JP3800279B2 - Copper alloy sheet with excellent press punchability - Google Patents
Copper alloy sheet with excellent press punchability Download PDFInfo
- Publication number
- JP3800279B2 JP3800279B2 JP24505898A JP24505898A JP3800279B2 JP 3800279 B2 JP3800279 B2 JP 3800279B2 JP 24505898 A JP24505898 A JP 24505898A JP 24505898 A JP24505898 A JP 24505898A JP 3800279 B2 JP3800279 B2 JP 3800279B2
- Authority
- JP
- Japan
- Prior art keywords
- plane
- copper alloy
- ray diffraction
- diffraction intensity
- crystal orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Punching Or Piercing (AREA)
- Lead Frames For Integrated Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は銅合金板、特にリードフレーム、端子、コネクタ、スイッチ、リレーなどの電子部品に用いるに好適なプレス打ち抜き性が優れた銅合金板に関するものである。
【0002】
【従来の技術】
各種電子部品に、各種銅及び銅合金が用いられている。近年、電子部品の軽薄短小化の流れが急速に進展している。それに伴い、リードフレーム、端子、コネクタ、スイッチ、リレーなどに用いられる銅合金板は、高強度、高導電率はもちろんのこと、微細な形状にスタンピング加工されるため優れたプレス打抜き性が要求されることが多くなってきている。
なかでもCu−Ni−Si系合金は、高強度、高耐熱性、高い耐応力緩和特性及び比較的高い導電率を兼備する合金としてこれらの用途に広く用いられている。しかし、これらの特性とプレス打抜き性との両立は難しいのが現状であった。
【0003】
【発明が解決しようとする課題】
従来、プレス打抜き性向上の方法として、Pb、Caなどの微量成分添加、あるいは破断の起点となる化合物を分散させるなど、化学成分に着目することが常套手段であった。しかしこのような方法は、微量成分の制御が困難であったり、他の特性を劣化させたり、コストアップにつながるなどの問題を有していた。
本発明は従来技術の上記問題点に鑑みてなされたもので、Cu−Ni−Si系合金の優れた強度、導電率等を保持しながら、優れたプレス打抜き性を持つ銅合金板を得ることを目的とする。
【0004】
【課題を解決するための手段】
本発明者は、前記課題を解決するためにCu−Ni−Si系合金板について鋭意研究した結果、結晶方位の集積度を制御することによりプレス打抜き性を向上できることを見い出し、本発明をなすに至った。
すなわち、本発明に係る銅合金板は、Ni:0.4〜5wt%、Si:0.1〜1wt%を含み、残部Cuと不可避不純物からなり、さらに板表面における{200}面からのX線回折強度をI{200}、{311}面からのX線回折強度をI{311}、{220}面からのX線回折強度をI{220}としたとき、下記式を満たすことを特徴とする。
[I{200}+I{311}]/I{220}<0.5
【0005】
なお、上記の銅合金板は、Zn:0.01〜10wt%、Sn:0.01〜5wt%のいずれか一方又は双方を含有することができる。さらに、上記の銅合金板は、B、C、P、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの各元素0.0001〜0.1wt%(2種以上添加する場合は合計で0.1wt%以下)、Be、Mg、Al、Ti、Cr、Mn、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auの各元素0.001〜1wt%のうちから選ばれた、1種又は2種以上の元素を合計で1wt%以下含有することができる。
【0006】
【発明の実施の形態】
次に、本発明に係る銅合金の成分及び結晶方位等の限定理由について説明する。
(Ni及びSi)
これらの成分は、共存した状態でNiとSiの金属間化合物を形成することにより、導電率を大幅に低下させることなく強度を向上させる効果がある。Niが0.4wt%未満又は/及びSiが0.1wt%未満ではその効果がなく、Niが5wt%を超え又は/及びSiが1wt%を超えると熱間加工性が著しく低下する。従って、両成分はNi:0.4〜5wt%、Si:0.1〜1wt%とする。なお、Ni、Siは結晶方位指数([I{200}+I{311}]/I{220})を下げ、プレス打ち抜き性を向上させる作用がある。
【0007】
(Zn)
Znは、はんだ耐熱剥離性及び耐マイグレーション性を向上させる作用があるが、0.01wt%未満ではその効果が十分ではない。10wt%を超えると導電率が低下するだけでなく、はんだ付け性が低下するとともに、耐応力腐食割れ感受性が高くなり好ましくない。従って、Znは0.01〜10wt%とする。なお、Znは結晶方位指数を下げ、プレス打ち抜き性を向上させる作用をもつ。
(Sn)
Snは、固溶強化により強度を向上させる成分である。0.01wt%未満ではその効果が十分ではなく、5wt%を超えるとその効果が飽和するとともに、熱間及び冷間加工性が劣化する。従って、Snは0.01〜5wt%とする。なお、Snは結晶方位指数を下げ、プレス打ち抜き性を向上させる作用をもつ。
【0008】
(副成分)
B、C、P、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの各元素はプレス打抜き性を一層向上させる役割を有する。これらの元素は、0.0001wt%未満ではその効果がなく、0.1wt%を超えると熱間加工性が劣化する。また、Be、Mg、Al、Ti、Cr、Mn、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auの各元素はプレス打抜き性を向上させる役割を有し、加えてNi−Si化合物との共存により強度を一層向上させる。これらの元素は、0.001wt%未満ではその効果がなく、1wt%を超えると熱間及び冷間加工性が劣化するとともに導電率も低下する。従って、上記B〜Pbについては各元素0.0001〜0.1wt%(2種以上添加する場合は合計で0.1wt%以下)、上記Be〜Auについては各元素0.001〜1wt%とし、両方合計で1wt%以下とする。
【0009】
(結晶方位)
NiとSiを含有する銅合金板は、再結晶しその粒径が大きくなるに従って板表面への{200}、{311}面の集積割合が増し、圧延すると{220}面の集積割合が増してくる。本発明に係る銅合金板は、例えば熱間圧延、冷間圧延、溶体化処理、冷間圧延、析出焼鈍、必要に応じてさらに仕上げ冷間圧延及び歪み取り焼鈍という工程で製造されるが、この製造工程において、例えば溶体化処理(溶体化温度、時間)とその後の冷間圧延工程(加工率)を調整することで、この集積割合を制御することができる。具体的には溶体化処理温度は710℃以下、溶体化処理後の累計加工率は50%以上が好ましい条件である。なお、この集積割合はその後の析出焼鈍あるいは歪み取り焼鈍によっては大きく変化しない。また、NiとSiの含有量も集積割合に影響する。
本発明では、これらの集積割合がプレス打抜き性と強い相関を持ち、板表面へのこれらの集積割合を制御することによりプレス打抜き性を向上できるとの知見をもとに、前記式に示すとおり、適正な結晶方位指数の範囲を求めたものである。なお、結晶方位指数の値は板の曲げ加工性にも関係し、この値が余り大きくなると板の曲げ加工性が悪下することから、この値は0.1以上が望ましい。
【0010】
【実施例】
次に、本発明の実施例について、比較例とともに以下に説明する。
表1に示す化学組成の銅合金を、クリプトル炉にて木炭被覆下で大気溶解し、ブックモールドに鋳造し、50×80×200mmの鋳塊を作製した。この鋳塊を930℃に加熱し熱間圧延後、直ちに水中急冷し厚さ15mmの熱延材とした。この熱延材の表面の酸化スケールを除去するため、表面をグラインダで切削した。これを冷間圧延した後、700℃で20秒の溶体化処理、50%の冷間圧延、480℃で2時間の析出焼鈍を施した後、20%の仕上冷間圧延を施した。このようにして板厚0.25mmに調整した材料を、450℃で20秒の歪み取り焼鈍を施した後、試験に供した。
【0011】
【表1】
【0012】
また、上記工程以外に、種々の結晶方位集積割合の銅合金板を得るため、No.3の組成の合金については、溶体化処理温度を700℃の他に750℃(No.3-2)、800℃(No.3-5)の条件にて製作した。また溶体化処理後の冷間加工率も50%の他に30%(No.3-3)、0%(No.3-6)の条件にて製作した。さらに、析出焼鈍後の仕上冷間加工率も20%の他に10%(No.3-4)、0%(No.3-7)の条件にて製作した。析出焼鈍後に仕上冷間加工を施さない材料(No.3-7)については、歪み取り焼鈍を省略した。いずれの条件によっても、最終板厚は0.25mmに調整した。
【0013】
これらの供試材について、引張強さ、耐力、導電率、ばり高さ及び結晶方位を下記要領にて調査した。その結果を表2及び表3に示す。
<引張強さ、耐力>
JIS Z 2241に記載の方法に準じた。なお、耐力はオフセット法で永久伸び0.2%を採用した。試験片は、JIS Z 2201の5号試験片を用いた。
<導電率>
JIS H 0505に記載の方法に準じた。電気抵抗の測定はダブルブリッジを用いた。
<ばり高さ>
金型クリアランスを10%とし、250spmの打抜き速度で、長さ30mm、幅0.5mmのリードを打抜き、ばり高さをSEM観察にて測定した。
<結晶方位>
最終製品状態(0.25mm厚さ)の銅合金板表面にX線を入射させ、各回折面からの強度を測定した。表面からの測定深さは入射角によって変化するが、最大で約20〜30μmの深さまでの結晶方位データが得られる。その中から曲げ加工性と相関が強い{200}、{311}及び{220}面の回折強度の割合を比較し、結晶方位指数を求めた。なお、X線照射の条件は、X線の種類:CuK−α1、管電圧:40kV、管電流:200mAであり、試料を平面内で自転させながら測定した。
【0014】
【表2】
【0015】
【表3】
【0016】
表2に示す本発明例のNo.1〜18はいずれの特性も良好である。このうち、No.1とNo.2はNiとSiが低めであり、強度がやや低く、結晶方位指数が高めで、ばりがやや大きい。逆に、No.4と5はNiとSiが高めであるため、強度がやや高く、結晶方位指数が低めで、ばりが小さい。またNo.3-2、3-3、3-4は結晶方位指数が高めであり、ばりがやや大きくなっている。
一方、表3に示す比較例のNo.19はNiとSiが低いため、強度が低く、結晶方位指数が高いため、ばりが大きい。比較例No.20はNiとSiが高いため、熱間圧延で割れが発生した。比較例No.21はZnが多いため、導電率が低く、耐応力腐食割れ性が低い。比較例No.22、No.23はSn又はP含有量が高く、熱間圧延で割れが発生した。No.24はFe含有量が高く、熱間圧延で微小割れが発生するとともに、導電率も低くなっている。No.3-5、3-6、3-7は結晶方位指数が高く、ばりが大きい。
【0017】
【発明の効果】
本発明によれば、優れた強度及び導電率等を保持しながら、優れたプレス打抜き性を持つリードフレーム、端子、コネクタ、スイッチ、リレーなどの電子部品用の銅合金板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper alloy plate, particularly a copper alloy plate excellent in press punching suitable for use in electronic parts such as lead frames, terminals, connectors, switches and relays.
[0002]
[Prior art]
Various copper and copper alloys are used for various electronic components. In recent years, the trend of making electronic parts lighter, thinner, and smaller is rapidly progressing. Along with that, copper alloy plates used for lead frames, terminals, connectors, switches, relays, etc. are stamped into fine shapes as well as high strength and high conductivity, so excellent press punchability is required. There is a lot to be done.
Among these, Cu—Ni—Si based alloys are widely used in these applications as alloys having high strength, high heat resistance, high stress relaxation characteristics and relatively high electrical conductivity. However, at present, it is difficult to achieve both these characteristics and press punchability.
[0003]
[Problems to be solved by the invention]
Conventionally, as a method for improving the press punchability, it has been a conventional means to pay attention to chemical components such as addition of trace components such as Pb and Ca, or dispersion of a compound serving as a starting point of fracture. However, such a method has problems that it is difficult to control trace components, deteriorate other characteristics, and lead to an increase in cost.
The present invention has been made in view of the above-mentioned problems of the prior art, and obtains a copper alloy sheet having excellent press punchability while maintaining the excellent strength, conductivity and the like of a Cu-Ni-Si alloy. With the goal.
[0004]
[Means for Solving the Problems]
As a result of diligent research on the Cu—Ni—Si based alloy plate in order to solve the above-mentioned problems, the inventor has found that press punchability can be improved by controlling the degree of integration of crystal orientations, and the present invention is made. It came.
That is, the copper alloy plate according to the present invention contains Ni: 0.4 to 5 wt%, Si: 0.1 to 1 wt%, is composed of the balance Cu and inevitable impurities, and further X from the {200} plane on the plate surface. When the line diffraction intensity is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220}, Features.
[I {200} + I {311}] / I {220} <0.5
[0005]
In addition, said copper alloy plate can contain any one or both of Zn: 0.01-10 wt% and Sn: 0.01-5 wt%. Further, the above copper alloy plate has 0.0001 to 0.1 wt% (two kinds of elements) of B, C, P, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb. When adding more than 0.1 wt% in total, Be, Mg, Al, Ti, Cr, Mn, Fe, Co, Zr, Ag, Cd, In, Sb, Te, Au elements 0.001 to 0.001 One or more elements selected from 1 wt% can be contained in total of 1 wt% or less.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reasons for limiting the components and crystal orientation of the copper alloy according to the present invention will be described.
(Ni and Si)
These components have the effect of improving the strength without significantly reducing the conductivity by forming an intermetallic compound of Ni and Si in the coexisting state. If Ni is less than 0.4 wt% or / and Si is less than 0.1 wt%, the effect is not obtained, and if Ni exceeds 5 wt% or / and Si exceeds 1 wt%, hot workability is significantly reduced. Therefore, both components are Ni: 0.4-5 wt%, Si: 0.1-1 wt%. Ni and Si have the effect of lowering the crystal orientation index ([I {200} + I {311}] / I {220}) and improving the press punchability.
[0007]
(Zn)
Zn has the effect of improving the heat resistance peelability and migration resistance of solder, but the effect is not sufficient if it is less than 0.01 wt%. If it exceeds 10 wt%, not only the electrical conductivity is lowered but also solderability is lowered, and the stress corrosion cracking resistance is increased, which is not preferable. Therefore, Zn is 0.01 to 10 wt%. Zn has the effect of lowering the crystal orientation index and improving press punchability.
(Sn)
Sn is a component that improves the strength by solid solution strengthening. If it is less than 0.01 wt%, the effect is not sufficient, and if it exceeds 5 wt%, the effect is saturated and hot and cold workability deteriorate. Therefore, Sn is set to 0.01 to 5 wt%. Sn has a function of lowering the crystal orientation index and improving press punchability.
[0008]
(Subcomponent)
Each element of B, C, P, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb has a role of further improving press punchability. These elements have no effect when the content is less than 0.0001 wt%, and hot workability deteriorates when the content exceeds 0.1 wt%. In addition, each element of Be, Mg, Al, Ti, Cr, Mn, Fe, Co, Zr, Ag, Cd, In, Sb, Te, and Au has a role of improving press punchability, in addition to Ni- Strength is further improved by coexistence with Si compound. If these elements are less than 0.001 wt%, the effect is not obtained. If they exceed 1 wt%, the hot and cold workability deteriorates and the conductivity also decreases. Therefore, for B to Pb, each element is 0.0001 to 0.1 wt% (when two or more elements are added, the total is 0.1 wt% or less), and for Be to Au, each element is 0.001 to 1 wt%. The total of both is 1 wt% or less.
[0009]
(Crystal orientation)
The copper alloy plate containing Ni and Si is recrystallized, and as the grain size increases, the accumulation rate of {200} and {311} faces on the plate surface increases, and rolling increases the accumulation rate of {220} faces. Come. The copper alloy plate according to the present invention is manufactured by, for example, processes such as hot rolling, cold rolling, solution treatment, cold rolling, precipitation annealing, and further finish cold rolling and strain relief annealing as necessary. In this manufacturing process, for example, the accumulation ratio can be controlled by adjusting the solution treatment (solution temperature, time) and the subsequent cold rolling process (processing rate). Specifically, the solution treatment temperature is preferably 710 ° C. or less, and the cumulative processing rate after solution treatment is preferably 50% or more. This accumulation ratio does not change greatly depending on subsequent precipitation annealing or strain relief annealing. The contents of Ni and Si also affect the accumulation rate.
In the present invention, these accumulation ratios have a strong correlation with press punchability, and the press punchability can be improved by controlling these accumulation ratios on the plate surface, as shown in the above formula. The range of the proper crystal orientation index was obtained. Note that the value of the crystal orientation index is also related to the bending workability of the plate. If this value is too large, the bending workability of the plate is deteriorated.
[0010]
【Example】
Next, examples of the present invention will be described below together with comparative examples.
A copper alloy having the chemical composition shown in Table 1 was melted in the atmosphere under a charcoal coating in a kryptor furnace, and cast into a book mold to produce a 50 × 80 × 200 mm ingot. The ingot was heated to 930 ° C., hot-rolled, and immediately quenched in water to obtain a hot-rolled material having a thickness of 15 mm. In order to remove the oxide scale on the surface of the hot rolled material, the surface was cut with a grinder. This was cold-rolled, followed by solution treatment at 700 ° C. for 20 seconds, cold rolling at 50%, precipitation annealing at 480 ° C. for 2 hours, and then finish cold rolling at 20%. The material thus adjusted to a plate thickness of 0.25 mm was subjected to a strain relief annealing at 450 ° C. for 20 seconds and then subjected to a test.
[0011]
[Table 1]
[0012]
In addition to the above steps, in order to obtain copper alloy sheets having various crystal orientation accumulation ratios, The alloy having the composition of 3 was manufactured under conditions of a solution treatment temperature of 700 ° C., 750 ° C. (No. 3-2), and 800 ° C. (No. 3-5). Further, the cold working rate after the solution treatment was produced under the conditions of 30% (No. 3-3) and 0% (No. 3-6) in addition to 50%. Furthermore, the finish cold working rate after precipitation annealing was also produced under the conditions of 10% (No. 3-4) and 0% (No. 3-7) in addition to 20%. For materials not subjected to finish cold working after precipitation annealing (No. 3-7), strain relief annealing was omitted. Regardless of the conditions, the final plate thickness was adjusted to 0.25 mm.
[0013]
About these test materials, tensile strength, yield strength, electrical conductivity, flash height, and crystal orientation were investigated in the following manner. The results are shown in Tables 2 and 3.
<Tensile strength, yield strength>
The method described in JIS Z 2241 was followed. In addition, the proof stress employ | adopted permanent elongation 0.2% by the offset method. As the test piece, a JIS Z 2201 No. 5 test piece was used.
<Conductivity>
The method described in JIS H 0505 was followed. A double bridge was used to measure the electrical resistance.
<Burr height>
The die clearance was 10%, a lead having a length of 30 mm and a width of 0.5 mm was punched at a punching speed of 250 spm, and the flash height was measured by SEM observation.
<Crystal orientation>
X-rays were incident on the copper alloy plate surface in the final product state (0.25 mm thickness), and the intensity from each diffraction surface was measured. The measurement depth from the surface varies depending on the incident angle, but crystal orientation data up to a depth of about 20 to 30 μm can be obtained. Among them, the ratio of the diffraction intensities of {200}, {311} and {220} planes having a strong correlation with bending workability was compared, and the crystal orientation index was obtained. The X-ray irradiation conditions were X-ray type: CuK-α1, tube voltage: 40 kV, tube current: 200 mA, and the sample was measured while rotating in a plane.
[0014]
[Table 2]
[0015]
[Table 3]
[0016]
No. of the example of the present invention shown in Table 2. Nos. 1 to 18 have good characteristics. Of these, No. 1 and No. No. 2 has lower Ni and Si, slightly lower strength, higher crystal orientation index, and slightly larger flash. Conversely, no. Since 4 and 5 are higher in Ni and Si, the strength is slightly higher, the crystal orientation index is lower, and the flash is smaller. No. 3-2, 3-3, and 3-4 have higher crystal orientation indices and slightly larger flashes.
On the other hand, No. of the comparative example shown in Table 3. No. 19 is low in Ni and Si, has low strength, and has a high crystal orientation index. Comparative Example No. No. 20 had high Ni and Si, so cracking occurred during hot rolling. Comparative Example No. Since No. 21 has a large amount of Zn, the electrical conductivity is low and the resistance to stress corrosion cracking is low. Comparative Example No. 22, no. No. 23 had a high Sn or P content, and cracking occurred during hot rolling. No. No. 24 has a high Fe content, microcracks are generated by hot rolling, and the electrical conductivity is also low. No. 3-5, 3-6, and 3-7 have high crystal orientation indices and large flashes.
[0017]
【The invention's effect】
According to the present invention, it is possible to obtain a copper alloy plate for electronic parts such as lead frames, terminals, connectors, switches, and relays having excellent press punchability while maintaining excellent strength and conductivity.
Claims (5)
[I{200}+I{311}]/I{220}<0.5Ni: 0.4 to 5 wt%, Si: 0.1 to 1 wt%, the balance being Cu and inevitable impurities, and the X-ray diffraction intensity from the {200} plane on the plate surface being I {200}, {311 } A copper alloy with excellent press punching characteristics satisfying the following formula when the X-ray diffraction intensity from the plane is I {311} and the X-ray diffraction intensity from the {220} plane is I {220} Board.
[I {200} + I {311}] / I {220} <0.5
[I{200}+I{311}]/I{220}<0.5X-ray diffraction from the {200} plane on the plate surface, including Ni: 0.4-5 wt%, Si: 0.1-1 wt%, Zn: 0.01-10 wt%, consisting of the remainder Cu and inevitable impurities When the intensity is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220}, Copper alloy plate with excellent press punching performance.
[I {200} + I {311}] / I {220} <0.5
[I{200}+I{311}]/I{220}<0.5Ni: 0.4 to 5 wt%, Si: 0.1 to 1 wt%, Sn: 0.01 to 5 wt%, the balance is Cu and inevitable impurities, and X-ray diffraction from the {200} plane on the plate surface When the intensity is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220}, Copper alloy plate with excellent press punching performance.
[I {200} + I {311}] / I {220} <0.5
[I{200}+I{311}]/I{220}<0.5Ni: 0.4 to 5 wt%, Si: 0.1 to 1 wt%, Zn: 0.01 to 10 wt%, Sn: 0.01 to 5 wt%, the balance is Cu and inevitable impurities, and further on the plate surface When the X-ray diffraction intensity from the {200} plane is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220} A copper alloy plate excellent in press punching characteristics, characterized by satisfying the following formula.
[I {200} + I {311}] / I {220} <0.5
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24505898A JP3800279B2 (en) | 1998-08-31 | 1998-08-31 | Copper alloy sheet with excellent press punchability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24505898A JP3800279B2 (en) | 1998-08-31 | 1998-08-31 | Copper alloy sheet with excellent press punchability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000073130A JP2000073130A (en) | 2000-03-07 |
JP3800279B2 true JP3800279B2 (en) | 2006-07-26 |
Family
ID=17127968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24505898A Expired - Lifetime JP3800279B2 (en) | 1998-08-31 | 1998-08-31 | Copper alloy sheet with excellent press punchability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3800279B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041197A1 (en) | 2007-09-28 | 2009-04-02 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10025107A1 (en) * | 2000-05-20 | 2001-11-22 | Stolberger Metallwerke Gmbh | Electrically conductive metal band and connector |
DE10025106A1 (en) * | 2000-05-20 | 2001-11-22 | Stolberger Metallwerke Gmbh | Electrically conductive metal tape and connectors from it |
US6749699B2 (en) | 2000-08-09 | 2004-06-15 | Olin Corporation | Silver containing copper alloy |
JP4729680B2 (en) * | 2000-12-18 | 2011-07-20 | Dowaメタルテック株式会社 | Copper-based alloy with excellent press punchability |
JP4809602B2 (en) * | 2004-05-27 | 2011-11-09 | 古河電気工業株式会社 | Copper alloy |
JP4876785B2 (en) * | 2005-08-26 | 2012-02-15 | 日立電線株式会社 | Copper alloy backing plate and method for producing the copper alloy |
JP5011586B2 (en) * | 2005-09-30 | 2012-08-29 | Dowaメタルテック株式会社 | Copper alloy sheet with improved bending workability and fatigue characteristics and its manufacturing method |
JP4754930B2 (en) * | 2005-10-14 | 2011-08-24 | Jx日鉱日石金属株式会社 | Cu-Ni-Si based copper alloy for electronic materials |
JP4556842B2 (en) * | 2005-10-27 | 2010-10-06 | 日立電線株式会社 | High strength copper alloy material excellent in shear workability and method for producing the same |
JP5002766B2 (en) * | 2006-03-01 | 2012-08-15 | Dowaメタルテック株式会社 | High strength copper alloy sheet with excellent bending workability and manufacturing method |
JP5097970B2 (en) * | 2006-07-24 | 2012-12-12 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
JP4876225B2 (en) * | 2006-08-09 | 2012-02-15 | Dowaメタルテック株式会社 | High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof |
JP5156317B2 (en) * | 2006-09-27 | 2013-03-06 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
JP5466879B2 (en) | 2009-05-19 | 2014-04-09 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
JP5453565B1 (en) * | 2013-06-13 | 2014-03-26 | Jx日鉱日石金属株式会社 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
JP6306632B2 (en) * | 2016-03-31 | 2018-04-04 | Jx金属株式会社 | Copper alloy for electronic materials |
JP6378819B1 (en) | 2017-04-04 | 2018-08-22 | Dowaメタルテック株式会社 | Cu-Co-Si-based copper alloy sheet, manufacturing method, and parts using the sheet |
-
1998
- 1998-08-31 JP JP24505898A patent/JP3800279B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041197A1 (en) | 2007-09-28 | 2009-04-02 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy |
Also Published As
Publication number | Publication date |
---|---|
JP2000073130A (en) | 2000-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4056175B2 (en) | Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability | |
JP3800279B2 (en) | Copper alloy sheet with excellent press punchability | |
KR101027840B1 (en) | Copper alloy plate material for electrical/electronic equipment and process for producing the same | |
KR100709847B1 (en) | Copper alloy having bendability and stress relaxation property | |
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
WO2006019035A1 (en) | Copper alloy plate for electric and electronic parts having bending workability | |
JP4503696B2 (en) | Electronic parts made of copper alloy sheets with excellent bending workability | |
JP2006009137A (en) | Copper alloy | |
JP2000080428A (en) | Copper alloy sheet excellent in bendability | |
JP3797882B2 (en) | Copper alloy sheet with excellent bending workability | |
JP4157899B2 (en) | High strength copper alloy sheet with excellent bending workability | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JP2007126739A (en) | Copper alloy for electronic material | |
JP4006468B1 (en) | Copper alloy with high strength, high conductivity, and excellent bending workability | |
JP5297855B2 (en) | Copper alloy sheet and manufacturing method thereof | |
CN109338151A (en) | A kind of electronic electric equipment copper alloy and purposes | |
JP2000328157A (en) | Copper alloy sheet excellent in bending workability | |
JP5261691B2 (en) | Copper-base alloy with excellent press punchability and method for producing the same | |
JP3800269B2 (en) | High strength copper alloy with excellent stamping workability and silver plating | |
JP2001181759A (en) | Copper alloy for electronic material excellent in surface characteristic and producing method therefor | |
JP5610789B2 (en) | Copper alloy sheet and method for producing copper alloy sheet | |
JP4166196B2 (en) | Cu-Ni-Si copper alloy strip with excellent bending workability | |
JP2006200042A (en) | Electronic component composed of copper alloy sheet having excellent bending workability | |
JP3980808B2 (en) | High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same | |
JP2006016629A (en) | Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060418 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |