has high strength, its bending workability is not always good.

また、圧延工程を経て製造される一般的な銅合金板材は、LD(圧延方向)に延びた繊維状の結晶粒を有し、さらに集合組織の異方性の影響により、LDを曲げ軸とするBadWay曲げと、TD(圧延方向および板厚方向に垂直な方向)を曲げ軸とするGoodWay曲げとの間で、特性が大きく異なることが知られている。しかし、コネクタなどの電気電子部品では、板材に対してGoodWayとBadWayの両方の曲げ加工を施して成形されることから、この異方性が問題になっており、Cu−Ni−Si系銅合金板材も例外ではない。   Further, a general copper alloy sheet produced through a rolling process has fibrous crystal grains extending in the LD (rolling direction), and further, the LD is used as a bending axis due to the influence of the anisotropy of the texture. It is known that the characteristics differ greatly between the bad way bending and the good way bending with TD (direction perpendicular to the rolling direction and the plate thickness direction) as the bending axis. However, in electrical and electronic parts such as connectors, this anisotropy is a problem because the plate material is formed by bending both GoodWay and BadWay. Cu-Ni-Si based copper alloy Boards are no exception.

Cu−Ni−Si系銅合金板材において、このような曲げ加工性の問題を改善する方法として、結晶方位(集合組織)を制御することによって曲げ加工性を改善する種々の方法が提案されている。例えば、{hkl}面のX線回折強度をI{hkl}とすると、(I{111}+I{311})/I{220}≦2.0
を満たすようして、GoodWayの曲げ加工性を改善する方法(例えば、特許文献1参照)や、(I{111}+I{311})/I{220}>2.0を満たすようして、BadWayの曲げ加工性を改善する方法(例えば、特許文献2参照)が提案されている。また、銅のような結晶構造が面心立方格子である材料において、再結晶集合組織の一つとして一般に知られているCube方位{001}<100>を利用して、SEM−EBSP法による測定結果においてCube方位{001}<100>の割合が50%以上である集合組織を有するようにして、Cu−Ni−Si系銅合金板材の曲げ加工性を向上させる方法が提案されている(例えば、特許文献3参照)。また、(I{200}+I{311})/I{220}≧0.5を満たすようにして、Cu−Ni−Si系銅合金板材の曲げ加工性を向上させる方法も提案されている(例えば、特許文献4参照)。さらに、Cu−Ni−Si系銅合金板材の板表面における{311}面、{220}面および{200}面からのX線回折強度をそれぞれI{311}、I{220}およびI{200}とし、結晶粒径をA(μm)とすると、I{311}×A/(I{311}+I{220}+I{200})<1.5を満たすようにして、Cu−Ni−Si系銅合金板材の曲げ加工性を向上させる方法(例えば、特許文献5参照)や、Cu−Ni−Si系銅合金板材の板表面における{420}結晶面および{220}結晶面のX線回折強度をそれぞれI{420}およびI{220}とすると、0.1≦I{420}/I{220}≦0.5を満たすようにして、Cu−Ni−Si系銅合金板材の曲げ加工性を向上させる方法(例えば、特許文献6参照)も提案されている。
Various methods for improving the bending workability by controlling the crystal orientation (texture) have been proposed as a method for improving such a bending workability problem in the Cu—Ni—Si based copper alloy sheet. . For example, if the X-ray diffraction intensity of the {hkl} plane is I {hkl}, (I {111} + I {311}) / I {220} ≦ 2.0
And satisfying the method of improving the workability of GoodWay (see, for example, Patent Document 1) and (I {111} + I {311}) / I {220}> 2.0, A method (for example, refer to Patent Document 2) for improving the bending workability of BadWay has been proposed. Further, in a material having a face-centered cubic lattice such as copper, measurement by the SEM-EBSP method is performed using the Cube orientation {001} <100>, which is generally known as one of recrystallization textures. As a result, a method has been proposed for improving the bending workability of a Cu—Ni—Si based copper alloy sheet so as to have a texture where the ratio of the Cube orientation {001} <100> is 50% or more (for example, And Patent Document 3). Further, a method for improving the bending workability of the Cu—Ni—Si based copper alloy sheet so as to satisfy (I {200} + I {311}) / I {220} ≧ 0.5 has been proposed ( For example, see Patent Document 4). Further, the X-ray diffraction intensities from the {311} plane, {220} plane, and {200} plane on the plate surface of the Cu—Ni—Si based copper alloy sheet are respectively I {311}, I {220}, and I {200. }, And when the crystal grain size is A (μm), Cu-Ni-Si is satisfied so as to satisfy I {311} × A / (I {311} + I {220} + I {200}) <1.5. A method for improving the bending workability of a copper alloy sheet (for example, see Patent Document 5), and X-ray diffraction of {420} crystal plane and {220} crystal plane on the surface of a Cu-Ni-Si copper alloy sheet When the strength is I {420} and I {220}, respectively, bending of the Cu—Ni—Si based copper alloy sheet so as to satisfy 0.1 ≦ I {420} / I {220} ≦ 0.5 For improving the performance (for example, see Patent Document 6) ) Has also been proposed.

特開2006−9108号公報(段落番号0007−0009)Japanese Patent Laying-Open No. 2006-9108 (paragraph numbers 0007-0009) 特開2006−16629号公報(段落番号0008−0009)JP 2006-16629 A (paragraph numbers 0008-0009) 特開2006−152392号公報(段落番号0020−0021)JP 2006-152392 A (paragraph numbers 0020-0021) 特開2000−80428号公報(段落番号0003−0004)JP 2000-80428 A (paragraph numbers 0003-0004) 特開2006−9137号公報(段落番号0007−0008)JP 2006-9137 A (paragraph numbers 0007-0008) 特開2008−38231号公報(段落番号0011−0012)Japanese Patent Laying-Open No. 2008-38231 (paragraph numbers 0011-0012)

しかし、特許文献1の方法では、GoodWayの曲げ加工性を改善する条件として(I{111}+I{311})/I{220}≦2.0
を満たすようにしているのに対して、特許文献2の方法では、BadWayの曲げ加工性を改善する条件として(I{111}+I{311})/I{220}>2.0を満たすようにしており、GoodWayの曲げ加工性を改善する条件とBadWayの曲げ加工性を改善する条件は、相反する条件になっている。
However, in the method of Patent Document 1, (I {111} + I {311}) / I {220} ≦ 2.0 as a condition for improving GoodWay bending workability.
In contrast, the method of Patent Document 2 satisfies (I {111} + I {311}) / I {220}> 2.0 as a condition for improving BadWay bending workability. The conditions for improving GoodWay bending workability and the conditions for improving BadWay bending workability are contradictory conditions.

また、特許文献3の方法では、Cube方位を発達させるために溶体化処理前に圧延率95%以上の強圧延を行う必要があるので、設備負荷が高く、高強度材であるが故の製造上の問題もある。   In the method of Patent Document 3, it is necessary to perform strong rolling at a rolling rate of 95% or more before solution treatment in order to develop the Cube orientation. There is also the above problem.

また、特許文献4の方法では、(I{200}+I{311})/I{220}≧0.5を満たすようにするために、圧延集合組織である{220}を小さくする必要があるので、仕上げ圧延率を高くすることができないという問題がある。Cu−Ni−Si系銅合金板材では、NiSi析出物のまわりの転位を利用して高強度化しているので、仕上げ圧延率の低下は、強度の低下に直結するという問題がある。 Further, in the method of Patent Document 4, it is necessary to reduce {220} which is a rolling texture in order to satisfy (I {200} + I {311}) / I {220} ≧ 0.5. Therefore, there is a problem that the finish rolling rate cannot be increased. In the Cu—Ni—Si based copper alloy sheet, since the strength is increased by utilizing dislocations around the Ni 2 Si precipitates, there is a problem that a decrease in the finish rolling ratio directly leads to a decrease in strength.

また、特許文献5および6の方法では、結晶方位の制御による曲げ加工性の改善条件を、最も一般的な銅を管球としたX線回折装置を用いたときに測定される回折ピークの強度を組み合わせて、すなわち、回折角2θ<180°で現れる{111}、{200}、{220}、{311}、{331}および{420}を組み合わせて規定している。また、広角側に位置する回折ピークの強度は弱く、ランダム配向の場合でも、I{331}はI{111}
の1/10以下しかないため、広角側のピークは無視され、低角側の4つのピーク{111}、{200}、{220}、{311}のみで議論されることが多い。
Further, in the methods of Patent Documents 5 and 6, the intensity of the diffraction peak measured when the most common X-ray diffractometer using copper as a tube is used as the bending workability improvement condition by controlling the crystal orientation. That is, {111}, {200}, {220}, {311}, {331}, and {420} appearing at a diffraction angle 2θ <180 °. Further, the intensity of the diffraction peak located on the wide angle side is weak, and I {331} is I {111} even in the case of random orientation.
Therefore, the wide-angle peak is ignored, and only the four low-angle peaks {111}, {200}, {220}, and {311} are often discussed.

したがって、溶体化処理前に強圧延を行う必要がなく、高い圧延率で仕上げ圧延を行っても、GoodWayとBadWayのいずれの曲げ加工性も損なうことなく、700MPa以上の高い引張強さを有するCu−Ni−Si系銅合金板材の開発が望まれていた。しかし、上述したように銅管球のX線回折により測定可能な主要回折ピークをどのように組み合わせても、このような曲げ加工性を向上させる結晶方位の制御技術を見出すことができなかった。   Therefore, it is not necessary to perform strong rolling before the solution treatment, and even if finish rolling is performed at a high rolling rate, Cu having a high tensile strength of 700 MPa or more without deteriorating any bending workability of GoodWay or BadWay. Development of a Ni-Si based copper alloy sheet has been desired. However, as described above, no matter how the main diffraction peaks that can be measured by X-ray diffraction of a copper tube are combined, it has been impossible to find a crystal orientation control technique that improves such bending workability.

したがって、本発明は、このような従来の問題点に鑑み、引張強さ700MPa以上の高強度を保持しつつ、異方性が少なく、優れた曲げ加工性を有するCu−Ni−Si系銅合金板材およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention is a Cu-Ni-Si-based copper alloy having excellent bending workability with low anisotropy while maintaining a high strength of 700 MPa or more. It aims at providing a board | plate material and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究した結果、0.7〜4質量%のNiと0.2〜1.0質量%のSiを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、板面においてX線回折を行ったときの{hkl}回折ピークの積分強度をI{hkl}とすると、I{200}/I{422}≧15を満たす結晶配向を有するようにすることによって、引張強さ700MPa以上の高強度を保持しつつ、異方性が少なく、優れた曲げ加工性を有するCu−Ni−Si系銅合金板材を製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors contain 0.7 to 4% by mass of Ni and 0.2 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. In a copper alloy sheet having a composition, when the integrated intensity of the {hkl} diffraction peak when X-ray diffraction is performed on the plate surface is I {hkl}, the crystal orientation satisfies I {200} / I {422} ≧ 15 It is possible to produce a Cu-Ni-Si-based copper alloy sheet having a low anisotropy and an excellent bending workability while maintaining a high strength of a tensile strength of 700 MPa or more. The headline and the present invention were completed.

すなわち、本発明による銅合金板材は、0.7〜4質量%のNiと0.2〜1.0質量%のSiを含み、残部がCuおよび不可避不純物である組成を有し、板面においてX線回折を行ったときの{hkl}回折ピークの積分強度をI{hkl}とすると、I{200}/I{422}≧15を満たす結晶配向を有することを特徴とする。   That is, the copper alloy sheet according to the present invention has a composition containing 0.7 to 4% by mass of Ni and 0.2 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. When the integrated intensity of the {hkl} diffraction peak when X-ray diffraction is performed is I {hkl}, the crystal orientation satisfies I {200} / I {422} ≧ 15.

この銅合金板材は、0.1〜1.2質量%のSn、2.0質量%以下のZnおよび1.0質量%以下のMgの1種以上をさらに含む組成を有してもよい。また、銅合金板材が、Co、Cr、B、P、Fe、Zr、Ti、Mn、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有してもよい。また、銅合金板材が、700MPa以上の引張強さを有するのが好ましい。さらに、銅合金板材が、800MPa以上の引張強さを有する場合には、I{200}/I{422}≧50を満たす結晶配向を有するのが好ましい。   The copper alloy sheet may have a composition further including one or more of 0.1 to 1.2 mass% of Sn, 2.0 mass% or less of Zn, and 1.0 mass% or less of Mg. In addition, the copper alloy sheet further includes at least one element selected from the group consisting of Co, Cr, B, P, Fe, Zr, Ti, Mn, Ag, Be, and Misch metal in a total range of 3% by mass or less. You may have the composition which contains. The copper alloy sheet preferably has a tensile strength of 700 MPa or more. Further, when the copper alloy sheet has a tensile strength of 800 MPa or more, it preferably has a crystal orientation satisfying I {200} / I {422} ≧ 50.

本発明による銅合金板材の製造方法は、0.7〜4質量%のNiと0.2〜1.0質量%のSiを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造する溶解および鋳造工程と、この溶解および鋳造工程の後に950℃から600℃に温度を下げながら熱間圧延を行う熱間圧延工程と、この熱間圧延工程の後に圧延率80%以上で冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度500〜600℃で熱処理を行う熱処理工程と、この熱処理工程の後に圧延率80%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に700〜980℃で溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に圧延率0〜50%で中間冷間圧延を行う中間冷間圧延工程と、この中間冷間圧延工程の後に400〜600℃で時効処理を行う時効処理工程とを備え、溶体化処理工程の際に、溶体化処理前後のX線回折による{422}結晶面の積分強度をそれぞれIb{422}およびIa{422}として、Ia{422}/Ib{422}≦1を満たすようにすることを特徴とする。   A method for producing a copper alloy sheet according to the present invention includes a raw material for a copper alloy having a composition containing 0.7 to 4% by mass of Ni and 0.2 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. A melting and casting step for melting and casting, a hot rolling step for performing hot rolling while lowering the temperature from 950 ° C. to 600 ° C. after the melting and casting step, and a rolling rate of 80 after the hot rolling step. The first cold rolling process in which cold rolling is performed at a temperature of at least%, the heat treatment process in which heat treatment is performed at a heating temperature of 500 to 600 ° C. after the first cold rolling process, and the rolling rate is 80% after the heat treatment process. The 2nd cold rolling process which performs cold rolling above, the solution treatment process which performs solution treatment at 700-980 ° C after this 2nd cold rolling process, and rolling after this solution treatment process Intermediate cold performing intermediate cold rolling at a rate of 0-50% An aging treatment step of performing an aging treatment at 400 to 600 ° C. after the intermediate cold rolling step, and a {422} crystal plane by X-ray diffraction before and after the solution treatment in the solution treatment step The integral intensities of Ib {422} and Ia {422} are set to satisfy Ia {422} / Ib {422} ≦ 1, respectively.

この銅合金板材の製造方法は、時効処理工程の後に圧延率50%以下で冷間圧延を行う仕上げ圧延工程を備えているのが好ましく、仕上げ冷間圧延工程の後に150〜550℃で加熱処理を行う低温焼鈍工程を備えているのが好ましい。   The copper alloy sheet manufacturing method preferably includes a finish rolling step in which cold rolling is performed at a rolling rate of 50% or less after the aging treatment step, and heat treatment is performed at 150 to 550 ° C. after the finish cold rolling step. It is preferable to include a low-temperature annealing step for performing the above.

また、上記の銅合金板材の製造方法において、銅合金板材が、0.1〜1.2質量%のSn、2.0質量%以下のZnおよび1.0質量%以下のMgの1種以上をさらに含む組成を有してもよい。また、銅合金板材が、Co、Cr、B、P、Fe、Zr、Ti、Mn、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有してもよい。   In the method for producing a copper alloy sheet, the copper alloy sheet may be one or more of 0.1 to 1.2 mass% Sn, 2.0 mass% or less Zn, and 1.0 mass% or less Mg. It may have the composition which contains further. In addition, the copper alloy sheet further includes at least one element selected from the group consisting of Co, Cr, B, P, Fe, Zr, Ti, Mn, Ag, Be, and Misch metal in a total range of 3% by mass or less. You may have the composition which contains.

さらに、本発明による電気電子部品は、上記の銅合金板材を材料として用いたことを特徴とする。この電気電子部品が、コネクタ、リードフレーム、リレーまたはスイッチであるのが好ましい。   Furthermore, an electrical / electronic component according to the present invention is characterized by using the above-described copper alloy sheet as a material. The electrical / electronic component is preferably a connector, a lead frame, a relay or a switch.

本発明によれば、引張強さ700MPa以上の高強度を保持しつつ、異方性が少なく、優れた曲げ加工性を有し、特に、GoodWayとBadWayのいずれの曲げ加工性も優れたCu−Ni−Si系銅合金板材を製造することができる。   According to the present invention, Cu- with excellent anisotropy and excellent bending workability while maintaining a high strength of 700 MPa or more, and particularly with good bending workability of both Good Way and Bad Way. A Ni-Si based copper alloy sheet can be produced.

本発明による銅合金板材の実施の形態は、0.7〜4質量%のNiと、0.2〜1.0質量%のSiを含み、必要に応じて、0.1〜1.2質量%のSnと2.0質量%以下のZnと1.0質量%以下のMgの1種以上を含み、さらに必要に応じて、Co、Cr、B、P、Fe、Zr、Ti、Mn、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲で含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、板面(板の厚さ方向に垂直な面(圧延面))においてX線回折を行ったときの{hkl}回折ピークの積分強度をI{hkl}とすると、I{200}/I{422}≧15を満たす結晶配向を有し、700MPa以上の引張強さを有する。なお、この銅合金板材の引張強さが800MPa以上の場合には、より良好な曲げ加工性が必要になるため、I{200}/I{422}≧50を満たす結晶配向を有するのが好ましい。以下、この銅合金板材およびその製造方法について詳細に説明する。   The embodiment of the copper alloy sheet material according to the present invention contains 0.7 to 4% by mass of Ni and 0.2 to 1.0% by mass of Si, and optionally 0.1 to 1.2% by mass. % Sn, 2.0% by mass or less of Zn and 1.0% by mass or less of Mg, and if necessary, Co, Cr, B, P, Fe, Zr, Ti, Mn, In a copper alloy sheet having a composition containing one or more elements selected from the group consisting of Ag, Be, and Misch metal in a total amount of 3% by mass or less, with the balance being Cu and inevitable impurities, the plate surface (plate thickness A crystal satisfying I {200} / I {422} ≧ 15, where I {hkl} is the integrated intensity of the {hkl} diffraction peak when X-ray diffraction is performed on a plane perpendicular to the vertical direction (rolled surface). It has an orientation and a tensile strength of 700 MPa or more. In addition, when the tensile strength of this copper alloy sheet is 800 MPa or more, better bending workability is required. Therefore, it is preferable to have a crystal orientation satisfying I {200} / I {422} ≧ 50. . Hereinafter, this copper alloy sheet and its manufacturing method will be described in detail.

上述したように、銅管球のX線回折により測定可能な主要回折ピークをどのように組み合わせても、Cu−Ni−Si系銅合金板材のGoodWayとBadWayの両方の曲げ加工性を向上させる結晶方位の制御技術を見出すことができなかった。そのため、本発明者らは、X線源として最も一般的な銅管球と比べてX線波長が半分以下になるモリブデン管球を使用して、格子面間隔がより短い結晶方位について分析を行った。   As described above, a crystal that improves the bending workability of both GoodWay and BadWay of a Cu-Ni-Si based copper alloy sheet regardless of the combination of main diffraction peaks that can be measured by X-ray diffraction of a copper tube. I could not find the azimuth control technology. Therefore, the present inventors analyzed a crystal orientation with a shorter lattice spacing using a molybdenum tube whose X-ray wavelength is less than half that of the most common copper tube as an X-ray source. It was.

その結果、本発明者らは、Cu−Ni−Si系銅合金は、溶体化処理によって{422}結晶面が圧延面に残存する再結晶集合組織を有する場合があり、下工程の時効処理や圧延によって、その体積分率が大きく変化しないことを見出した。この方位の曲げ加工性を単結晶のCu−Ni−Si系銅合金板材を用いて調査したところ、GoodWayとBadWayのいずれの曲げ加工性も、他の{111}、{200}、{220}、{311}、{331}、{420}の曲げ加工性に比べて極めて悪いことがわかった。そのため、{422}結晶面が発達したCu−Ni−Si系銅合金板材では、この方位を有する結晶が割れの起点になるので、{422}結晶面の体積分率が10%〜20%しかない場合でも、容易に深い割れが発達することもわかった。さらに、溶体化処理前の熱処理によって、溶体化処理時に{422}結晶面が残存する割合を低減することができることもわかった。また、この熱処理では、溶体化処理前に強圧延を施すことなく、{200}結晶面を主方位成分の1つとする再結晶集合組織を得ることができ、30〜40%の高い圧延率の仕上げ圧延後においても、{200}結晶面を主方位成分とする結晶粒が特定の割合で残存し、{422}結晶面の割合が低い状態を維持することができることもわかった。また、{200}結晶面を主方位成分とする結晶粒は、<010>がLDに向くとTDは<001>になるため、この結晶粒の存在によって異方性の少ない曲げ加工性を得ることができることを、単結晶のCu−Ni−Si系銅合金板材の曲げ試験によって確認した。このように、{200}結晶面を主方位成分とする再結晶集合組織を特定の割合で残存させ、{422}結晶面の発達を妨げることによって、異方性が少なく、優れた曲げ加工性を有する高強度のCu−Ni−Si系銅合金板材を製造することができることがわかった。   As a result, the present inventors may have a recrystallized texture in which the {422} crystal plane remains on the rolled surface due to the solution treatment, and the Cu—Ni—Si based copper alloy may have an aging treatment or It has been found that the volume fraction does not change greatly by rolling. When the bending workability of this orientation was investigated using a single crystal Cu—Ni—Si-based copper alloy sheet, both the GoodWay and BadWay bending workability were other {111}, {200}, {220}. , {311}, {331}, {420} were found to be extremely poor compared to the bending workability. Therefore, in a Cu—Ni—Si based copper alloy sheet with a developed {422} crystal plane, the crystal having this orientation becomes the starting point of cracking, so the volume fraction of the {422} crystal plane is only 10% to 20%. It was also found that deep cracks develop easily even without them. Furthermore, it has also been found that the ratio of remaining {422} crystal planes during the solution treatment can be reduced by the heat treatment before the solution treatment. In addition, in this heat treatment, a recrystallized texture having the {200} crystal plane as one of the main orientation components can be obtained without performing strong rolling before the solution treatment, and a high rolling rate of 30 to 40%. It was also found that even after finish rolling, crystal grains having {200} crystal planes as the main orientation component remain at a specific ratio, and the ratio of {422} crystal planes can be kept low. In addition, the crystal grain having the {200} crystal plane as the main orientation component has a TD of <001> when <010> is directed to the LD, and the presence of this crystal grain provides bending workability with little anisotropy. It was confirmed by a bending test of a single crystal Cu—Ni—Si based copper alloy sheet. As described above, the recrystallization texture having the {200} crystal plane as the main orientation component is left in a specific ratio, and the development of the {422} crystal plane is prevented, thereby reducing anisotropy and excellent bending workability. It was found that a high-strength Cu—Ni—Si-based copper alloy sheet having the following can be produced.

一般に、Cu−Ni−Si系銅合金板材の板表面(圧延面)からのX線回折パターンは、{111}、{200}、{220}、{311}の4つの結晶面の回折ピークで構成されている。冷間圧延における圧延率の増大に伴って、{220}面のX線回折強度が相対的に増大し、{200}面と{311}面のX線回折強度が減少し、通常{111}面のX線回折強度が若干増加する傾向にある。他の結晶面からのX線回折は、広角側の回折であるため、その強度は小さく、ランダムな配向状態においてI{422}:I{200}=1:9、すなわち、I{200}/
I{422}=9である。しかし、通常の組成を有するCu−Ni−Si系銅合金板材を通常の製造工程により得た場合、I{200}/ I{422}=2〜5と低く、曲げ加工時に割れの起点になる{422}面の存在割合が高いことがわかる。
In general, the X-ray diffraction pattern from the plate surface (rolled surface) of a Cu—Ni—Si based copper alloy sheet is the diffraction peaks of four crystal planes {111}, {200}, {220}, and {311}. It is configured. As the rolling reduction in cold rolling increases, the X-ray diffraction intensity of the {220} plane increases relatively, the X-ray diffraction intensity of the {200} plane and the {311} plane decreases, and usually {111} The X-ray diffraction intensity of the surface tends to increase slightly. Since X-ray diffraction from other crystal planes is diffraction on the wide angle side, its intensity is small, and I {422}: I {200} = 1: 9 in a random orientation state, that is, I {200} /
I {422} = 9. However, when a Cu—Ni—Si-based copper alloy sheet having a normal composition is obtained by a normal manufacturing process, I {200} / I {422} = 2 to 5 is low, which is a starting point of cracking during bending. It can be seen that the existence ratio of the {422} plane is high.

本発明による銅合金板材の実施の形態では、I{200}/I{422}≧15を満たすように、{200}面を主方位成分の1つとし、{422}面の体積分率を低減させた圧延集合組織を実現し、これによってGoodWayとBadWayのいずれの曲げ加工性も顕著に改善させている。この曲げ加工性を向上させるメカニズムは、単純化した系では、以下のように考えられる。銅のようなLDに{422}<111>をとる圧延集合組織の材料について、すべり系の活性度の指標であるシュミット因子を用いて評価すると、0.27と低指数方向の中でもほぼ下限値をとり、また、12通りの「すべり面、すべり方向」の組み合わせのうち6つの場合には、LDと直交するため、変形に寄与しない。また、この銅合金板材のTDは{422}<011>になり、シュミット因子は0.41であるものの、12通りの「すべり面、すべり方向」の組み合わせのうち8つの場合には、TDと直交し、変形に寄与しない。このような{422}結晶面が圧延面にある結晶粒は、LDおよびTDのいずれも、外力によりせん断帯を発生し易く、割れへと進展し易い。この結晶粒の割合を低減させることにより、割れの起点が発生する確率を減らすことが可能である。{422}<011>と同様なすべり特性を有する方位として、{111}<011>:LDが存在し、やはり曲げ特性は、他の低指数方位に比べると{422}結晶面に次いで悪いことがわかった。しかし、{111}結晶面の体積分率は、製造工程にほとんど依存せず、5%未満であったので、特性の向上の因子から省いた。   In the embodiment of the copper alloy sheet according to the present invention, the {200} plane is one of the main orientation components so that I {200} / I {422} ≧ 15, and the volume fraction of the {422} plane is A reduced rolling texture is realized, and this significantly improves the bending workability of both Good Way and Bad Way. The mechanism for improving the bending workability is considered as follows in a simplified system. When a rolling texture material having a {422} <111> in LD such as copper is evaluated using a Schmid factor, which is an index of the activity of a slip system, it is 0.27, which is almost the lower limit in the low index direction. In addition, in the case of 6 out of 12 combinations of “slip surface, slip direction”, since it is orthogonal to the LD, it does not contribute to deformation. Further, the TD of this copper alloy sheet is {422} <011> and the Schmitt factor is 0.41, but in 8 cases out of 12 combinations of “slip surface, slip direction”, TD and It is orthogonal and does not contribute to deformation. Such a crystal grain having a {422} crystal face on the rolled face is likely to generate a shear band due to an external force in both LD and TD and easily develop into a crack. By reducing the proportion of the crystal grains, it is possible to reduce the probability that a crack starting point occurs. There is {111} <011>: LD as an orientation having the same sliding characteristics as {422} <011>, and the bending characteristics are still worse next to the {422} crystal plane than other low index orientations. I understood. However, the volume fraction of the {111} crystal plane hardly depended on the manufacturing process and was less than 5%, so it was omitted from the factor of improving the characteristics.

これに対して、{200}結晶面は、LD:<010>とTD:<001>のいずれもすべりに寄与し得るすべり面とすべり方向の組み合わせは、12通り中8通りで、その全てのシュミット因子は0.41である。さらに、{200}結晶面上のすべり線は、曲げ軸に対して45°および135°と対称性を良好にすることができるため、せん断帯を形成することなく曲げ変形が可能であることがわかった。   On the other hand, in {200} crystal planes, there are 8 combinations of slip planes and slip directions that can contribute to slip in both LD: <010> and TD: <001>, and all of them are 12 types. The Schmid factor is 0.41. Furthermore, the slip line on the {200} crystal plane can have good symmetry at 45 ° and 135 ° with respect to the bending axis, so that bending deformation is possible without forming a shear band. all right.

このような圧延集合組織を得るためには、まず、特定の組成範囲に調整された合金を用いて、適切に析出物が存在している状態において80%以上の圧延率で冷間圧延した後に溶体化処理を行う必要がある。加工時の析出物の存在は、歪エネルギーと積層欠陥エネルギーを効率よく高めることができるとともに、母相中の固溶元素を減らすことによって純銅型の再結晶集合組織を得ることができるからである。この状態における溶体化処理により、圧延集合組織{220}や{422}の消失と、再結晶集合組織{200}の成長とが同時に起こる。なお、不適切な歪エネルギー状態で溶体化処理を行うと、{422}が残存して曲げ特性を劣化させるので、溶体化処理を行う前に、溶体化処理前後のX線回折による{422}結晶面の積分強度をそれぞれIb{422}およびIa{422}として、Ia{422}/Ib{422}≦1を満たすように溶体化処理を行うことができるようにしておく必要がある。この溶体化処理後に冷間圧延を行うと、次第に{220}結晶面を主方位成分とする圧延集合組織が発達していく。このとき、上記の3種類の集合組織の中間的な結晶配向に制御することによって、I{200}/I{422}≧15を満たすようになり、高強度化と異方性の小さな優れた曲げ加工性が一挙に達成される。この結晶配向の制御は、組成の調整と、Ia{422}/Ib{422}≦1を満たすような歪エネルギーと積層欠陥エネルギーの蓄積に依存した再結晶化の進み具合によって可能になる。また、{422}結晶面の体積分率を低減させることにより、Cube方位を必要以上に高めなくても、異方性の小さな優れた曲げ加工性が達成することができるため、95%以上の強圧延や、20%以下の仕上げ圧延といった制限が大きく緩和される。   In order to obtain such a rolling texture, first, after using an alloy adjusted to a specific composition range, after cold rolling at a rolling rate of 80% or more in a state where precipitates are appropriately present. It is necessary to perform a solution treatment. This is because the presence of precipitates during processing can efficiently increase strain energy and stacking fault energy, and a pure copper-type recrystallized texture can be obtained by reducing solid solution elements in the matrix. . Due to the solution treatment in this state, the disappearance of the rolling texture {220} or {422} and the growth of the recrystallized texture {200} occur simultaneously. If the solution treatment is performed in an inappropriate strain energy state, {422} remains and deteriorates the bending characteristics. Therefore, before the solution treatment, {422} by X-ray diffraction before and after the solution treatment. It is necessary that the solution treatment can be performed so as to satisfy Ia {422} / Ib {422} ≦ 1, where the integrated intensities of the crystal planes are Ib {422} and Ia {422}, respectively. When cold rolling is performed after the solution treatment, a rolling texture having a {220} crystal plane as a main orientation component gradually develops. At this time, I {200} / I {422} ≧ 15 is satisfied by controlling to an intermediate crystal orientation of the above three types of textures, which is excellent in high strength and small anisotropy. Bending workability is achieved at once. This crystal orientation can be controlled by adjusting the composition and the progress of recrystallization depending on the accumulation of strain energy and stacking fault energy that satisfy Ia {422} / Ib {422} ≦ 1. Further, by reducing the volume fraction of the {422} crystal plane, an excellent bending workability with small anisotropy can be achieved without increasing the Cube orientation more than necessary. Restrictions such as strong rolling and finish rolling of 20% or less are greatly relaxed.

[合金組成]
本発明による銅合金板材の実施の形態は、CuとNiとSiを含むCu−Ni−Si系銅合金からなり、必要に応じて、Cu−Ni−Siの3元系基本成分にSn、Zn、Mg、その他の元素を含有させてもよい。
[Alloy composition]
The embodiment of the copper alloy sheet according to the present invention is made of a Cu—Ni—Si based copper alloy containing Cu, Ni and Si, and, if necessary, Sn, Zn as a ternary basic component of Cu—Ni—Si. , Mg and other elements may be contained.

NiおよびSiは、Ni−Si系析出物を形成して、銅合金板材の強度と導電性と熱伝導度を向上させる効果を有する。Ni含有量が0.7質量%未満の場合やSi含有量が0.2質量%未満の場合には、この効果を十分に発揮させるのは困難である。そのため、Ni含有量は、0.7質量%以上にするのが好ましく、1.2質量%以上にするのがさらに好ましく、1.5質量%以上にするのがさらに好ましい。また、Si含有量は、0.2質量%以上にするのが好ましく、0.3質量%以上にするのがさらに好ましく、0.35質量%以上にするのが最も好ましい。一方、Ni含有量やSi含有量が高過ぎると、粗大な析出物が生成し易く、曲げ加工時の割れの原因になるので、GoodWayとBadWayのいずれの曲げ加工性も低下し易い。そのため、Ni含有量は、4質量%以下にするのが好ましく、3.5質量%以下にするのがさらに好ましく、2.0質量%未満にするのが最も好ましい。また、Si含有量は、1.0質量%以下にするのが好ましく、0.7質量%以下にするのがさらに好ましく、0.5質量%未満にするのが最も好ましい。   Ni and Si have the effect of forming Ni—Si based precipitates and improving the strength, conductivity, and thermal conductivity of the copper alloy sheet. When the Ni content is less than 0.7% by mass or the Si content is less than 0.2% by mass, it is difficult to sufficiently exhibit this effect. Therefore, the Ni content is preferably 0.7% by mass or more, more preferably 1.2% by mass or more, and further preferably 1.5% by mass or more. The Si content is preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and most preferably 0.35% by mass or more. On the other hand, if the Ni content or the Si content is too high, coarse precipitates are likely to be generated and cause cracking during bending, so that both the bending workability of GoodWay and BadWay are likely to deteriorate. Therefore, the Ni content is preferably 4% by mass or less, more preferably 3.5% by mass or less, and most preferably less than 2.0% by mass. The Si content is preferably 1.0% by mass or less, more preferably 0.7% by mass or less, and most preferably less than 0.5% by mass.

NiとSiによって形成されるNi−Si系析出物は、NiSiを主体とする金属間化合物であると考えられる。但し、合金中のNiおよびSiは、時効処理によって全てが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNiおよびSiは、銅合金板材の強度を若干向上させるが、析出状態と比べてその効果は小さく、また、導電率を低下させる要因になる。そのため、NiとSiの含有量の比は、できるだけ析出物NiSiの組成比に近づけるのが好ましい。したがって、Ni/Si質量比を3.5〜6.0に調整するのが好ましく、3.5〜5.0に調整するのがさらに好ましい。 The Ni—Si based precipitate formed by Ni and Si is considered to be an intermetallic compound mainly composed of Ni 2 Si. However, Ni and Si in the alloy are not necessarily all precipitated by the aging treatment, and exist to some extent in a solid solution state in the Cu matrix. Ni and Si in the solid solution state slightly improve the strength of the copper alloy sheet, but the effect is small as compared with the precipitated state, and causes a decrease in conductivity. Therefore, the content ratio of Ni and Si is preferably as close as possible to the composition ratio of the precipitate Ni 2 Si. Therefore, the Ni / Si mass ratio is preferably adjusted to 3.5 to 6.0, and more preferably adjusted to 3.5 to 5.0.

Snは、銅合金板材の固溶強化作用を有する。この作用を十分に発揮させるためには、Sn含有量が0.1質量%以上であるのが好ましく、0.2質量%以上であるのがさらに好ましい。一方、Sn含有量が1.2質量%を超えると、導電率が著しく低下してしまうので、Sn含有量が1.2質量%以下であるのが好ましく、0.7質量%以下であるのがさらに好ましい。   Sn has a solid solution strengthening action of the copper alloy sheet. In order to fully exhibit this effect, the Sn content is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more. On the other hand, if the Sn content exceeds 1.2% by mass, the electrical conductivity is remarkably lowered. Therefore, the Sn content is preferably 1.2% by mass or less, and is 0.7% by mass or less. Is more preferable.

Znは、銅合金板材のはんだ付け性および強度を向上させるとともに、鋳造性を改善する効果を有する。また、Znを添加することによって安価な黄銅スクラップを使用することができるという利点がある。この効果を十分に発揮させるためには、Zn含有量を0.1質量%以上にするのが好ましく、0.3質量%以上にするのがさらに好ましい。しかし、Zn含有量が2.0質量%を超えると、導電性や耐応力腐食割れ性が低下し易くなるので、Znを添加する場合には、Zn含有量を2.0質量%以下にするのが好ましく、1.0質量%以下にするのがさらに好ましい。   Zn has the effect of improving the solderability and strength of the copper alloy sheet and improving the castability. Moreover, there exists an advantage that an inexpensive brass scrap can be used by adding Zn. In order to sufficiently exhibit this effect, the Zn content is preferably 0.1% by mass or more, and more preferably 0.3% by mass or more. However, if the Zn content exceeds 2.0% by mass, the conductivity and stress corrosion cracking resistance are liable to decrease. Therefore, when Zn is added, the Zn content is set to 2.0% by mass or less. Is preferable, and it is further more preferable to set it as 1.0 mass% or less.

Mgは、Ni−Si系析出物の粗大化を防止する作用を有するとともに、耐応力緩和性を向上させる作用を有する。これらの作用を十分に発揮させるためには、Mg含有量を0.01質量%以上にするのが好ましい。しかし、Mg含有量が1.0質量%を超えると、鋳造性や熱間加工性が著しく低下し易くなるので、Mgを添加する場合には、Mg含有量を1.0質量%以下にするのが好ましい。   Mg has the function of preventing the coarsening of Ni—Si-based precipitates and the function of improving stress relaxation resistance. In order to sufficiently exhibit these actions, it is preferable to set the Mg content to 0.01% by mass or more. However, when the Mg content exceeds 1.0% by mass, the castability and hot workability are remarkably deteriorated. Therefore, when adding Mg, the Mg content is set to 1.0% by mass or less. Is preferred.

必要に応じて銅合金板材に添加するその他の元素として、Co、Cr、B、P、Fe、Zr、Ti、Mn、Ag、Be、ミッシュメタルなどがある。例えば、Co、Cr、B、P、Fe、Zr、Ti、Mn、Beは、合金強度をさらに高めるとともに、応力緩和を小さくする作用を有する。また、Co、Cr、Zr、Ti、Mnは、不可避的不純物として存在するSやPbなどと高融点化合物を形成し易く、B、P、Zr、Tiは、鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。また、Agは、導電率をそれ程低下させずに固溶強化の効果を有する。さらに、ミッシュメタルは、Ce、La、Dy、Nd、Yなどを含む希土類元素の混合物であり、結晶粒の微細化効果や、析出物の分散化効果を有する。   Other elements added to the copper alloy sheet as necessary include Co, Cr, B, P, Fe, Zr, Ti, Mn, Ag, Be, Misch metal, and the like. For example, Co, Cr, B, P, Fe, Zr, Ti, Mn, and Be have the effect of further increasing the alloy strength and reducing the stress relaxation. Co, Cr, Zr, Ti, and Mn are easy to form a high melting point compound with S, Pb, etc. present as inevitable impurities, and B, P, Zr, and Ti have an effect of refining the cast structure. Has the effect of improving hot workability. Moreover, Ag has the effect of solid solution strengthening without reducing the electrical conductivity so much. Furthermore, misch metal is a mixture of rare earth elements including Ce, La, Dy, Nd, Y, and the like, and has an effect of refining crystal grains and an effect of dispersing precipitates.

なお、銅合金板材がCo、Cr、B、P、Fe、Zr、Ti、Mn、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上を含有する場合には、各元素を添加した効果を十分に得るために、これらの総量が0.01質量%以上であるのが好ましい。しかし、総量が3質量%を超えると、熱間加工性または冷間加工性に悪い影響を与え、コスト的にも不利になる。したがって、これらの元素の総量は、3質量%以下であるのが好ましく、2質量%以下であるのがさらに好ましい。   In addition, when the copper alloy sheet material contains one or more selected from the group consisting of Co, Cr, B, P, Fe, Zr, Ti, Mn, Ag, Be, and Misch metal, the effect of adding each element In order to sufficiently obtain the above, the total amount of these is preferably 0.01% by mass or more. However, if the total amount exceeds 3% by mass, the hot workability or the cold workability is adversely affected, which is disadvantageous in terms of cost. Therefore, the total amount of these elements is preferably 3% by mass or less, and more preferably 2% by mass or less.

[結晶方位]
Cu−Ni−Si系銅合金は、溶体化処理で得られるような{200}結晶面を主方位成分とする集合組織が強く、{422}結晶面の割合が少ないほど曲げ加工性が向上する。但し、高強度化を図るためには、仕上げ冷間圧延が不可欠である。この仕上げ冷間圧延における圧延率が増大すると、{220}結晶面を主方位成分とする圧延集合組織が発達して、{200}結晶面による曲げ加工性の改善が損なわれる。さらに、{422}結晶面は、少量でも曲げ加工性の低下に寄与するので、{220}結晶面の発達によりその性質が損なわれることはない。そのため、溶体化処理後に{422}結晶面の体積分率を低く留めることによって、銅合金板材の強度と曲げ加工性を高いレベルで維持することが必要になる。
[Crystal orientation]
The Cu—Ni—Si based copper alloy has a strong texture with {200} crystal planes as the main orientation component as obtained by solution treatment, and the bending workability improves as the proportion of {422} crystal planes decreases. . However, finish cold rolling is indispensable for achieving high strength. When the rolling rate in the finish cold rolling is increased, a rolling texture having a {220} crystal plane as a main orientation component develops, and the improvement of bending workability by the {200} crystal plane is impaired. Furthermore, since the {422} crystal plane contributes to a decrease in bending workability even in a small amount, the property is not impaired by the development of the {220} crystal plane. Therefore, it is necessary to maintain the strength and bending workability of the copper alloy sheet at a high level by keeping the volume fraction of the {422} crystal plane low after the solution treatment.

本発明者らは、種々の検討の結果、その中間的な組織状態は、銅合金板材の板面においてX線回折を行ったときの{hkl}回折ピークの積分強度をI{hkl}とすると、I{200}/I{422}≧15を満たす結晶配向を有することを見出した。   As a result of various studies, the present inventors have determined that the intermediate structure state is I {hkl}, where the integrated intensity of the {hkl} diffraction peak when X-ray diffraction is performed on the plate surface of the copper alloy sheet is I {hkl}. And having a crystal orientation satisfying I {200} / I {422} ≧ 15.

I{200}/I{422}が小さ過ぎる場合は、{422}結晶面を主方位成分とする再結晶集合組織が有する性質が相対的に優勢であり、曲げ加工性が極端に悪くなる。一方、I{200}/I{422}が大きいと、曲げ加工性は、LDとTDのいずれの方向についても同時に顕著に改善される。また、Coなどの添加によって合金強度を高めて引張強さが800MPa以上になる場合には、さらに曲げ加工性を向上させる必要があるため、I{200}/I{422}≧50を満たすのが好ましい。   When I {200} / I {422} is too small, the properties of the recrystallized texture having the {422} crystal plane as the main orientation component are relatively dominant, and the bending workability becomes extremely poor. On the other hand, when I {200} / I {422} is large, the bending workability is significantly improved at the same time in both the LD and TD directions. Further, when the alloy strength is increased by addition of Co or the like and the tensile strength becomes 800 MPa or more, it is necessary to further improve the bending workability, so that I {200} / I {422} ≧ 50 is satisfied. Is preferred.

また、最終溶体化処理前後のX線回折による{422}結晶面の積分強度をそれぞれIb{422}およびIa{422}とすると、Ia{422}/Ib{422}≦1を満たすのが好ましい。この式は、溶体化処理により{422}結晶面の回折強度が低下することを意味し、溶体化処理前の歪エネルギーと溶体化処理条件が適切な場合のみに起こる現象である。   Further, when the integrated intensity of the {422} crystal plane by X-ray diffraction before and after the final solution treatment is Ib {422} and Ia {422}, it is preferable that Ia {422} / Ib {422} ≦ 1 is satisfied. . This equation means that the diffraction intensity of the {422} crystal plane is lowered by the solution treatment, and is a phenomenon that occurs only when the strain energy before the solution treatment and the solution treatment conditions are appropriate.

[特性]
コネクタなどの電気電子部品を小型化および薄肉化するためには、素材である銅合金板材の引張強さを650MPa以上にするのが好ましく、700MPa以上にするのがさらに好ましい。また、時効硬化を利用して高強度化するため、この銅合金板材は、時効処理された金属組織を有している。曲げ加工性は、GoodWayおよびBadWayのいずれも、90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが1.0以下であるのが好ましく、0.5以下であるのがさらに好ましい。
[Characteristic]
In order to reduce the size and thickness of electrical and electronic parts such as connectors, it is preferable that the tensile strength of the copper alloy plate material, which is a material, be 650 MPa or more, and more preferably 700 MPa or more. Moreover, in order to increase the strength by using age hardening, the copper alloy sheet has a metal structure that has been subjected to an aging treatment. As for the bending workability, the ratio R / t between the minimum bending radius R and the sheet thickness t in the 90 ° W bending test is preferably 1.0 or less, and is 0.5 or less in both GoodWay and BadWay. Further preferred.

[製造方法]
上述したような銅合金板材は、本発明による銅合金板材の製造方法の実施の形態によって製造することができる。本発明による銅合金板材の製造方法の実施の形態は、上述した組成を有する銅合金の原料を溶解して鋳造する溶解・鋳造工程と、この溶解・鋳造工程の後に、950℃から600℃に温度を下げながら熱間圧延を行う熱間圧延工程と、この熱間圧延工程の後に、圧延率80%以上で冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に、加熱温度500〜600℃で析出を目的とした熱処理を行う熱処理工程と、この熱処理工程の後に、圧延率80%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に、加熱温度700〜980℃で溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に、圧延率0〜50%で中間冷間圧延を行う中間冷間圧延工程(「圧延率0%」は中間冷間圧延を行わない場合を意味する。)と、この中間冷間圧延工程の後に、400〜600℃で時効処理を行う時効処理工程と、この時効処理工程の後に、圧延率50%以下で冷間圧延を順次施す仕上げ冷間圧延工程とを備え、溶体化処理工程の際に、最終溶体化処理前後のX線回折による{422}結晶面の積分強度をそれぞれIb{422}およびIa{422}として、Ia{422}/Ib{422}≦1を満たすようにする。なお、仕上げ冷間圧延工程の後に、さらに150〜550℃で加熱処理(低温焼鈍)を施すのが好ましい。また、熱間圧延後には、必要に応じて面削を行い、熱処理後には、必要に応じて酸洗、研磨、脱脂を行ってもよい。以下、これらの工程について詳細に説明する。
[Production method]
The copper alloy sheet as described above can be produced by the embodiment of the method for producing a copper alloy sheet according to the present invention. An embodiment of a method for producing a copper alloy sheet according to the present invention includes a melting / casting step of melting and casting a copper alloy raw material having the above-described composition, and a temperature of 950 ° C. to 600 ° C. after the melting / casting step. A hot rolling process in which hot rolling is performed while lowering the temperature, a first cold rolling process in which cold rolling is performed at a rolling rate of 80% or more after the hot rolling process, and the first cold rolling process. After the step, a heat treatment step for performing a heat treatment for precipitation at a heating temperature of 500 to 600 ° C., a second cold rolling step for performing cold rolling at a rolling rate of 80% or more after the heat treatment step, After the second cold rolling step, a solution treatment step in which solution treatment is performed at a heating temperature of 700 to 980 ° C., and after this solution treatment step, intermediate cold rolling is performed at a rolling rate of 0 to 50%. Cold rolling process ("Rolling rate 0%" performs intermediate cold rolling ), An aging treatment step in which aging treatment is performed at 400 to 600 ° C. after the intermediate cold rolling step, and cold rolling at a rolling rate of 50% or less after the aging treatment step. A final cold rolling step, and in the solution treatment step, the integrated intensity of {422} crystal planes by X-ray diffraction before and after the final solution treatment is denoted by Ib {422} and Ia {422}, respectively. {422} / Ib {422} ≦ 1 is satisfied. In addition, it is preferable to heat-process (low-temperature annealing) at 150-550 degreeC after a finish cold rolling process. Further, after hot rolling, chamfering may be performed as necessary, and after heat treatment, pickling, polishing, and degreasing may be performed as necessary. Hereinafter, these steps will be described in detail.

(溶解・鋳造工程)
一般的な銅合金の溶製方法と同様の方法により、銅合金の原料を溶解した後、連続鋳造や半連続鋳造などにより鋳片を製造する。
(Melting and casting process)
A slab is produced by continuous casting or semi-continuous casting after the raw material of the copper alloy is melted by the same method as a general copper alloy melting method.

(熱間圧延工程)
鋳片の熱間圧延は、950℃から600℃に温度を下げながら数パスに分けて行う。トータルの圧延率は、概ね80〜95%にすればよい。熱間圧延終了後には、水冷などにより急冷するのが好ましい。また、熱間加工後には、必要に応じて面削や酸洗を行ってもよい。
(Hot rolling process)
The slab is hot-rolled in several passes while the temperature is lowered from 950 ° C to 600 ° C. The total rolling ratio may be approximately 80 to 95%. After the hot rolling is completed, it is preferable to quench by water cooling or the like. In addition, after hot working, chamfering or pickling may be performed as necessary.

(第1の冷間圧延工程)
この冷間圧延工程では、圧延率を80%以上にする必要があり、85%以上にするのがさらに好ましい。このような圧延率で加工された材料に対して、次工程で熱処理を施すことにより、析出物の量を増加させることができる。
(First cold rolling process)
In this cold rolling step, the rolling rate needs to be 80% or more, and more preferably 85% or more. By subjecting the material processed at such a rolling rate to a heat treatment in the next step, the amount of precipitates can be increased.

(熱処理工程)
次に、析出を目的とした熱処理を行う。析出が不十分であると、次工程の第2の冷間圧延工程において歪エネルギーおよび積層欠陥エネルギーの導入も不十分になる。具体的には、500〜600℃の温度で行うのが好ましい。熱処理時間は、概ね1〜10時間程度で良好な結果が得られる。この熱処理により、ビッカース硬さが60%程度に軟化するため、次工程における圧延負荷が軽減される効果もある。
(Heat treatment process)
Next, heat treatment for the purpose of precipitation is performed. If the precipitation is insufficient, the introduction of strain energy and stacking fault energy will be insufficient in the second cold rolling step of the next step. Specifically, it is preferably performed at a temperature of 500 to 600 ° C. The heat treatment time is about 1 to 10 hours, and good results are obtained. This heat treatment softens the Vickers hardness to about 60%, so that the rolling load in the next process is also reduced.

(第2の冷間圧延工程)
続いて、2度目の冷間圧延を行う。この冷間圧延では、圧延率を80%以上にする必要があり、85%以上にするのがさらに好ましい。この冷間圧延工程では、前工程の析出物の存在により、効率よく歪エネルギーおよび積層欠陥エネルギーを導入することができる。これらのエネルギーが不足すると、溶体化処理時に{422}結晶面を主方位成分とする集合組織が残存し易くなるとともに、{200}結晶面を主方位成分とする再結晶集合組織の形成が不十分になる。すなわち、再結晶集合組織は、再結晶前の析出物の分散状態と量や、冷間圧延における圧延率に依存する。なお、この冷間圧延における圧延率の上限は、ミルパワーなどにより必然的に制約されるので、特に規定する必要はないが、前工程により軟化しているため、さらに強圧延を施すことも可能である。
(Second cold rolling process)
Subsequently, the second cold rolling is performed. In this cold rolling, the rolling rate needs to be 80% or more, and more preferably 85% or more. In this cold rolling process, strain energy and stacking fault energy can be efficiently introduced due to the presence of precipitates from the previous process. When these energies are insufficient, a texture having a {422} crystal plane as a main orientation component tends to remain during solution treatment, and a recrystallized texture having a {200} crystal plane as a main orientation component is not formed. It will be enough. That is, the recrystallization texture depends on the dispersion state and amount of precipitates before recrystallization and the rolling rate in cold rolling. Note that the upper limit of the rolling rate in this cold rolling is inevitably restricted by mill power and the like, and thus it is not necessary to specify in particular. However, since it has been softened by the previous process, it is possible to perform further strong rolling. is there.

(溶体化処理工程)
溶体化処理は、溶質元素のマトリックス中への再固溶と、再結晶化という2つの目的を兼ねる熱処理である。上述した熱処理と冷間圧延を行うことによって適切な歪エネルギーが導入された材料を対象にし、Ia{422}/Ib{422}≦1を満たすように溶体化処理を行うことによって、溶体化処理後には{422}結晶面を主方位成分とする結晶の割合が減少し、{200}結晶面を優先方位とする再結晶集合組織が得られる。
(Solution treatment process)
The solution treatment is a heat treatment that serves the two purposes of re-solution of solute elements in the matrix and recrystallization. By applying the solution treatment so that Ia {422} / Ib {422} ≦ 1 is satisfied for the material in which appropriate strain energy is introduced by performing the above heat treatment and cold rolling, the solution treatment is performed. Later, the proportion of crystals having the {422} crystal plane as the main orientation component decreases, and a recrystallized texture having the {200} crystal plane as the preferred orientation is obtained.

この溶体化処理は、再結晶粒径が5〜60μmになるように温度と時間を調整して行うのが好ましく、5〜30μmになるように調整するのがさらに好ましい。再結晶粒径が微細になり過ぎると、再結晶集合組織が弱くなることにより、仕上げ圧延時に圧延集合組織が優勢になり易く、曲げ加工性を改善し難くなる。但し、溶体化処理温度を過度に高めないことが重要である。具体的には、700〜980℃、好ましくは700〜900℃で、10秒〜10分間の加熱処理を行うのが好ましい。溶体化処理温度が高過ぎると、{422}結晶面を主方位成分とする結晶が残存し易くなる傾向があり、また、結晶粒径が粗大化し易く、曲げ加工性の低下を招き易い。一方、溶体化処理温度が低過ぎると、再結晶が不完全で溶質元素の固溶も不十分になり、最終的に曲げ加工性の優れた高強度の銅合金板材を得るのが困難になる。上述したように、NiおよびSiの含有量の上限が定められているので、780℃以下の低めの溶体化処理温度でNiSi相を十分に消失させることができる。但し、高強度化を目的としてCoなどを添加した場合、再結晶粒の成長が抑制されるため、800〜900℃の温度が必要になる。 This solution treatment is preferably performed by adjusting the temperature and time so that the recrystallized grain size is 5 to 60 μm, and more preferably adjusted to 5 to 30 μm. If the recrystallized grain size becomes too fine, the recrystallized texture becomes weak, so that the rolled texture tends to become dominant during finish rolling, and it becomes difficult to improve the bending workability. However, it is important not to increase the solution treatment temperature excessively. Specifically, it is preferable to perform heat treatment at 700 to 980 ° C., preferably 700 to 900 ° C. for 10 seconds to 10 minutes. If the solution treatment temperature is too high, crystals having a {422} crystal plane as the main orientation component tend to remain, and the crystal grain size tends to become coarse, which tends to cause a decrease in bending workability. On the other hand, if the solution treatment temperature is too low, the recrystallization is incomplete and the solute elements are not sufficiently dissolved, and it becomes difficult to finally obtain a high-strength copper alloy sheet with excellent bending workability. . As described above, since the upper limits of the contents of Ni and Si are determined, the Ni 2 Si phase can be sufficiently eliminated at a lower solution treatment temperature of 780 ° C. or lower. However, when Co or the like is added for the purpose of increasing the strength, the growth of recrystallized grains is suppressed, so that a temperature of 800 to 900 ° C. is required.

(中間冷間圧延工程)
続いて、0〜50%の圧延率で冷間圧延を行う。この段階における冷間圧延は、次工程の時効処理中の析出を促進する効果があり、必要な導電率や硬さなどの特性を引き出すための時効時間を短くすることができる。この冷間圧延によって、{220}結晶面を主方位成分とする集合組織が発達していくが、50%以下の圧延率では、{200}結晶面が板面に平行な結晶粒もまだ十分に残存している。特に、この冷間圧延における圧延率は、時効処理後に行う仕上げ冷間圧における圧延率と適切に組合せることにより、最終的な高強度化と曲げ加工性の改善に寄与する。この段階の冷間圧延は、圧延率50%以下で行う必要があり、圧延率0〜35%にするのがさらに好ましい。この圧延率が高過ぎると、次の時効処理工程で析出が不均一に発生して過時効になり易く、また、I{200}/I{422}≧15を満たすような理想的な結晶配向を得難くなる。
(Intermediate cold rolling process)
Subsequently, cold rolling is performed at a rolling rate of 0 to 50%. Cold rolling at this stage has an effect of promoting precipitation during the aging treatment of the next process, and can shorten the aging time for extracting necessary characteristics such as conductivity and hardness. This cold rolling develops a texture with {220} crystal planes as the main orientation component, but with a rolling rate of 50% or less, crystal grains whose {200} crystal planes are parallel to the plate surface are still sufficient. Remains. In particular, the rolling rate in this cold rolling contributes to the final increase in strength and improvement in bending workability by appropriately combining with the rolling rate at the finish cold pressure performed after the aging treatment. Cold rolling at this stage needs to be performed at a rolling rate of 50% or less, and is more preferably 0 to 35%. If the rolling rate is too high, precipitation occurs non-uniformly in the next aging treatment step and is likely to be over-aged, and ideal crystal orientation satisfying I {200} / I {422} ≧ 15 It becomes difficult to obtain.

なお、この圧延率がゼロである場合は、溶体化処理後に中間冷間圧延を行わず、直接時効処理に供することを意味する。また、生産性を向上させるために、この段階における冷間圧延工程を省略してもよい。   In addition, when this rolling rate is zero, it means that the intermediate aging treatment is not performed after the solution treatment and the aging treatment is directly performed. In order to improve productivity, the cold rolling process at this stage may be omitted.

(時効処理工程)
続いて、時効処理を行う。この時効処理では、Cu−Ni−Si系銅合金板材の導電性と強度の向上に有効な条件の中で、あまり温度を上げ過ぎないようにする。時効処理温度が高くなり過ぎると、溶体化処理によって発達した{200}結晶面を優先方位とする結晶配向が弱められ、{422}結晶面の特性が強く出るため、結果的に十分な曲げ加工性の改善の効果が得られない場合がある。具体的には、400〜500℃の温度で行うのが好ましい。時効処理時間は、概ね1〜10時間程度で良好な結果が得られる。
(Aging process)
Subsequently, an aging process is performed. In this aging treatment, the temperature is not excessively raised under conditions effective for improving the conductivity and strength of the Cu—Ni—Si copper alloy sheet. If the aging treatment temperature becomes too high, the crystal orientation with the {200} crystal plane developed by the solution treatment as the preferred orientation is weakened and the characteristics of the {422} crystal plane become strong, resulting in sufficient bending. The effect of improving the sex may not be obtained. Specifically, it is preferably performed at a temperature of 400 to 500 ° C. The aging treatment time is about 1 to 10 hours, and good results are obtained.

(仕上げ冷間圧延工程)
この仕上げ冷間圧延では、強度レベルの向上を図るとともに、{220}結晶面を主方位成分とする圧延集合組織を発達させていく。仕上げ冷間圧延の圧延率が低過ぎると、強度を高める効果を十分に得ることができない。一方、仕上げ冷間圧延の圧延率が高過ぎると、{220}結晶面を主方位成分とする圧延集合組織が相対的に優勢になり過ぎ、強度と曲げ加工性の両方が良好な中間的な結晶配向を実現することができない。
(Finish cold rolling process)
In this finish cold rolling, the strength level is improved and a rolling texture having a {220} crystal plane as a main orientation component is developed. If the rolling rate of finish cold rolling is too low, the effect of increasing the strength cannot be obtained sufficiently. On the other hand, if the rolling ratio of finish cold rolling is too high, the rolling texture having the {220} crystal plane as the main orientation component becomes relatively dominant, and both strength and bending workability are good. Crystal orientation cannot be realized.

この仕上げ冷間圧延の圧延率は、10%以上にする必要がある。但し、仕上げ冷間圧延の圧延率の上限については、時効処理前に行った中間冷間圧延の寄与分を考慮しなければならない。本発明者らの詳細な研究の結果、その上限は、上述した中間冷間圧延の圧延率との合計で溶体化処理から最終工程まで板厚の減少率が50%を超えないように設定する必要があることがわかった。すなわち、中間冷間圧延の圧延率(%)をε1、仕上げ冷間圧延の圧延率(%)をε2とすると、10≦ε2≦(50−ε1)/(100−ε1)×100を満たすように仕上げ冷間圧延を行う。   The rolling rate of this finish cold rolling needs to be 10% or more. However, as for the upper limit of the rolling rate of finish cold rolling, the contribution of intermediate cold rolling performed before aging treatment must be taken into consideration. As a result of detailed studies by the present inventors, the upper limit is set so that the reduction rate of the sheet thickness does not exceed 50% from the solution treatment to the final step in total with the rolling ratio of the above-described intermediate cold rolling. I found it necessary. That is, if the rolling rate (%) of intermediate cold rolling is ε1 and the rolling rate (%) of finish cold rolling is ε2, 10 ≦ ε2 ≦ (50−ε1) / (100−ε1) × 100 is satisfied. To finish cold rolling.

最終的な板厚としては、概ね0.05〜1.0mmにするのが好ましく、0.08〜0.5mmにするのがさらに好ましい。   The final plate thickness is preferably about 0.05 to 1.0 mm, more preferably 0.08 to 0.5 mm.

(加熱処理(低温焼鈍)工程)
仕上げ冷間圧延工程の後には、板条材の残留応力の低減、ばね限界値と耐応力緩和特性の向上を目的として、低温焼鈍を施してもよい。加熱温度は、150〜550℃になるように設定するのが好ましい。これにより板材内部の残留応力が低減され、強度の低下をほとんど伴わずに曲げ加工性を向上させることができる。また、導電率を向上させる効果もある。この加熱温度が高過ぎると、短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じ易くなる。一方、加熱温度が低過ぎると、上述した特性を改善する効果が十分に得られない。加熱時間は、5秒以上にするのが好ましく、通常1時間以内で良好な結果が得られる。
(Heat treatment (low temperature annealing) process)
After the finish cold rolling step, low-temperature annealing may be performed for the purpose of reducing the residual stress of the strip material and improving the spring limit value and the stress relaxation resistance. The heating temperature is preferably set to 150 to 550 ° C. As a result, the residual stress inside the plate material is reduced, and the bending workability can be improved with almost no decrease in strength. In addition, there is an effect of improving conductivity. If this heating temperature is too high, it softens in a short time, and variations in characteristics are likely to occur in both batch and continuous systems. On the other hand, if the heating temperature is too low, the above-described effect of improving the characteristics cannot be obtained sufficiently. The heating time is preferably 5 seconds or longer, and usually good results are obtained within 1 hour.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the copper alloy sheet material and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1〜14]
1.65質量%のNiと0.40質量%のSiを含み、残部がCuからなる銅合金(実施例1)、1.64質量%のNiと0.39質量%のSiと0.54質量%のSnと0.44質量%のZnを含み、残部がCuからなる銅合金(実施例2)、1.59質量%のNiと0.37質量%のSiと0.48質量%のSnと0.18質量%のZnと0.25質量%のFeを含み、残部がCuからなる銅合金(実施例3)、1.52質量%のNiと0.61質量%のSiと1.1質量%のCoを含み、残部がCuからなる銅合金(実施例4)、0.77質量%のNiと0.20質量%のSiを含み、残部がCuからなる銅合金(実施例5)、3.48質量%のNiと0.70質量%のSiを含み、残部がCuからなる銅合金(実施例6)、2.50質量%のNiと0.49質量%のSiと0.19質量%のMgを含み、残部がCuからなる銅合金(実施例7)、2.64質量%のNiと0.63質量%のSiと0.13質量%のCrと0.10質量%のPを含み、残部がCuからなる銅合金(実施例8)、2.44質量%のNiと0.46質量%のSiと0.11質量%のSnと0.12質量%のTiと0.007質量%のBを含み、残部がCuからなる銅合金(実施例9)、1.31質量%のNiと0.36質量%のSiと0.12質量%のZrと0.07質量%のMnを含み、残部がCuからなる銅合金(実施例10)、1.64質量%のNiと0.39質量%のSiと0.54質量%のSnと0.44質量%のZnを含み、残部がCuからなる銅合金(実施例11)、1.65質量%のNiと0.40質量%のSiと0.57質量%のSnと0.52質量%のZnを含み、残部がCuからなる銅合金(実施例12)、3.98質量%のNiと0.98質量%のSiと0.10質量%のAgと0.11質量%のBeを含み、残部がCuからなる銅合金(実施例13)、3.96質量%のNiと0.92質量%のSiと0.21質量%のミッシュメタルを含み、残部がCuからなる銅合金(実施例14)をそれぞれ溶製し、縦型連続鋳造機を用いて鋳造して鋳片を得た。
[Examples 1 to 14]
1. A copper alloy (Example 1) containing 1.65% by mass of Ni and 0.40% by mass of Si with the balance being Cu, 1.64% by mass of Ni, 0.39% by mass of Si and 0.54 A copper alloy (Example 2) containing Sn of mass% and Zn of 0.44 mass%, the balance being Cu, 1.59 mass% Ni, 0.37 mass% Si and 0.48 mass% A copper alloy (Example 3) containing Sn, 0.18% by mass of Zn and 0.25% by mass of Fe, the balance being Cu, 1.52% by mass of Ni, 0.61% by mass of Si and 1 A copper alloy containing 1% by mass of Co and the balance being Cu (Example 4), a copper alloy containing 0.77% by mass of Ni and 0.20% by mass of Si and the balance being Cu (Example) 5) A copper alloy containing 3.48 mass% Ni and 0.70 mass% Si with the balance being Cu (Example 6), 2.50 A copper alloy (Example 7) containing a quantity of Ni, 0.49 mass% Si and 0.19 mass% Mg, the balance being Cu, 2.64 mass% Ni and 0.63 mass% A copper alloy containing Si, 0.13% by mass of Cr and 0.10% by mass of P, with the balance being Cu (Example 8), 2.44% by mass of Ni, 0.46% by mass of Si, and 0 Copper alloy (Example 9) containing 11 mass% Sn, 0.12 mass% Ti and 0.007 mass% B with the balance being Cu, 1.31 mass% Ni and 0.36 mass %, Si, 0.12% by mass of Zr and 0.07% by mass of Mn, the balance being Cu alloy (Example 10), 1.64% by mass of Ni and 0.39% by mass of Si And a copper alloy containing 0.54% by mass of Sn and 0.44% by mass of Zn with the balance being Cu (Example 11), 1.65% by mass A copper alloy (Example 12) comprising Ni, 0.40% by mass of Si, 0.57% by mass of Sn, and 0.52% by mass of Zn, with the balance being Cu, 3.98% by mass of Ni, A copper alloy containing 0.98 mass% Si, 0.10 mass% Ag and 0.11 mass% Be with the balance being Cu (Example 13), 3.96 mass% Ni and 0.92 A copper alloy (Example 14) containing Si in mass% and 0.21 mass% in misch metal with the balance being Cu was melted and cast using a vertical continuous casting machine to obtain a slab. .

それぞれの鋳片を950℃に加熱し、950℃から600℃まで温度を下げながら熱間圧延を行って厚さ10mmの板材にした後、水冷によって急冷し、その後、表層の酸化層を機械研磨により除去(面削)した。   Each slab is heated to 950 ° C, hot rolled while lowering the temperature from 950 ° C to 600 ° C to form a plate with a thickness of 10 mm, then quenched by water cooling, and then the surface oxide layer is mechanically polished (Removal).

次いで、それぞれ圧延率86%(実施例1、5〜14)、80%(実施例2、3)、82%(実施例4)で第1の冷間圧延を行った後、それぞれ520℃で6時間(実施例1、2、5〜14)、540℃で6時間(実施例3)、550℃で8時間(実施例4)熱処理を行い、その後、それぞれ圧延率86%(実施例1、5〜14)、90%(実施例2、3)、89%(実施例4)で第2の冷間圧延を行った。   Subsequently, after performing the first cold rolling at a rolling rate of 86% (Examples 1 and 5 to 14), 80% (Examples 2 and 3), and 82% (Example 4), respectively, at 520 ° C. Heat treatment was performed for 6 hours (Examples 1, 2, 5 to 14), 540 ° C. for 6 hours (Example 3), and 550 ° C. for 8 hours (Example 4). Thereafter, the rolling rate was 86% (Example 1). 5-14), 90% (Examples 2 and 3), and 89% (Example 4), the second cold rolling was performed.

次いで、圧延板の表面における(JIS
H0501の切断法による)平均結晶粒径が5μmより大きく且つ30μm以下になるように、合金の組成に応じて700〜900℃の範囲内で調整した温度で10秒〜10分間保持して溶体化処理を行った。この溶体化処理における保持温度と保持時間は、それぞれの実施例の合金の組成に応じて最適な温度と時間を予備実験により求め、実施例1では750℃で10分間、実施例2では725℃で10分間、実施例3では775℃で10分間、実施例4では900℃で10分間、実施例5では700℃で7分間、実施例6および13〜14では850℃で10分間、実施例7〜9では800℃で10分間、実施例10では700℃で10分間、実施例11〜12では725℃で10分間であった。なお、この溶体化処理前後で、それぞれIa{422}/Ib{422}が0.89(実施例1、9)、0.92(実施例2、6)、0.95(実施例3)、0.91(実施例4、8、14)、0.98(実施例5)、0.90(実施例7)、0.96(実施例10)、0.88(実施例11、12)、0.93(実施例13)になっており、いずれの実施例においてもIa{422}/Ib{422}≦1を満たしていた。
Next, on the surface of the rolled plate (JIS
(Solution method by the H0501 cutting method) Hold for 10 seconds to 10 minutes at a temperature adjusted in the range of 700 to 900 ° C. according to the composition of the alloy so that the average crystal grain size is larger than 5 μm and 30 μm or less. Processed. The holding temperature and holding time in this solution treatment are determined by preliminary experiments in accordance with the compositions of the alloys of the respective examples. In Example 1, 750 ° C. for 10 minutes and in Example 2 725 ° C. 10 minutes at Example 3, 775 ° C. for 10 minutes in Example 3, 900 ° C. for 10 minutes in Example 4, 7 minutes at 700 ° C. in Example 5, 10 minutes at 850 ° C. in Examples 6 and 13-14 7 to 9 was 800 ° C. for 10 minutes, Example 10 was 700 ° C. for 10 minutes, and Examples 11 to 12 were 725 ° C. for 10 minutes. In addition, before and after this solution treatment, Ia {422} / Ib {422} is 0.89 (Examples 1 and 9), 0.92 (Examples 2 and 6), and 0.95 (Example 3), respectively. 0.91 (Examples 4, 8, and 14), 0.98 (Example 5), 0.90 (Example 7), 0.96 (Example 10), and 0.88 (Examples 11 and 12) ), 0.93 (Example 13), and in all the examples, Ia {422} / Ib {422} ≦ 1 was satisfied.

次いで、実施例12では、圧延率12%で中間冷間圧延を行った。なお、他の実施例では、この中間冷間圧延を行わなかった。   Next, in Example 12, intermediate cold rolling was performed at a rolling rate of 12%. In other examples, the intermediate cold rolling was not performed.

次いで、450℃で時効処理を行った。時効処理時間は、合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。なお、この時効処理時間については、それぞれの実施例の合金の組成に応じて最適な時効処理時間を予備実験により求め、実施例1〜3および10〜12では5時間、実施例4、6〜9および13〜14では7時間、実施例5では4時間であった。   Next, an aging treatment was performed at 450 ° C. The aging treatment time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition. In addition, about this aging treatment time, the optimal aging treatment time was calculated | required by preliminary experiment according to the composition of the alloy of each Example, and in Examples 1-3 and 10-12, 5 hours, Examples 4, 6- 9 and 13 to 14 were 7 hours, and Example 5 was 4 hours.

次いで、それぞれ圧延率29%(実施例1〜10、13〜14)、圧延率40%(実施例11)、圧延率17%(実施例12)で仕上げ冷間圧延を行って、実施例1〜12の銅合金板材を得た。なお、必要に応じて途中で面削を行い、銅合金板材の板厚を0.15mm(実施例1〜10、12〜14)または0.125mm(実施例11)に揃えた。   Next, finish cold rolling was performed at a rolling rate of 29% (Examples 1 to 10, 13 to 14), a rolling rate of 40% (Example 11), and a rolling rate of 17% (Example 12). ~ 12 copper alloy sheets were obtained. In addition, it chamfered on the way as needed, and the board thickness of the copper alloy board | plate material was arrange | equalized with 0.15 mm (Examples 1-10, 12-14) or 0.125 mm (Example 11).

次に、これらの実施例で得られた銅合金板材から試料を採取し、X線回折強度、導電率、引張強さ、曲げ加工性を以下のように調べた。   Next, samples were collected from the copper alloy sheet materials obtained in these examples, and the X-ray diffraction intensity, conductivity, tensile strength, and bending workability were examined as follows.

X線回折強度(X線回折積分強度)の測定は、X線回折装置(XRD)を用いて、Mo−Kα1およびKα2線、管電圧40kV、管電流30mAの条件で、試料の板面(圧延面)について{422}面の回折ピークの積分強度I{422}と{200}面の回折ピークの積分強度I{200}を測定した。なお、試料の圧延面に明らかな酸化が認められた場合に、酸洗または#1500耐水ペーパーで研磨仕上げした試料を使用した。その結果、X線回折強度比I{200}/I{422}は、それぞれ37(実施例1)、20(実施例2)、16(実施例3)、52(実施例4)、16(実施例5)、50(実施例6)、25(実施例7)、27(実施例8)、24(実施例9)、18(実施例10)、19(実施例11)、38(実施例12)、56(実施例13)、55(実施例14)であり、いずれもI{200}/I{422}≧15を満たす結晶配向を有していた。   The X-ray diffraction intensity (X-ray diffraction integrated intensity) was measured using an X-ray diffractometer (XRD) under the conditions of Mo-Kα1 and Kα2 rays, tube voltage 40 kV, tube current 30 mA (rolling). Plane), the integrated intensity I {422} of the diffraction peak of the {422} plane and the integrated intensity I {200} of the diffraction peak of the {200} plane were measured. When obvious oxidation was observed on the rolled surface of the sample, a sample polished and finished with pickling or # 1500 water-resistant paper was used. As a result, the X-ray diffraction intensity ratios I {200} / I {422} are 37 (Example 1), 20 (Example 2), 16 (Example 3), 52 (Example 4), and 16 (Example 4), respectively. Example 5), 50 (Example 6), 25 (Example 7), 27 (Example 8), 24 (Example 9), 18 (Example 10), 19 (Example 11), 38 (Example) Examples 12), 56 (Example 13), and 55 (Example 14), and all had crystal orientation satisfying I {200} / I {422} ≧ 15.

銅合金板材の導電率は、JIS H0505の導電率測定方法に従って測定した。その結果、導電率は、それぞれ43.1%IACS(実施例1)、40.0%IACS(実施例2)、39.4%IACS(実施例3)、54.7%IACS(実施例4)、52.2%IACS(実施例5)、43.2%IACS(実施例6)、45.1%IACS(実施例7)、43.9%IACS(実施例8)、41.9%IACS(実施例9)、55.1%IACS(実施例10)、43.0%IACS(実施例11)、44.0%IACS(実施例12)、42.7%IACS(実施例13)、40.1%IACS(実施例14)であった。   The conductivity of the copper alloy sheet was measured according to the conductivity measurement method of JIS H0505. As a result, the conductivity was 43.1% IACS (Example 1), 40.0% IACS (Example 2), 39.4% IACS (Example 3), and 54.7% IACS (Example 4), respectively. ) 52.2% IACS (Example 5), 43.2% IACS (Example 6), 45.1% IACS (Example 7), 43.9% IACS (Example 8), 41.9% IACS (Example 9), 55.1% IACS (Example 10), 43.0% IACS (Example 11), 44.0% IACS (Example 12), 42.7% IACS (Example 13) 40.1% IACS (Example 14).

銅合金板材の引張強さとして、銅合金板材のLD(圧延方向)の引張試験用の試験片(JIS Z2241の5号試験片)をそれぞれ3個ずつ採取し、JIS Z2241に準拠した引張試験を行い、平均値によって引張強さを求めた。その結果、引張強さは、それぞれ722MPa(実施例1)、720MPa(実施例2)、701MPa(実施例3)、820MPa(実施例4)、702MPa(実施例5)、851MPa(実施例6)、728MPa(実施例7)、765MPa(実施例8)、762MPa(実施例9)、714MPa(実施例10)、730MPa(実施例11)、715MPa(実施例12)、852MPa(実施例13)、856MPa(実施例14)であり、いずれも引張強さ700MPa以上という高強度の銅合金板材であった。   As the tensile strength of the copper alloy sheet, three specimens for tensile test of LD (rolling direction) of the copper alloy sheet (sample No. 5 of JIS Z2241) were sampled each three, and a tensile test based on JIS Z2241 was conducted. The tensile strength was determined by the average value. As a result, the tensile strengths were 722 MPa (Example 1), 720 MPa (Example 2), 701 MPa (Example 3), 820 MPa (Example 4), 702 MPa (Example 5), and 851 MPa (Example 6), respectively. 728 MPa (Example 7), 765 MPa (Example 8), 762 MPa (Example 9), 714 MPa (Example 10), 730 MPa (Example 11), 715 MPa (Example 12), 852 MPa (Example 13), It was 856 MPa (Example 14), and all were high-strength copper alloy sheet materials having a tensile strength of 700 MPa or more.

銅合金板材の曲げ加工性を評価するために、銅合金板材から長手方向がLD(圧延方向)の曲げ試験片(幅10mm)とTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片(幅10mm)をそれぞれ3個ずつ採取し、それぞれの試験片について、JIS H3110に準拠した90°W曲げ試験を行った。この試験後の試験片について、曲げ加工部の表面および断面を光学顕微鏡によって100倍の倍率で観察して、割れが発生しない最小曲げ半径Rを求め、この最小曲げ半径Rを銅合金板材の板厚tで除することによって、LDとTDのそれぞれのR/t値を求めた。LDおよびTDのそれぞれ3個の試験片のうち、それぞれ最も悪い結果の試験片の結果を採用してR/t値とした。その結果、実施例1〜12では、LDを曲げ軸とするBadWay曲げと、TDを曲げ軸とするGoodWay曲げのいずれも、R/t=0.0であり、優れた曲げ加工性を有していた。また、実施例13〜14では、GoodWay曲げのR/t=0.0であり、BadWay曲げのR/t=0.3であった。   In order to evaluate the bending workability of the copper alloy sheet material, a bending test piece (width 10 mm) whose longitudinal direction is LD (rolling direction) and TD (direction perpendicular to the rolling direction and sheet thickness direction) from the copper alloy sheet material Three bending test pieces (width 10 mm) were sampled, and a 90 ° W bending test based on JIS H3110 was performed on each test piece. With respect to the test piece after this test, the surface and cross section of the bent portion were observed with an optical microscope at a magnification of 100 times to obtain a minimum bending radius R at which no cracks occurred, and this minimum bending radius R was obtained from a copper alloy sheet. By dividing by the thickness t, each R / t value of LD and TD was determined. Among the three test pieces of LD and TD, the result of the worst test piece was adopted to obtain the R / t value. As a result, in Examples 1 to 12, both BadWay bending using LD as a bending axis and GoodWay bending using TD as a bending axis have R / t = 0.0 and have excellent bending workability. It was. In Examples 13 to 14, Good Way bending R / t = 0.0 and Bad Way bending R / t = 0.3.

[比較例1]
実施例1と同じ組成の銅合金を使用し、第1の冷間圧延を行わず、900℃で1時間熱処理を行い、第2の冷間圧延の圧延率を98%として、Ia{422}/Ib{422}=1.6にした以外は、実施例1〜12とほぼ同様の方法により、銅合金板材を得た。なお、この比較例では、溶体化処理温度は750℃、溶体化処理時間は10分間、時効時間は5時間、仕上げ圧延率は29%、仕上げ板厚は0.15mmであった。
[Comparative Example 1]
A copper alloy having the same composition as in Example 1 was used, heat treatment was performed at 900 ° C. for 1 hour without performing the first cold rolling, and the rolling rate of the second cold rolling was set to 98%, and Ia {422} A copper alloy sheet was obtained in substantially the same manner as in Examples 1 to 12, except that /Ib{422}=1.6. In this comparative example, the solution treatment temperature was 750 ° C., the solution treatment time was 10 minutes, the aging time was 5 hours, the finish rolling rate was 29%, and the finished plate thickness was 0.15 mm.

この比較例で得られた銅合金板材から試料を採取し、X線回折強度、導電率、引張強さ、曲げ加工性について、実施例1〜12と同様の方法により調べた。その結果、I{200}/I{422}=2.5、導電率は43.4%IACS、引張強さは733MPa、GoodWay曲げのR/t=0.3、BadWay曲げのR/t=1.3であった。   A sample was taken from the copper alloy sheet obtained in this comparative example, and the X-ray diffraction intensity, conductivity, tensile strength, and bending workability were examined by the same method as in Examples 1-12. As a result, I {200} / I {422} = 2.5, conductivity 43.4% IACS, tensile strength 733 MPa, GoodWay bending R / t = 0.3, BadWay bending R / t = 1.3.

[比較例2]
実施例2と同じ組成の銅合金を使用し、第1の冷間圧延の圧延率を86%とし、900℃で0.5時間熱処理を行い、第2の冷間圧延の圧延率を86%として、Ia{422}/Ib{422}=1.2にした以外は、実施例1〜12とほぼ同様の方法により、銅合金板材を得た。なお、この比較例では、溶体化処理温度は725℃、溶体化処理時間は10分間、時効時間は5時間、仕上げ圧延率は29%、仕上げ板厚は0.15mmであった。
[Comparative Example 2]
Using a copper alloy having the same composition as in Example 2, the first cold rolling reduction rate was 86%, heat treatment was performed at 900 ° C. for 0.5 hour, and the second cold rolling reduction rate was 86%. As described above, a copper alloy sheet was obtained by the same method as in Examples 1 to 12, except that Ia {422} / Ib {422} = 1.2. In this comparative example, the solution treatment temperature was 725 ° C., the solution treatment time was 10 minutes, the aging time was 5 hours, the finish rolling rate was 29%, and the finished plate thickness was 0.15 mm.

この比較例で得られた銅合金板材から試料を採取し、X線回折強度、導電率、引張強さ、曲げ加工性について、実施例1〜12と同様の方法により調べた。その結果、I{200}/I{422}=5.4、導電率は40.1%IACS、引張強さは713MPa、GoodWay曲げのR/t=0.3、BadWay曲げのR/t=1.3であった。   A sample was taken from the copper alloy sheet obtained in this comparative example, and the X-ray diffraction intensity, conductivity, tensile strength, and bending workability were examined by the same method as in Examples 1-12. As a result, I {200} / I {422} = 5.4, conductivity 40.1% IACS, tensile strength 713 MPa, Good Way bending R / t = 0.3, Bad Way bending R / t = 1.3.

[比較例3]
実施例3と同じ組成の銅合金を使用し、第1の冷間圧延と熱処理を行わず、第2の冷間圧延の圧延率を98%として、Ia{422}/Ib{422}=1.5にした以外は、実施例1〜12とほぼ同様の方法により、銅合金板材を得た。なお、この比較例では、溶体化処理温度は775℃、溶体化処理時間は10分間、時効時間は5時間、仕上げ圧延率は29%、仕上げ板厚は0.15mmであった。
[Comparative Example 3]
A copper alloy having the same composition as in Example 3 was used, the first cold rolling and heat treatment were not performed, and the rolling rate of the second cold rolling was 98%, and Ia {422} / Ib {422} = 1 A copper alloy sheet was obtained in substantially the same manner as in Examples 1 to 12 except that it was set to .5. In this comparative example, the solution treatment temperature was 775 ° C., the solution treatment time was 10 minutes, the aging time was 5 hours, the finish rolling rate was 29%, and the finished plate thickness was 0.15 mm.

この比較例で得られた銅合金板材から試料を採取し、X線回折強度、導電率、引張強さ、曲げ加工性について、実施例1〜12と同様の方法により調べた。その結果、I{200}/I{422}=6.2、導電率は39.1%IACS、引張強さは691MPa、GoodWay曲げのR/t=0.7、BadWay曲げのR/t=1.3であった。   A sample was taken from the copper alloy sheet obtained in this comparative example, and the X-ray diffraction intensity, conductivity, tensile strength, and bending workability were examined by the same method as in Examples 1-12. As a result, I {200} / I {422} = 6.2, conductivity 39.1% IACS, tensile strength 691 MPa, Good Way bending R / t = 0.7, Bad Way bending R / t = 1.3.

[比較例4]
実施例4とほぼ同じ組成の銅合金(1.54質量%のNiと0.62質量%のSiと1.1質量%のCoを含み、残部がCuからなる銅合金)を使用し、第1の冷間圧延を行わず、550℃で1時間熱処理を行い、第2の冷間圧延の圧延率を96%として、Ia{422}/Ib{422}=1.4にした以外は、実施例1〜12とほぼ同様の方法により、銅合金板材を得た。なお、この比較例では、溶体化処理温度は900℃、溶体化処理時間は10分間、時効時間は7時間、仕上げ圧延率は65%、仕上げ板厚は0.15mmであった。
[Comparative Example 4]
A copper alloy having substantially the same composition as that of Example 4 (copper alloy containing 1.54% by mass of Ni, 0.62% by mass of Si and 1.1% by mass of Co, with the balance being Cu) is used. 1 is not subjected to cold rolling, heat treatment is performed at 550 ° C. for 1 hour, the rolling rate of the second cold rolling is 96%, and Ia {422} / Ib {422} = 1.4. A copper alloy sheet was obtained in substantially the same manner as in Examples 1-12. In this comparative example, the solution treatment temperature was 900 ° C., the solution treatment time was 10 minutes, the aging time was 7 hours, the finish rolling rate was 65%, and the finished plate thickness was 0.15 mm.

この比較例で得られた銅合金板材から試料を採取し、X線回折強度、導電率、引張強さ、曲げ加工性について、実施例1〜12と同様の方法により調べた。その結果、I{200}/I{422}=10、導電率は57.5%IACS、引張強さは789MPa、GoodWay曲げのR/t=2.0、BadWay曲げのR/t=3.0であった。   A sample was taken from the copper alloy sheet obtained in this comparative example, and the X-ray diffraction intensity, conductivity, tensile strength, and bending workability were examined by the same method as in Examples 1-12. As a result, I {200} / I {422} = 10, conductivity is 57.5% IACS, tensile strength is 789 MPa, GoodWay bending R / t = 2.0, BadWay bending R / t = 3. 0.

[比較例5]
0.46質量%のNiと0.13質量%のSiと0.16質量%のMgを含み、残部がCuからなる銅合金を使用し、第1の冷間圧延の圧延率を86%とし、520℃で6時間熱処理を行い、第2の冷間圧延の圧延率を86%として、Ia{422}/Ib{422}=1.7にした以外は、実施例1〜12とほぼ同様の方法により、銅合金板材を得た。なお、この比較例では、溶体化処理温度は600℃、溶体化処理時間は10分間、時効時間は5時間、仕上げ圧延率は29%、仕上げ板厚は0.15mmであった。
[Comparative Example 5]
A copper alloy containing 0.46% by mass of Ni, 0.13% by mass of Si and 0.16% by mass of Mg and the balance being Cu is used, and the rolling ratio of the first cold rolling is 86%. Substantially the same as in Examples 1 to 12 except that heat treatment was performed at 520 ° C. for 6 hours, the rolling ratio of the second cold rolling was 86%, and Ia {422} / Ib {422} = 1.7. By this method, a copper alloy sheet was obtained. In this comparative example, the solution treatment temperature was 600 ° C., the solution treatment time was 10 minutes, the aging time was 5 hours, the finish rolling rate was 29%, and the finished plate thickness was 0.15 mm.

この比較例で得られた銅合金板材から試料を採取し、X線回折強度、導電率、引張強さ、曲げ加工性について、実施例1〜12と同様の方法により調べた。その結果、I{200}/I{422}=1.9、導電率は55.7%IACS、引張強さは577MPa、GoodWay曲げのR/t=0.0、BadWay曲げのR/t=0.0であった。   A sample was taken from the copper alloy sheet obtained in this comparative example, and the X-ray diffraction intensity, conductivity, tensile strength, and bending workability were examined by the same method as in Examples 1-12. As a result, I {200} / I {422} = 1.9, conductivity 55.7% IACS, tensile strength 577 MPa, Good Way bending R / t = 0.0, Bad Way bending R / t = 0.0.

[比較例6]
5.20質量%のNiと1.20質量%のSiと0.51質量%のSnと0.46質量%のZnを含み、残部がCuからなる銅合金を使用し、第1の冷間圧延の圧延率を86%とし、520℃で6時間熱処理を行い、第2の冷間圧延の圧延率を86%として、Ia{422}/Ib{422}=1.1にした以外は、実施例1〜12とほぼ同様の方法により、銅合金板材を得た。なお、この比較例では、溶体化処理温度は925℃、溶体化処理時間は10分間、時効時間は7時間、仕上げ圧延率は29%、仕上げ板厚は0.15mmであった。
[Comparative Example 6]
5. Using a copper alloy containing 20% by mass of Ni, 1.20% by mass of Si, 0.51% by mass of Sn and 0.46% by mass of Zn, with the balance being Cu, the first cold Except that the rolling rate of rolling was 86%, heat treatment was performed at 520 ° C. for 6 hours, the rolling rate of the second cold rolling was 86%, and Ia {422} / Ib {422} = 1.1. A copper alloy sheet was obtained in substantially the same manner as in Examples 1-12. In this comparative example, the solution treatment temperature was 925 ° C., the solution treatment time was 10 minutes, the aging time was 7 hours, the finish rolling rate was 29%, and the finished plate thickness was 0.15 mm.

この比較例で得られた銅合金板材から試料を採取し、X線回折強度、導電率、引張強さ、曲げ加工性について、実施例1〜12と同様の方法により調べた。その結果、I{200}/I{422}=13、導電率は36.7%IACS、引張強さは871MPa、GoodWay曲げのR/t=1.0、BadWay曲げのR/t=3.3であった。   A sample was taken from the copper alloy sheet obtained in this comparative example, and the X-ray diffraction intensity, conductivity, tensile strength, and bending workability were examined by the same method as in Examples 1-12. As a result, I {200} / I {422} = 13, conductivity 36.7% IACS, tensile strength 871 MPa, Good Way bending R / t = 1.0, Bad Way bending R / t = 3. 3.

これらの実施例および比較例の組成および製造条件とそれぞれ表1および表2に示し、組織および特性についての結果を表3に示す。   The compositions and production conditions of these Examples and Comparative Examples are shown in Table 1 and Table 2, respectively, and the results on the structure and properties are shown in Table 3.

Figure 0005261122
Figure 0005261122

Figure 0005261122
Figure 0005261122

Figure 0005261122
Figure 0005261122

上記の結果から、比較例1〜4では、実施例1〜4とほぼ同じ組成の銅合金板材であるにもかかわらず、溶体化処理前の冷間圧延や熱処理が適切でなく、歪エネルギーや積層欠陥エネルギーを十分蓄積できなかったために、{422}結晶面を主方位成分とする結晶粒が多く残存して、{200}結晶面の相対量が不十分になり、引張強さと導電率がほぼ同等でありながら、曲げ加工性が低下していた。また、比較例5では、Ni含有量とSi含有量が低過ぎたため、析出物の生成が少なく、強度レベルが低かった。さらに、比較例6では、Ni含有量とSi含有量が高過ぎたため、方位制御が不十分になり、引張強さは高いものの、曲げ加工性が非常に悪かった。   From the above results, in Comparative Examples 1 to 4, although it is a copper alloy sheet having substantially the same composition as Examples 1 to 4, cold rolling and heat treatment before solution treatment are not appropriate, strain energy and Since the stacking fault energy could not be sufficiently accumulated, many crystal grains having {422} crystal planes as main orientation components remained, the relative amount of {200} crystal planes became insufficient, and the tensile strength and conductivity were low. Although it was almost the same, bending workability was lowered. Moreover, in Comparative Example 5, since the Ni content and the Si content were too low, the generation of precipitates was small and the strength level was low. Furthermore, in Comparative Example 6, since the Ni content and the Si content were too high, the orientation control was insufficient and the tensile strength was high, but the bending workability was very poor.

Claims (16)

0.7〜4質量%のNiと0.2〜1.0質量%のSiを含み、残部がCuおよび不可避不純物である組成を有し、板面においてX線回折を行ったときの{hkl}回折ピークの積分強度をI{hkl}とすると、I{200}/I{422}≧15を満たす結晶配向を有することを特徴とする、銅合金板材。 {Hkl when the composition contains 0.7 to 4% by mass of Ni and 0.2 to 1.0% by mass of Si, and the balance is Cu and inevitable impurities, and X-ray diffraction is performed on the plate surface. } A copper alloy sheet having a crystal orientation satisfying I {200} / I {422} ≧ 15 when the integrated intensity of diffraction peaks is I {hkl}. 前記銅合金板材が、0.1〜1.2質量%のSnをさらに含む組成を有することを特徴とする、請求項1に記載の銅合金板材。 2. The copper alloy sheet according to claim 1, wherein the copper alloy sheet has a composition further containing 0.1 to 1.2 mass% of Sn. 前記銅合金板材が、2.0質量%以下のZnをさらに含む組成を有することを特徴とする、請求項1または2に記載の銅合金板材。 The said copper alloy board | plate material has a composition which further contains 2.0 mass% or less Zn, The copper alloy board | plate material of Claim 1 or 2 characterized by the above-mentioned. 前記銅合金板材が、1.0質量%以下のMgをさらに含む組成を有することを特徴とする、請求項1乃至3のいずれかに記載の銅合金板材。 The copper alloy sheet according to any one of claims 1 to 3, wherein the copper alloy sheet has a composition further containing 1.0% by mass or less of Mg. 前記銅合金板材が、Co、Cr、B、P、Fe、Zr、Ti、Mn、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有することを特徴とする、請求項1乃至4のいずれかに記載の銅合金板材。 The copper alloy sheet further includes one or more elements selected from the group consisting of Co, Cr, B, P, Fe, Zr, Ti, Mn, Ag, Be, and Misch metal in a range of 3% by mass or less in total. It has a composition, The copper alloy plate material in any one of Claims 1 thru | or 4 characterized by the above-mentioned. 前記銅合金板材が、700MPa以上の引張強さを有することを特徴とする、請求項1乃至5のいずれかに記載の銅合金板材。 The copper alloy sheet according to claim 1, wherein the copper alloy sheet has a tensile strength of 700 MPa or more. 前記銅合金板材が、800MPa以上の引張強さを有し、I{200}/I{422}≧50を満たす結晶配向を有することを特徴とする、請求項6に記載の銅合金板材。 The copper alloy sheet according to claim 6, wherein the copper alloy sheet has a tensile strength of 800 MPa or more and a crystal orientation satisfying I {200} / I {422} ≧ 50. 0.7〜4質量%のNiと0.2〜1.0質量%のSiを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造する溶解および鋳造工程と、この溶解および鋳造工程の後に950℃から600℃に温度を下げながら熱間圧延を行う熱間圧延工程と、この熱間圧延工程の後に圧延率80%以上で冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度500〜600℃で熱処理を行う熱処理工程と、この熱処理工程の後に圧延率80%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に700〜980℃で溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に圧延率0〜50%で中間冷間圧延を行う中間冷間圧延工程と、この中間冷間圧延工程の後に400〜600℃で時効処理を行う時効処理工程とを備え、前記溶体化処理工程の際に、前記溶体化処理前後のX線回折による{422}結晶面の積分強度をそれぞれIb{422}およびIa{422}として、Ia{422}/Ib{422}≦1を満たすようにすることを特徴とする、銅合金板材の製造方法。 A melting and casting step of melting and casting a raw material of a copper alloy having a composition containing 0.7 to 4% by mass of Ni and 0.2 to 1.0% by mass of Si, the balance being Cu and inevitable impurities; A hot rolling step of performing hot rolling while lowering the temperature from 950 ° C. to 600 ° C. after the melting and casting step, and a first of performing cold rolling at a rolling rate of 80% or more after the hot rolling step A cold rolling step, a heat treatment step in which heat treatment is performed at a heating temperature of 500 to 600 ° C. after the first cold rolling step, and a second cold step in which cold rolling is performed at a rolling rate of 80% or more after the heat treatment step. An intermediate cold rolling step, a solution treatment step for performing solution treatment at 700 to 980 ° C. after the second cold rolling step, and intermediate cold rolling at a rolling rate of 0 to 50% after the solution treatment step. The intermediate cold rolling process to be performed and after this intermediate cold rolling process An aging treatment step of carrying out an aging treatment at 400 to 600 ° C., and in the solution treatment step, the integrated intensity of {422} crystal planes by X-ray diffraction before and after the solution treatment is expressed as Ib {422} and A method for producing a copper alloy sheet material, wherein Ia {422} satisfies Ia {422} / Ib {422} ≦ 1. 前記時効処理工程の後に圧延率50%以下で冷間圧延を行う仕上げ圧延工程を備えたことを特徴とする、請求項8に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 8, further comprising a finish rolling step of performing cold rolling at a rolling rate of 50% or less after the aging treatment step. 前記仕上げ冷間圧延工程の後に150〜550℃で加熱処理を行う低温焼鈍工程を備えたことを特徴とする、請求項8または9に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 8 or 9, further comprising a low-temperature annealing step in which heat treatment is performed at 150 to 550 ° C after the finish cold rolling step. 前記銅合金板材が、0.1〜1.2質量%のSnをさらに含む組成を有することを特徴とする、請求項8乃至10のいずれかに記載の銅合金板材の製造方法。 The said copper alloy board | plate material has a composition which further contains 0.1-1.2 mass% Sn, The manufacturing method of the copper alloy board | plate material in any one of Claims 8 thru | or 10 characterized by the above-mentioned. 前記銅合金板材が、2.0質量%以下のZnをさらに含む組成を有することを特徴とする、請求項8乃至11のいずれかに記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to any one of claims 8 to 11, wherein the copper alloy sheet has a composition further containing 2.0% by mass or less of Zn. 前記銅合金板材が、1.0質量%以下のMgをさらに含む組成を有することを特徴とする、請求項8乃至12のいずれかに記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to any one of claims 8 to 12, wherein the copper alloy sheet has a composition further containing 1.0% by mass or less of Mg. 前記銅合金板材が、Co、Cr、B、P、Fe、Zr、Ti、Mn、Ag、Beおよびミッシュメタルからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有することを特徴とする、請求項8乃至13のいずれかに記載の銅合金板材の製造方法。 The copper alloy sheet further includes one or more elements selected from the group consisting of Co, Cr, B, P, Fe, Zr, Ti, Mn, Ag, Be, and Misch metal in a range of 3% by mass or less in total. It has a composition, The manufacturing method of the copper alloy board | plate material in any one of Claims 8 thru | or 13 characterized by the above-mentioned. 請求項1乃至7のいずれかに記載の銅合金板材を材料として用いたことを特徴とする、電気電子部品。 An electrical / electronic component using the copper alloy sheet according to claim 1 as a material. 前記電気電子部品が、コネクタ、リードフレーム、リレーまたはスイッチであることを特徴とする、請求項15に記載の電気電子部品。
The electrical / electronic component according to claim 15, wherein the electrical / electronic component is a connector, a lead frame, a relay, or a switch.
JP2008258837A 2008-10-03 2008-10-03 Copper alloy sheet and manufacturing method thereof Active JP5261122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258837A JP5261122B2 (en) 2008-10-03 2008-10-03 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258837A JP5261122B2 (en) 2008-10-03 2008-10-03 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010090408A JP2010090408A (en) 2010-04-22
JP5261122B2 true JP5261122B2 (en) 2013-08-14

Family

ID=42253400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258837A Active JP5261122B2 (en) 2008-10-03 2008-10-03 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5261122B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261161B2 (en) * 2008-12-12 2013-08-14 Jx日鉱日石金属株式会社 Ni-Si-Co-based copper alloy and method for producing the same
US9845521B2 (en) * 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
WO2012081573A1 (en) 2010-12-13 2012-06-21 国立大学法人東北大学 Copper alloy and method for producing copper alloy
CN103261460B (en) 2010-12-13 2015-11-25 日本精线株式会社 Copper alloy wire and copper alloy spring
JP5432201B2 (en) * 2011-03-30 2014-03-05 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP5752536B2 (en) * 2011-08-23 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil
JP6126791B2 (en) * 2012-04-24 2017-05-10 Jx金属株式会社 Cu-Ni-Si copper alloy
CN103667771A (en) * 2013-12-03 2014-03-26 江苏帕齐尼铜业有限公司 Copper-magnesium alloy and preparation method thereof
KR20160117210A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Cu-Ni-Si BASED ROLLED COPPER ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP6385382B2 (en) 2016-03-31 2018-09-05 Jx金属株式会社 Copper alloy sheet and method for producing copper alloy sheet
CN107760920A (en) * 2017-10-11 2018-03-06 河南科技大学 A kind of hot copper alloy of high-strength highly-conductive and preparation method thereof
WO2021199848A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Copper alloy sheet material and method for manufacturing same
KR102499059B1 (en) * 2020-11-30 2023-02-15 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy
KR102499087B1 (en) * 2020-11-30 2023-02-15 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy using Metaheuristic
CN115572857B (en) * 2022-10-20 2023-07-04 菏泽广源铜带有限公司 High-performance high-copper alloy and preparation method thereof
CN116732384B (en) * 2023-08-08 2023-11-21 宁波兴业盛泰集团有限公司 Copper nickel silicon alloy cast ingot and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275377B2 (en) * 1992-07-28 2002-04-15 三菱伸銅株式会社 Cu alloy sheet with fine structure for electric and electronic parts
JP4175920B2 (en) * 2003-03-07 2008-11-05 日鉱金属株式会社 High strength copper alloy

Also Published As

Publication number Publication date
JP2010090408A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5261122B2 (en) Copper alloy sheet and manufacturing method thereof
JP4563495B1 (en) Copper alloy sheet and manufacturing method thereof
JP5961335B2 (en) Copper alloy sheet and electrical / electronic components
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5028657B2 (en) High-strength copper alloy sheet with little anisotropy and method for producing the same
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP4189435B2 (en) Cu-Ni-Si-based copper alloy sheet and method for producing the same
JP5578827B2 (en) High-strength copper alloy sheet and manufacturing method thereof
JP5466879B2 (en) Copper alloy sheet and manufacturing method thereof
JP2009007666A (en) Copper alloy for electrical and electronic equipment
JP5734156B2 (en) Copper alloy sheet and manufacturing method thereof
JP3977376B2 (en) Copper alloy
WO2012132765A1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
WO2010016428A1 (en) Copper alloy material for electrical/electronic component
WO2019213789A1 (en) Copper alloy material and use thereof
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
WO2019171951A1 (en) Copper alloy sheet and method for manufacturing same
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP2018070944A (en) Copper alloy sheet material and manufacturing method therefor
JP6045635B2 (en) Method for producing copper alloy sheet
JP4779100B2 (en) Manufacturing method of copper alloy material
JP2019157179A (en) Copper alloy sheet material and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250