JP5156317B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5156317B2
JP5156317B2 JP2007250623A JP2007250623A JP5156317B2 JP 5156317 B2 JP5156317 B2 JP 5156317B2 JP 2007250623 A JP2007250623 A JP 2007250623A JP 2007250623 A JP2007250623 A JP 2007250623A JP 5156317 B2 JP5156317 B2 JP 5156317B2
Authority
JP
Japan
Prior art keywords
copper alloy
cold rolling
rolling
twin
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007250623A
Other languages
Japanese (ja)
Other versions
JP2008106356A (en
Inventor
久 須田
維林 高
宏人 成枝
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2007250623A priority Critical patent/JP5156317B2/en
Publication of JP2008106356A publication Critical patent/JP2008106356A/en
Application granted granted Critical
Publication of JP5156317B2 publication Critical patent/JP5156317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コネクター、リードフレーム、リレー、スイッチなどの電気・電子部品に適したCu−Ni−Si系銅合金板材であって、特に高強度および高導電性を有するとともに、応力緩和特性と曲げ加工性に優れた銅合金板材に関する。   The present invention is a Cu-Ni-Si based copper alloy sheet suitable for electrical and electronic parts such as connectors, lead frames, relays, switches, etc., and has particularly high strength and high conductivity, stress relaxation characteristics and bending. The present invention relates to a copper alloy sheet material excellent in workability.

電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチなどの通電部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な「導電性」が要求されるとともに、電気・電子機器の組立時や作動時に付与される応力に耐え得る高い「強度」が要求される。また、電気・電子部品は一般に曲げ加工により成形されることから優れた「曲げ加工性」が要求される。さらに、電気・電子部品間の接触信頼性を確保するために、接触圧力が時間とともに低下する現象である「応力緩和特性」が優れることも要求される。   The materials used for current-carrying parts such as connectors, lead frames, relays, and switches that make up electrical and electronic parts are required to have good "conductivity" to suppress the generation of Joule heat due to current flow. High “strength” is required to withstand the stress applied during assembly and operation of electrical and electronic equipment. Moreover, since electric / electronic parts are generally formed by bending, excellent “bending workability” is required. Furthermore, in order to ensure contact reliability between electrical and electronic parts, it is also required to have excellent “stress relaxation characteristics”, which is a phenomenon in which the contact pressure decreases with time.

特に近年、電気・電子部品は高集積化、小型化および軽量化が進む傾向にあり、それに伴って素材である銅および銅合金には薄肉化の要求が高まっている。そのため、素材に要求される「強度」レベルは一層厳しいものとなっている。また、電気・電子部品の小型化、形状の複雑化に対応するには部品の「曲げ加工性」の向上がますます重要になる。さらに、電気・電子部品が苛酷な環境で使用される場合の増加に伴い、「応力緩和特性」に対する要求が厳しくなる。例えば、自動車用コネクターのように高温に曝される環境下で使用される場合は、「応力緩和特性」が特に重要となる。   In particular, in recent years, electrical and electronic components have been increasingly integrated, miniaturized, and lightened, and accordingly, copper and copper alloys, which are materials, have been demanded to be thin. For this reason, the “strength” level required for the material has become more severe. In addition, in order to cope with the downsizing of electrical and electronic parts and the complexity of their shapes, it is increasingly important to improve the “bending workability” of the parts. Furthermore, the demand for “stress relaxation characteristics” becomes severe as electrical and electronic parts are used in harsh environments. For example, when used in an environment exposed to a high temperature such as an automobile connector, the “stress relaxation property” is particularly important.

しかしながら、「強度」と「導電性」、あるいは「強度」と「曲げ加工性」、さらに「曲げ加工性」と「応力緩和特性」の間にはトレードオフの関係がある。従来、このような通電部品には、用途に応じて「導電性」、「強度」、「応力緩和特性」あるいは「曲げ加工性」の良好な材料が適宜選択されて使用されている。   However, there is a trade-off relationship between “strength” and “conductivity”, or “strength” and “bending workability”, and “bending workability” and “stress relaxation property”. Conventionally, materials having good “conductivity”, “strength”, “stress relaxation characteristics” or “bending workability” are appropriately selected and used for such energized parts depending on the application.

強度と導電性のバランスに優れた銅合金としてCu−Ni−Si系合金(いわゆるコルソン合金)が近年注目されている。この系の銅合金では比較的高い導電率(30〜45%IACS)を維持しながら、強度を顕著に向上させることができる。しかし、Cu−Ni−Si系合金は強度と曲げ加工性を高レベルで両立しにくい合金系であることが一般に知られている。   In recent years, a Cu—Ni—Si based alloy (so-called Corson alloy) has attracted attention as a copper alloy having an excellent balance between strength and conductivity. This type of copper alloy can remarkably improve the strength while maintaining a relatively high conductivity (30 to 45% IACS). However, it is generally known that Cu—Ni—Si based alloys are alloy systems that are difficult to achieve both high strength and bending workability.

高強度化の手段として、Ni、Siなどの溶質元素の多量添加や時効処理後の仕上げ圧延(調質処理)率の増大などの一般な方法がある。しかしながら、前者はNi−Si系析出物の量が多ければ多いほど曲げ加工性が悪くなりやすい。後者は加工硬化が大きくなるために曲げ加工性(特に圧延方向に対し直角方向の曲げ加工性)が著しく悪化してしまう。そのため、強度レベルと導電性レベルが高くても電気・電子部品に使用できなくなる場合がある。   As means for increasing the strength, there are general methods such as adding a large amount of solute elements such as Ni and Si and increasing the finish rolling (tempering treatment) rate after aging treatment. However, the former tends to deteriorate the bending workability as the amount of the Ni—Si based precipitate increases. In the latter, work hardening increases, so that bending workability (particularly bending workability in a direction perpendicular to the rolling direction) is significantly deteriorated. For this reason, even if the strength level and the conductivity level are high, it may not be usable for electric / electronic parts.

特許文献1、2には、Cu−Ni−Si系合金において応力緩和特性を向上するためにMg添加が有効であることが記載されている。特許文献3には、Cu−Ni−Si系合金曲げ加工性の改善には結晶粒の微細化が有効であることが記載されている。   Patent Documents 1 and 2 describe that Mg addition is effective for improving stress relaxation characteristics in Cu—Ni—Si based alloys. Patent Document 3 describes that refinement of crystal grains is effective for improving the Cu-Ni-Si alloy bending workability.

特許第2503793号公報Japanese Patent No. 2503793 特開2001−181759公報JP 2001-181759 A 特開2006−152393公報JP 2006-152393 A

応力緩和は、電気・電子部品を構成する素材のばね部の接触圧力が、常温では一定の状態に維持されても、比較的高温(例えば100〜200℃)の環境下では時間とともに低下するという、一種のクリープ現象である。すなわち、金属材料に応力が付与されている状態において、マトリックスを構成する原子の自己拡散や固溶原子の拡散によって転位が移動して、塑性変形が生じることにより、付与されている応力が緩和される現象である。   Stress relaxation is said to decrease with time in a relatively high temperature (for example, 100 to 200 ° C.) environment even if the contact pressure of the spring portion of the material constituting the electrical / electronic component is maintained at a constant state at room temperature. It is a kind of creep phenomenon. In other words, in the state where stress is applied to the metal material, dislocations move due to self-diffusion of atoms constituting the matrix or diffusion of solute atoms, and plastic deformation occurs, thereby relaxing the applied stress. It is a phenomenon.

特許文献1、2に開示のMgを添加する手段は強度と応力緩和特性の同時改善に有効であり、導電率低下への悪影響も小さい。しかし、Mg添加は曲げ加工性を悪化させる要因になる。また、Mgは極めて酸化し易い元素であることから、鋳造性の悪化を招く。   The means for adding Mg disclosed in Patent Documents 1 and 2 is effective for simultaneous improvement of strength and stress relaxation characteristics, and has a small adverse effect on the decrease in conductivity. However, the addition of Mg becomes a factor that deteriorates the bending workability. Moreover, since Mg is an element which is very easily oxidized, it causes deterioration of castability.

特許文献3に開示の結晶粒を微細化する手段は曲げ加工性の改善に有効である。しかし、結晶粒の微細化に伴い金属材料の単位体積当たりに存在する結晶粒界の面積が増大し、粒界拡散による原子拡散が起こりやすい状況となる。このため、クリープ現象の一種である応力緩和は、生じやすくなってしまう。   The means for refining crystal grains disclosed in Patent Document 3 is effective in improving bending workability. However, as the crystal grains become finer, the area of the crystal grain boundary existing per unit volume of the metal material increases, so that atomic diffusion due to grain boundary diffusion is likely to occur. For this reason, stress relaxation, which is a kind of creep phenomenon, tends to occur.

このように、諸特性のバランスに比較的優れるCu−Ni−Si系銅合金において、更なる高強度化を図りながら応力緩和特性と曲げ加工性を同時に改善することは難しい。昨今の電気・電子部品の厳しい使用環境に対応するには、より安定的に優れた応力緩和特性が得られ、かつ、優れた曲げ加工性が得られることが望まれる。
本発明は、この合金系において、特に応力緩和特性と曲げ加工性を高レベルに両立した銅合金板材を提供することを目的とする。
As described above, it is difficult to simultaneously improve the stress relaxation characteristic and the bending workability while further increasing the strength in the Cu—Ni—Si based copper alloy having a relatively excellent balance of various characteristics. In order to cope with the recent severe usage environment of electric / electronic parts, it is desired that excellent stress relaxation characteristics can be obtained more stably and excellent bending workability can be obtained.
An object of the present invention is to provide a copper alloy sheet material in which, in this alloy system, stress relaxation characteristics and bending workability are compatible at a high level.

耐応力緩和性と曲げ加工性の両立を困難にしている大きな要因の一つとして、材料の結晶粒径を、両特性が共に良好になる範囲に設定することが極めて難しい点が挙げられる。例えば、結晶粒径が小さいほど、金属材料の単位体積当たりに存在する結晶粒界の面積が大きくなる。この場合、曲げ加工性の改善には都合がよい。粒界は、曲げ加工の際に粒界すべりや粒界両側の結晶粒回転を可能にする界面として機能するので、その界面の面積が大きいほど局部的な応力集中が回避され、曲げ加工性は向上する傾向になる。しかし反面、結晶粒界の面積増大は、前述のようにクリープ現象の一種である応力緩和を助長する要因となる。特に車載用コネクターなど高温環境で使用される用途では、原子の粒界に沿う拡散速度は粒内より著しく速いので、結晶粒微細化による応力緩和特性の低下は重大な問題となる。   One of the major factors that make it difficult to achieve both stress relaxation resistance and bending workability is that it is extremely difficult to set the crystal grain size of the material within a range where both characteristics are good. For example, the smaller the crystal grain size, the larger the area of the crystal grain boundary that exists per unit volume of the metal material. In this case, it is convenient for improving the bending workability. The grain boundary functions as an interface that enables grain boundary sliding and crystal grain rotation on both sides of the grain boundary during bending, so the larger the area of the interface, the more local stress concentration is avoided and the bending workability is It tends to improve. However, an increase in the area of the crystal grain boundary is a factor that promotes stress relaxation, which is a kind of creep phenomenon as described above. In particular, in applications that are used in a high temperature environment such as an in-vehicle connector, the diffusion rate along the grain boundaries of atoms is remarkably faster than in the grains, so that the deterioration of stress relaxation characteristics due to crystal grain refinement becomes a serious problem.

もし、単位体積当たりの結晶粒界面積を十分に確保しながら、原子の粒界拡散に対して抵抗力の大きい粒界部分が多く存在するような結晶粒組織を実現することができれば、それは曲げ加工性と応力緩和特性の同時改善を一挙に達成するための有効な手段となるであろう。発明者らは詳細な検討の結果、「双晶帯」の存在に着目した。そして、双晶帯の境界は、曲げ加工時の変形に寄与する界面として機能すること、および上記の「原子の粒界拡散に対して抵抗力の大きい粒界部分」に相当することを見出した。本発明はこの知見に基づき、双晶帯の存在割合を一定以上に多くした金属組織にコントロールした銅合金板材を提供するものである。   If it is possible to realize a grain structure where there are many grain boundary parts that have a large resistance to the grain boundary diffusion while ensuring sufficient grain boundary area per unit volume, it is It will be an effective means to achieve simultaneous improvement of workability and stress relaxation properties at once. As a result of detailed studies, the inventors focused on the existence of a “twin zone”. And, it was found that the boundary of the twin band functions as an interface contributing to deformation during bending and corresponds to the above-mentioned “grain boundary portion having a high resistance to the grain boundary diffusion of atoms”. . Based on this knowledge, the present invention provides a copper alloy sheet material controlled to have a metal structure in which the existence ratio of twin bands is more than a certain level.

すなわち本発明では、質量%で、Ni:0.6〜4.2%、Si:0.2〜1.0%、Sn:0.1〜1.3%を含有し、必要に応じてZn:2.0%以下、あるいはさらにCo、Cr、Mg、B、P、Fe、Zr、Ti、Mnの1種以上を合計3%以下の範囲で含有し、残部がCuおよび不可避的不純物である組成を有し、下記(1)式を満たす双晶帯密度NGを有し、下記(2)式を満たす結晶配向を有し、下記(A)式を満たす平均結晶粒径Dを有する銅合金板材が提供される。
G=(D−DT)/DT≧0.3 ……(1)
0.1≦I{420}/I{220}≦0.5 ……(2)
10μm≦D≦60μm ……(A)
ここで、DTは双晶帯を結晶粒界とみなして測定されるJIS H0501の切断法による平均結晶粒径である。この場合、双晶帯の幅の中央位置を粒界位置とする。I{420}およびI{220}はそれぞれ当該板材の板面における{420}結晶面および{220}結晶面のX線回折強度である。「板面」は板の厚さ方向に垂直な表面(圧延面)である。Dは双晶帯を結晶粒界とみなさないで測定される同平均結晶粒径である。双晶帯を形成してない双晶境界が存在するときは、その双晶境界はDT、Dのいずれを測定する場合も結晶粒界とみなさない。
In other words, the present invention contains, by mass%, Ni: 0.6 to 4.2%, Si: 0.2 to 1.0%, Sn: 0.1 to 1.3%, and if necessary, Zn : 2.0% or less, or further contains one or more of Co, Cr, Mg, B, P, Fe, Zr, Ti, Mn in a total range of 3% or less, with the balance being Cu and inevitable impurities having the composition, have a bi-crystal zone density N G satisfying the following formula (1), having a crystal orientation satisfying the following formula (2), copper with an average crystal grain size D satisfying the following formula (a) An alloy sheet is provided.
N G = (D−D T ) / D T ≧ 0.3 (1)
0.1 ≦ I {420} / I {220} ≦ 0.5 (2)
10 μm ≦ D ≦ 60 μm (A)
Here, D T is an average crystal grain size according to the cutting method of JIS H0501, which is measured by regarding a twin zone as a grain boundary. In this case, the center position of the twin band width is the grain boundary position. I {420} and I {220} are the X-ray diffraction intensities of the {420} crystal face and {220} crystal face on the plate surface of the plate material, respectively. The “plate surface” is a surface (rolled surface) perpendicular to the thickness direction of the plate. D is the same average grain size measured without considering the twin band as a grain boundary. When a twin boundary that does not form a twin zone exists, the twin boundary is not regarded as a grain boundary when either D T or D is measured.

このような銅合金板材の製造法として、上記のように組成調整された銅合金材料に対し、700℃以下の温度域での圧延率を40%以上とする熱間圧延、圧延率85%以上の冷間圧延、加熱温度700〜850℃、100℃から700℃までの昇温時間を好ましくは20sec以下とする溶体化処理、圧延率0〜50%の中間冷間圧延、材温400〜500℃の時効処理、下記(3)式を満たす圧延率とする仕上げ冷間圧延を順次施す工程を有する製造法が提供される。仕上げ冷間圧延後に、さらに150〜550℃の加熱処理を施す工程を採用することが好ましい。
10≦ε2≦(65−ε1)/(100−ε1)×100 ……(3)
ここで、ε1は中間冷間圧延率(%)、ε2は仕上げ冷間圧延率(%)である。
上記の「圧延率0%」は、当該中間冷間圧延を行わない場合を意味する。
As a method for producing such a copper alloy sheet, hot rolling with a rolling rate of 40% or higher in a temperature range of 700 ° C. or lower, and a rolling rate of 85% or higher with respect to the copper alloy material whose composition is adjusted as described above. Cold-rolling, heating temperature 700 to 850 ° C., solution treatment in which the heating time from 100 ° C. to 700 ° C. is preferably 20 sec or less, intermediate cold rolling with a rolling rate of 0 to 50%, material temperature 400 to 500 aging treatment ° C., under Symbol (3) manufacturing process with sequential subjected steps of finish cold rolling for the rolling rate satisfying the equation is provided. It is preferable to employ a step of performing a heat treatment at 150 to 550 ° C. after the finish cold rolling.
10 ≦ ε 2 ≦ (65−ε 1 ) / (100−ε 1 ) × 100 (3)
Here, ε 1 is the intermediate cold rolling rate (%), and ε 2 is the finish cold rolling rate (%).
The “rolling rate 0%” means a case where the intermediate cold rolling is not performed.

圧延率ε(%)は、圧延前の板厚をt0、圧延後の板厚をt1とすると、下記(4)式で表される。
ε=(t0−t1)/t0×100 ……(4)
熱間圧延において「700℃以下の温度域での圧延率を40%以上とする」とは、700℃以下の温度における最初の圧延パスに供する時点の板厚をt0、最終パス後の板厚をt1として上記(4)式を適用したときのεの値が40%以上であることを意味する。
The rolling rate ε (%) is expressed by the following equation (4), where the thickness before rolling is t 0 and the thickness after rolling is t 1 .
ε = (t 0 −t 1 ) / t 0 × 100 (4)
In hot rolling, “the rolling ratio in a temperature range of 700 ° C. or lower is set to 40% or more” means that the plate thickness at the time of being subjected to the first rolling pass at a temperature of 700 ° C. or lower is t 0 , and the plate after the final pass It means that the value of ε is 40% or more when the above equation (4) is applied with the thickness as t 1 .

本発明によれば、コネクター、リードフレーム、リレー、スイッチなどの電気・電子部品に必要な基本特性を具備するCu−Ni−Si系銅合金の板材において、引張強さ650MPa以上あるいはさらに700MPa以上の高強度を有し、かつ優れた応力緩和特性と曲げ加工性を同時に有するものが提供された。このような高強度レベルにおいて引張強さ、応力緩和特性と曲げ加工性を安定して顕著に向上させることは、従来のCu−Ni−Si系銅合金製造技術では困難であった。本発明は、今後ますます進展が予想される電気・電子部品の小型化、薄肉化のニーズに対応し得るものである。   According to the present invention, in a Cu-Ni-Si based copper alloy plate having basic characteristics required for electrical / electronic components such as connectors, lead frames, relays, switches, etc., the tensile strength is 650 MPa or more, or even 700 MPa or more. A material having high strength and having excellent stress relaxation properties and bending workability at the same time was provided. It has been difficult for the conventional Cu—Ni—Si based copper alloy manufacturing technology to stably and significantly improve the tensile strength, stress relaxation characteristics and bending workability at such a high strength level. The present invention can meet the needs for downsizing and thinning of electric and electronic parts, which are expected to make further progress in the future.

《金属組織》
〔双晶帯密度〕
双晶は、隣接する二つの結晶格子が、ある面(双晶境界という、一般に銅合金では{111}面である)に関して鏡映対称の関係にある一対の結晶を言う。銅および銅合金の最も一般的な双晶の形態は、二つの平行な双晶境界で挟まれた「双晶帯」も呼ばれる部分を形成するタイプである。双晶境界は、境界両側の結晶方位差が15°以上を有し、一種の「結晶粒界」である。ただし、双方の結晶格子が基本的に整合性を保って接している面であるので、特別の界面性格を有する「結晶粒界」である。
《Metallic structure》
[Twinned zone density]
A twin crystal refers to a pair of crystals in which two adjacent crystal lattices are mirror-symmetrically related to a certain plane (called a twin boundary, which is generally a {111} plane in a copper alloy). The most common twin morphology of copper and copper alloys is the type that forms what is also called a “twin zone” sandwiched between two parallel twin boundaries. The twin boundary is a kind of “crystal grain boundary” with a crystal orientation difference of 15 ° or more on both sides of the boundary. However, since both crystal lattices are basically in contact with each other while maintaining consistency, they are “crystal grain boundaries” having a special interface property.

発明者らの詳細な検討によれば、例えば銅合金材料に強い機械的応力が付与された場合、双晶帯の両側の双晶境界は他の一般的な結晶粒界と同様に双晶帯を挟んで隣り合う結晶格子同士の「すべり」や「ずれ」を担う境界として働き、材料の変形を助ける作用を呈する。このため、金属材料の単位体積当たりに存在する双晶帯が増大すれば、その材料の曲げ加工性は向上する傾向を示す。つまり、双晶帯は、他の一般的な結晶粒界と同様、曲げ加工性にプラスに作用する。   According to the inventors' detailed study, for example, when a strong mechanical stress is applied to the copper alloy material, the twin boundaries on both sides of the twin band are the same as other general grain boundaries. It acts as a boundary responsible for “slip” and “displacement” between adjacent crystal lattices, and has an effect of helping deformation of the material. For this reason, if the twin zone which exists per unit volume of a metal material increases, the bending workability of the material tends to be improved. In other words, the twin band has a positive effect on the bending workability, like other general grain boundaries.

一方、双晶境界は、原子配列の乱れが少なく構造的に緻密であることから、他の一般的な結晶粒界に比べ、境界に沿った原子の拡散は生じにくく、不純物の偏析や析出物の形成も起こりにくい。このため、原子の粒界拡散を伴うクリープ現象のような変形に対して、双晶帯は結晶粒界としての機能をほとんど持たない。つまり、双晶帯は、他の一般的な結晶粒界と異なり、クリープ現象の一種である応力緩和に対し、ほとんどマイナスに作用しない。   On the other hand, twin boundaries are structurally dense with little disorder of atomic arrangement, and therefore, diffusion of atoms along the boundaries is less likely to occur compared to other general grain boundaries. The formation of is difficult to occur. For this reason, the twin zone has almost no function as a grain boundary against deformation such as a creep phenomenon accompanied by atomic grain boundary diffusion. That is, unlike other general crystal grain boundaries, twin bands hardly act negatively on stress relaxation, which is a kind of creep phenomenon.

このようなことから、双晶帯が多いほど、応力緩和特性と曲げ加工性の同時改善に有利となる。具体的には、双晶帯密度NGが下記(1)式を満たすような金属組織を採用する。(1)式に替え、(1)’式を満たすことがより好ましい。
G=(D−DT)/DT≧0.3 ……(1)
G=(D−DT)/DT≧0.35 ……(1)’
ここで、DTは双晶帯を結晶粒界とみなして測定したJIS H0501の切断法による平均結晶粒径である。この場合、双晶帯の幅の中央位置を粒界位置とする。Dは双晶帯を結晶粒界とみなさないで測定した同平均結晶粒径である。銅合金では双晶帯を形成せずに結晶を2分するような双晶境界の存在は稀である。したがって双晶帯を形成していない双晶境界が存在する場合は、その双晶境界を無視して前記DTおよびDを測定すればよい。
例えばNG=1となるのはどういう場合かというと、双晶帯を除いた一般的な結晶粒界のみで特定される各結晶粒内に、双晶帯が平均1個ずつ存在する場合である。このときD=2DTとなり、NG=1となる。NGが0.3より小さい場合は曲げ加工性が不十分となる。
For this reason, the more twin zones, the more advantageous for simultaneous improvement of stress relaxation characteristics and bending workability. Specifically, SoAkiratai density N G adopts metallographic satisfying the following equation (1). It is more preferable that the expression (1) ′ is satisfied instead of the expression (1).
N G = (D−D T ) / D T ≧ 0.3 (1)
N G = (D−D T ) / D T ≧ 0.35 (1) ′
Here, D T is an average crystal grain size according to the cutting method of JIS H0501, measured by regarding the twin band as a grain boundary. In this case, the center position of the twin band width is the grain boundary position. D is the same average grain size measured without considering the twin band as a grain boundary. In copper alloys, the presence of twin boundaries that bisect crystals without forming twin bands is rare. Therefore, when there is a twin boundary that does not form a twin band, the above-described DT and D may be measured ignoring the twin boundary.
For example, when N G = 1, there is an average of one twin zone in each crystal grain specified only by a general grain boundary excluding the twin zone. is there. At this time, D = 2D T and N G = 1. When NG is smaller than 0.3, bending workability is insufficient.

結晶粒径の測定は、銅合金板材の板面(すなわち圧延面)を研磨およびエッチングした面について、例えば光学顕微鏡を用いて行う。上記(1)式を満たす金属組織は、後述するように熱間圧延条件、冷間圧延条件、溶体化処理条件等をコントロールすることによって実現できる。特に溶体化処理前の高変形歪の付与と、溶体化処理時の急速加熱が双晶帯密度の増大に効果的である。   The crystal grain size is measured with respect to the surface obtained by polishing and etching the plate surface (that is, the rolled surface) of the copper alloy sheet, for example, using an optical microscope. The metal structure satisfying the above expression (1) can be realized by controlling hot rolling conditions, cold rolling conditions, solution treatment conditions, and the like as described later. In particular, imparting high deformation strain before the solution treatment and rapid heating during the solution treatment are effective for increasing the twin zone density.

〔平均結晶粒径〕
双晶帯密度が上記のように調整されていることに加え、双晶帯を結晶粒界とみなさないで測定される切断法による平均結晶粒径D(一般的に平均結晶粒径と呼ばれているもの)は10〜60μmであることが望ましく、15〜40μmであることがより好ましい。平均結晶粒径Dが小さすぎると応力緩和特性が悪くなりやすく、大きすぎると曲げ加工性が低下しやすい。
[Average crystal grain size]
In addition to the twin band density being adjusted as described above, the average crystal grain size D (generally referred to as the average crystal grain size) by a cutting method measured without considering the twin band as a grain boundary. Is preferably 10 to 60 μm, and more preferably 15 to 40 μm. If the average crystal grain size D is too small, the stress relaxation property tends to be poor, and if it is too large, the bending workability tends to be lowered.

〔集合組織〕
Cu−Ni−Si系銅合金の「強度」と「曲げ加工性」を高レベルで両立させるためには、集合組織の制御が有効である。発明者らの詳細な検討の結果、後述する溶体化処理で得られるような{420}を主方位成分とする集合組織が強く発達しているほど、曲げ加工性が良くなる。そのメカニズムは現時点で必ずしも明確ではないが、以下のようなことが考えられる。すなわち、板材の曲げ加工において、割れが発生する場合、曲げ加工部の外側の表層部が特に硬化し、表面割れはほとんど例外なく曲げ加工部の外側の板表面から約45°の方向に沿って発生する。もし、fccタイプである銅合金のすべり面{111}が板表面に対し約45°(あるいは135°)方向に配向していれば、上記の割れは大幅に軽減されると考えられる。{420}面を板面に平行に持つ結晶粒では、4つの{111}面のうち2つが板面から約39°の角度をもって存在している。つまり、その結晶粒は板面に対し45°に近い角度で存在する複数のすべり面を有していることになる。このような理由で、{420}を主方位成分とする集合組織を有する場合に、曲げ加工において板面から45°方向のすべりが生じやすくなり、割れ発生が顕著に抑止できるものと考えられる。
[Group organization]
In order to achieve both “strength” and “bending workability” of the Cu—Ni—Si based copper alloy at a high level, it is effective to control the texture. As a result of detailed studies by the inventors, bending workability is improved as the texture having {420} as a main orientation component, which is obtained by a solution treatment described later, is more strongly developed. Although the mechanism is not necessarily clear at present, the following can be considered. That is, when a crack occurs in the bending process of the plate material, the surface layer part on the outside of the bent part is particularly hardened, and the surface crack is almost always along the direction of about 45 ° from the plate surface outside the bent part. Occur. If the slip surface {111} of the copper alloy of the fcc type is oriented in the direction of about 45 ° (or 135 °) with respect to the plate surface, it is considered that the above cracks are greatly reduced. In a crystal grain having a {420} plane parallel to the plate surface, two of the four {111} planes are present at an angle of about 39 ° from the plate surface. That is, the crystal grains have a plurality of slip planes existing at an angle close to 45 ° with respect to the plate surface. For this reason, when having a texture with {420} as the main orientation component, it is considered that slip in the 45 ° direction from the plate surface is likely to occur during bending, and cracking can be remarkably suppressed.

ただし、高強度化を図るためには、仕上げ冷間圧延が不可欠である。溶体化処理後に{420}を主方位成分とする集合組織を有していても、冷間圧延率の増大に伴い{220}を主方位成分とする圧延集合組織が発達していく。発明者らは詳細な検討の結果、銅合金板材を最終的に両者の中間的な組織状態に仕上げたとき、「強度」と「曲げ加工性」を高いレベルで両立させることが可能になることを見出した。   However, finish cold rolling is indispensable for achieving high strength. Even if it has a texture with {420} as the main orientation component after solution treatment, a rolling texture with {220} as the main orientation component develops as the cold rolling rate increases. As a result of detailed studies, the inventors have finally made it possible to achieve both high levels of strength and bending workability when the copper alloy sheet is finally finished to an intermediate structure between the two. I found.

具体的には、下記(2)式を満たす結晶配向に調整することが望ましく、(2)’式を満たすことが一層好ましい。
0.1≦I{420}/I{220}≦0.5 ……(2)
0.2≦I{420}/I{220}≦0.4 ……(2)’
ここで、I{420}およびI{220}はそれぞれ当該板材の板面における{420}結晶面および{220}結晶面のX線回折強度である。
I{420}/I{220}が大きすぎる場合は{420}を主方位成分とする再結晶集合組織の持つ性質が相対的に優勢であり、加工硬化不足により十分な強度が得られにくい。I{420}/I{220}が小さすぎる場合は{220}を主方位成分とする圧延晶集合組織の持つ性質が相対的に優勢であり、従来材のように強度が高く、曲げ加工性が悪くなる。
Specifically, it is desirable to adjust the crystal orientation to satisfy the following formula (2), and it is more preferable to satisfy the formula (2) ′.
0.1 ≦ I {420} / I {220} ≦ 0.5 (2)
0.2 ≦ I {420} / I {220} ≦ 0.4 (2) ′
Here, I {420} and I {220} are the X-ray diffraction intensities of the {420} crystal plane and the {220} crystal plane on the plate surface of the plate material, respectively.
When I {420} / I {220} is too large, the recrystallized texture having {420} as the main orientation component is relatively dominant, and it is difficult to obtain sufficient strength due to insufficient work hardening. When I {420} / I {220} is too small, the properties of the rolled crystal texture having {220} as the main orientation component are relatively dominant, and the strength is high as in the conventional material, and the bending workability is high. Becomes worse.

《特性》
電気・電子部品の更なる小型化、薄肉化に対応するには、素材である銅合金板材の引張強さは650MPa以上であることが好ましく、700MPa以上であることが一層好ましい。圧延方向をLD、圧延方向と板厚方向に対し垂直方向をTDと呼ぶとき、曲げ加工性はLD、TDいずれにおいても90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが1.0以下であることが好ましく、0.5以下であることが一層好ましい。応力緩和特性は、自動車用コネクターなどの用途ではTDの値が特に重要であるため、長手方向がTDである試験片を用いた応力緩和率で応力緩和特性を評価することが望ましい。板材表面の最大負荷応力が0.2%耐力の80%である状態にして、150℃で1000時間保持した場合に、応力緩和率が5%以下であることが好ましく、3%以下であることが一層好ましい。
"Characteristic"
In order to cope with further downsizing and thinning of electric / electronic parts, the tensile strength of the copper alloy sheet material is preferably 650 MPa or more, and more preferably 700 MPa or more. When the rolling direction is called LD and the direction perpendicular to the rolling direction and the plate thickness direction is called TD, the bending workability is the ratio R / t of the minimum bending radius R and the plate thickness t in the 90 ° W bending test in both LD and TD. Is preferably 1.0 or less, and more preferably 0.5 or less. Since the value of TD is particularly important for applications such as automobile connectors, it is desirable to evaluate the stress relaxation characteristic with the stress relaxation rate using a test piece whose longitudinal direction is TD. The stress relaxation rate is preferably 5% or less and preferably 3% or less when the maximum load stress on the surface of the plate is 0.2% and 80% of the proof stress and held at 150 ° C. for 1000 hours. Is more preferable.

《合金組成》
本発明ではCu−Ni−Si系銅合金を採用する。Cu−Ni−Siの3元系基本成分にSn、Zn、その他の合金元素を添加した銅合金も、本明細書では包括的にCu−Ni−Si系銅合金と称している。
<Alloy composition>
In the present invention, a Cu—Ni—Si based copper alloy is employed. A copper alloy obtained by adding Sn, Zn, and other alloy elements to a Cu—Ni—Si ternary basic component is also collectively referred to as a Cu—Ni—Si copper alloy in this specification.

NiおよびSiは、析出物を形成し、強度上昇および導電性・熱伝導度向上に寄与する。Ni含有量が0.6質量%未満またはSi含有量が0.2質量%未満では、上記効果を有効に引き出すことが難しい。一方、Ni含有量が過剰である場合やSi含有量が過剰である場合は粗大な析出物が生成しやすく、曲げ加工性と応力緩和特性がともに低下しやすい。また、溶体化処理において{420}を主方位成分とする再結晶集合組織を発達させることが難しくなり、最終的に曲げ加工性に優れた板材を得ることが困難になる。このためNi含有量は4.2質量%以下とする必要であり、3.5質量%以下とすることがより好ましく、3.0質量%以下とすることが一層好ましい。Si含有量は1.0質量%以下とする必要があり、0.7質量%以下とすることがより好ましい。
Ni含有量は0.6〜4.2質量%に規定されるが、0.7〜4.2質量%の範囲とすることがより好ましく、1.0〜3.5質量%の範囲が一層好ましい。1.2〜2.5質量%の範囲に管理しても構わない。
Si含有量は0.2〜1.0質量%に規定されるが、0.3〜0.6質量%の範囲とすることがより好ましい。
Ni and Si form precipitates and contribute to an increase in strength and an improvement in conductivity and thermal conductivity. When the Ni content is less than 0.6% by mass or the Si content is less than 0.2% by mass, it is difficult to effectively bring out the above effects. On the other hand, when the Ni content is excessive or the Si content is excessive, coarse precipitates are likely to be generated, and both the bending workability and the stress relaxation characteristics are likely to decrease. Further, it becomes difficult to develop a recrystallized texture having {420} as the main orientation component in the solution treatment, and it becomes difficult to finally obtain a plate material excellent in bending workability. For this reason, Ni content needs to be 4.2 mass% or less, it is more preferable to set it as 3.5 mass% or less, and it is still more preferable to set it as 3.0 mass% or less. The Si content must be 1.0% by mass or less, and more preferably 0.7% by mass or less.
The Ni content is defined as 0.6 to 4.2% by mass, more preferably 0.7 to 4.2% by mass, and more preferably 1.0 to 3.5% by mass. preferable. You may manage in the range of 1.2-2.5 mass%.
Although Si content is prescribed | regulated to 0.2-1.0 mass%, it is more preferable to set it as the range of 0.3-0.6 mass%.

NiとSiによって形成されるNi−Si系析出物はNi2Siを主体とする金属間化合物であると考えられる。ただし、合金中のNiおよびSiは時効処理によってすべてが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNiおよびSiは、若干の強度上昇をもたらすものの析出状態と比べてその効果は小さく、また導電率を低下させる要因になる。このためNiとSiの含有量の比はできるだけ析出物Ni2Siの組成比に近付けることが望ましい。したがって本発明では質量%で表したNi/Si比を3.5〜6.0の範囲に調整することが望ましく、3.5〜5.0とすることが一層好ましい。 The Ni—Si based precipitate formed by Ni and Si is considered to be an intermetallic compound mainly composed of Ni 2 Si. However, Ni and Si in the alloy are not necessarily all precipitated by the aging treatment, and to some extent, exist in a solid solution state in the Cu matrix. Although Ni and Si in a solid solution state cause a slight increase in strength, the effect thereof is small as compared with a precipitated state, and it causes a decrease in conductivity. For this reason, it is desirable that the ratio of the content of Ni and Si is as close as possible to the composition ratio of the precipitate Ni 2 Si. Therefore, in the present invention, it is desirable to adjust the Ni / Si ratio expressed in mass% to the range of 3.5 to 6.0, and more preferably 3.5 to 5.0.

Snは、Cuマトリックスの積層欠陥エネルギーを低下させ、双晶の形成を促進させる作用を有する。また、固溶強化作用を有する。これらの作用を十分に発揮させるには、0.1質量%以上のSn含有量を確保する必要がある。ただし、多量のSn含有は導電性の低下を招く。また、熱間加工時に表面割れ、エッジ割れが発生しやすくなり、歩留低下の要因となる。種々検討の結果、Sn含有量は1.3質量%以下の範囲に制限される。
Sn含有量は0.1〜1.3質量%に規定されるが、0.1〜1.2質量%の範囲とすることがより好ましく、0.2〜0.7質量%の範囲が一層好ましい。
Sn has the effect of reducing the stacking fault energy of the Cu matrix and promoting the formation of twins. It also has a solid solution strengthening action. In order to fully exhibit these actions, it is necessary to secure an Sn content of 0.1% by mass or more. However, a large amount of Sn will cause a decrease in conductivity. In addition, surface cracks and edge cracks are likely to occur during hot working, leading to a decrease in yield. As a result of various studies, the Sn content is limited to a range of 1.3% by mass or less.
Although Sn content is prescribed | regulated to 0.1-1.3 mass%, it is more preferable to set it as the range of 0.1-1.2 mass%, and the range of 0.2-0.7 mass% is one layer. preferable.

Znは、Cuマトリックスの積層欠陥エネルギーを低下させ、双晶の形成を促進させる作用を有する。また、はんだ付け性および強度を向上させる他、鋳造性を改善させる効果もある。さらに、Znの添加には安価な黄銅スクラップが使用できるメリットがある。ただし、2.0質量%を超えるZn含有は導電性、耐応力緩和特性、耐応力腐食割れ性の低下要因となりやすい。このため、Znを添加する場合は2.0質量%以下の範囲で行う。上記の効果を十分に得るには0.1質量%以上のZn含有量を確保することが望ましく、特に0.3〜1.0質量%の範囲に調整することが一層好ましい。   Zn has the effect of reducing the stacking fault energy of the Cu matrix and promoting the formation of twins. In addition to improving solderability and strength, it also has the effect of improving castability. Furthermore, the addition of Zn has an advantage that inexpensive brass scrap can be used. However, if Zn content exceeds 2.0% by mass, the conductivity, stress relaxation resistance and stress corrosion cracking resistance are likely to be reduced. For this reason, when adding Zn, it carries out in the range of 2.0 mass% or less. In order to sufficiently obtain the above effects, it is desirable to ensure a Zn content of 0.1% by mass or more, and it is particularly preferable to adjust the content to a range of 0.3 to 1.0% by mass.

その他の元素として、必要に応じてCo、Cr、Mg、B、P、Fe、Zr、Ti、Mn等を含有させることができる。例えば、Co、Cr、Mg、B、P、Fe、Zr、Ti、Mnは合金強度をさらに高め、かつ応力緩和を小さくする作用を有する。Co、Cr、Zr、Ti、Mnは不可避的不純物として存在するS、Pbなどと高融点化合物を形成しやすく、また、B、P、Zr、Tiは鋳造組織の微細化効果を有し、熱間加工性の改善に寄与しうる。   As other elements, Co, Cr, Mg, B, P, Fe, Zr, Ti, Mn, and the like can be contained as necessary. For example, Co, Cr, Mg, B, P, Fe, Zr, Ti, and Mn have the effect of further increasing the alloy strength and reducing the stress relaxation. Co, Cr, Zr, Ti, and Mn easily form a high melting point compound with S, Pb, etc. present as inevitable impurities, and B, P, Zr, and Ti have a refinement effect on the cast structure, It can contribute to the improvement of inter-workability.

Co、Cr、Mg、B、P、Fe、Zr、Ti、Mnの1種または2種以上を含有させる場合は、各元素の作用を十分に得るためにこれらの総量が0.01質量%以上となるように含有させることが望ましい。ただし、多量に含有させると、熱間または冷間加工性に悪い影響を与え、かつコスト的にも不利となる。したがって、これらの元素の総量は3質量%以下の範囲とすることが望ましく、2質量%以下の範囲がより好ましく、1質量%以下の範囲がより一層好ましく、0.5質量%以下の範囲がさらに一層好ましい。   When one or more of Co, Cr, Mg, B, P, Fe, Zr, Ti, and Mn are contained, the total amount of these elements is 0.01% by mass or more in order to sufficiently obtain the action of each element. It is desirable to contain so that it becomes. However, if it is contained in a large amount, it adversely affects hot or cold workability and is disadvantageous in terms of cost. Accordingly, the total amount of these elements is preferably in the range of 3% by mass or less, more preferably in the range of 2% by mass or less, still more preferably in the range of 1% by mass or less, and in the range of 0.5% by mass or less. Even more preferred.

《製造法》
以上のような本発明の銅合金板材は、例えば以下のような一般な製造工程により作ることができる。
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→中間冷間圧延→時効処理→仕上げ冷間圧延→低温焼鈍」
ただし、後述のようにいくつかの工程での製造条件を厳しくコントロールすることが重要である。なお、上記工程中には記載していないが、熱間圧延後には必要に応じて面削が行われ、熱処理後には必要に応じて酸洗、研磨、あるいはさらに脱脂が行われる。以下、各工程について説明する。
<Production method>
The copper alloy sheet material of the present invention as described above can be produced by, for example, the following general manufacturing process.
“Melting / Casting → Hot Rolling → Cold Rolling → Solution Treatment → Intermediate Cold Rolling → Aging Treatment → Finish Cold Rolling → Low Temperature Annealing”
However, as described later, it is important to strictly control manufacturing conditions in several steps. Although not described in the above process, chamfering is performed as necessary after hot rolling, and pickling, polishing, or further degreasing is performed as necessary after heat treatment. Hereinafter, each step will be described.

〔溶解・鋳造〕
一般的な銅合金の溶製方法に従うことができる。連続鋳造、半連続鋳造等により鋳片を製造すればよい。
[Melting / Casting]
A general copper alloy melting method can be followed. The slab may be manufactured by continuous casting, semi-continuous casting, or the like.

〔熱間圧延〕
鋳片を熱間圧延する際、圧延歪が生じやすい700℃以下の温度域での圧延率を40%以上確保する。これにより、後工程の溶体化処理において双晶帯密度の増大を図ることができ、また{420}を主方位成分とする再結晶集合組織が形成されやすくなる。また、再結晶が発生しやすい700℃より高温域での圧延率は60%以上とすることが望ましい。これにより、鋳造組織を破壊し成分と組織の均一化を図ることができる。この温度域での圧延率が不足すると完全再結晶が発生しない可能性がある。例えば、熱間圧延に供する鋳片の厚さが100mmのとき、700℃より高温域で20mmまで圧延したとすると、700℃より高温域での圧延率は前記(4)式より80%となる。その後700℃以下の温度域で20mmから10mmまで圧延したとすると、700℃以下の温度域での圧延率は前記(4)式より50%となる。このように700℃より高温域で60%以上、700℃以下の温度域で40%以上の圧延率をそれぞれ確保すると、鋳造組織の破壊と、圧延歪の導入が適切に達成される。トータルの圧延率は概ね80〜95%とすればよい。熱間圧延終了後は水冷等により急冷することが望ましい。熱間加工後は必要に応じて面削や酸洗を行うことができる。
(Hot rolling)
When the slab is hot-rolled, a rolling rate in a temperature range of 700 ° C. or lower where rolling distortion is likely to occur is secured by 40% or more. Thereby, it is possible to increase the twin band density in the solution treatment in the subsequent step, and it is easy to form a recrystallized texture having {420} as the main orientation component. Moreover, it is desirable that the rolling rate in a temperature range higher than 700 ° C. at which recrystallization is likely to occur be 60% or more. Thereby, a cast structure can be destroyed and a component and a structure can be made uniform. If the rolling rate in this temperature range is insufficient, complete recrystallization may not occur. For example, when the thickness of the slab to be subjected to hot rolling is 100 mm, assuming that the slab is rolled up to 20 mm in a high temperature range from 700 ° C., the rolling rate in the high temperature range from 700 ° C. is 80% from the above formula (4). . Then, if rolling is performed from 20 mm to 10 mm in a temperature range of 700 ° C. or less, the rolling rate in the temperature range of 700 ° C. or less is 50% from the above equation (4). As described above, when a rolling rate of 60% or higher in the temperature range higher than 700 ° C. and 40% or higher in the temperature range of 700 ° C. or lower are secured, destruction of the cast structure and introduction of rolling strain are appropriately achieved. The total rolling rate may be approximately 80 to 95%. It is desirable to cool rapidly after completion of hot rolling by water cooling or the like. After hot working, chamfering or pickling can be performed as necessary.

〔冷間圧延〕
溶体化処理前に行う冷間圧延では圧延率を85%以上とすることが重要であり、90%以上とすることがより好ましい。このような高い圧延率で加工された材料に対し、次工程で溶体化処理を施すことにより、双晶帯密度の増大と、{420}を主方位成分とする再結晶集合組織の形成が可能になる。特に再結晶集合組織は再結晶前の冷間圧延率に大きく依存する。具体的には、{420}を主方位成分とする結晶配向は、冷間圧延率が60%以下ではほとんど生成せず、約60〜80%の領域では冷間圧延率の増加に伴って漸増し、冷間圧延率が約80%を超えると急激な増加に転じる。上記方位関係が十分に優勢な結晶配向を得るには85%以上の冷間圧延率を確保する必要があり、更に90%以上は望ましい。なお、冷間圧延率の上限はミルパワー等により必然的に制約を受けるので、特に規定する必要はないが、概ね98%以下で良好な結果を得やすい。
熱間圧延後、溶体化処理前に、中間焼鈍を挟んで複数回の冷間圧延を実施する場合は、溶体化処理前に行われる最後の中間焼鈍の後に実施される冷間圧延での冷間圧延率を上記のように調整する。
(Cold rolling)
In the cold rolling performed before the solution treatment, it is important that the rolling rate is 85% or more, and more preferably 90% or more. By applying a solution treatment to the material processed at such a high rolling rate in the next step, it is possible to increase the twin band density and to form a recrystallized texture with {420} as the main orientation component. become. In particular, the recrystallization texture greatly depends on the cold rolling rate before recrystallization. Specifically, the crystal orientation having {420} as the main orientation component hardly generates when the cold rolling rate is 60% or less, and gradually increases with the increase of the cold rolling rate in the region of about 60 to 80%. However, when the cold rolling rate exceeds about 80%, it suddenly increases. In order to obtain a crystal orientation in which the orientation relationship is sufficiently dominant, it is necessary to secure a cold rolling rate of 85% or more, and more preferably 90% or more. The upper limit of the cold rolling rate is inevitably restricted by the mill power or the like, so it is not necessary to define it in particular, but good results are likely to be obtained at approximately 98% or less.
When performing cold rolling multiple times after the intermediate annealing before the solution treatment after the hot rolling, the cold rolling in the cold rolling performed after the last intermediate annealing performed before the solution treatment. The rolling ratio is adjusted as described above.

〔溶体化処理〕
ここでの溶体化処理は、「溶質元素のマトリックス中への再固溶」、「再結晶化」の他に、特に本発明では「双晶帯密度の増大」および「{420}を主方位成分とする再結晶集合組織の形成」をも目的とする重要な工程である。この溶体化処理は、700〜850℃の炉温で行うことが望ましい。温度が低すぎると再結晶が不完全で溶質元素の固溶も不十分となる。温度が高すぎると結晶粒が粗大化してしまう。これらいずれの場合も、最終的に曲げ加工性の優れた高強度材を得ることが困難である。また、双晶帯密度を増大させるためには、700℃までの昇温を急速に行うことが極めて有効であることがわかった。昇温速度が遅すぎると、昇温途中で回復や析出が生じて再結晶の進行速度が遅くなり、双晶の生成に不利となる。具体的には100℃から700℃までの昇温時間を20sec以下とすることが好ましく、15sec以下とすることが一層好ましい。
[Solution treatment]
In the solution treatment here, in addition to “re-solution of solute elements in the matrix” and “recrystallization”, particularly in the present invention, “increase of twin zone density” and “{420} This is an important process aiming at the formation of a recrystallized texture as a component. This solution treatment is desirably performed at a furnace temperature of 700 to 850 ° C. If the temperature is too low, recrystallization is incomplete and solute elements are not sufficiently dissolved. If the temperature is too high, the crystal grains become coarse. In any of these cases, it is difficult to finally obtain a high-strength material excellent in bending workability. Further, it has been found that it is extremely effective to rapidly raise the temperature to 700 ° C. in order to increase the twin band density. If the rate of temperature rise is too slow, recovery and precipitation occur during the temperature rise, and the recrystallization progress rate becomes slow, which is disadvantageous for twin formation. Specifically, the temperature raising time from 100 ° C. to 700 ° C. is preferably 20 sec or less, and more preferably 15 sec or less.

また、この溶体化処理は、再結晶粒径(双晶帯およびその他の双晶境界を結晶粒界とみなさない)が15〜60μmとなるように温度・時間を調整して行うことが望ましく、15〜40μmとなるように調整することが一層好ましい。再結晶粒径が微細になりすぎると双晶帯密度が低くなりやすいとともに、{420}を主方位成分とする再結晶集合組織が弱くなる。具体的には、700〜850℃の温度で10sec〜10min保持する加熱条件が採用できる。   Further, this solution treatment is preferably performed by adjusting the temperature and time so that the recrystallized grain size (a twinning zone and other twin boundaries are not regarded as grain boundaries) is 15 to 60 μm. It is more preferable to adjust so that it may become 15-40 micrometers. If the recrystallized grain size becomes too fine, the twin band density tends to be low, and the recrystallized texture having {420} as the main orientation component becomes weak. Specifically, heating conditions for holding for 10 sec to 10 min at a temperature of 700 to 850 ° C. can be employed.

〔中間冷間圧延〕
続いて0〜50%の圧延率で冷間圧延を行う。この段階での冷間圧延は次工程の時効処理中の析出を促進する効果があり、これにより必要な特性(導電率、硬さ)を引き出すための時効時間を短くすることができる。この冷間圧延によって{220}を主方位成分とする集合組織が発達していくが、50%以下の冷間圧延率の範囲では、まだ十分に{420}面を板面に平行にもつ結晶粒も残存する。特に、この冷間圧延での圧延率は、時効処理後に行う後述の仕上げ冷間圧での圧延率とうまく組合せることにより、最終的な高強度化と曲げ加工性改善に寄与する。この段階の冷間圧延は圧延率50%以下で行う必要があり、0〜35%とすることがより好ましい。圧延率が高過ぎると続く時効処理で析出が不均一に発生して過時効になりやすく、また前記(2)式を満たすような理想的な結晶配向が得られにくくなる。圧延率がゼロである場合は、溶体化処理後に中間の冷間圧延を行わず、直接時効処理に供することを意味する。本発明の銅合金板材は、生産性を向上するために、この段階での冷間圧延工程を省略してもよい。
(Intermediate cold rolling)
Subsequently, cold rolling is performed at a rolling rate of 0 to 50%. Cold rolling at this stage has the effect of promoting precipitation during the aging treatment of the next process, and this can shorten the aging time for extracting necessary characteristics (conductivity and hardness). This cold rolling develops a texture with {220} as the main orientation component, but in the range of the cold rolling rate of 50% or less, the crystal still has {420} plane parallel to the plate surface. Grains also remain. In particular, the rolling rate in this cold rolling contributes to the final increase in strength and the improvement of bending workability by combining well with the rolling rate at the finish cold pressure described later after the aging treatment. Cold rolling at this stage needs to be performed at a rolling rate of 50% or less, and more preferably 0 to 35%. If the rolling rate is too high, precipitation will occur non-uniformly during the subsequent aging treatment, and overaging will tend to occur, and it will be difficult to obtain an ideal crystal orientation that satisfies the formula (2). When the rolling rate is zero, it means that the intermediate cold rolling is not performed after the solution treatment and the aging treatment is directly performed. In order to improve productivity, the copper alloy sheet of the present invention may omit the cold rolling process at this stage.

〔時効処理〕
続いて時効処理を施す。時効処理では、当該合金の導電性と強度の向上に有効な条件の中で、あまり温度を上げすぎないようにする。時効処理温度が高くなりすぎると溶体化処理によって発達させた{420}を優先方位とする結晶配向が弱められ、結果的に十分な曲げ加工性改善効果が得られない場合がある。具体的には材温が400〜500℃となる温度で行うことが望ましく、420〜480℃の範囲が一層好ましい。時効処理時間は概ね1〜10h程度で良好な結果が得られる。
[Aging treatment]
Subsequently, an aging treatment is performed. In the aging treatment, the temperature is not excessively raised under conditions effective for improving the conductivity and strength of the alloy. If the aging temperature is too high, the crystal orientation with {420} as the preferred orientation developed by the solution treatment is weakened, and as a result, sufficient bending workability improvement effect may not be obtained. Specifically, it is desirable to carry out at a temperature at which the material temperature is 400 to 500 ° C, and a range of 420 to 480 ° C is more preferable. An aging treatment time is about 1 to 10 hours, and good results are obtained.

〔仕上げ冷間圧延〕
この仕上げ冷間圧延では、強度レベルの向上を図るとともに、{220}を主方位成分とする圧延集合組織を発達させていく。仕上げ冷間圧延の圧延率が低すぎると強度上昇効果が十分に得られない。逆に圧延率が高すぎると{220}方位の圧延集合組織が相対的に優勢となりすぎ、強度と曲げ加工性が高レベルで両立された中間的な結晶配向が実現できない。
(Finish cold rolling)
In this finish cold rolling, the strength level is improved and a rolling texture having {220} as the main orientation component is developed. If the rolling rate of finish cold rolling is too low, the effect of increasing the strength cannot be obtained sufficiently. On the other hand, if the rolling rate is too high, the rolling texture in the {220} orientation becomes relatively dominant, and an intermediate crystal orientation in which strength and bending workability are compatible at a high level cannot be realized.

仕上げ圧延率は10%以上とすることが望まれる。ただし、仕上げ冷間圧延率の上限については、時効処理前に行った中間冷間圧延の寄与分を考慮しなければならない。発明者らの詳細な研究の結果、その上限は上記の中間冷間圧延率との合計で溶体化処理から最終工程まで板厚の減少率が65%を超えないように設定することが好ましい。すなわち、下記(3)式を満たすように仕上げ冷間圧延を行う。
10≦ε2≦(65−ε1)/(100−ε1)×100 ……(3)
ここで、ε1は中間冷間圧延率(%)、ε2は仕上げ冷間圧延率(%)である。
最終的な板厚としては概ね0.05〜1.0mmが適用され、0.08〜0.5mmとすることが一層好ましい。
The finish rolling rate is desired to be 10% or more. However, for the upper limit of the finish cold rolling rate, the contribution of the intermediate cold rolling performed before the aging treatment must be taken into account. As a result of detailed studies by the inventors, the upper limit is preferably set so that the reduction rate of the sheet thickness does not exceed 65% from the solution treatment to the final step in total with the above-described intermediate cold rolling rate. That is, finish cold rolling is performed so as to satisfy the following expression (3).
10 ≦ ε 2 ≦ (65−ε 1 ) / (100−ε 1 ) × 100 (3)
Here, ε 1 is the intermediate cold rolling rate (%), and ε 2 is the finish cold rolling rate (%).
As the final plate thickness, approximately 0.05 to 1.0 mm is applied, and 0.08 to 0.5 mm is more preferable.

〔低温焼鈍〕
仕上げ冷間圧延後には、板条材の残留応力の低減による曲げ加工性の向上、空孔やすべり面上の転位の低減による耐応力緩和特性向上を目的として、低温焼鈍を施すことができる。加熱温度は材温が150〜550℃となるように設定することが望ましい。これにより強度低下をほとんど伴わずに曲げ加工性と耐応力緩和特性を向上させることができる。また、導電率を上昇させる効果もある。この加熱温度が高すぎると短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じやすくなる。逆に加熱温度が低すぎると上記特性の改善効果が十分に得られない。上記温度での保持時間は5sec以上確保することが望ましく、通常1h以内の範囲で良好な結果が得られる。
[Low temperature annealing]
After the finish cold rolling, low temperature annealing can be performed for the purpose of improving the bending workability by reducing the residual stress of the strip material and improving the stress relaxation resistance by reducing the dislocations on the pores and the sliding surface. The heating temperature is preferably set so that the material temperature is 150 to 550 ° C. Thereby, bending workability and stress relaxation resistance can be improved with almost no decrease in strength. It also has the effect of increasing the conductivity. If this heating temperature is too high, it softens in a short time, and variations in characteristics are likely to occur in both batch and continuous systems. Conversely, if the heating temperature is too low, the effect of improving the above characteristics cannot be obtained sufficiently. It is desirable to secure the holding time at the above temperature for 5 sec or more, and good results are usually obtained within a range of 1 h.

表1に示す銅合金を溶製し、縦型連続鋳造機を用いて鋳造した。得られた鋳片を950℃に加熱し、約950℃から熱間圧延を開始し、700℃以下の温度域でも圧延を行うようにパススケジュールを設定した。鋳片からのトータルの熱間圧延率は約90%である。最終パス終了後に急冷(水冷)した。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。次いで、種々の圧延率で冷間圧延を行った後、溶体化処理に供した。試料表面に取り付けた熱電対により溶体化処理時の温度変化をモニターし、昇温過程における100℃から700℃までの昇温時間を求めた。一部の比較例を除いて、溶体化処理後の平均結晶粒径(双晶帯およびその他の双晶境界を結晶粒界とみなさない)が15μmを超え〜40μmとなるように保持温度を合金組成に応じて700〜850℃の範囲内で調整した。保持時間は10sec〜10mimの範囲とした。続いて、上記溶体化処理後の板材に対して、一部のものを除き中間冷間圧延を施し、次いで時効処理を施した。時効処理温度は材温450℃とし、時効時間は合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。このような合金組成に応じて最適な溶体化処理条件や時効処理時間は予備実験により把握してある。次いで、種々の圧延率で仕上げ冷間圧延を行い、その後、400℃の炉中に5min装入する低温焼鈍を施すことによって供試材を得た。なお、必要に応じて途中で面削を行い、供試材の板厚は0.2mmに揃えた。   The copper alloys shown in Table 1 were melted and cast using a vertical continuous casting machine. The obtained slab was heated to 950 ° C., hot rolling was started from about 950 ° C., and a pass schedule was set so as to perform rolling even in a temperature range of 700 ° C. or lower. The total hot rolling rate from the slab is about 90%. Rapid cooling (water cooling) was performed after the final pass. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing. Next, after cold rolling at various rolling rates, it was subjected to a solution treatment. The temperature change during the solution treatment was monitored by a thermocouple attached to the sample surface, and the temperature raising time from 100 ° C. to 700 ° C. in the temperature raising process was determined. Except for some comparative examples, the holding temperature is alloyed so that the average grain size after solution treatment (a twin band and other twin boundaries are not regarded as grain boundaries) exceeds 15 μm to ˜40 μm. It adjusted within the range of 700-850 degreeC according to the composition. The holding time was in the range of 10 sec to 10 mim. Subsequently, the plate material after the solution treatment was subjected to intermediate cold rolling except for a part, and then subjected to an aging treatment. The aging treatment temperature was adjusted to a material temperature of 450 ° C., and the aging time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition. The optimum solution treatment conditions and aging treatment time according to such an alloy composition have been grasped by preliminary experiments. Next, finish cold rolling was performed at various rolling rates, and then a test material was obtained by performing low temperature annealing in a furnace at 400 ° C. for 5 min. If necessary, chamfering was performed in the middle, and the thickness of the specimen was adjusted to 0.2 mm.

Figure 0005156317
Figure 0005156317

各供試材から試料を採取し、結晶粒組織、X線回折強度、導電率、引張強さ、応力緩和特性、曲げ加工性を以下の方法で調べた。   Samples were collected from each test material, and the crystal grain structure, X-ray diffraction intensity, conductivity, tensile strength, stress relaxation characteristics, and bending workability were examined by the following methods.

〔結晶粒組織〕
板面(圧延面)を研磨したのちエッチングし、その面を光学顕微鏡で観察し、平均結晶粒径をJIS H0501の切断法で測定した。その際、双晶帯を粒界とみなした場合の前記平均結晶粒径DTと、双晶帯を結晶粒界とみなさない場合の前記平均結晶粒径Dを測定し、(1)式に基づいて双晶帯密度NGを求めた。なお、平均結晶粒径Dは一部の供試材を除き15〜30μmの範囲であった。
[Grain structure]
The plate surface (rolled surface) was polished and then etched, the surface was observed with an optical microscope, and the average crystal grain size was measured by the cutting method of JIS H0501. At that time, the average crystal grain size D T when the twin zone is regarded as a grain boundary and the average crystal grain size D when the twin zone is not regarded as a grain boundary are measured, Based on this, the twin band density NG was determined. The average crystal grain size D was in the range of 15 to 30 μm except for some test materials.

〔X線回折強度〕
供試材の表面(圧延面)を#1500耐水ペーパーで研磨仕上げとした試料を準備し、X線回折装置(XRD)を用いて、Mo−Kα線、管電圧20kV、管電流2mAの条件で、前記研磨仕上げ面について{220}面および{420}面の反射回折積分強度を測定し、前記(2)式中に示されるX線回折強度比を求めた。
[X-ray diffraction intensity]
A sample whose surface (rolled surface) was polished with # 1500 water-resistant paper was prepared, and using an X-ray diffractometer (XRD), Mo-Kα ray, tube voltage 20 kV, tube current 2 mA. Then, the reflection diffraction integrated intensity of the {220} plane and the {420} plane was measured for the polished finished surface, and the X-ray diffraction intensity ratio shown in the equation (2) was determined.

〔導電率〕
JIS H0505に従って各供試材の導電率を測定した。
〔引張強さ〕
各供試材からLDの引張試験片(JIS 5号)を採取し、n=3でJIS Z2241に準拠した引張試験行い、n=3の平均値によって引張強さと破断伸びを求めた。
〔conductivity〕
The electrical conductivity of each test material was measured according to JIS H0505.
〔Tensile strength〕
An LD tensile test piece (JIS No. 5) was collected from each sample material, and a tensile test based on JIS Z2241 was performed with n = 3, and the tensile strength and elongation at break were determined by the average value of n = 3.

〔応力緩和特性〕
各供試材から長手方向がTDの曲げ試験片(幅10mm)を採取し、試験片の中央部の応力が0.2%耐力の80%の大きさとなるようにアーチ曲げした状態で固定し、大気中150℃の温度で1000時間保持した後の曲げ癖から次式を用いて応力緩和率を算出した。
応力緩和率(%)=(L1−L2)/(L1−L0)×100
ただし、L0:治具の長さ(mm)
1:試験開始時の試料長さ(mm)
2:試験後の試料端間の水平距離(mm)
[Stress relaxation characteristics]
Bending test pieces (width: 10 mm) with a TD longitudinal direction are taken from each test material and fixed in an arch-bent state so that the stress at the center of the test piece is 80% of the 0.2% proof stress. The stress relaxation rate was calculated using the following equation from the bending habit after holding at a temperature of 150 ° C. in the atmosphere for 1000 hours.
Stress relaxation rate (%) = (L 1 −L 2 ) / (L 1 −L 0 ) × 100
L 0 : Jig length (mm)
L 1 : Sample length at the start of the test (mm)
L 2 : Horizontal distance between the sample ends after the test (mm)

〔曲げ加工性〕
各供試材から長手方向がLDおよびTDの曲げ試験片(幅10mm)を採取し、JIS H3110に準拠した90°W曲げ試験を行った。試験後の試験片について曲げ加工部の表面および断面を光学顕微鏡にて100倍の倍率で観察することにより、割れが発生しない最小曲げ半径Rを求め、これを供試材の板厚tで除することによりLD、TDそれぞれのR/t値を求めた。各供試材のLD、TDともn=3で実施し、n=3のうち最も悪い結果となった試験片の成績を採用してR/t値を表示した。
主な製造条件と、これらの結果を表2、表3に示す。なお、表2、表3中、曲げ加工性の欄において、LDおよびTDは曲げ試験片の長手方向を意味する。
[Bending workability]
Bending test pieces (width 10 mm) having a longitudinal direction of LD and TD were sampled from each test material, and a 90 ° W bending test based on JIS H3110 was performed. By observing the surface and cross section of the bent portion of the test piece after the test with an optical microscope at a magnification of 100 times, the minimum bending radius R at which no crack is generated is obtained, and this is divided by the thickness t of the specimen. Thus, R / t values of LD and TD were obtained. The LD and TD of each test material were carried out with n = 3, and the result of the test piece with the worst result among n = 3 was adopted to display the R / t value.
The main production conditions and the results are shown in Tables 2 and 3. In Tables 2 and 3, in the column of bending workability, LD and TD mean the longitudinal direction of the bending test piece.

Figure 0005156317
Figure 0005156317

Figure 0005156317
Figure 0005156317

表2、表3から判るように、本発明例のものはいずれも(1)式を満たす双晶帯密度NGを有し、X線回折強度比が(2)式を満たす結晶配向を有し、引張強さが700MPa以上という高強度を呈するとともに、R/t値がLD、TDとも0.5以下という優れた曲げ加工性を有する。さらに、TD方向の応力緩和率が5%以下という優れた結果が得られた。 As can be seen from Tables 2 and 3, each of the examples of the present invention has a twin band density NG satisfying the formula (1) and an X-ray diffraction intensity ratio having a crystal orientation satisfying the formula (2). In addition, the tensile strength is as high as 700 MPa or more, and the R / t value is excellent in bending workability such that both LD and TD are 0.5 or less. Furthermore, the outstanding result that the stress relaxation rate of TD direction was 5% or less was obtained.

これに対し、比較例No.21〜23はNiまたはSiの含有量が規定範囲外であることにより、良好な特性が得られなかった例である。No.21はNiとSiの含有量が低すぎたので析出物の生成が少なく、強度レベルが低かった。No.22はNiとSiの含有量が高すぎたので製造条件が適正であっても双晶帯密度が小さく、また{420}を主方位成分とする結晶配向が弱くなり、結果的に引張強さは高いものの曲げ加工性に劣った。No.23はNo.22と同一組成のものについて、曲げ加工性の向上を図るべく溶体化時の保持温度を調整して平均結晶粒径Dを6μm程度の微細なものにした例である。この場合、No.22に比べ曲げ加工性は改善されたものの、結晶粒が微細になったために応力緩和特性は悪化してしまった。   On the other hand, Comparative Examples No. 21 to 23 are examples in which good characteristics were not obtained because the content of Ni or Si was outside the specified range. In No. 21, since the contents of Ni and Si were too low, the generation of precipitates was small and the strength level was low. In No. 22, since the contents of Ni and Si were too high, even if the production conditions were appropriate, the twin band density was small, and the crystal orientation with {420} as the main orientation component was weakened, resulting in tension. Although its strength was high, it was inferior in bending workability. No. 23 is an example having the same composition as No. 22 and adjusting the holding temperature at the time of solution treatment so as to improve the bending workability, so that the average crystal grain size D is as fine as about 6 μm. In this case, although the bending workability was improved as compared with No. 22, the stress relaxation characteristics were deteriorated because the crystal grains became finer.

比較例No.24、25、29、30は、700℃以下の温度域での熱間圧延率が低すぎ、また溶体化処理前の冷間圧延率が低すぎたことにより、双晶帯密度が小さくなり、かつ{420}を主方位成分とする再結晶集合組織が十分に発達しなかった例である。この場合、仕上げ冷間圧延率を調整しても、引張強さ、曲げ加工性の同時改善は達成できない。   In Comparative Examples No. 24, 25, 29, and 30, the hot rolling rate in the temperature range of 700 ° C. or lower is too low, and the cold rolling rate before the solution treatment is too low. In this example, the recrystallization texture having {420} as the main orientation component is not sufficiently developed. In this case, even if the finish cold rolling rate is adjusted, simultaneous improvement in tensile strength and bending workability cannot be achieved.

比較例No.26〜28、32は溶体化処理条件が規定範囲外であったことにより、良好な特性が得られなかった例である。No.26は溶体化保持温度が高すぎたので結晶粒が粗大化し、良好な曲げ加工性が得られなかった。No.27は逆に溶体化保持温度が低すぎたので再結晶自体が十分進行せずに混粒組織となり、引張強さ、曲げ加工性、応力緩和特性全てが悪い結果となった。No.28、32は溶体化処理時の昇温速度が遅すぎたために、回復によって一部の変形歪が解放され、結局、溶体化処理前の圧延率が小さかった比較例No.24と同じような結果になった。   Comparative Examples Nos. 26 to 28 and 32 are examples in which good characteristics were not obtained because the solution treatment conditions were outside the specified range. In No. 26, since the solution retention temperature was too high, the crystal grains became coarse, and good bending workability was not obtained. On the other hand, No. 27 had a solution retention temperature that was too low, so that the recrystallization itself did not proceed sufficiently to form a mixed grain structure, and all the tensile strength, bending workability, and stress relaxation characteristics were poor. No. 28 and No. 32 were the same as Comparative Example No. 24 in which some deformation strain was released by recovery because the temperature rising rate during solution treatment was too slow, and eventually the rolling rate before solution treatment was small. The result was as follows.

No.31は中間冷間圧延率が大きすぎたため、圧延集合組織が発達して{420}を主方位とする結晶配向が弱くなり、目標とする曲げ加工性が得られなかった。No.33はSn含有量が多すぎたために、熱間圧延時に割れが発生し、製造不能となった。No.34はZn含有量が多すぎたために、耐応力緩和特性に劣った。   In No. 31, since the intermediate cold rolling rate was too large, the rolling texture developed and the crystal orientation with {420} as the main orientation became weak, and the target bending workability could not be obtained. Since No. 33 had too much Sn content, cracks occurred during hot rolling, making it impossible to manufacture. No. 34 was inferior in stress relaxation resistance because the Zn content was too high.

Claims (6)

質量%で、Ni:0.6〜4.2%、Si:0.2〜1.0%、Sn:0.1〜1.3%、残部がCuおよび不可避的不純物である組成を有し、下記(1)式を満たす双晶帯密度NGを有し、下記(2)式を満たす結晶配向を有し、下記(A)式を満たす平均結晶粒径Dを有する銅合金板材。
G=(D−DT)/DT≧0.3 ……(1)
0.1≦I{420}/I{220}≦0.5 ……(2)
10μm≦D≦60μm ……(A)
ここで、DTは双晶帯を1つの結晶粒界とみなして測定されるJIS H0501の切断法による平均結晶粒径、I{420}およびI{220}はそれぞれ当該板材の板面における{420}結晶面および{220}結晶面のX線回折強度、Dは双晶帯を結晶粒界とみなさないで測定される同平均結晶粒径である。
In mass%, Ni has a composition of 0.6 to 4.2%, Si: 0.2 to 1.0%, Sn: 0.1 to 1.3%, and the balance being Cu and inevitable impurities A copper alloy sheet having a twin band density NG satisfying the following formula (1) , a crystal orientation satisfying the following formula (2), and an average grain size D satisfying the following formula (A).
N G = (D−D T ) / D T ≧ 0.3 (1)
0.1 ≦ I {420} / I {220} ≦ 0.5 (2)
10 μm ≦ D ≦ 60 μm (A)
Here, D T is an average crystal grain size measured by the cutting method of JIS H0501 measured with a twin zone as one crystal grain boundary, and I {420} and I {220} are { 420} crystal planes and X-ray diffraction intensities of {220} crystal planes, D is the same average grain size measured without considering twin bands as grain boundaries.
さらにZn:2.0%以下を含む組成を有する請求項1に記載の銅合金板材。   Furthermore, the copper alloy plate material of Claim 1 which has a composition containing Zn: 2.0% or less. さらにCo、Cr、Mg、B、P、Fe、Zr、Ti、Mnの1種以上を合計3%以下の範囲で含む組成を有する請求項1または2に記載の銅合金板材。   The copper alloy sheet according to claim 1 or 2, further comprising a composition containing one or more of Co, Cr, Mg, B, P, Fe, Zr, Ti, and Mn in a total range of 3% or less. 組成調整された銅合金材料に対し、700℃以下の温度域での圧延率を40%以上とする熱間圧延、圧延率85%以上の冷間圧延、700〜850℃での溶体化処理、圧延率0〜50%の中間冷間圧延、400〜500℃の時効処理、下記(3)式を満たす圧延率の仕上げ冷間圧延を順次施す工程を有する請求項1〜のいずれかに記載の銅合金板材の製造法。
10≦ε2≦(65−ε1)/(100−ε1)×100 ……(3)
ここで、ε1は中間冷間圧延率(%)、ε2は仕上げ冷間圧延率(%)である。
For the copper alloy material whose composition is adjusted, hot rolling with a rolling rate of 40% or higher in a temperature range of 700 ° C. or lower, cold rolling with a rolling rate of 85% or higher, solution treatment at 700 to 850 ° C., rolling ratio 0-50% of the intermediate cold rolling, aging treatment 400 to 500 ° C., to any one of claims 1 to 3 having a sequentially subjected steps of finish cold rolling reduction ratios that satisfy the following expression (3) The manufacturing method of the copper alloy board | plate material of description.
10 ≦ ε 2 ≦ (65−ε 1 ) / (100−ε 1 ) × 100 (3)
Here, ε 1 is the intermediate cold rolling rate (%), and ε 2 is the finish cold rolling rate (%).
前記溶体化処理において100℃から700℃までの昇温時間を20sec以下とする請求項に記載の銅合金板材の製造法。 The method for producing a copper alloy sheet according to claim 4 , wherein the temperature rise time from 100 ° C to 700 ° C in the solution treatment is 20 sec or less. 仕上げ冷間圧延後に、150〜550℃の加熱処理を施す工程を有する請求項4または5に記載の銅合金板材の製造法。 The method for producing a copper alloy sheet according to claim 4, further comprising a step of performing a heat treatment at 150 to 550 ° C. after the finish cold rolling.
JP2007250623A 2006-09-27 2007-09-27 Copper alloy sheet and manufacturing method thereof Active JP5156317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250623A JP5156317B2 (en) 2006-09-27 2007-09-27 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006262599 2006-09-27
JP2006262599 2006-09-27
JP2007250623A JP5156317B2 (en) 2006-09-27 2007-09-27 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008106356A JP2008106356A (en) 2008-05-08
JP5156317B2 true JP5156317B2 (en) 2013-03-06

Family

ID=39439963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250623A Active JP5156317B2 (en) 2006-09-27 2007-09-27 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5156317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747363A (en) * 2019-11-11 2020-02-04 宁波金田铜业(集团)股份有限公司 High-strength high-elasticity conductive Cu-Ti alloy strip and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123140A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Cu-ni-si alloy to be used in electrically conductive spring material
JP4563495B1 (en) * 2009-04-27 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
US8876990B2 (en) 2009-08-20 2014-11-04 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks
WO2011036804A1 (en) * 2009-09-28 2011-03-31 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP4948678B2 (en) 2009-12-02 2012-06-06 古河電気工業株式会社 Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP5490594B2 (en) * 2010-03-31 2014-05-14 Jx日鉱日石金属株式会社 Cu-Zn alloy strip for battery connection tab material
JP5961335B2 (en) 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
US20120192997A1 (en) * 2011-02-01 2012-08-02 Mitsubishi Materials Corporation Thermo-mechanical process to enhance the quality of grain boundary networks in metal alloys
JP5432201B2 (en) 2011-03-30 2014-03-05 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
WO2013021970A1 (en) * 2011-08-05 2013-02-14 古河電気工業株式会社 Rolled copper foil for secondary battery collector and production method therefor
CN103014409B (en) * 2011-09-21 2016-04-06 三菱伸铜株式会社 The Cu-Ni-Si series copper alloy of projection welding excellent and manufacture method thereof
JP7195054B2 (en) * 2018-03-09 2022-12-23 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method thereof
US20230018758A1 (en) * 2020-01-09 2023-01-19 Dowa Metaltech Co., Ltd. Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL, METHOD FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT
TWI804149B (en) * 2022-01-10 2023-06-01 國立陽明交通大學 NANO-TWINNED Cu-Ni ALLOY LAYER AND METHOD FOR MANUFACTURING THE SAME

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800279B2 (en) * 1998-08-31 2006-07-26 株式会社神戸製鋼所 Copper alloy sheet with excellent press punchability
US6251199B1 (en) * 1999-05-04 2001-06-26 Olin Corporation Copper alloy having improved resistance to cracking due to localized stress
JP4809602B2 (en) * 2004-05-27 2011-11-09 古河電気工業株式会社 Copper alloy
JP4876225B2 (en) * 2006-08-09 2012-02-15 Dowaメタルテック株式会社 High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747363A (en) * 2019-11-11 2020-02-04 宁波金田铜业(集团)股份有限公司 High-strength high-elasticity conductive Cu-Ti alloy strip and preparation method thereof
CN110747363B (en) * 2019-11-11 2021-08-27 宁波金田铜业(集团)股份有限公司 High-strength high-elasticity conductive Cu-Ti alloy strip and preparation method thereof

Also Published As

Publication number Publication date
JP2008106356A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP4189435B2 (en) Cu-Ni-Si-based copper alloy sheet and method for producing the same
JP5028657B2 (en) High-strength copper alloy sheet with little anisotropy and method for producing the same
JP4563495B1 (en) Copper alloy sheet and manufacturing method thereof
JP4563480B2 (en) Copper alloy sheet and manufacturing method thereof
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP5261122B2 (en) Copper alloy sheet and manufacturing method thereof
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP5961335B2 (en) Copper alloy sheet and electrical / electronic components
KR102222540B1 (en) Cu-Ni-Co-Si BASED COPPER ALLOY SHEET MATERAL AND METHOD FOR PRODUCING THE SAME
JP4357548B2 (en) Cu-Ti-based copper alloy sheet and method for producing the same
JP5075438B2 (en) Cu-Ni-Sn-P copper alloy sheet and method for producing the same
JP5191725B2 (en) Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP6385382B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
JP3977376B2 (en) Copper alloy
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP5734156B2 (en) Copper alloy sheet and manufacturing method thereof
JP5011586B2 (en) Copper alloy sheet with improved bending workability and fatigue characteristics and its manufacturing method
JP5135496B2 (en) Cu-Be based copper alloy sheet and method for producing the same
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
JP2020079436A (en) HIGH YOUNG Cu-Ni-Al-BASED COPPER ALLOY SHEET, METHOD FOR PRODUCING THE SAME, AND CONDUCTIVE SPRING MEMBER
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP4779100B2 (en) Manufacturing method of copper alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5156317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250