JP6730784B2 - Cu-Ni-Co-Si alloy for electronic parts - Google Patents

Cu-Ni-Co-Si alloy for electronic parts Download PDF

Info

Publication number
JP6730784B2
JP6730784B2 JP2015056782A JP2015056782A JP6730784B2 JP 6730784 B2 JP6730784 B2 JP 6730784B2 JP 2015056782 A JP2015056782 A JP 2015056782A JP 2015056782 A JP2015056782 A JP 2015056782A JP 6730784 B2 JP6730784 B2 JP 6730784B2
Authority
JP
Japan
Prior art keywords
mass
alloy
less
rolling
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015056782A
Other languages
Japanese (ja)
Other versions
JP2016176105A (en
Inventor
弘泰 堀江
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015056782A priority Critical patent/JP6730784B2/en
Publication of JP2016176105A publication Critical patent/JP2016176105A/en
Application granted granted Critical
Publication of JP6730784B2 publication Critical patent/JP6730784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、電子部品、特にコネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等に好適な電子部品用Cu−Ni−Co−Si合金に関する。 The present invention relates to a Cu-Ni-Co-Si alloy for electronic parts, which is suitable for electronic parts, particularly connectors, battery terminals, jacks, relays, switches, lead frames and the like.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、電気伝導性および熱伝導性に優れるリン青銅、丹銅、黄銅等の銅系材料も広く用いられている。近年、電気・電子機器の小型化、軽量化、高機能化、さらにこれに伴う高密度実装化に対する要求が高まり、これらに適用される銅系材料にも種々の特性が求められている。 Conventionally, copper-based materials such as phosphor bronze, red copper, and brass, which are excellent in electrical conductivity and thermal conductivity, have been widely used as materials for electric and electronic devices in general. In recent years, there has been an increasing demand for miniaturization, weight reduction, and high functionality of electric/electronic devices, and high density packaging accompanying this, and copper-based materials applied to these are also required to have various characteristics.

部品の小型化に伴って材料の薄肉化が進行しており、材料強度の向上が求められている。リレーなどの用途では疲労特性の要求が高まっており、強度の向上が必要である。また、部品の小型化に伴って、曲げ加工される場合の条件が厳しくなっており、高い強度を持ちながら、なおかつ、曲げ加工性に優れていることが要求されている。 With the miniaturization of parts, the material is becoming thinner, and it is required to improve the material strength. In applications such as relays, the demand for fatigue characteristics is increasing, and it is necessary to improve strength. In addition, as the size of parts is reduced, the conditions for bending are becoming stricter, and it is required to have high strength and excellent bending workability.

特許文献1では、特に0.2%耐力が980MPa以上、あるいは1000MPa以上という非常に高い強度を有し、かつ導電率30%IACS以上、より好ましくは34%以上を有し、耐応力緩和特性およびプレス加工性も良好であるCu−Ni−Co−Si系銅合金板材が提案されている。特許文献1によれば、この銅合金板材は、鋳片を高温で加熱保持する熱処理1、熱間圧延、冷間圧延、固溶化熱処理と、時効時にCo−Si系化合物の析出を促すための前処理的な熱処理とを含む熱履歴を付与する熱処理2、および低温域で行う時効処理を経て製造される。 In Patent Document 1, in particular, 0.2% proof stress has a very high strength of 980 MPa or more, or 1000 MPa or more, and has a conductivity of 30% IACS or more, more preferably 34% or more, and stress relaxation resistance and A Cu-Ni-Co-Si-based copper alloy sheet material having good press workability has been proposed. According to Patent Document 1, this copper alloy sheet is used for heat treatment 1 for heating and holding a slab at a high temperature, hot rolling, cold rolling, solution heat treatment, and for promoting precipitation of a Co—Si compound during aging. It is manufactured through a heat treatment 2 that imparts a heat history including a pretreatment heat treatment, and an aging treatment performed in a low temperature range.

特開2014−156623号公報JP, 2014-156623, A 特開2011−231393号公報JP, 2011-231393, A 特開2009−007666号公報JP, 2009-007666, A

ところで、特許文献1に記載によれば、Cu−Ni−Co−Si合金において、時効温度によってNi−Si系化合物、Co−Si系化合物の二種類の化合物による析出物が形成される旨記載されており、組成が異なると析出物が転位に与える影響が異なることが推定される。すなわち析出物の組成によって導入される転位量が異なると考えられる。転位が不均一になることで曲げ加工時の応力が集中し、曲げ加工性が損なわれている可能性がある。 By the way, according to Patent Document 1, it is described that in a Cu—Ni—Co—Si alloy, a precipitate is formed by two kinds of compounds, a Ni—Si compound and a Co—Si compound, depending on the aging temperature. Therefore, it is presumed that the influence of precipitates on dislocations varies with the composition. That is, it is considered that the amount of dislocation introduced depends on the composition of the precipitate. Since the dislocations become non-uniform, stress during bending may be concentrated and bending workability may be impaired.

そこで、例えば特許文献2では、異方性の少ない{100}方位(Cube方位)とする結晶粒の割合を増大させることによって、曲げ加工性を向上できると同時に、曲げ加工性の異方性を顕著に改善できる旨記載され、具体的には、銅合金の原料を溶解して鋳造する溶解・鋳造工程と、この溶解・鋳造工程の後に行う熱間圧延工程と、この熱間圧延工程の後に圧延率70%以上で冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度500〜650℃で熱処理を行う中間焼鈍工程と、この中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に400〜500℃で時効処理を行う時効処理工程を含む方法により実現している。 Therefore, in Patent Document 2, for example, bending workability can be improved by increasing the ratio of crystal grains having {100} orientation (Cube orientation) with less anisotropy, and at the same time, bending anisotropy of bending workability can be improved. It is stated that it can be remarkably improved. Specifically, a melting/casting step of melting and casting the copper alloy raw material, a hot rolling step performed after this melting/casting step, and a hot rolling step after this hot rolling step The first cold rolling step of performing cold rolling at a rolling rate of 70% or more, the intermediate annealing step of performing heat treatment at a heating temperature of 500 to 650° C. after the first cold rolling step, and the intermediate annealing step of A second cold rolling step in which cold rolling is performed at a rolling rate of 70% or more, a solution treatment step in which a solution treatment is performed after the second cold rolling step, and 400 after the solution treatment step. It is realized by a method including an aging treatment step of performing aging treatment at ˜500° C.

また、例えば特許文献3では、板表面における{111}面からの回折強度をI{111}、{200}面からの回折強度をI{200}、{220}面からの回折強度をI{220}、{311}面からの回折強度をI{311}、これらの回折強度の中の{200}面からの回折強度の割合をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}を一定以上とすることにより、曲げ加工性を改善する技術が記載され、具体的には最終再結晶熱処理の前に、加工組織が完全に再結晶しない程度の中間焼鈍と、それに加えて中間圧延を導入することで実現している。 Further, for example, in Patent Document 3, the diffraction intensity from the {111} plane on the plate surface is I{111}, the diffraction intensity from the {200} plane is I{200}, and the diffraction intensity from the {220} plane is I{. 220}, the diffraction intensity from the {311} plane is I{311}, and the ratio of the diffraction intensity from the {200} plane among these diffraction intensities is R{200}=I{200}/(I{111} +I{200}+I{220}+I{311}), a technique for improving bending workability by setting R{200} to a certain value or more is described. Specifically, in the final recrystallization heat treatment, This has been achieved by introducing intermediate annealing to the extent that the processed structure does not completely recrystallize, and in addition, intermediate rolling.

今後も、コルソン銅合金に高強度かつ高導電に加えて曲げ性も求められること、および一般に強度と曲げ性とは両立が困難であり、信頼性の向上の観点から改善の余地が残されている。 In the future, Corson copper alloys will be required to have high strength and high conductivity as well as bendability, and it is generally difficult to achieve both strength and bendability, leaving room for improvement from the viewpoint of improving reliability. There is.

本発明者が鋭意研究した結果、Cu−Ni−Co−Si合金において、析出物の組成を統一させることができれば、転位が一様になり、曲げ加工時の応力が分散されることになり、曲げ加工性の向上が期待されるという観点から、最適な溶体化処理条件を見出し、本発明を完成した。 As a result of diligent research by the present inventors, in the Cu—Ni—Co—Si alloy, if the compositions of the precipitates can be made uniform, dislocations will be uniform and the stress during bending will be dispersed, From the viewpoint that improvement of bending workability is expected, optimum solution heat treatment conditions have been found, and the present invention has been completed.

すなわち、本発明は、
(1)3.0〜4.5質量%のNi、および0.1〜1.0質量%のCoを含有し、Coに対するNiの濃度(質量%)比(Ni/Co)が3.5〜30になるように調整し、かつ、Siを(Ni+Co)/Si質量比が3〜5となるように含有し、ならびに残部がCuおよび不可避的不純物からなり、少なくとも100個の第二相粒子について測定したCoに対するNiの濃度比(Ni/Co)の変動係数が20%以下である電子部品用Cu−Ni−Co−Si合金。
(2)更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnの群から選ばれる少なくとも1種を総計で最大2.5質量%含有する(1)に記載の合金。
(3)粒径が5〜30nmの第二相粒子の個数の平均が、0.5×109個/mm2以上である、(1)または(2)に記載の合金。
(4)圧延方向に平行な方向での0.2%耐力が900MPa以上であり、かつ、導電率が30%IACS以上である、(1)〜(3)のいずれかに記載の合金。
(5)曲げ半径(R)/板厚(t)=1.0としてBadway(曲げ軸が圧延方向と同一方向)でW曲げ試験したときの曲げ部表面の平均粗さRaが1.0μm以下である、(1)〜(4)のいずれかに記載の合金。
(6)−(1)または(2)に記載の組成をもつ銅合金のインゴットを溶解鋳造する工程1と、
−900℃以上1050℃以下で加熱後に熱間圧延を行って、室温まで急冷する工程2と
−冷間圧延後に1MPa以上10MPa以下の張力を付与した状態で900℃以上1050℃以下で30秒〜10分間加熱する溶体化処理を行い、この溶体化処理の前後で600℃〜700℃の間の温度範囲での昇温速度および冷却速度を50℃/秒以上とする工程3と、
−材料温度を400〜550℃として加熱する時効処理工程4と、
を順に行うことを含む銅合金の製造方法。
(7)(1)〜(5)のいずれかに記載の合金を備えた電子部品。
That is, the present invention is
(1) It contains 3.0 to 4.5% by mass of Ni and 0.1 to 1.0% by mass of Co, and the concentration (% by mass) ratio of Ni to Co (Ni/Co) is 3.5. At least 100 second-phase particles, the content of which is adjusted to be about 30 and which contains Si so that the (Ni+Co)/Si mass ratio is from 3 to 5 and the balance is Cu and inevitable impurities. A Cu-Ni-Co-Si alloy for electronic parts, in which the coefficient of variation of the concentration ratio of Ni to Co (Ni/Co) measured with respect to Co is 20% or less.
(2) Further, at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn is contained at a maximum of 2.5% by mass in total, and the composition is described in (1). alloy.
(3) The alloy according to (1) or (2), wherein the average number of second-phase particles having a particle size of 5 to 30 nm is 0.5×10 9 particles/mm 2 or more.
(4) The alloy according to any one of (1) to (3), which has a 0.2% proof stress in a direction parallel to the rolling direction of 900 MPa or more and an electric conductivity of 30% IACS or more.
(5) When the bending radius (R)/thickness (t)=1.0 and the W-bending test is performed in Badway (the bending axis is in the same direction as the rolling direction), the average roughness Ra of the bent portion surface is 1.0 μm or less. The alloy according to any one of (1) to (4).
(6)-Step 1 of melting and casting an ingot of a copper alloy having the composition according to (1) or (2),
Step 2 of performing hot rolling after heating at −900° C. or more and 1050° C. or less and quenching to room temperature, and −900° C. or more and 1050° C. or less for 30 seconds while applying tension of 1 MPa or more and 10 MPa or less after cold rolling. A step 3 in which a solution treatment is performed by heating for 10 minutes, and a heating rate and a cooling rate in a temperature range between 600° C. and 700° C. before and after the solution treatment are 50° C./second or more;
-Aging treatment step 4 in which the material temperature is heated to 400 to 550°C;
A method for producing a copper alloy, which comprises performing the steps in order.
(7) An electronic component including the alloy according to any one of (1) to (5).

本発明によれば、コルソン銅合金に高強度かつ高導電に加えて、一般に強度の両立が困難である曲げ性も付与された信頼性が向上した電子部品用Cu−Ni−Co−Si合金が提供される。 According to the present invention, in addition to high strength and high conductivity, Corson copper alloy, Cu-Ni-Co-Si alloy for electronic parts with improved reliability, which is also provided with bendability that is generally difficult to balance strength, is provided. Provided.

以下、本発明に係る電子部品用Cu−Ni−Co−Si合金の一実施形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, an embodiment of a Cu-Ni-Co-Si alloy for electronic parts according to the present invention will be described. In the present invention,% means mass% unless otherwise specified.

(1)基材の組成
先ず、合金組成について説明する。本発明の銅合金は、Cu−Ni−Co−Si合金である。なお、本明細書では、Cu−Ni−Co−Siの基本成分にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnなどのその他の合金元素を添加した銅合金も、包括的にCu−Ni−Co−Si合金と称する。
(1) Composition of Base Material First, the alloy composition will be described. The copper alloy of the present invention is a Cu-Ni-Co-Si alloy. In addition, in the present specification, a copper alloy in which other alloying elements such as Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn are added to the basic component of Cu—Ni—Co—Si. Is also collectively referred to as a Cu-Ni-Co-Si alloy.

Niは、後述のCo、Siとともに、Ni−Co−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Ni含有量が小さすぎる場合には、この効果を十分に発揮させるのが困難である。そのため、Ni含有量は、3.0質量%以上にするのが好ましく、3.2質量%以上にするのが更に好ましく、3.4質量%以上にするのが一層好ましい。一方、Ni含有量が大きすぎると、強度向上効果が飽和するうえ、導電率が低下する。また、粗大な析出物が生成し易く、曲げ加工時の割れの原因になる。そのため、Ni含有量は、4.5質量%以下にするのが好ましく、4.1質量%以下にするのが更に好ましい。 Ni has the effect of forming Ni-Co-Si based precipitates together with Co and Si described later, and improving the strength and conductivity of the copper alloy sheet. If the Ni content is too small, it is difficult to sufficiently exert this effect. Therefore, the Ni content is preferably 3.0% by mass or more, more preferably 3.2% by mass or more, and further preferably 3.4% by mass or more. On the other hand, when the Ni content is too large, the strength improving effect is saturated and the conductivity is lowered. In addition, coarse precipitates are easily generated, which causes cracks during bending. Therefore, the Ni content is preferably 4.5% by mass or less, and more preferably 4.1% by mass or less.

Coは、Ni、Siとともに、Ni−Co−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Co含有量が小さすぎる場合には、この効果を十分に発揮させるのが困難である。そのため、Co含有量は、0.1質量%以上にするのが好ましく、0.2質量%以上にするのが更に好ましく、0.3質量%以上にするのが一層好ましい。一方、Coの融点はNiよりも高いので、Co含有量が大きすぎると、完全固溶は困難であり、未固溶の部分は強度に寄与しない。そのため、Co含有量は、1.0質量%以下にするのが好ましく、0.8質量%以下にするのが更に好ましい。 Co forms an Ni-Co-Si based precipitate together with Ni and Si, and has the effect of improving the strength and conductivity of the copper alloy sheet material. If the Co content is too small, it is difficult to exert this effect sufficiently. Therefore, the Co content is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.3% by mass or more. On the other hand, since the melting point of Co is higher than that of Ni, if the Co content is too large, it is difficult to form a complete solid solution, and the undissolved portion does not contribute to the strength. Therefore, the Co content is preferably 1.0% by mass or less, and more preferably 0.8% by mass or less.

また、本発明ではNi−Co−Si系析出物を生成させて銅合金板材の強度と導電性をより高いレベルで向上させる効果を発揮させることを特徴としている。したがって、通常のCo−Si系析出物、およびNi−Si系析出物を生成させる場合とは異なり、個々の析出物の組成においてCoに対するNiの濃度比(Ni/Co)の変動係数をある程度小さくすることが求められる。この観点から、Coに対するNiの濃度比(Ni/Co)の変動係数、すなわち「標準偏差/平均値×100」を20%以下、好ましくは16%以下とする。なお、このNi/Coの変動係数は、析出物である第二相粒子100個以上について測定し、見積もることができる値である。
また、このような析出物中のNi/Co濃度比の変動係数を所定以下とするために、第二相粒子の析出前の合金材料中のNi/Co濃度(質量%)比が3.5〜30、好ましくは5〜15となるように調整しておくとよい。
Further, the present invention is characterized in that Ni-Co-Si based precipitates are generated to exert the effect of improving the strength and conductivity of the copper alloy sheet at a higher level. Therefore, unlike the case of producing a normal Co-Si-based precipitate and a Ni-Si-based precipitate, the coefficient of variation of the concentration ratio of Ni to Co (Ni/Co) is reduced to some extent in the composition of each precipitate. Required to do so. From this viewpoint, the variation coefficient of the concentration ratio of Ni to Co (Ni/Co), that is, “standard deviation/average value×100” is set to 20% or less, preferably 16% or less. The coefficient of variation of Ni/Co is a value that can be measured and estimated for 100 or more second phase particles that are precipitates.
Further, in order to keep the coefficient of variation of the Ni/Co concentration ratio in such a precipitate at a predetermined value or less, the Ni/Co concentration (mass %) ratio in the alloy material before the precipitation of the second phase particles is 3.5. It is good to adjust so as to be -30, preferably 5-15.

Siは、Ni、Coとともに、Ni−Co−Si系析出物を生成する。但し、合金中のNi、CoおよびSiは、時効処理によって全てが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNi、CoおよびSiは、銅合金板材の強度を若干向上させるが、析出状態と比べてその効果は小さく、また、導電率を低下させる要因になる。そのため、Siの含有量は、一般的には、できるだけ析出物(Ni+Co)2Siの組成比に近づけるのが好ましい。すなわち、(Ni+Co)/Si質量比を、約4.2を中心として3〜5に調整するのが一般的であり、Siは(Ni+Co)/Si質量比がこの範囲となるように添加される。 Si produces Ni-Co-Si based precipitates together with Ni and Co. However, Ni, Co, and Si in the alloy do not all become precipitates by the aging treatment, and exist to some extent in a solid solution state in the Cu matrix. Ni, Co, and Si in the solid solution state slightly improve the strength of the copper alloy sheet material, but their effect is smaller than that in the precipitated state, and they also become a factor to lower the conductivity. Therefore, it is generally preferable that the Si content be as close as possible to the composition ratio of the precipitate (Ni+Co) 2 Si. That is, the (Ni+Co)/Si mass ratio is generally adjusted to 3 to 5 with a center of about 4.2, and Si is added so that the (Ni+Co)/Si mass ratio falls within this range. ..

本発明の銅合金板材には、必要に応じて、Fe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnなどを添加してもよい。例えば、SnとMgは耐応力緩和特性の向上効果があり、Znは銅合金板材のはんだ付け性および鋳造性を改善する効果があり、Fe、Cr、Mn、Ti、Zr、Alなどは強度を向上させる作用を有する。そのほかに、Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。ただし、これら添加元素の量が大きすぎると、製造性が大きく損なわれる。そこで、合計で0〜2.5質量%含有することができる。また、強度、導電率、曲げ性のバランスを考慮すると、上記元素の1種以上を総量で0.2〜1.0質量%含有させることが好ましい。なお、添加元素ごとには、耐応力緩和特性、強度、はんだ付け性、鋳造性、熱間加工性の向上などのバランスを考慮して、合計量を超えない範囲で、Znは0.1質量%以上2.0質量%以下含有させることができ、SnおよびCrは0.1質量%以上1.0質量%以下含有させることができ、Fe、MgおよびMnは0.1質量%以上0.5質量%以下含有させることができ、B、P、Zr、TiおよびAlは0.01質量%以上0.3質量%以下含有させることができる。 If necessary, Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, Mn and the like may be added to the copper alloy sheet material of the present invention. For example, Sn and Mg have the effect of improving the stress relaxation resistance property, Zn have the effect of improving the solderability and castability of the copper alloy sheet material, and Fe, Cr, Mn, Ti, Zr, Al, etc. Has the effect of improving. In addition, P has a deoxidizing effect, B has a refining effect of the cast structure, and has an effect of improving hot workability. However, if the amount of these additional elements is too large, the productivity is greatly impaired. Therefore, 0 to 2.5 mass% can be contained in total. Further, considering the balance of strength, conductivity, and bendability, it is preferable to contain one or more of the above elements in a total amount of 0.2 to 1.0 mass %. In addition, in consideration of the balance of stress relaxation resistance, strength, solderability, castability, hot workability, etc., for each additive element, Zn is 0.1 mass in a range not exceeding the total amount. % Or more and 2.0 mass% or less, Sn and Cr can be contained in 0.1 mass% or more and 1.0 mass% or less, and Fe, Mg, and Mn are 0.1 mass% or more and 0.1 mass% or more. 5 mass% or less can be contained, and B, P, Zr, Ti and Al can be contained by 0.01 mass% or more and 0.3 mass% or less.

(2)強度および導電率
本発明の合金は、高強度であり、かつ、高導電率であり、電子部品、特にコネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等に好適である。
ここで、強度を、引張方向が圧延方向と平行になるように、プレス機を用いてJIS 13B号試験片を作製し、JIS−Z2241に従ってこの試験片の引張試験を行なうことで測定した圧延平行方向の0.2%耐力(YS)として評価する。上述した用途の観点から、0.2%耐力は、900MPa以上であることが好ましく、特に950MPa以上である。
また、導電率を、JIS H 0505に準拠し、4端子法にて測定した導電率(EC:%IACS)として評価する。上述した用途の観点から、この導電率は、30%IACS以上であることが好ましく、特に35%IACS以上である。
(2) Strength and Electric Conductivity The alloy of the present invention has high strength and high electric conductivity, and is suitable for electronic parts, particularly connectors, battery terminals, jacks, relays, switches, lead frames and the like.
Here, the strength of rolling was measured by producing a JIS 13B test piece using a press so that the tensile direction was parallel to the rolling direction and performing a tensile test on this test piece in accordance with JIS-Z2241. Direction 0.2% proof stress (YS). From the viewpoint of the above-mentioned application, the 0.2% proof stress is preferably 900 MPa or more, and particularly 950 MPa or more.
Further, the electrical conductivity is evaluated as the electrical conductivity (EC:%IACS) measured by the four-terminal method according to JIS H 0505. From the viewpoint of the above-mentioned use, this conductivity is preferably 30% IACS or more, and particularly 35% IACS or more.

(3)曲げ性表面粗さ
本発明においては、曲げ性を、W曲げ試験したときの曲げ部表面の平均粗さRaとして評価する。
すなわち、曲げ半径(R)/板厚(t)=1.0としてBadway(曲げ軸が圧延方向と同一方向)でW曲げ試験したときの曲げ部表面の平均粗さRaが、小さいほど曲げ加工時の応力が分散され、曲げ加工性の向上が期待される。この観点から、この曲げ部表面の平均粗さRaは1.0μm以下であることが好ましい。
(4)析出物の個数濃度
本発明においては、析出物を制御することにより強度、導電率および曲げ性の改善を課題としている。そこで、その析出物の個数を評価することが好ましい。すなわち、析出物の個数濃度を、粒径が5〜30nmの第二相粒子の個数をカウントし、観察面積で除し、個数濃度(×109個/mm2)を算出し、同様に20視野(各視野1μm×1μm)について算出して、その平均値として評価する。
具体的には、圧延方向に平行な断面を集束イオンビーム(FIB)にて切断することで断面を露出させた後、走査型透過電子顕微鏡(日本電子株式会社 型式:JEM−2100F)を用いて測定される析出物の個数濃度を求める。この析出物の個数濃度は、十分な強度(0.2%耐力)の確保の観点から、0.5×109個/mm2以上であることが好ましく、さらに1.5×109個/mm2以上であることが好ましい。
ここで、第二相粒子とは、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言い、通常はCo−Si系、またはNi−Si系の組成をもつが、本発明の場合Ni−Co−Si系の組成をもつことが典型的である。第二相粒子の大きさは、電子顕微鏡による観察で圧延方向に平行な断面を組織観察したとき、析出物に包囲されることのできる最大円の直径として定義される。
(3) Bendability Surface Roughness In the present invention, bendability is evaluated as the average roughness Ra of the bent portion surface when a W bending test is performed.
That is, when the bending radius (R)/plate thickness (t)=1.0 and the W-bending test is performed in Badway (the bending axis is the same direction as the rolling direction), the smaller the average roughness Ra of the bent portion surface is, the smaller the bending work is. The stress at the time is dispersed, and improvement of bending workability is expected. From this viewpoint, the average roughness Ra of the bent portion surface is preferably 1.0 μm or less.
(4) Number Concentration of Precipitates In the present invention, it is an object to improve the strength, conductivity and bendability by controlling the precipitates. Therefore, it is preferable to evaluate the number of the precipitates. That is, the number concentration of precipitates is counted by counting the number of second-phase particles having a particle size of 5 to 30 nm, divided by the observation area, and the number concentration (×10 9 particles/mm 2 ) is calculated. The visual field (each visual field 1 μm×1 μm) is calculated and evaluated as an average value.
Specifically, a cross section parallel to the rolling direction is cut by a focused ion beam (FIB) to expose the cross section, and then a scanning transmission electron microscope (JEOL Model: JEM-2100F) is used. Determine the number concentration of the precipitate to be measured. The number concentration of the precipitates is preferably 0.5×10 9 pieces/mm 2 or more, and more preferably 1.5×10 9 pieces/mm 2 from the viewpoint of ensuring sufficient strength (0.2% proof stress). It is preferably at least mm 2 .
Here, the second phase particles, the crystallized product generated in the solidification process of melt casting and the precipitate generated in the subsequent cooling process, the precipitate generated in the cooling process after hot rolling, in the cooling process after the solution treatment. It refers to a precipitate formed and a precipitate formed in an aging treatment process, and usually has a Co—Si system or Ni—Si system composition, but in the case of the present invention, it has a Ni—Co—Si system composition. Is typical. The size of the second phase particles is defined as the diameter of the largest circle that can be surrounded by the precipitate when the cross section parallel to the rolling direction is microscopically observed with an electron microscope.

(5)用途
本発明に係るCu−Ni−Co−Si合金は、種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明の銅合金は、限定的ではないが、コネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等の電子部品材料として好適である。
(5) Applications The Cu-Ni-Co-Si alloy according to the present invention can be processed into various copper products such as plates, strips, tubes, rods and wires. The copper alloy of the present invention is suitable as, but not limited to, a material for electronic parts such as connectors, battery terminals, jacks, relays, switches and lead frames.

(6)製造方法
本発明の実施形態に係る電子部品用Cu−Ni−Co−Si合金は、インゴットの溶解鋳造(工程1)−均質焼鈍、熱間圧延、急冷(工程2)−冷間圧延、溶体化処理(工程3)−時効処理(工程4)を経て製造される。
(6) Manufacturing method The Cu-Ni-Co-Si alloy for electronic parts according to the embodiment of the present invention is melt cast of ingot (step 1)-homogeneous annealing, hot rolling, quenching (step 2)-cold rolling. , Solution treatment (step 3)-aging treatment (step 4).

<インゴット製造>
大気溶解炉を用い、電気銅、Ni、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。Ni、Co、Si以外の添加元素はFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、Al及びMnからなる群から1種または2種以上を合計で0〜2.5質量%含有するように添加する。
<Ingot manufacturing>
Using an air melting furnace, raw materials such as electrolytic copper, Ni, Co and Si are melted to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. The additive elements other than Ni, Co, and Si are 0 to 2.5 mass in total of 1 or 2 or more selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn. % To be added.

<均質化焼鈍及び熱間圧延>
インゴット製造時に生じる凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これらは曲げ加工性に悪影響を与え、母相に固溶させることにより曲げ割れの防止に効果があるからである。
具体的には、インゴット製造工程後には、900〜1050℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施する。元厚から全体の圧下率が90%までのパスは700℃以上とするのが好ましい。その後、水冷にて室温まで急速に冷却させる。
<Homogenized annealing and hot rolling>
Since solidification segregation and crystallized substances produced during the production of ingots are coarse, it is desirable to make them as small as possible by forming a solid solution in the mother phase by homogenizing annealing to reduce them. This is because these have an adverse effect on bending workability and are effective in preventing bending cracks by forming a solid solution in the matrix phase.
Specifically, after the ingot manufacturing step, hot rolling is performed after heating to 900 to 1050° C. and homogenizing annealing for 3 to 24 hours. The pass from the original thickness to the overall reduction rate of 90% is preferably 700° C. or higher. Then, it is rapidly cooled to room temperature with water.

<冷間圧延および溶体化処理>
その後、加工度(圧下率)50%以上、好ましくは70%以上の条件にて冷間圧延を行った後に、溶体化処理を行う。具体的には、900〜1050℃に加熱して30秒〜10分加熱する。溶体化処理ではNi、Co、Siをはじめとする添加元素を固溶させることを目的としている。そのため、加熱温度や加熱時間に加えて、昇温速度及び冷却速度も制御することが肝要である。溶体化処理前の昇温時において、Coを含有する第二相粒子の析出に影響する600〜700℃の昇温速度は50℃/秒以上に制御する。一方、溶体化処理の後の同温度範囲における冷却速度も50℃/秒以上に制御する。その他の温度領域についても昇温速度及び冷却速度は極力速くすることが好ましい。また、このとき材料に付与する張力を1MPa以上10MPa以下に調整することで、第二相粒子の析出をより都合よく制御することが可能になり、析出物中のNi/Co濃度比の変動係数を20%以下とし、粒径5〜30nmの析出物の個数濃度を十分に確保でき、十分な強度を付与することを可能にする。
<Cold rolling and solution treatment>
After that, cold rolling is performed under the condition that the workability (reduction rate) is 50% or more, preferably 70% or more, and then the solution treatment is performed. Specifically, it is heated to 900 to 1050° C. and heated for 30 seconds to 10 minutes. The solution treatment is intended to form a solid solution of additional elements such as Ni, Co and Si. Therefore, it is important to control the heating rate and the cooling rate in addition to the heating temperature and the heating time. During the temperature rise before the solution treatment, the temperature rise rate of 600 to 700° C., which influences the precipitation of Co-containing second phase particles, is controlled to 50° C./sec or more. On the other hand, the cooling rate in the same temperature range after the solution treatment is also controlled to 50° C./sec or more. Also in other temperature regions, it is preferable that the temperature rising rate and the cooling rate be as high as possible. Further, by adjusting the tension applied to the material at this time to 1 MPa or more and 10 MPa or less, the precipitation of the second phase particles can be controlled more conveniently, and the coefficient of variation of the Ni/Co concentration ratio in the precipitate can be controlled. Of 20% or less, a sufficient number concentration of precipitates having a particle size of 5 to 30 nm can be secured, and sufficient strength can be imparted.

このように、溶体化処理中の600〜700℃における昇温及び冷却速度を速くすることでCo−Si系化合物の析出が抑制され、結果としてNi−Co−Si系化合物の析出物が生成されたものと考えられる。また溶体化処理中の材料の張力を従来の20MPa程度よりも低くすることで高強度化した。このメカニズムは不明であるが、前工程にて冷間圧延を行った場合に導入された歪がこの昇温速度の制御により一様に解放されることで、その後の時効処理によって高強度化したのではないかと考えられる。 As described above, the precipitation of the Co—Si compound is suppressed by increasing the temperature rising and cooling rates at 600 to 700° C. during the solution treatment, and as a result, the precipitate of the Ni—Co—Si compound is generated. It is believed that Further, the strength of the material during the solution heat treatment was increased by lowering the tension of the material from the conventional level of about 20 MPa. Although this mechanism is unknown, the strain introduced during cold rolling in the previous step was uniformly released by controlling the temperature rising rate, and the strength was increased by the subsequent aging treatment. It is thought that it is.

<時効処理>
溶体化処理に引き続いて時効処理を行う。材料温度400〜550℃で5〜25時間加熱することが好ましく、材料温度420〜500℃で10〜20時間加熱することがより好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging treatment>
An aging treatment is performed subsequent to the solution treatment. It is preferable to heat at a material temperature of 400 to 550° C. for 5 to 25 hours, and it is more preferable to heat at a material temperature of 420 to 500° C. for 10 to 20 hours. The aging treatment is preferably performed in an inert atmosphere of Ar, N 2 , H 2 or the like in order to suppress the generation of an oxide film.

<最終の冷間圧延>
時効処理に引き続いて最終の冷間圧延を行う。最終の冷間加工によって強度を高めることができるが、本発明において意図されるような高強度および曲げ加工性の良好なバランスを得るためには圧下率を15〜45%、好ましくは20〜40%とすることが望ましい。
<Final cold rolling>
After the aging treatment, the final cold rolling is performed. The final cold working can increase the strength, but in order to obtain a good balance of high strength and bendability as intended in the present invention, the reduction ratio is 15 to 45%, preferably 20 to 40. It is desirable to set it as %.

<歪取焼鈍>
最終の冷間圧延に引き続いて、歪取焼鈍を行う。材料温度350〜650℃で1〜3600秒間加熱することが好ましく、材料温度350〜450℃で1500〜3600秒、材料温度450〜550℃で500〜1500秒、材料温度550〜650℃で1〜500秒間加熱することがより好ましい。
<Strain relief annealing>
Following the final cold rolling, strain relief annealing is performed. It is preferable to heat at a material temperature of 350 to 650° C. for 1 to 3600 seconds, a material temperature of 350 to 450° C. for 1500 to 3600 seconds, a material temperature of 450 to 550° C. for 500 to 1500 seconds, and a material temperature of 550 to 650° C. for 1 to 3. It is more preferable to heat for 500 seconds.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。 It will be understood by those skilled in the art that steps such as grinding, polishing and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の実施例(発明例)を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Hereinafter, examples of the present invention (examples of the invention) will be shown together with comparative examples, but these are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention. ..

表1に記載の各添加元素を含有し、残部が銅及び不純物からなる銅合金を、高周波溶解炉にて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で3時間加熱後、板厚10mmまで熱間圧延し、熱間圧延終了後は速やかに冷却した。次いで、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延により厚さ0.120〜0.175mmの板とした。次に950℃で溶体化処理を120秒行った。このときの600〜700℃の温度範囲における昇温速度及び冷却速度、張力は表1の通りである。その後、表1の条件で時効処理、冷間圧延を加え、板厚0.1mmとした。最後に、材料温度400℃で2000秒間の歪取り焼鈍を加えた。 A copper alloy containing each additive element shown in Table 1 and the balance of copper and impurities was melted at 1300° C. in a high frequency melting furnace and cast into an ingot having a thickness of 30 mm. Next, this ingot was heated at 1000° C. for 3 hours, then hot-rolled to a plate thickness of 10 mm, and immediately cooled after completion of hot-rolling. Then, after removing the scale on the surface, chamfering was performed to a thickness of 9 mm, and then cold rolling was performed to obtain a plate having a thickness of 0.120 to 0.175 mm. Next, solution treatment was performed at 950° C. for 120 seconds. Table 1 shows the heating rate, cooling rate, and tension in the temperature range of 600 to 700° C. at this time. After that, aging treatment and cold rolling were added under the conditions of Table 1 to obtain a plate thickness of 0.1 mm. Finally, strain relief annealing was performed at a material temperature of 400° C. for 2000 seconds.

Figure 0006730784
Figure 0006730784

作製した製品試料について、次の評価を行った。評価の結果を表2に示す。
(1)0.2%耐力
引張方向が圧延方向と平行になるように、プレス機を用いてJIS 13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
The following evaluation was performed about the produced product sample. The results of evaluation are shown in Table 2.
(1) 0.2% proof stress A JIS 13B test piece was produced using a pressing machine so that the tensile direction was parallel to the rolling direction. The tensile test of this test piece was performed according to JIS-Z2241, and the 0.2% proof stress (YS) in the rolling parallel direction was measured.

(2)導電率
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
(2) Conductivity Based on JIS H 0505, the conductivity (EC:%IACS) was measured by the 4-terminal method.

(3)曲げ部の表面粗さ
JIS−H3130(2012)に従いW曲げ試験をBadway(曲げ軸が圧延方向と同一方向)、r/t=1.0(t=0.1mm)で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS−B0601:2013に準拠)を測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できず、平均粗さRaはいずれも0.2μm以下であった。
曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
(3) Surface Roughness of Bent Section According to JIS-H3130 (2012), a W bending test is performed with Badway (the bending axis is the same direction as the rolling direction) and r/t=1.0 (t=0.1 mm), The outer peripheral surface of the bent portion of this test piece was observed. As for the observation method, the outer peripheral surface of the bent portion was photographed using a confocal microscope HD100 manufactured by Lasertec Co., and the average roughness Ra (based on JIS-B0601:2013) was measured using the attached software for comparison. When the surface of the sample before bending was observed with a confocal microscope, no unevenness was confirmed, and the average roughness Ra was 0.2 μm or less in all cases.
The case where the surface average roughness Ra after bending was 1.0 μm or less was evaluated as ◯, and the case where Ra exceeded 1.0 μm was evaluated as x.

(4)粒径5〜30nmの析出物の個数濃度
圧延方向に平行な断面を集束イオンビーム(FIB)にて切断することで断面を露出させた後、走査型透過電子顕微鏡(日本電子株式会社、型式:JEM−2100F)を用いて析出物の個数濃度を測定した。
具体的には、加速電圧200kV、観察倍率100万倍とし、粒径が5〜30nmの第二相粒子の個数をカウントし、観察面積で除し、個数濃度(×109個/mm2)を算出した。同様に20視野について測定を行い、その平均値を個数濃度とした。
(4) Number concentration of precipitates having a grain size of 5 to 30 nm After a cross section parallel to the rolling direction is cut by a focused ion beam (FIB) to expose the cross section, a scanning transmission electron microscope (JEOL Ltd.) , Model: JEM-2100F) was used to measure the number concentration of precipitates.
Specifically, the acceleration voltage is 200 kV, the observation magnification is 1,000,000 times, the number of the second phase particles having a particle size of 5 to 30 nm is counted, and divided by the observation area to obtain the number concentration (×10 9 particles/mm 2 ). Was calculated. Similarly, 20 fields of view were measured, and the average value was used as the number density.

(5)析出物中のNi/Co濃度比の変動係数
STEMの検出器としてエネルギー分散型X線分析計(EDX、日本電子社製、型式:JED−2300)を用いて析出物のNi/Co比を測定した。加速電圧及び観察倍率は上記条件と同様とし、電子線のスポット径は0.2nmとした。100個以上の第二相粒子についてNi/Co比をそれぞれ測定した。その後、平均値および標準偏差を算出し、変動係数(標準偏差/平均値×100)を求めた。
(5) Coefficient of Variation of Ni/Co Concentration Ratio in Precipitate Ni/Co of precipitate using an energy dispersive X-ray analyzer (EDX, manufactured by JEOL Ltd., model: JED-2300) as a detector of STEM. The ratio was measured. The acceleration voltage and the observation magnification were the same as the above conditions, and the electron beam spot diameter was 0.2 nm. The Ni/Co ratio was measured for 100 or more second phase particles. After that, the average value and the standard deviation were calculated to obtain the coefficient of variation (standard deviation/average value×100).

Figure 0006730784
Figure 0006730784

発明例1〜24は、いずれも0.2%耐力が900MPa以上であり、導電率が30%IACS以上であり、曲げ部の表面粗さが1.0μm以下と良好であり、析出物中のNi/Co濃度比の変動係数も20%以下とバランスがよかった。これらの銅合金材料は、高強度、高導電率、高い曲げ加工性のバランスに優れたものであるといえる。 In each of Inventive Examples 1 to 24, the 0.2% proof stress is 900 MPa or more, the electrical conductivity is 30% IACS or more, the surface roughness of the bent portion is 1.0 μm or less, which is good, and The coefficient of variation of the Ni/Co concentration ratio was 20% or less, which was well balanced. It can be said that these copper alloy materials have an excellent balance of high strength, high conductivity, and high bending workability.

比較例1〜18は、それぞれ第二相粒子の析出を十分に制御できなかったと考えられる具体例である。
比較例1は、溶体化処理時の昇温速度が50℃/sよりも小さく、また、比較例2は、溶体化処理時の冷却速度が50℃/sより小さい具体例である。比較例1、2はいずれも、析出物中のNi/Co濃度比の変動係数が20%以上となり、十分な曲げ加工性を発揮させることが難しいことが分かった。
Comparative Examples 1 to 18 are specific examples in which the precipitation of the second phase particles could not be sufficiently controlled.
Comparative Example 1 is a specific example in which the temperature rising rate during solution treatment is lower than 50° C./s, and Comparative Example 2 is a specific example in which the cooling rate during solution treatment is lower than 50° C./s. In each of Comparative Examples 1 and 2, it was found that the coefficient of variation of the Ni/Co concentration ratio in the precipitate was 20% or more, and it was difficult to exhibit sufficient bendability.

比較例3、4は、溶体化処理時に合金材料に付与する張力が小さすぎる具体例(比較例3)および大きすぎる具体例(比較例4)である。その結果、強度に寄与すると考えられる粒径5〜30nmの析出物の個数濃度において十分な量を確保できず、また析出物中のNi/Co濃度比の変動係数も20%以上となり、十分な強度を発揮させることが難しいことが分かった。 Comparative Examples 3 and 4 are a specific example (Comparative Example 3) and a specific example (Comparative Example 4) in which the tension applied to the alloy material during the solution treatment is too low and too high, respectively. As a result, a sufficient amount cannot be secured in the number concentration of the precipitates having a grain size of 5 to 30 nm, which is considered to contribute to the strength, and the variation coefficient of the Ni/Co concentration ratio in the precipitate is 20% or more, which is sufficient. It turns out that it is difficult to exert strength.

比較例5、6は、溶体化処理後の時効処理における加熱条件が、400〜550℃から外れる具体例である。その結果、強度に寄与すると考えられる粒径5〜30nmの析出物の個数濃度において十分な量を確保できず、十分な強度を発揮させることが難しく、さらに時効処理の温度が低すぎると十分な導電率を発揮させることも難しいことが分かった。 Comparative Examples 5 and 6 are specific examples in which the heating condition in the aging treatment after the solution treatment deviates from 400 to 550°C. As a result, a sufficient amount cannot be secured in the number concentration of the precipitates having a particle size of 5 to 30 nm that is considered to contribute to the strength, it is difficult to exert sufficient strength, and it is sufficient if the temperature of the aging treatment is too low. It has been found that it is also difficult to exert the conductivity.

比較例7は、銅合金の成分中のNi含有量が3.0質量%よりも小さい具体例である。Ni含有量が小さいと、十分な強度を発揮させることが難しいことが分かった。
比較例8は、銅合金の成分中のNi含有量が4.5質量%を超える具体例である。Ni含有量が大きいと、熱間圧延時に割れが生じてしまい、製品が得られなかった。
Comparative Example 7 is a specific example in which the Ni content in the components of the copper alloy is smaller than 3.0% by mass. It has been found that when the Ni content is small, it is difficult to exert sufficient strength.
Comparative Example 8 is a specific example in which the Ni content in the components of the copper alloy exceeds 4.5 mass %. If the Ni content was high, cracks occurred during hot rolling, and a product could not be obtained.

比較例9は、銅合金にCoが含有されない具体例であり、比較例10は、銅合金の成分中のCo含有量が1.0質量%を超える具体例である。Co含有量が適正な範囲にないと、十分な曲げ加工性を発揮させることが難しいことが分かった。 Comparative Example 9 is a specific example in which Co is not contained in the copper alloy, and Comparative Example 10 is a specific example in which the Co content in the components of the copper alloy exceeds 1.0 mass %. It has been found that it is difficult to exert sufficient bending workability if the Co content is not within the proper range.

比較例11、12は、銅合金中の(Ni+Co)/Si質量比が大きすぎる具体例(比較例11)、および小さすぎる具体例(比較例12)である。(Ni+Co)/Si質量比が適正な範囲にないと、粒径5〜30nmの析出物の個数濃度が十分なものとならず、強度および導電率の両方の面から劣るという結果となった。 Comparative Examples 11 and 12 are a specific example in which the (Ni+Co)/Si mass ratio in the copper alloy is too large (Comparative Example 11) and an excessively small specific example (Comparative Example 12). If the (Ni+Co)/Si mass ratio is not within the proper range, the number concentration of precipitates having a particle size of 5 to 30 nm will not be sufficient, resulting in poor strength and conductivity.

比較例13、14は、銅合金中の第二相粒子の析出前のNi/Co濃度比が小さすぎる具体例(比較例13)、および大きすぎる具体例(比較例14)である。比較例13、14はいずれも、析出物中のNi/Co濃度比の変動係数が20%以上となり、十分な曲げ加工性を発揮させることが難しいことが分かった。 Comparative Examples 13 and 14 are a specific example in which the Ni/Co concentration ratio before the precipitation of the second phase particles in the copper alloy is too small (Comparative Example 13) and an excessively large specific example (Comparative Example 14). In Comparative Examples 13 and 14, it was found that the coefficient of variation of the Ni/Co concentration ratio in the precipitate was 20% or more, and it was difficult to exhibit sufficient bendability.

比較例15は、Ni、Co、Si以外の第三の添加元素の総量が2.5を超える具体例である。第三の添加元素が多すぎると、析出物中のNi/Co濃度比の変動係数が20%以上となり、曲げ加工性および導電率において劣るという結果となった。 Comparative Example 15 is a specific example in which the total amount of the third additional elements other than Ni, Co, and Si exceeds 2.5. When the amount of the third additive element is too large, the variation coefficient of the Ni/Co concentration ratio in the precipitate is 20% or more, resulting in inferior bending workability and conductivity.

比較例16〜18は、溶体化処理時に合金材料に付与する張力が大きい具体例である。
比較例18は、特許文献3の態様を代表する具体例である。析出物中のNi/Co濃度比の変動係数が20%以上となり、かつ、粒径5〜30nmの析出物の個数濃度も小さく、十分な強度を発揮させることが難しいことが分かった。
比較例17は、さらに溶体化処理時の冷却速度を50℃/sより小さくし、特許文献2の態様を代表する具体例である。析出物中のNi/Co濃度比の変動係数が20%以上となり、十分な曲げ加工性を発揮させることが難しいことが分かった。
比較例16は、さらに溶体化処理時の冷却速度を50℃/sより小さくし、かつ、溶体化処理後の時効処理を所定の範囲よりも低い温度条件で行った、特許文献1の態様を代表する具体例である。この場合においても、析出物中のNi/Co濃度比の変動係数が20%以上となり、十分な曲げ加工性を発揮させることが難しいことが分かった。
Comparative Examples 16 to 18 are specific examples in which the tension applied to the alloy material during the solution treatment is large.
Comparative Example 18 is a specific example representing the aspect of Patent Document 3. It was found that the coefficient of variation of the Ni/Co concentration ratio in the precipitate was 20% or more and the number concentration of the precipitates having a particle size of 5 to 30 nm was small, so that it was difficult to exert sufficient strength.
Comparative Example 17 is a specific example that represents the aspect of Patent Document 2 in which the cooling rate during solution treatment is further set to less than 50° C./s. It was found that the coefficient of variation of the Ni/Co concentration ratio in the precipitate was 20% or more, and it was difficult to exhibit sufficient bendability.
In Comparative Example 16, the cooling rate during the solution heat treatment was further reduced to less than 50° C./s, and the aging treatment after the solution heat treatment was performed under a temperature condition lower than a predetermined range. This is a typical example. Also in this case, it was found that the coefficient of variation of the Ni/Co concentration ratio in the precipitate was 20% or more, and it was difficult to exhibit sufficient bendability.

Claims (6)

3.0〜4.5質量%のNi、および0.1〜1.0質量%のCoを含有し、Coに対するNiの濃度(質量%)比(Ni/Co)が3.5〜30になるように調整し、かつ、Siを(Ni+Co)/Si質量比が3〜5となるように含有し、ならびに残部がCuおよび不可避的不純物からなり、粒径が5〜30nmの第二相粒子の個数の平均が、0.5×10 9 個/mm 2 以上であり、少なくとも100個の第二相粒子について測定したCoに対するNiの濃度比(Ni/Co)の変動係数が20%以下である電子部品用Cu−Ni−Co−Si合金。 It contains Ni of 3.0 to 4.5 mass% and Co of 0.1 to 1.0 mass %, and the ratio of Ni to Co (mass %) (Ni/Co) is 3.5 to 30. The second phase particles having a particle size of 5 to 30 nm, which is adjusted so as to contain Si so that the (Ni+Co)/Si mass ratio is 3 to 5, and the balance is Cu and inevitable impurities. Is 0.5×10 9 particles /mm 2 or more, and the coefficient of variation of the concentration ratio of Ni to Co (Ni/Co) measured for at least 100 second-phase particles is 20% or less. A Cu-Ni-Co-Si alloy for electronic components. 更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnの群から選ばれる少なくとも1種を総計で最大2.5質量%含有する請求項1に記載の合金。 The alloy according to claim 1, further containing at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn at a maximum of 2.5 mass% in total. 圧延方向に平行な方向での0.2%耐力が900MPa以上であり、かつ、導電率が30%IACS以上である、請求項1又は2に記載の合金。 The alloy according to claim 1 or 2 , which has a 0.2% proof stress in a direction parallel to the rolling direction of 900 MPa or more and an electric conductivity of 30% IACS or more. 曲げ半径(R)/板厚(t)=1.0としてBadway(曲げ軸が圧延方向と同一方向)でW曲げ試験したときの曲げ部表面の平均粗さRaが1.0μm以下である、請求項1〜のいずれか一項に記載の合金。 When the bending radius (R)/plate thickness (t)=1.0 and the W-bending test is performed in Badway (the bending axis is in the same direction as the rolling direction), the average roughness Ra of the bent portion surface is 1.0 μm or less. An alloy as claimed in any one of claims 1-3. −請求項1または2に記載の組成をもつ銅合金のインゴットを溶解鋳造する工程1と、
−900℃以上1050℃以下で加熱後に熱間圧延を行って、室温まで急冷する工程2と
−冷間圧延後に1MPa以上10MPa以下の張力を付与した状態で900℃以上1050℃以下で30秒〜10分間加熱する溶体化処理を行い、この溶体化処理の前後で600℃〜700℃の間の温度範囲での昇温速度および冷却速度を50℃/秒以上とする工程3と、
−材料温度を400〜550℃として加熱する時効処理工程4と、
を順に行うことを含み、
これにより、前記銅合金において、粒径が5〜30nmの第二相粒子の個数の平均が、0.5×10 9 個/mm 2 以上であり、少なくとも100個の第二相粒子について測定したCoに対するNiの濃度比(Ni/Co)の変動係数が20%以下である銅合金の製造方法。
-Step 1 of melting and casting an ingot of a copper alloy having the composition according to claim 1 or 2;
Step 2 of performing hot rolling after heating at −900° C. or more and 1050° C. or less and quenching to room temperature, and −900° C. or more and 1050° C. or less for 30 seconds while applying tension of 1 MPa or more and 10 MPa or less after cold rolling. A step 3 of performing a solution heat treatment for heating for 10 minutes, and setting a heating rate and a cooling rate in a temperature range between 600° C. and 700° C. to 50° C./second or more before and after the solution heat treatment;
-Aging treatment step 4 in which the material temperature is heated to 400 to 550°C;
Look including to carry out the order,
Thereby, in the copper alloy, the average number of the second phase particles having a particle size of 5 to 30 nm was 0.5×10 9 particles /mm 2 or more, and at least 100 second phase particles were measured. A method for producing a copper alloy, wherein the coefficient of variation of the concentration ratio of Ni to Co (Ni/Co) is 20% or less .
請求項1〜のいずれか一項に記載の合金を備えた電子部品。 Electronic component having an alloy according to any one of claims 1-4.
JP2015056782A 2015-03-19 2015-03-19 Cu-Ni-Co-Si alloy for electronic parts Active JP6730784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056782A JP6730784B2 (en) 2015-03-19 2015-03-19 Cu-Ni-Co-Si alloy for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056782A JP6730784B2 (en) 2015-03-19 2015-03-19 Cu-Ni-Co-Si alloy for electronic parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019120110A Division JP2019194361A (en) 2019-06-27 2019-06-27 ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY

Publications (2)

Publication Number Publication Date
JP2016176105A JP2016176105A (en) 2016-10-06
JP6730784B2 true JP6730784B2 (en) 2020-07-29

Family

ID=57069731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056782A Active JP6730784B2 (en) 2015-03-19 2015-03-19 Cu-Ni-Co-Si alloy for electronic parts

Country Status (1)

Country Link
JP (1) JP6730784B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246173B2 (en) * 2015-10-05 2017-12-13 Jx金属株式会社 Cu-Co-Ni-Si alloy for electronic parts
JP6522677B2 (en) * 2017-03-07 2019-05-29 Jx金属株式会社 Cu-Ni-Co-Si alloy for electronic parts
US20220316029A1 (en) * 2021-03-31 2022-10-06 Ngk Insulators, Ltd. Copper alloy and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672241B2 (en) * 1993-01-19 1997-11-05 株式会社神戸製鋼所 Method for producing copper alloy material excellent in strength and bendability
EP2194151B1 (en) * 2007-09-28 2014-08-13 JX Nippon Mining & Metals Corporation Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP4440313B2 (en) * 2008-03-31 2010-03-24 日鉱金属株式会社 Cu-Ni-Si-Co-Cr alloy for electronic materials
JP5578827B2 (en) * 2009-10-13 2014-08-27 Dowaメタルテック株式会社 High-strength copper alloy sheet and manufacturing method thereof
JP6039999B2 (en) * 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy sheet and method for producing the same

Also Published As

Publication number Publication date
JP2016176105A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JPWO2011036804A1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP2012193408A (en) Cu-Ni-Si ALLOY HAVING EXCELLENT BENDABILITY
JP2012046774A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP5638357B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP2011046970A (en) Copper alloy material and method for producing the same
JP6310004B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP2019194361A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6522677B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R151 Written notification of patent or utility model registration

Ref document number: 6730784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250