JP5297855B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5297855B2
JP5297855B2 JP2009075396A JP2009075396A JP5297855B2 JP 5297855 B2 JP5297855 B2 JP 5297855B2 JP 2009075396 A JP2009075396 A JP 2009075396A JP 2009075396 A JP2009075396 A JP 2009075396A JP 5297855 B2 JP5297855 B2 JP 5297855B2
Authority
JP
Japan
Prior art keywords
mass
iacs
copper alloy
comparative example
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009075396A
Other languages
Japanese (ja)
Other versions
JP2010229438A (en
Inventor
壮一 萩原
維林 高
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2009075396A priority Critical patent/JP5297855B2/en
Publication of JP2010229438A publication Critical patent/JP2010229438A/en
Application granted granted Critical
Publication of JP5297855B2 publication Critical patent/JP5297855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Fe-P-based copper alloy sheet having high strength, superior electrical conductivity and superior thermal resistance, and to provide a method for manufacturing the copper alloy sheet at a low cost. <P>SOLUTION: This manufacturing method includes: preparing an ingot by melting a raw material of a copper alloy which has a composition comprising, by mass%, 1.5-3.0% Fe, 0.01-0.2% P, 0.01-0.5% Zn, 0.5% or less Sn and the balance Cu with unavoidable impurities and by casting the melt; heating and holding the ingot; then hot-rolling the ingot at 450-1,000&deg;C so that the reduction ratio in a temperature range of 450-600&deg;C becomes 20% or more; subsequently age-annealing the hot-rolled plate so that the electroconductivity after the age annealing becomes 60-70% IACS; after that, cold-rolling the plate with the reduction ratio of 80% or more; and then annealing the cold-rolled sheet at a low temperature of 150-450&deg;C. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、銅合金板材およびその製造方法に関し、特に、リードフレームなどに使用するCu−Fe−P系銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for manufacturing the same, and more particularly to a Cu—Fe—P copper alloy sheet used for a lead frame and the method for manufacturing the same.

リードフレームなどの電気電子部品に使用される材料は、高強度で、導電性および耐熱性に優れていることが要求されている。特に、リードフレームは、一般にスタンピング加工(プレス打ち抜き加工)によって多数のピンを有する形状に加工され、スタンピング加工時の歪を除去するために高温で加熱処理されるので、耐熱性に優れていることが要求されている。このような材料として、CDA194合金などのCu−Fe−P系銅合金が使用されている。   Materials used for electrical and electronic parts such as lead frames are required to have high strength and excellent conductivity and heat resistance. In particular, the lead frame is generally processed into a shape having a large number of pins by a stamping process (press punching process), and is heat-treated at a high temperature in order to remove distortion during the stamping process. Is required. As such a material, a Cu—Fe—P based copper alloy such as CDA194 alloy is used.

近年、リードフレームなどを使用する半導体装置の大容量化、小型化および高機能化に伴い、リードフレームなどに使用される材料には、さらに高い強度および導電率を有することが要求されている。   In recent years, with the increase in capacity, miniaturization, and high functionality of semiconductor devices that use lead frames and the like, materials used for lead frames and the like are required to have higher strength and conductivity.

そのため、Cu−Fe−P系銅合金からなるリード素材に、新たな添加元素としてMgを添加して、導電性を損なうことなく強度および耐熱性を向上させることが提案されている(例えば、特許文献1参照)。また、Cu−Fe−P系銅合金材に、高温および低温の時効処理前に溶体化熱処理および中間の冷間圧延を施して、導電率の低下を招くことなく、強度と耐熱性を向上させることが提案されている(例えば、特許文献2参照)。さらに、Cu−Fe−P系銅合金材に、熱間加工後で冷間加工前に高温および低温の2段階時効処理を施して、高い強度を損なうことなく、導電性を向上させることが提案されている(例えば、特許文献3参照)。   Therefore, it has been proposed to add Mg as a new additive element to a lead material made of a Cu—Fe—P based copper alloy to improve strength and heat resistance without impairing conductivity (for example, patents). Reference 1). Also, the Cu-Fe-P-based copper alloy material is subjected to solution heat treatment and intermediate cold rolling before aging treatment at high and low temperatures to improve strength and heat resistance without causing a decrease in conductivity. (For example, refer to Patent Document 2). Furthermore, it is proposed that Cu-Fe-P-based copper alloy materials be subjected to high-temperature and low-temperature two-step aging treatment after hot working and before cold working to improve conductivity without losing high strength. (For example, see Patent Document 3).

特公昭64−449号公報(第2頁)Japanese Examined Patent Publication No. 64-449 (2nd page) 特許第3896793号公報(段落番号0010−0012)Japanese Patent No. 3896793 (paragraph numbers 0010-0012) 特開平10−324935公報(段落番号0007−0015)Japanese Patent Laid-Open No. 10-324935 (paragraph number 0007-0015)

しかし、特許文献1のように、新たな元素としてMgを添加する場合には、銅合金を製造する際の管理項目増大し、コストが増大する。また、特許文献2のように、高温および低温の時効処理前に溶体化熱処理および中間の冷間圧延を施したり、特許文献3のように、熱間加工後で冷間加工前に高温および低温の2段階時効処理を施す場合には、工程数が増大し、複雑な温度管理が必要になり、コストが増大する。   However, when Mg is added as a new element as in Patent Document 1, the number of management items for manufacturing a copper alloy increases, and the cost increases. Further, as in Patent Document 2, solution heat treatment and intermediate cold rolling are performed before high temperature and low temperature aging treatment, or as shown in Patent Document 3, high temperature and low temperature after hot working and before cold working. When the two-stage aging treatment is performed, the number of processes increases, complicated temperature management becomes necessary, and the cost increases.

したがって、本発明は、このような従来の問題点に鑑み、高い強度で、導電性および耐熱性に優れたCu−Fe−P系銅合金板材を安価に製造することができる、銅合金板材およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention provides a copper alloy sheet material capable of producing a Cu-Fe-P-based copper alloy sheet material having high strength and excellent conductivity and heat resistance at low cost, and It aims at providing the manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究した結果、1.5〜3.0質量%のFeと、0.01〜0.2質量%のPと、0.01〜0.5質量%のZnと、0.5質量%以下のSnを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶融して鋳造した鋳塊を加熱して保持した後、600℃〜450℃の温度域で加工度が20%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、時効焼鈍後の導電率が60〜70%IACSになるように時効焼鈍を行うことにより、高い強度で、導電性および耐熱性に優れたCu−Fe−P系銅合金板材を安価に製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that 1.5 to 3.0% by mass of Fe, 0.01 to 0.2% by mass of P, and 0.01 to 0. After heating and holding an ingot obtained by melting and casting a copper alloy material having a composition containing 5% by mass of Zn and 0.5% by mass or less of Sn and the balance being Cu and inevitable impurities, 600 Hot rolling is performed at 1000 ° C. to 450 ° C. so that the degree of work is 20% or more in the temperature range of ℃ to 450 ° C., and then age annealing is performed so that the electrical conductivity after aging annealing is 60 to 70% IACS. As a result, it was found that a Cu—Fe—P-based copper alloy sheet material having high strength and excellent electrical conductivity and heat resistance can be produced at low cost, and the present invention has been completed.

すなわち、本発明による銅合金板材の製造方法は、1.5〜3.0質量%のFeと、0.01〜0.2質量%のPと、0.01〜0.5質量%のZnと、0.5質量%以下のSnを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶融して鋳造した鋳塊を加熱して保持した後、600℃〜450℃の温度域で加工度が20%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、時効焼鈍後の導電率が60〜70%IACSになるように時効焼鈍を行うことを特徴とする。   That is, the method for producing a copper alloy sheet according to the present invention comprises 1.5 to 3.0% by mass of Fe, 0.01 to 0.2% by mass of P, and 0.01 to 0.5% by mass of Zn. And after heating and holding the ingot which melt | dissolved and cast the raw material of the copper alloy which has Sn and 0.5 mass% or less Sn and the remainder is a composition which is Cu and an unavoidable impurity, it is 600 to 450 degreeC. It is characterized by performing hot rolling at 1000 ° C. to 450 ° C. so that the workability becomes 20% or more in the temperature range, and then performing aging annealing so that the electrical conductivity after aging annealing is 60 to 70% IACS. And

この銅合金板材の製造方法において、銅合金の原料中のFeの含有量が2.1〜3.0質量%、Pの含有量が0.015〜0.15質量%、Znの含有量が0.02〜0.2質量%、Snの含有量が0.1質量%以下であるのが好ましい。また、時効処理を行った後に冷間圧延を行うのが好ましく、冷間圧延の加工度が80%以上であるのが好ましい。また、冷間圧延を行った後に150〜450℃で低温焼鈍を行うのが好ましい。さらに、時効焼鈍を400〜650℃で5〜15時間行うのが好ましい。   In this method for producing a copper alloy sheet, the content of Fe in the raw material of the copper alloy is 2.1 to 3.0% by mass, the content of P is 0.015 to 0.15% by mass, and the content of Zn is It is preferable that 0.02 to 0.2 mass% and the Sn content is 0.1 mass% or less. Moreover, it is preferable to perform cold rolling after performing an aging treatment, and it is preferable that the workability of cold rolling is 80% or more. Moreover, it is preferable to perform low temperature annealing at 150-450 degreeC after performing cold rolling. Furthermore, it is preferable to perform aging annealing at 400-650 degreeC for 5 to 15 hours.

また、本発明による銅合金板材は、1.5〜3.0質量%のFeと、0.01〜0.2質量%のPと、0.01〜0.5質量%のZnと、0.5質量%以下のSnを含み、残部がCuおよび不可避不純物である組成を有し、導電率が60%IACS以上、ビッカース硬さHVが150以上であり、450℃で30分間保持した後のビッカース硬さHVが140以上であることを特徴とする。   Further, the copper alloy sheet according to the present invention comprises 1.5 to 3.0% by mass of Fe, 0.01 to 0.2% by mass of P, 0.01 to 0.5% by mass of Zn, 0% 0.5% by mass or less of Sn, the balance being Cu and unavoidable impurities, conductivity of 60% IACS or more, Vickers hardness HV of 150 or more, after holding at 450 ° C. for 30 minutes Vickers hardness HV is 140 or more.

この銅合金板材中のFeの含有量が2.1〜3.0質量%、Pの含有量が0.015〜0.15質量%、Znの含有量が0.02〜0.2質量%、Snの含有量が0.1質量%以下であるのが好ましい。また、この銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI{220}とすると、I{220}/I{220}が3.5以上であり、450℃で30分間保持した後のI{220}/I{220}が3.0以上であるのが好ましい。 In this copper alloy sheet, the Fe content is 2.1 to 3.0 mass%, the P content is 0.015 to 0.15 mass%, and the Zn content is 0.02 to 0.2 mass%. The Sn content is preferably 0.1% by mass or less. Further, if the X-ray diffraction intensity of the {220} crystal plane on the plate surface of this copper alloy sheet is I {220}, and the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder is I 0 {220}, I {220} / I 0 {220} is preferably 3.5 or more, and I {220} / I 0 {220} after being held at 450 ° C. for 30 minutes is preferably 3.0 or more.

本発明によれば、高い強度で、導電性および耐熱性に優れたCu−Fe−P系銅合金板材を安価に製造することができる。   According to the present invention, a Cu—Fe—P-based copper alloy sheet material having high strength and excellent electrical conductivity and heat resistance can be produced at low cost.

本発明による銅合金板材の製造方法の実施の形態では、1.5〜3.0質量%のFeと、0.01〜0.2質量%のPと、0.01〜0.5質量%のZnと、0.5質量%以下のSnを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶融して鋳造した鋳塊を加熱して保持した後、600℃〜450℃の温度域で加工度が20%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、時効焼鈍後の導電率が60〜70%IACSになるように時効焼鈍を行い、その後、加工度80%以上、好ましくは90%以上の冷間圧延を行った後に、150〜450℃で低温焼鈍を行う。   In the embodiment of the method for producing a copper alloy sheet according to the present invention, 1.5 to 3.0 mass% Fe, 0.01 to 0.2 mass% P, and 0.01 to 0.5 mass% After heating and holding an ingot obtained by melting and casting a raw material of a copper alloy having a composition containing Zn and 0.5 mass% or less of Sn and the balance being Cu and inevitable impurities, 600 ° C. to 450 ° C. Perform hot rolling at 1000 ° C. to 450 ° C. so that the workability is 20% or more in the temperature range of ° C., and then perform aging annealing so that the electrical conductivity after aging annealing is 60 to 70% IACS, Then, after performing cold rolling with a workability of 80% or more, preferably 90% or more, low-temperature annealing is performed at 150 to 450 ° C.

Feは、銅合金板材の強度を向上させる作用を有するが、その含有量が1.5質量%未満では強度の向上が不十分であり、3.0質量%を超えると導電率が低下するので、Fe含有量は1.5〜3.0質量%であるのが好ましく、2.1〜3.0質量%であるのがさらに好ましい。   Fe has an effect of improving the strength of the copper alloy sheet, but if the content is less than 1.5% by mass, the strength is not sufficiently improved, and if it exceeds 3.0% by mass, the conductivity decreases. The Fe content is preferably 1.5 to 3.0 mass%, more preferably 2.1 to 3.0 mass%.

Pは、溶湯の脱酸作用を有するとともに、Feと化合物を形成して析出することによって導電率および強度を向上させる作用を有するが、その含有量が0.01質量%未満ではこれらの作用が不十分であり、0.2質量%を超えるとこれらの作用が飽和して経済的でないので、P含有量は0.01〜0.2質量%であるのが好ましく、0.015〜0.15質量%であるのがさらに好ましい。   P has a deoxidizing action of the molten metal and has an action of improving conductivity and strength by forming and precipitating a compound with Fe. However, when its content is less than 0.01% by mass, these actions are not achieved. When it exceeds 0.2% by mass, these actions are saturated and not economical, so the P content is preferably 0.01-0.2% by mass, preferably 0.015-0. More preferably, it is 15 mass%.

Znは、Pと同様に溶湯の脱酸作用を有するが、その含有量が0.01質量%未満では脱酸作用が不十分であり、0.5質量%を超えると脱酸作用が飽和して導電率も低下するので、Zn含有量は0.01〜0.5質量%であるのが好ましく、0.02〜0.2質量%であるのがさらに好ましい。   Zn, like P, has a deoxidizing action of the molten metal, but if its content is less than 0.01% by mass, the deoxidizing action is insufficient, and if it exceeds 0.5% by mass, the deoxidizing action is saturated. Therefore, the Zn content is preferably 0.01 to 0.5% by mass, and more preferably 0.02 to 0.2% by mass.

Snは、銅合金板材の耐熱性を向上させる作用を有するが、その含有量が0.5質量%を超えるとマクロ偏析して熱間加工性が低下するので、Sn含有量は0.5質量%以下であるのが好ましく、0.1質量%以下であるのがさらに好ましい。   Sn has the effect of improving the heat resistance of the copper alloy sheet, but if its content exceeds 0.5% by mass, it segregates macroscopically and the hot workability decreases, so the Sn content is 0.5% by mass. % Or less is preferable, and 0.1% by mass or less is more preferable.

なお、銅合金板材の原料として、電子材料のスクラップなどを使用する場合には、スクラップ中に混入した元素が原料中に不可避的に混入する可能性がある。また、多数の種類の銅合金を製造する場合、それぞれの銅合金の原料を同一の溶解炉で溶解すると、僅かではあるが、前の銅合金の成分が原料中に混入する場合がある。このような不可避不純物として、例えば、Ni、Mg、Ca、Al、Si、Cr、Mn、Zr、Ag、Cd、Be、Ti、Co、S、Au、Pt、Pb、Bi、Sbなどを、それぞれ0.02質量%以下、合計0.05質量%以下の範囲で含んでもよい。   In addition, when using the scrap of an electronic material etc. as a raw material of a copper alloy board | plate material, the element mixed in the scrap may be inevitably mixed in the raw material. Moreover, when manufacturing many types of copper alloys, if the raw materials of the respective copper alloys are melted in the same melting furnace, the components of the previous copper alloy may be mixed in the raw materials, though only slightly. Examples of such inevitable impurities include Ni, Mg, Ca, Al, Si, Cr, Mn, Zr, Ag, Cd, Be, Ti, Co, S, Au, Pt, Pb, Bi, and Sb, respectively. You may contain in 0.02 mass% or less and the total 0.05 mass% or less range.

本発明による銅合金板材の製造方法の実施の形態によって、銅合金の原料を溶解して鋳造する鋳塊は、通常の銅合金の連続鋳造法または半連続鋳造法により製造することができる。   According to the embodiment of the method for producing a copper alloy sheet according to the present invention, an ingot for melting and casting a copper alloy raw material can be produced by an ordinary continuous or semi-continuous casting method of a copper alloy.

この鋳塊の熱間圧延は、加熱炉によって900〜1000℃程度の温度で2時間以上保持した後に行う。この熱間圧延時の温度は、1000℃程度〜350℃であるが、600℃〜350℃の温度域、好ましくは600℃〜450℃の温度域で加工度10%以上、好ましくは20%以上の熱間圧延を行う。この熱間圧延によって、銅マトリックス中に微細なFeまたはFe−P系化合物が析出すると考えられる。なお、600℃〜350℃の温度域、好ましくは600℃〜450℃の低温域の熱間圧延では、金属間化合物が動的に析出することにより、高温域では起こらない析出物の生成と微細化が起こるという効果があり、その後の時効焼鈍処理の温度を低くし且つ時間を短くしても、硬さと導電率の両方を高くすることができる。また、熱間圧延後の導電率が40%IACS未満であると、FeまたはFe−P系化合物の析出の進行が不十分であり、その後の時効焼鈍処理で得られる析出物の微細化が困難になると考えられ、一方、熱間圧延後の導電率が85%IACSを越えると、析出物が粗大化する可能性があるため、熱間圧延後の導電率が40〜85%IACSであるのが好ましく、40〜60%IACSになるのがさらに好ましく、40〜50%IACSになるのが最も好ましいが、上記の熱間圧延を行うことによって、熱間圧延後の導電率をこの範囲にすることができる。   This ingot is hot-rolled after being held in a heating furnace at a temperature of about 900 to 1000 ° C. for 2 hours or more. The temperature during the hot rolling is about 1000 ° C. to 350 ° C., but the degree of work is 10% or more, preferably 20% or more in the temperature range of 600 ° C. to 350 ° C., preferably 600 ° C. to 450 ° C. Hot rolling is performed. It is considered that fine Fe or Fe-P compounds are precipitated in the copper matrix by this hot rolling. In hot rolling in the temperature range of 600 ° C. to 350 ° C., preferably in the low temperature range of 600 ° C. to 450 ° C., the formation of fine precipitates that do not occur in the high temperature range and the fineness due to the dynamic precipitation of intermetallic compounds. Therefore, even if the temperature of the subsequent aging annealing treatment is lowered and the time is shortened, both the hardness and the conductivity can be increased. Further, if the electrical conductivity after hot rolling is less than 40% IACS, the progress of precipitation of Fe or Fe-P compounds is insufficient, and it is difficult to refine the precipitates obtained by subsequent aging annealing treatment. On the other hand, if the electrical conductivity after hot rolling exceeds 85% IACS, the precipitates may become coarse, so the electrical conductivity after hot rolling is 40-85% IACS. 40 to 60% IACS is more preferable, and 40 to 50% IACS is most preferable. However, by performing the above hot rolling, the conductivity after hot rolling is set within this range. be able to.

この熱間圧延後の時効焼鈍は、時効焼鈍後の導電率が60〜70%IACSになるように行う。時効焼鈍後の導電率が60%IACSより低いと、高い導電率の銅合金板材を製造することができず、一方、時効焼鈍後の導電率が70%IACSより高いと、加熱した後の硬さが低下したり、析出物が粗大化して可撓性が低下する。このように時効焼鈍後の導電率が60〜70%IACSになるようにするには、400〜650℃で5〜15時間時効焼鈍を行うのが好ましい。高温度および長時間になるにつれて、導電率が高く且つ耐熱性が悪くなる傾向があると考えられるので、銅合金板材に要求される特性に応じて適切な条件で時効焼鈍を行うのが好ましい。なお、設備的に難しい場合には、銅合金板材を熱間圧延した後に、面削し、冷間圧延した後、時効焼鈍を行っても問題ないと考えられるが、時効焼鈍後の酸洗を行う必要があるので、コストが増大する。   The aging annealing after the hot rolling is performed so that the electrical conductivity after the aging annealing is 60 to 70% IACS. If the electrical conductivity after aging annealing is lower than 60% IACS, a copper alloy sheet with high electrical conductivity cannot be produced. On the other hand, if the electrical conductivity after aging annealing is higher than 70% IACS, the hardness after heating is high. Or the precipitate becomes coarse and the flexibility is lowered. Thus, in order for the electrical conductivity after aging annealing to be 60 to 70% IACS, it is preferable to perform aging annealing at 400 to 650 ° C. for 5 to 15 hours. It is considered that the electrical conductivity tends to be high and the heat resistance tends to deteriorate as the temperature and time are increased. Therefore, it is preferable to perform aging annealing under appropriate conditions according to the characteristics required for the copper alloy sheet. In addition, when it is difficult in terms of equipment, it is thought that there is no problem even if aging annealing is performed after hot rolling the copper alloy sheet material, then chamfering and cold rolling, but pickling after aging annealing is not a problem. The cost increases because it needs to be done.

また、時効焼鈍後の最終冷間圧延は、所望の板厚になるように行う。一般に、加工度が高くなるにつれて、強度が高くなるが、耐熱性が低下すると考えられる。しかし、本発明による銅合金板材の製造方法の実施の形態によって製造される銅合金板材は、最終冷間圧延の加工度80%以上、好ましくは90%以上であっても、優れた耐熱性を有する。また、要求される強度および板厚によっては、最終冷間圧延後に低温焼鈍を行う必要がある。この低温焼鈍は、歪取り焼鈍であり、加工度を高くすることによって低下した導電率を回復するために行う。   Further, the final cold rolling after aging annealing is performed so as to obtain a desired plate thickness. Generally, as the degree of processing increases, the strength increases, but the heat resistance is considered to decrease. However, the copper alloy sheet produced by the embodiment of the method for producing a copper alloy sheet according to the present invention has excellent heat resistance even when the workability of the final cold rolling is 80% or more, preferably 90% or more. Have. Further, depending on the required strength and plate thickness, it is necessary to perform low temperature annealing after the final cold rolling. This low-temperature annealing is a strain relief annealing, and is performed to recover the lowered conductivity by increasing the workability.

本発明による銅合金板材の実施の形態は、1.5〜3.0質量%、好ましくは2.1〜3.0質量%のFeと、0.01〜0.2質量%、好ましくは0.015〜0.15質量%のPと、0.01〜0.5質量%、好ましくは0.02〜0.2質量%のZnと、0.5質量%以下、好ましくは0.1質量%以下のSnを含み、残部がCuおよび不可避不純物である組成を有するu−Fe−P系合金からなる板材であり、導電率が60%IACS以上、ビッカース硬さHVが150以上であり、450℃で30分間保持した後のビッカース硬さHVが140以上である。また、この銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI{220}とすると、I{220}/I{220}が3.5以上であり、450℃で30分間保持した後のI{220}/I{220}が3.0以上であるのが好ましい。 The embodiment of the copper alloy sheet according to the present invention is 1.5 to 3.0% by mass, preferably 2.1 to 3.0% by mass of Fe and 0.01 to 0.2% by mass, preferably 0. .015 to 0.15 mass% P, 0.01 to 0.5 mass%, preferably 0.02 to 0.2 mass% Zn, and 0.5 mass% or less, preferably 0.1 mass% %, Sn is a plate material made of a u-Fe-P alloy having the composition of Cu and inevitable impurities, the conductivity is 60% IACS or more, the Vickers hardness HV is 150 or more, 450 The Vickers hardness HV after holding at 30 ° C. for 30 minutes is 140 or more. Further, if the X-ray diffraction intensity of the {220} crystal plane on the plate surface of this copper alloy sheet is I {220}, and the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder is I 0 {220}, I {220} / I 0 {220} is preferably 3.5 or more, and I {220} / I 0 {220} after being held at 450 ° C. for 30 minutes is preferably 3.0 or more.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the copper alloy sheet material and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1〜7]
表1に示す化学成分の銅合金(2.12質量%のFeと、0.029質量%のPと、0.08質量%のZnと、0.024質量%のSnと、残部がCuおよび不可避不純物からなる銅合金)を高周波溶解炉で溶解し、厚さ30mm×幅50mm×長さ150mmの7つの鋳塊を作製した。
[Examples 1-7]
Copper alloy of chemical composition shown in Table 1 (2.12 mass% Fe, 0.029 mass% P, 0.08 mass% Zn, 0.024 mass% Sn, the balance being Cu and A copper alloy composed of inevitable impurities) was melted in a high-frequency melting furnace to prepare seven ingots having a thickness of 30 mm × width of 50 mm × length of 150 mm.

これらの鋳塊を、加熱炉によって900〜950℃で3時間保持した後、900〜450℃で熱間圧延を行って板厚10mmの圧延材を得た。なお、この熱間圧延は、温度域900〜600℃で9パス行った後、温度域600〜450℃で1パス行い、この温度域600〜450℃で行う加工度を30%とした。この熱間圧延後の導電率を測定したところ、42.9%IACSであった。   These ingots were held at 900 to 950 ° C. for 3 hours in a heating furnace, and then hot rolled at 900 to 450 ° C. to obtain a rolled material having a plate thickness of 10 mm. The hot rolling was performed for 9 passes in a temperature range of 900 to 600 ° C., then for 1 pass in a temperature range of 600 to 450 ° C., and the degree of work performed in the temperature range of 600 to 450 ° C. was 30%. The electrical conductivity after hot rolling was measured and found to be 42.9% IACS.

次に、得られた圧延材に、焼鈍炉によって等温時効をそれぞれ550℃で5時間(実施例1)、550℃で7時間(実施例2)、550℃で9時間(実施例3)、550℃で15時間(実施例4)、450℃で9時間(実施例5)、500℃で9時間(実施例6)、600℃で9時間(実施例7)行った後に急冷した。この時効処理後の導電率をJIS H0505の導電率測定方法に従って測定したところ、それぞれ62.5%IACS(実施例1)、64.7%IACS(実施例2)、66.1%IACS(実施例3)、68.7%IACS(実施例4)、63.7%IACS(実施例5)、66.3%IACS(実施例6)、64.0%IACS(実施例7)であり、いずれも60〜70%IACSであった。   Next, the obtained rolled material was subjected to isothermal aging in an annealing furnace at 550 ° C. for 5 hours (Example 1), 550 ° C. for 7 hours (Example 2), and 550 ° C. for 9 hours (Example 3). The reaction was quenched at 550 ° C. for 15 hours (Example 4), 450 ° C. for 9 hours (Example 5), 500 ° C. for 9 hours (Example 6), and 600 ° C. for 9 hours (Example 7). The electrical conductivity after the aging treatment was measured in accordance with the electrical conductivity measurement method of JIS H0505. The results were 62.5% IACS (Example 1), 64.7% IACS (Example 2), and 66.1% IACS (implemented). Example 3), 68.7% IACS (Example 4), 63.7% IACS (Example 5), 66.3% IACS (Example 6), 64.0% IACS (Example 7), All were 60 to 70% IACS.

最後に、時効焼鈍後の圧延材の表面および裏面を研磨し、加工度(圧延率)99%で仕上げ冷間圧延を行った後、300℃の焼鈍炉内で30分間保持する低温焼鈍を行って、板厚0.125mmの銅合金板材を作製した。これらの銅合金板材の製造条件を表1および表2に示す。   Finally, after polishing the front and back surfaces of the rolled material after aging annealing, performing finish cold rolling at a workability (rolling rate) of 99%, performing low temperature annealing for 30 minutes in a 300 ° C. annealing furnace Thus, a copper alloy plate material having a plate thickness of 0.125 mm was produced. The production conditions for these copper alloy sheets are shown in Tables 1 and 2.

Figure 0005297855
Figure 0005297855

Figure 0005297855
Figure 0005297855

このようにして得られた銅合金板材の導電率をJIS H0505の導電率測定方法に従って測定したところ、それぞれ60.0%IACS(実施例1)、61.5%IACS(実施例2)、63.0%IACS(実施例3)、64.5%IACS(実施例4)、61.2%IACS(実施例5)、63.3%IACS(実施例6)、62.5%IACS(実施例7)であり、いずれも60%IACS以上であった。   The electrical conductivity of the copper alloy sheet material thus obtained was measured according to the electrical conductivity measurement method of JIS H0505. The results were 60.0% IACS (Example 1), 61.5% IACS (Example 2), 63, respectively. 0.0% IACS (Example 3), 64.5% IACS (Example 4), 61.2% IACS (Example 5), 63.3% IACS (Example 6), 62.5% IACS (implemented) Example 7), both of which were 60% IACS or higher.

また、得られた銅合金板材のビッカース硬さHVをJIS Z2244に準拠して測定したところ、それぞれ170(実施例1)、169(実施例2)、169(実施例3)、165(実施例4)、165(実施例5)、166(実施例6)、165(実施例7)であり、いずれも150以上であった。   Moreover, when the Vickers hardness HV of the obtained copper alloy sheet material was measured in accordance with JIS Z2244, 170 (Example 1), 169 (Example 2), 169 (Example 3), 165 (Example), respectively. 4), 165 (Example 5), 166 (Example 6), and 165 (Example 7), all of which were 150 or more.

また、得られた銅合金板材のX線回折強度を測定した。このX線回折強度(X線回折積分強度)の測定は、銅合金板材の板面(圧延面)を#1500耐水ペーパーで研磨仕上げした試料を用意し、X線回折装置(XRD)を用いて、Mo−Kα線、管電圧20kV、管電流2mAの条件で、試料の研磨仕上げ面について{220}面のX線回折強度(反射回折面積分強度)I{220}を測定することによって行った。一方、同じX線回折装置を用いて、同じ測定条件で、純銅標準粉末の{220}面のX線回折強度I{220}も測定した。これらの測定値を用いて、X線回折強度比I{220}/I{220}を求めた。その結果、I{220}/I{220}は、それぞれ4.1(実施例1)、3.8(実施例2)、3.7(実施例3)、4.1(実施例4)、3.9(実施例5)、3.9(実施例6)、3.9(実施例7)であり、いずれも3.5以上であった。 Further, the X-ray diffraction intensity of the obtained copper alloy sheet was measured. The X-ray diffraction intensity (X-ray diffraction integrated intensity) is measured by preparing a sample of a copper alloy sheet material polished with a # 1500 water-resistant paper and using an X-ray diffractometer (XRD). , By measuring the X-ray diffraction intensity (intensity of reflection diffraction area) I {220} of the {220} plane on the polished surface of the sample under the conditions of Mo-Kα ray, tube voltage 20 kV, and tube current 2 mA. . On the other hand, using the same X-ray diffractometer, the X-ray diffraction intensity I 0 {220} of the {220} plane of pure copper standard powder was also measured under the same measurement conditions. Using these measured values, the X-ray diffraction intensity ratio I {220} / I 0 {220} was determined. As a result, I {220} / I 0 {220} is 4.1 (Example 1), 3.8 (Example 2), 3.7 (Example 3), and 4.1 (Example 4), respectively. 3.9 (Example 5), 3.9 (Example 6), and 3.9 (Example 7), all of which were 3.5 or more.

次に、得られた銅合金板材を450℃で30分間保持する耐熱試験を行った後、ビッカース硬さHVを測定したところ、それぞれ153(実施例1)、147(実施例2)、146(実施例3)、142(実施例4)、146(実施例5)、145(実施例6)、148(実施例7)であり、いずれも140以上であった。   Next, after performing the heat resistance test which hold | maintains the obtained copper alloy board | plate material at 450 degreeC for 30 minute (s), when Vickers hardness HV was measured, 153 (Example 1), 147 (Example 2), 146 ( Example 3), 142 (Example 4), 146 (Example 5), 145 (Example 6), and 148 (Example 7), all of which were 140 or more.

また、450℃で30分間保持する耐熱試験後の銅合金板材について、上述した方法と同様に、X線回折強度を測定し、X線回折強度比I{220}/I{220}を求めたところ、それぞれ4.1(実施例1)、3.9(実施例2)、4.4(実施例3)、3.8(実施例4)、3.9(実施例5)、4.2(実施例6)、3.6(実施例7)であり、いずれも3.0以上であった。 Further, the copper alloy sheet after the heat resistance test holding at 450 ° C. 30 minutes, similarly to the method described above, by measuring the X-ray diffraction intensity, obtains the X-ray diffraction intensity ratio I {220} / I 0 { 220} As a result, 4.1 (Example 1), 3.9 (Example 2), 4.4 (Example 3), 3.8 (Example 4), 3.9 (Example 5), 4 respectively. 2 (Example 6) and 3.6 (Example 7), both of which were 3.0 or more.

これらの結果を表3に示す。   These results are shown in Table 3.

Figure 0005297855
Figure 0005297855

[比較例1〜3]
等温時効をそれぞれ550℃で0時間(比較例1)、550℃で1時間(比較例2)、550℃で3時間(比較例3)とした以外は、実施例1〜7と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した熱間圧延後の導電率は42.9%IACであった。また、実施例1〜7と同様の方法により測定した時効処理後の導電率は、それぞれ41.9%IACS(比較例1)、57.1%IACS(比較例2)、58.9%IACS(比較例3)であり、いずれも60%IACSより低かった。これらの銅合金板材の製造条件を表4および表5に示す。
[Comparative Examples 1-3]
The same method as in Examples 1 to 7 except that the isothermal aging was 0 hour at 550 ° C (Comparative Example 1), 1 hour at 550 ° C (Comparative Example 2), and 3 hours at 550 ° C (Comparative Example 3). Thus, a copper alloy sheet was produced. The electrical conductivity after hot rolling measured by the same method as in Examples 1 to 7 was 42.9% IAC. Moreover, the electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 41.9% IACS (Comparative Example 1), 57.1% IACS (Comparative Example 2), and 58.9% IACS, respectively. (Comparative Example 3) All were lower than 60% IACS. The production conditions for these copper alloy sheets are shown in Tables 4 and 5.

Figure 0005297855
Figure 0005297855

Figure 0005297855
Figure 0005297855

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、比較例1で得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、それぞれ42.5%IACS(比較例1)、55.4%IACS(比較例2)、56.3%IACS(比較例3)であり、いずれも60%IACSより低かった。耐熱試験前のビッカース硬さHVは、それぞれ171(比較例1)、170(比較例2)、166(比較例3)であり、いずれも150以上であった。また、耐熱試験後のビッカース硬さHVは、それぞれ156(比較例1)、152(比較例2)、153(比較例3)であり、いずれも140以上であった。また、比較例1で得られた銅合金板材について、耐熱試験前のI{220}/I{220}は3.7、耐熱試験後のI{220}/I{220}は4.0であり、それぞれ3.5以上および3.0以上であった。これらの結果を表6に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, the copper alloy obtained by the comparative example 1 for sheet material in the same manner as in example 1-7, it was determined before and after the heat resistance test I {220} / I 0 { 220}. The electrical conductivity before the heat test is 42.5% IACS (Comparative Example 1), 55.4% IACS (Comparative Example 2), and 56.3% IACS (Comparative Example 3), respectively, all from 60% IACS. It was low. The Vickers hardness HV before the heat test was 171 (Comparative Example 1), 170 (Comparative Example 2), and 166 (Comparative Example 3), respectively, which were 150 or more. Further, the Vickers hardness HV after the heat resistance test was 156 (Comparative Example 1), 152 (Comparative Example 2), and 153 (Comparative Example 3), respectively, which were 140 or more. Further, the copper alloy sheet obtained in Comparative Example 1, I {220} / I 0 {220} before heat resistance test 3.7, I {220} after the heat resistance test / I 0 {220} 4. 0, respectively 3.5 or more and 3.0 or more. These results are shown in Table 6.

Figure 0005297855
Figure 0005297855

[実施例8〜9]
仕上げ冷間圧延における圧延率をそれぞれ90%(実施例8)、80%(実施例9)とした以外は、実施例4と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した熱間圧延後の導電率は42.9%IACSであった。また、実施例1〜7と同様の方法により測定した時効処理後の導電率は、それぞれ68.7%IACS(実施例8)、68.7%IACS(実施例9)であり、いずれも60〜70%IACSであった。これらの銅合金板材の製造条件を表1および表2に示す。
[Examples 8 to 9]
A copper alloy sheet was produced in the same manner as in Example 4 except that the rolling ratios in finish cold rolling were 90% (Example 8) and 80% (Example 9), respectively. In addition, the electrical conductivity after hot rolling measured by the same method as in Examples 1 to 7 was 42.9% IACS. Moreover, the electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 68.7% IACS (Example 8) and 68.7% IACS (Example 9), respectively. -70% IACS. The production conditions for these copper alloy sheets are shown in Tables 1 and 2.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、それぞれ64.0%IACS(実施例8)、65.0%IACS(実施例9)であり、いずれも60%IACS以上であった。耐熱試験前のビッカース硬さHVは、それぞれ166(実施例8)、155(実施例9)であり、いずれも150以上であった。また、耐熱試験後のビッカース硬さHVは、それぞれ145(実施例8)、141(実施例9)であり、いずれも140以上であった。耐熱試験前のI{220}/I{220}は、それぞれ3.8(実施例8)、3.6(実施例9)であり、いずれも3.5以上であった。また、耐熱試験後のI{220}/I{220}は、それぞれ3.6(実施例8)、3.8(実施例9)であり、いずれも3.0以上であった。これらの結果を表3に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, I {220} / before and after a heat test. I 0 {220} was determined. The electrical conductivity before the heat test was 64.0% IACS (Example 8) and 65.0% IACS (Example 9), respectively, both of which were 60% IACS or more. The Vickers hardness HV before the heat resistance test was 166 (Example 8) and 155 (Example 9), respectively, and each was 150 or more. Moreover, the Vickers hardness HV after the heat test was 145 (Example 8) and 141 (Example 9), respectively, and both were 140 or more. I {220} / I 0 {220} before the heat test was 3.8 (Example 8) and 3.6 (Example 9), respectively, and both were 3.5 or more. Moreover, I {220} / I 0 {220} after the heat test was 3.6 (Example 8) and 3.8 (Example 9), respectively, and both were 3.0 or more. These results are shown in Table 3.

[実施例10〜14]
表1に示す化学成分の銅合金(実施例10では、2.10質量%のFeと、0.030質量%のPと、0.08質量%のZnと、0.020質量%のSnを含み、残部がCuからなる銅合金、実施例11では、1.50質量%のFeと、0.100質量%のPと、0.20質量%のZnを含み、残部がCuからなる銅合金、実施例12では、2.20質量%のFeと、0.010質量%のPと、0.09質量%のZnと、0.070質量%のSnを含み、残部がCuからなる銅合金、実施例13では、2.70質量%のFeと、0.100質量%のPと、0.14質量%のZnと、0.030質量%のSnを含み、残部がCuからなる銅合金、実施例14では、3.00質量%のFeと、0.050質量%のPと、0.02質量%のZnと、0.100質量%のSnを含み、残部がCuからなる銅合金)から鋳塊を作製した以外は、実施例3と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した時効処理後の導電率は、それぞれ66.1%IACS(実施例10)、67.0%IACS(実施例11)、63.5%IACS(実施例12)、64.7%IACS(実施例13)、63.2%IACS(実施例14)であり、いずれも60〜70%IACSであった。これらの銅合金板材の製造条件を表1および表2に示す。
[Examples 10 to 14]
Copper alloys having chemical components shown in Table 1 (in Example 10, 2.10 mass% Fe, 0.030 mass% P, 0.08 mass% Zn, and 0.020 mass% Sn) A copper alloy comprising the remainder of Cu, in Example 11, a copper alloy comprising 1.50 mass% Fe, 0.100 mass% P and 0.20 mass% Zn, with the remainder comprising Cu In Example 12, a copper alloy containing 2.20% by mass of Fe, 0.010% by mass of P, 0.09% by mass of Zn, and 0.070% by mass of Sn, with the balance being Cu In Example 13, a copper alloy containing 2.70% by mass of Fe, 0.100% by mass of P, 0.14% by mass of Zn and 0.030% by mass of Sn, with the balance being Cu. In Example 14, 3.00 mass% Fe, 0.050 mass% P, 0.02 mass% Zn, It includes a .100% by weight of Sn, except the balance to produce an ingot of copper alloy) composed of Cu, in the same manner as in Example 3, to prepare a copper alloy sheet. The electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 66.1% IACS (Example 10), 67.0% IACS (Example 11), and 63.5% IACS, respectively. (Example 12), 64.7% IACS (Example 13), 63.2% IACS (Example 14), and all were 60-70% IACS. The production conditions for these copper alloy sheets are shown in Tables 1 and 2.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、それぞれ63.0%IACS(実施例10)、65.5%IACS(実施例11)、61.0%IACS(実施例12)、62.0%IACS(実施例13)、60.8%IACS(実施例14)であり、いずれも60%IACS以上であった。耐熱試験前のビッカース硬さHVは、それぞれ169(実施例10)、160(実施例11)、162(実施例12)、164(実施例13)、166(実施例14)であり、いずれも150以上であった。また、耐熱試験後のビッカース硬さHVは、それぞれ146(実施例10)、147(実施例11)、146(実施例12)、144(実施例13)、146(実施例14)であり、いずれも140以上であった。耐熱試験前のI{220}/I{220}は、それぞれ3.7(実施例10)、3.9(実施例11)、3.6(実施例12)、3.8(実施例13)、4.0(実施例14)であり、いずれも3.5以上であった。また、耐熱試験後のI{220}/I{220}は、それぞれ4.4(実施例10)、3.8(実施例11)、4.1(実施例12)、3.9(実施例13)、4.0(実施例14)であり、いずれも3.0以上であった。これらの結果を表3に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, I {220} / before and after a heat test. I 0 {220} was determined. The electrical conductivity before the heat test was 63.0% IACS (Example 10), 65.5% IACS (Example 11), 61.0% IACS (Example 12), and 62.0% IACS (Example), respectively. 13) and 60.8% IACS (Example 14), both of which were 60% IACS or more. The Vickers hardness HV before the heat test is 169 (Example 10), 160 (Example 11), 162 (Example 12), 164 (Example 13), and 166 (Example 14), respectively. It was 150 or more. The Vickers hardness HV after the heat resistance test is 146 (Example 10), 147 (Example 11), 146 (Example 12), 144 (Example 13), and 146 (Example 14), respectively. All were 140 or more. I {220} / I 0 {220} before the heat test is 3.7 (Example 10), 3.9 (Example 11), 3.6 (Example 12), and 3.8 (Example), respectively. 13) 4.0 (Example 14), and all were 3.5 or more. Further, I {220} / I 0 {220} after the heat resistance test is 4.4 (Example 10), 3.8 (Example 11), 4.1 (Example 12), and 3.9 (Example), respectively. Example 13) and 4.0 (Example 14), both of which were 3.0 or more. These results are shown in Table 3.

[実施例15〜17]
600℃〜450℃における熱間圧延の加工度をそれぞれ20%(実施例15)、40%(実施例16)、50%(実施例17)とした以外は、実施例3と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した熱間圧延後の導電率は、それぞれ40.8%IACS(実施例15)、43.1%IACS(実施例16)、43.6%IACS(実施例17)であった。また、実施例1〜7と同様の方法により測定した時効処理後の導電率は、それぞれ62.7%IACS(実施例15)、63.5%IACS(実施例16)、63.3%IACS(実施例17)であり、いずれも60〜70%IACSであった。これらの銅合金板材の製造条件を表1および表2に示す。
[Examples 15 to 17]
According to the same method as in Example 3, except that the workability of hot rolling at 600 ° C. to 450 ° C. was 20% (Example 15), 40% (Example 16), and 50% (Example 17), respectively. A copper alloy sheet was prepared. The electrical conductivity after hot rolling measured by the same method as in Examples 1 to 7 was 40.8% IACS (Example 15), 43.1% IACS (Example 16), and 43.6%, respectively. IACS (Example 17). Moreover, the electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 62.7% IACS (Example 15), 63.5% IACS (Example 16), and 63.3% IACS, respectively. (Example 17) and all were 60 to 70% IACS. The production conditions for these copper alloy sheets are shown in Tables 1 and 2.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、それぞれ63.0%IACS(実施例15)、64.2%IACS(実施例16)、63.5%IACS(実施例17)であり、いずれも60%IACS以上であった。耐熱試験前のビッカース硬さHVは、それぞれ168(実施例15)、169(実施例16)、167(実施例17)であり、いずれも150以上であった。また、耐熱試験後のビッカース硬さHVは、それぞれ145(実施例15)、146(実施例16)、145(実施例17)であり、いずれも140以上であった。耐熱試験前のI{220}/I{220}は、それぞれ3.8(実施例15)、3.6(実施例16)、3.9(実施例17)であり、いずれも3.5以上であった。また、耐熱試験後のI{220}/I{220}は、それぞれ4.2(実施例15)、3.8(実施例16)、3.9(実施例17)であり、いずれも3.0以上であった。これらの結果を表3に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, I {220} / before and after a heat test. I 0 {220} was determined. The electrical conductivity before the heat resistance test is 63.0% IACS (Example 15), 64.2% IACS (Example 16), and 63.5% IACS (Example 17), respectively, each of which is 60% IACS or more. Met. The Vickers hardness HV before the heat test was 168 (Example 15), 169 (Example 16), and 167 (Example 17), respectively, and all were 150 or more. Moreover, the Vickers hardness HV after the heat test was 145 (Example 15), 146 (Example 16), and 145 (Example 17), respectively, and each was 140 or more. I {220} / I 0 {220} before the heat test is 3.8 (Example 15), 3.6 (Example 16), and 3.9 (Example 17), respectively. It was 5 or more. Further, I {220} / I 0 {220} after the heat resistance test is 4.2 (Example 15), 3.8 (Example 16), and 3.9 (Example 17), respectively. It was 3.0 or more. These results are shown in Table 3.

[比較例4〜5]
表1に示す化学成分の銅合金(比較例4では、2.20質量%のFeと、0.029質量%のPと、0.10質量%のZnと、0.027質量%のSnを含み、残部がCuからなる銅合金、比較例5では、2.22質量%のFeと、0.036質量%のPと、0.09質量%のZnと、0.067質量%のSnを含み、残部がCuからなる銅合金)から鋳塊を作製し、900〜450℃の熱間圧延の代わりに900〜600で熱間圧延10パス行い、等温時効を570℃で8時間行った以外は、実施例1〜7と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した時効処理後の導電率は、それぞれ66.0%IACS(比較例4)、65.8%IACS(比較例5)であり、いずれも60〜70%IACSであった。これらの銅合金板材の製造条件を表4および表5に示す。
[Comparative Examples 4 to 5]
Copper alloys having chemical components shown in Table 1 (in Comparative Example 4, 2.20 mass% Fe, 0.029 mass% P, 0.10 mass% Zn, and 0.027 mass% Sn) In the comparative example 5, the copper alloy including the balance, Cu, 2.22 mass% Fe, 0.036 mass% P, 0.09 mass% Zn, and 0.067 mass% Sn Ingot, and the remainder is made of Cu), in which instead of hot rolling at 900 to 450 ° C., hot rolling is performed for 10 passes at 900 to 600, and isothermal aging is performed at 570 ° C. for 8 hours. Produced the copper alloy sheet | seat by the method similar to Examples 1-7. In addition, the electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 66.0% IACS (Comparative Example 4) and 65.8% IACS (Comparative Example 5), respectively. -70% IACS. The production conditions for these copper alloy sheets are shown in Tables 4 and 5.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定した。耐熱試験前の導電率は、それぞれ63.0%IACS(比較例4)、62.7%IACS(比較例5)であり、いずれも60%IACS以上であった。耐熱試験前のビッカース硬さHVは、それぞれ156(比較例4)、170(比較例5)であり、いずれも150以上であったが、耐熱試験後のビッカース硬さHVは、それぞれ95(比較例4)、123(比較例5)であり、いずれも140よりも低かった。これらの結果を表6に示す。   Moreover, about the obtained copper alloy board | plate material, the electrical conductivity before a heat test and the Vickers hardness HV before and behind a heat test were measured by the method similar to Examples 1-7. The electrical conductivity before the heat test was 63.0% IACS (Comparative Example 4) and 62.7% IACS (Comparative Example 5), respectively, and both were 60% IACS or more. The Vickers hardness HV before the heat test was 156 (Comparative Example 4) and 170 (Comparative Example 5), respectively, and both were 150 or more, but the Vickers hardness HV after the heat test was 95 (Comparative). Examples 4) and 123 (Comparative Example 5), both of which were lower than 140. These results are shown in Table 6.

[比較例6]
等温時効を550℃で20時間(比較例2)とした以外は、実施例1〜7と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した熱間圧延後の導電率は42.9%IACSであった。また、実施例1〜7と同様の方法により測定した時効処理後の導電率は、73.8%IACSであり、70%IACSより高かった。この銅合金板材の製造条件を表4および表5に示す。
[Comparative Example 6]
A copper alloy sheet was produced in the same manner as in Examples 1 to 7, except that the isothermal aging was changed to 550 ° C. for 20 hours (Comparative Example 2). In addition, the electrical conductivity after hot rolling measured by the same method as in Examples 1 to 7 was 42.9% IACS. Moreover, the electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 73.8% IACS, which was higher than 70% IACS. The production conditions for this copper alloy sheet are shown in Tables 4 and 5.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、66.0%IACSであり、60%IACS以上であった。耐熱試験前のビッカース硬さHVは165であり、150以上であったが、耐熱試験後のビッカース硬さHVは112であり、140より低かった。耐熱試験前のI{220}/I{220}は3.8であり、3.5以上であったが、耐熱試験後のI{220}/I{220}は1.8であり、3.0より低かった。これらの結果を表6に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, I {220} / before and after a heat test. I 0 {220} was determined. The conductivity before the heat test was 66.0% IACS, which was 60% IACS or more. The Vickers hardness HV before the heat test was 165 and 150 or more, but the Vickers hardness HV after the heat test was 112, which was lower than 140. I {220} / I 0 {220} before the heat test was 3.8 and 3.5 or more, but I {220} / I 0 {220} after the heat test was 1.8. Lower than 3.0. These results are shown in Table 6.

[比較例7〜14]
900〜450℃の熱間圧延の代わりに900〜600で熱間圧延10パス行い、等温時効を550℃で7時間(比較例7)、550℃で9時間(比較例8)、550℃で15時間(比較例9)、550℃で20時間(比較例10)、450℃で9時間(比較例11)、500℃で9時間(比較例12)、550℃で9時間(比較例13)、600℃で9時間(比較例14)行った以外は、実施例1〜7と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した熱間圧延後の導電率は38.3%IACSであった。また、実施例1〜7と同様の方法により測定した時効処理後の導電率は、それぞれ60.4%IACS(比較例7)、65.2%IACS(比較例8)、67.2%IACS(比較例9)、70.2%IACS(比較例10)、62.0%IACS(比較例11)、64.8%IACS(比較例12)、65.2%IACS(比較例13)、63.8%IACS(比較例14)であり、いずれも60〜70%IACSであった。これらの銅合金板材の製造条件を表4および表5に示す。
[Comparative Examples 7 to 14]
Instead of hot rolling at 900 to 450 ° C., 10 passes of hot rolling at 900 to 600 are performed, and isothermal aging is performed at 550 ° C. for 7 hours (Comparative Example 7), 550 ° C. for 9 hours (Comparative Example 8), and 15 hours (Comparative Example 9), 550 ° C. for 20 hours (Comparative Example 10), 450 ° C. for 9 hours (Comparative Example 11), 500 ° C. for 9 hours (Comparative Example 12), 550 ° C. for 9 hours (Comparative Example 13) ), A copper alloy sheet was produced by the same method as in Examples 1 to 7, except that the test was performed at 600 ° C. for 9 hours (Comparative Example 14). The electrical conductivity after hot rolling measured by the same method as in Examples 1 to 7 was 38.3% IACS. Moreover, the electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 60.4% IACS (Comparative Example 7), 65.2% IACS (Comparative Example 8), and 67.2% IACS, respectively. (Comparative Example 9), 70.2% IACS (Comparative Example 10), 62.0% IACS (Comparative Example 11), 64.8% IACS (Comparative Example 12), 65.2% IACS (Comparative Example 13), It was 63.8% IACS (Comparative Example 14), and all were 60 to 70% IACS. The production conditions for these copper alloy sheets are shown in Tables 4 and 5.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、それぞれ58.5%IACS(比較例7)、61.5%IACS(比較例8)、63.8%IACS(比較例9)、64.5%IACS(比較例10)、59.0%IACS(比較例11)、62.0%IACS(比較例12)、61.6%IACS(比較例13)、61.0%IACS(比較例14)であり、比較例8〜10と12〜14では60%IACS以上であったが、比較例7および11では60%IACSより低かった。耐熱試験前のビッカース硬さHVは、それぞれ166(比較例7)、164(比較例8)、163(比較例9)、160(比較例10)、165(比較例11)、163(比較例12)、164(比較例13)、166(比較例14)であり、いずれも150以上であった。また、耐熱試験後のビッカース硬さHVは、それぞれ140(比較例7)、135(比較例8)、98(比較例9)、95(比較例10)、128(比較例11)、115(比較例12)、135(比較例13)、132(比較例14)であり、比較例7では140以上であったが、他の比較例8〜14ではいずれも140より低かった。耐熱試験前のI{220}/I{220}は、それぞれ4.0(比較例7)、3.9(比較例8)、4.0(比較例9)、4.0(比較例10)、3.9(比較例11)、3.9(比較例12)、3.9(比較例13)、3.9(比較例14)であり、いずれも3.5以上であった。また、耐熱試験後のI{220}/I{220}は、それぞれ3.8(比較例7)、2.9(比較例8)、1.8(比較例9)、1.8(比較例10)、2.5(比較例11)、2.2(比較例12)、2.9(比較例13)、2.9(比較例14)であり、比較例7では3.0以上であったが、他の比較例8〜14ではいずれも3.0より低かった。これらの結果を表6に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, I {220} / before and after a heat test. I 0 {220} was determined. The electrical conductivity before the heat resistance test was 58.5% IACS (Comparative Example 7), 61.5% IACS (Comparative Example 8), 63.8% IACS (Comparative Example 9), and 64.5% IACS (Comparative Example), respectively. 10), 59.0% IACS (Comparative Example 11), 62.0% IACS (Comparative Example 12), 61.6% IACS (Comparative Example 13), and 61.0% IACS (Comparative Example 14). In Examples 8-10 and 12-14, it was 60% IACS or higher, but in Comparative Examples 7 and 11, it was lower than 60% IACS. The Vickers hardness HV before the heat resistance test was 166 (Comparative Example 7), 164 (Comparative Example 8), 163 (Comparative Example 9), 160 (Comparative Example 10), 165 (Comparative Example 11), 163 (Comparative Example), respectively. 12), 164 (Comparative Example 13), and 166 (Comparative Example 14), all of which were 150 or more. Further, the Vickers hardness HV after the heat test is 140 (Comparative Example 7), 135 (Comparative Example 8), 98 (Comparative Example 9), 95 (Comparative Example 10), 128 (Comparative Example 11), 115 ( Comparative Examples 12), 135 (Comparative Example 13), and 132 (Comparative Example 14), which were 140 or more in Comparative Example 7, but were lower than 140 in other Comparative Examples 8-14. I {220} / I 0 {220} before the heat test is 4.0 (Comparative Example 7), 3.9 (Comparative Example 8), 4.0 (Comparative Example 9), 4.0 (Comparative Example), respectively. 10), 3.9 (Comparative Example 11), 3.9 (Comparative Example 12), 3.9 (Comparative Example 13), and 3.9 (Comparative Example 14), and all were 3.5 or more. . Further, I {220} / I 0 {220} after the heat resistance test is 3.8 (Comparative Example 7), 2.9 (Comparative Example 8), 1.8 (Comparative Example 9), and 1.8 (Comparative Example 9), respectively. Comparative Example 10), 2.5 (Comparative Example 11), 2.2 (Comparative Example 12), 2.9 (Comparative Example 13), and 2.9 (Comparative Example 14). Although it was above, in other comparative examples 8-14, all were lower than 3.0. These results are shown in Table 6.

[比較例15]
仕上げ冷間圧延における圧延率を70%とした以外は、実施例4と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した熱間圧延後の導電率は42.9%IACSであった。また、実施例1〜7と同様の方法により測定した時効処理後の導電率は、68.7%IACSであり、60〜70%IACSであった。この銅合金板材の製造条件を表4および表5に示す。
[Comparative Example 15]
A copper alloy sheet was produced in the same manner as in Example 4 except that the rolling rate in finish cold rolling was set to 70%. In addition, the electrical conductivity after hot rolling measured by the same method as in Examples 1 to 7 was 42.9% IACS. Moreover, the electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 68.7% IACS and 60 to 70% IACS. The production conditions for this copper alloy sheet are shown in Tables 4 and 5.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、65.2%IACSであり、60%IACS以上であった。耐熱試験前のビッカース硬さHVは148であり、150より低く、耐熱試験後のビッカース硬さHVは138であり、140より低かった。耐熱試験前のI{220}/I{220}は3.5であり、3.5以上であり、耐熱試験後のI{220}/I{220}は3.6であり、3.0以上であった。これらの結果を表6に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, I {220} / before and after a heat test. I 0 {220} was determined. The electrical conductivity before the heat test was 65.2% IACS, which was 60% IACS or more. The Vickers hardness HV before the heat test was 148, lower than 150, and the Vickers hardness HV after the heat test was 138, lower than 140. I {220} / I 0 {220} before the heat test is 3.5 and 3.5 or more, and I {220} / I 0 {220} after the heat test is 3.6, 3 0.0 or more. These results are shown in Table 6.

[比較例16〜20]
表1に示す化学成分の銅合金(比較例16では、2.10質量%のFeと、0.030質量%のPと、0.08質量%のZnと、0.020質量%のSnを含み、残部がCuからなる銅合金、比較例17では、1.50質量%のFeと、0.100質量%のPと、0.20質量%のZnを含み、残部がCuからなる銅合金、比較例18では、2.20質量%のFeと、0.010質量%のPと、0.09質量%のZnと、0.070質量%のSnを含み、残部がCuからなる銅合金、比較例19では、2.70質量%のFeと、0.100質量%のPと、0.14質量%のZnと、0.030質量%のSnを含み、残部がCuからなる銅合金、比較例20では、3.00質量%のFeと、0.050質量%のPと、0.02質量%のZnと、0.100質量%のSnを含み、残部がCuからなる銅合金)から鋳塊を作製し、900〜450℃の熱間圧延の代わりに900〜600で熱間圧延10パス行った以外は、実施例3と同様の方法により、銅合金板材を作製した。なお、実施例1〜7と同様の方法により測定した時効処理後の導電率は、それぞれ65.2%IACS(比較例16)、67.2%IACS(比較例17)、64.2%IACS(比較例18)、64.6%IACS(比較例19)、62.7%IACS(比較例20)であり、いずれも60〜70%IACSであった。これらの銅合金板材の製造条件を表4および表5に示す。
[Comparative Examples 16 to 20]
Copper alloys having chemical components shown in Table 1 (in Comparative Example 16, 2.10 mass% Fe, 0.030 mass% P, 0.08 mass% Zn, and 0.020 mass% Sn) In the comparative example 17, the copper alloy which contains 1.50 mass% Fe, 0.100 mass% P, and 0.20 mass% Zn, and the remainder consists of Cu. In Comparative Example 18, a copper alloy containing 2.20% by mass of Fe, 0.010% by mass of P, 0.09% by mass of Zn, and 0.070% by mass of Sn, with the balance being Cu. In Comparative Example 19, a copper alloy containing 2.70% by mass of Fe, 0.100% by mass of P, 0.14% by mass of Zn, and 0.030% by mass of Sn, with the balance being Cu. In Comparative Example 20, 3.00 mass% Fe, 0.050 mass% P, 0.02 mass% Zn, Ingot was made except that the ingot was made from a copper alloy containing 100% by mass of Sn and the balance being made of Cu), and hot rolling was performed 10 passes at 900 to 600 instead of hot rolling at 900 to 450 ° C. A copper alloy sheet was produced in the same manner as in Example 3. The electrical conductivity after the aging treatment measured by the same method as in Examples 1 to 7 was 65.2% IACS (Comparative Example 16), 67.2% IACS (Comparative Example 17), and 64.2% IACS, respectively. (Comparative Example 18), 64.6% IACS (Comparative Example 19), 62.7% IACS (Comparative Example 20), and all were 60 to 70% IACS. The production conditions for these copper alloy sheets are shown in Tables 4 and 5.

また、得られた銅合金板材について、実施例1〜7と同様の方法により、耐熱試験前の導電率、耐熱試験前後のビッカース硬さHVを測定するとともに、耐熱試験前後のI{220}/I{220}を求めた。耐熱試験前の導電率は、それぞれ61.5%IACS(比較例16)、64.2%IACS(比較例17)、61.2%IACS(比較例18)、61.6%IACS(比較例19)、59.8%IACS(比較例20)であり、比較例16〜19では60%IACS以上であったが、比較例20では60%IACSより低かった。耐熱試験前のビッカース硬さHVは、それぞれ164(比較例16)、163(比較例17)、162(比較例18)、165(比較例19)、165(比較例20)であり、いずれも150以上であった。また、耐熱試験後のビッカース硬さHVは、それぞれ135(比較例16)、130(比較例17)、136(比較例18)、128(比較例19)、120(比較例20)であり、いずれも140より低かった。耐熱試験前のI{220}/I{220}は、それぞれ3.9(比較例16)、3.8(比較例17)、3.9(比較例18)、3.9(比較例19)、4.0(比較例20)であり、いずれも3.5以上であった。また、耐熱試験後のI{220}/I{220}は、それぞれ2.9(比較例16)、2.1(比較例17)、2.8(比較例18)、2.5(比較例19)、2.2(比較例20)であり、いずれも3.0より低かった。これらの結果を表6に示す。 Moreover, about the obtained copper alloy board | plate material, while measuring the electrical conductivity before a heat test, the Vickers hardness HV before and behind a heat test by the method similar to Examples 1-7, I {220} / before and after a heat test. I 0 {220} was determined. The electrical conductivity before the heat test was 61.5% IACS (Comparative Example 16), 64.2% IACS (Comparative Example 17), 61.2% IACS (Comparative Example 18), and 61.6% IACS (Comparative Example), respectively. 19) and 59.8% IACS (Comparative Example 20). In Comparative Examples 16 to 19, it was 60% IACS or more, but in Comparative Example 20, it was lower than 60% IACS. The Vickers hardness HV before the heat test is 164 (Comparative Example 16), 163 (Comparative Example 17), 162 (Comparative Example 18), 165 (Comparative Example 19), and 165 (Comparative Example 20), respectively. It was 150 or more. The Vickers hardness HV after the heat resistance test is 135 (Comparative Example 16), 130 (Comparative Example 17), 136 (Comparative Example 18), 128 (Comparative Example 19), and 120 (Comparative Example 20), respectively. Both were lower than 140. I {220} / I 0 {220} before the heat resistance test is 3.9 (Comparative Example 16), 3.8 (Comparative Example 17), 3.9 (Comparative Example 18), and 3.9 (Comparative Example), respectively. 19) 4.0 (Comparative Example 20), and all were 3.5 or more. Further, I {220} / I 0 {220} after the heat test is 2.9 (Comparative Example 16), 2.1 (Comparative Example 17), 2.8 (Comparative Example 18), and 2.5 ( Comparative Examples 19) and 2.2 (Comparative Example 20), both of which were lower than 3.0. These results are shown in Table 6.

Claims (4)

1.5〜3.0質量%のFeと、0.01〜0.2質量%のPと、0.01〜0.5質量%のZnと、0.5質量%以下のSnを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶融して鋳造した鋳塊を加熱して保持した後、600℃〜450℃の温度域で加工度が20%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、時効焼鈍後の導電率が60〜70%IACSになるように時効焼鈍を行った後に加工度が80%以上になるように冷間圧延を行うことを特徴とする、銅合金板材の製造方法。 1.5 to 3.0% by mass of Fe, 0.01 to 0.2% by mass of P, 0.01 to 0.5% by mass of Zn, and 0.5% by mass or less of Sn, After heating and holding an ingot obtained by melting and casting a raw material of a copper alloy having a composition in which the balance is Cu and inevitable impurities, the workability is set to 20% or more in a temperature range of 600 ° C. to 450 ° C. Hot rolling is performed at 1000 ° C. to 450 ° C., and then cold rolling is performed so that the workability becomes 80% or more after aging annealing so that the electrical conductivity after aging annealing is 60 to 70% IACS. A method for producing a copper alloy sheet, characterized in that: 前記銅合金の原料中のFeの含有量が2.1〜3.0質量%、Pの含有量が0.015〜0.15質量%、Znの含有量が0.02〜0.2質量%、Snの含有量が0.1質量%以下であることを特徴とする、請求項1に記載の銅合金板材の製造方法。 The content of Fe in the raw material of the copper alloy is 2.1 to 3.0% by mass, the content of P is 0.015 to 0.15% by mass, and the content of Zn is 0.02 to 0.2% by mass. %, Sn content is 0.1 mass% or less, The manufacturing method of the copper alloy board | plate material of Claim 1 characterized by the above-mentioned. 前記冷間圧延を行った後に150〜450℃で低温焼鈍を行うことを特徴とする、請求項またはに記載の銅合金板材の製造方法。 And performing a low-temperature annealing at 150 to 450 ° C. after performing the cold rolling, a manufacturing method of the copper alloy sheet according to claim 1 or 2. 前記時効焼鈍を400〜650℃で5〜15時間行うことを特徴とする、請求項1乃至のいずれかに記載の銅合金板材の製造方法。 The said age-aging annealing is performed for 5 to 15 hours at 400-650 degreeC, The manufacturing method of the copper alloy board | plate material in any one of Claims 1 thru | or 3 characterized by the above-mentioned.
JP2009075396A 2009-03-26 2009-03-26 Copper alloy sheet and manufacturing method thereof Active JP5297855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075396A JP5297855B2 (en) 2009-03-26 2009-03-26 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075396A JP5297855B2 (en) 2009-03-26 2009-03-26 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010229438A JP2010229438A (en) 2010-10-14
JP5297855B2 true JP5297855B2 (en) 2013-09-25

Family

ID=43045523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075396A Active JP5297855B2 (en) 2009-03-26 2009-03-26 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5297855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107447121A (en) * 2017-06-22 2017-12-08 安徽晋源铜业有限公司 A kind of preparation method for significantly improving lead frame Cu alloy material surface defect
US11288602B2 (en) 2019-09-18 2022-03-29 Hartford Steam Boiler Inspection And Insurance Company Computer-based systems, computing components and computing objects configured to implement dynamic outlier bias reduction in machine learning models

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610789B2 (en) * 2010-02-25 2014-10-22 Dowaメタルテック株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP5988794B2 (en) * 2012-09-14 2016-09-07 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP2016211053A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy excellent in heat resistance
WO2023167230A1 (en) * 2022-03-04 2023-09-07 株式会社プロテリアル Copper alloy material and method for manufacturing copper alloy material
CN116694953B (en) * 2023-08-04 2023-10-31 中铝科学技术研究院有限公司 Copper alloy plate strip for electromagnetic shielding and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896793B2 (en) * 2001-02-16 2007-03-22 日立電線株式会社 Manufacturing method of high strength and high conductivity copper alloy material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107447121A (en) * 2017-06-22 2017-12-08 安徽晋源铜业有限公司 A kind of preparation method for significantly improving lead frame Cu alloy material surface defect
CN107447121B (en) * 2017-06-22 2019-04-30 安徽晋源铜业有限公司 A kind of preparation method significantly improving lead frame Cu alloy material surface defect
US11288602B2 (en) 2019-09-18 2022-03-29 Hartford Steam Boiler Inspection And Insurance Company Computer-based systems, computing components and computing objects configured to implement dynamic outlier bias reduction in machine learning models

Also Published As

Publication number Publication date
JP2010229438A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP4950584B2 (en) Copper alloy with high strength and heat resistance
JP4118832B2 (en) Copper alloy and manufacturing method thereof
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP3961529B2 (en) High strength copper alloy
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
KR20140056003A (en) Cu-ni-co-si based copper alloy sheet materal and method for producing the same
JP4171735B2 (en) Chromium-containing copper alloy manufacturing method, chromium-containing copper alloy and copper products
TW200918678A (en) Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP2007126739A (en) Copper alloy for electronic material
JP2021523977A (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
TW201217550A (en) containing 2.0-4.0 mass% of Ti, 0.01-0.15 wt% of one or more of Fe, Co, Ni, Cr, V, Nb, Mo, Mn, Zr, Si, Mg, B and P in total and the remainder containing Cu and unavoidable impurities, and having excellent strength and bendability
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
TW200837203A (en) Cu-Ni-Si-based copper alloy for electronic material
JP2000328157A (en) Copper alloy sheet excellent in bending workability
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5297855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250