JP6830135B2 - Cu-Ni-Co-Si alloy for electronic components - Google Patents

Cu-Ni-Co-Si alloy for electronic components Download PDF

Info

Publication number
JP6830135B2
JP6830135B2 JP2019144869A JP2019144869A JP6830135B2 JP 6830135 B2 JP6830135 B2 JP 6830135B2 JP 2019144869 A JP2019144869 A JP 2019144869A JP 2019144869 A JP2019144869 A JP 2019144869A JP 6830135 B2 JP6830135 B2 JP 6830135B2
Authority
JP
Japan
Prior art keywords
mass
alloy
bending
conductivity
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019144869A
Other languages
Japanese (ja)
Other versions
JP2019203202A (en
Inventor
弘泰 堀江
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019144869A priority Critical patent/JP6830135B2/en
Publication of JP2019203202A publication Critical patent/JP2019203202A/en
Application granted granted Critical
Publication of JP6830135B2 publication Critical patent/JP6830135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子部品、特にコネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等に好適な電子部品用Cu−Ni−Co−Si合金に関する。 The present invention relates to Cu-Ni-Co-Si alloys for electronic components suitable for electronic components, particularly connectors, battery terminals, jacks, relays, switches, lead frames and the like.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、電気伝導性および熱伝導性に優れるリン青銅、丹銅、黄銅等の銅系材料も広く用いられている。近年、電気・電子機器の小型化、軽量化、高機能化、さらにこれに伴う高密度実装化に対する要求が高まり、これらに適用される銅系材料にも種々の特性が求められている。 Conventionally, as materials for electrical and electronic devices, copper-based materials such as phosphor bronze, tan copper, and brass, which are excellent in electrical conductivity and thermal conductivity, are widely used in addition to iron-based materials. In recent years, there has been an increasing demand for miniaturization, weight reduction, high functionality, and high-density mounting of electrical and electronic equipment, and various characteristics are required for copper-based materials applied to these.

部品の小型化に伴って材料の薄肉化が進行しており、材料強度の向上が求められている。リレーなどの用途では疲労特性の要求が高まっており、強度の向上が必要である。また、部品の小型化に伴って、曲げ加工される場合の条件が厳しくなっており、高い強度を持ちながら、なおかつ、曲げ加工性に優れていることが要求されている。 With the miniaturization of parts, the thickness of materials is becoming thinner, and improvement of material strength is required. In applications such as relays, the demand for fatigue characteristics is increasing, and it is necessary to improve the strength. Further, with the miniaturization of parts, the conditions for bending are becoming stricter, and it is required to have high strength and excellent bending workability.

特許文献1では、特に0.2%耐力が980MPa以上、あるいは1000MPa以上という非常に高い強度を有し、かつ導電率30%IACS以上、より好ましくは34%以上を有し、耐応力緩和特性およびプレス加工性も良好であるCu−Ni−Co−Si系銅合金板材が提案されている。特許文献1によれば、この銅合金板材は、鋳片を高温で加熱保持する熱処理1、熱間圧延、冷間圧延、固溶化熱処理と、時効時にCo−Si系化合物の析出を促すための前処理的な熱処理とを含む熱履歴を付与する熱処理2、および低温域で行う時効処理を経て製造される。 In Patent Document 1, in particular, it has a very high strength of 0.2% proof stress of 980 MPa or more or 1000 MPa or more, and has a conductivity of 30% IACS or more, more preferably 34% or more, and has stress relaxation resistance and stress relaxation characteristics. A Cu-Ni-Co-Si-based copper alloy plate material having good press workability has been proposed. According to Patent Document 1, this copper alloy plate material is used for heat treatment 1, hot rolling, cold rolling, solidification heat treatment for heating and holding slabs at a high temperature, and for promoting precipitation of Co—Si compounds during aging. It is manufactured through heat treatment 2 that imparts a heat history including pretreatment heat treatment, and aging treatment that is performed in a low temperature range.

特開2014−156623号公報Japanese Unexamined Patent Publication No. 2014-156623 特開2011−231393号公報Japanese Unexamined Patent Publication No. 2011-231393 特開2009−007666号公報JP-A-2009-007666

ところで、特許文献1に記載によれば、Cu−Ni−Co−Si合金において、時効温度によってNi−Si系化合物、Co−Si系化合物の二種類の化合物による析出物が形成される旨記載されており、組成が異なると析出物が転位に与える影響が異なることが推定される。すなわち析出物の組成によって導入される転位量が異なると考えられる。転位が不均一になることで曲げ加工時の応力が集中し、曲げ加工性が損なわれている可能性がある。 By the way, according to Patent Document 1, it is described that in a Cu—Ni—Co—Si alloy, precipitates of two kinds of compounds, a Ni—Si compound and a Co—Si compound, are formed depending on the aging temperature. It is presumed that different compositions have different effects of precipitates on dislocations. That is, it is considered that the amount of dislocations introduced differs depending on the composition of the precipitate. Due to the non-uniform dislocation, stress during bending is concentrated, and bending workability may be impaired.

そこで、例えば特許文献2では、異方性の少ない{100}方位(Cube方位)とする結晶粒の割合を増大させることによって、曲げ加工性を向上できると同時に、曲げ加工性の異方性を顕著に改善できる旨記載され、具体的には、銅合金の原料を溶解して鋳造する溶解・鋳造工程と、この溶解・鋳造工程の後に行う熱間圧延工程と、この熱間圧延工程の後に圧延率70%以上で冷間圧延を行う第1の冷間圧延工程と、この第1の冷間圧延工程の後に加熱温度500〜650℃で熱処理を行う中間焼鈍工程と、この中間焼鈍工程の後に圧延率70%以上で冷間圧延を行う第2の冷間圧延工程と、この第2の冷間圧延工程の後に溶体化処理を行う溶体化処理工程と、この溶体化処理工程の後に400〜500℃で時効処理を行う時効処理工程を含む方法により実現している。 Therefore, for example, in Patent Document 2, by increasing the proportion of crystal grains having a {100} orientation (Cube orientation) with less anisotropy, the bending workability can be improved and at the same time the anisotropy of the bending workability can be improved. It is stated that it can be significantly improved. Specifically, a melting / casting step of melting and casting a copper alloy raw material, a hot rolling step performed after this melting / casting step, and a hot rolling step after this hot rolling step. A first cold rolling step in which cold rolling is performed at a rolling ratio of 70% or more, an intermediate annealing step in which heat treatment is performed at a heating temperature of 500 to 650 ° C. after the first cold rolling step, and an intermediate annealing step. A second cold rolling step in which cold rolling is performed later at a rolling ratio of 70% or more, a solution treatment step in which a solution treatment is performed after the second cold rolling step, and 400 after this solution treatment step. It is realized by a method including an aging treatment step in which aging treatment is performed at ~ 500 ° C.

また、例えば特許文献3では、板表面における{111}面からの回折強度をI{111}、{200}面からの回折強度をI{200}、{220}面からの回折強度をI{220}、{311}面からの回折強度をI{311}、これらの回折強度の中の{200}面からの回折強度の割合をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}を一定以上とすることにより、曲げ加工性を改善する技術が記載され、具体的には最終再結晶熱処理の前に、加工組織が完全に再結晶しない程度の中間焼鈍と、それに加えて中間圧延を導入することで実現している。 Further, for example, in Patent Document 3, the diffraction intensity from the {111} plane on the plate surface is I {111}, the diffraction intensity from the {200} plane is I {200}, and the diffraction intensity from the {220} plane is I {. 220}, the diffraction intensity from the {311} plane is I {311}, and the ratio of the diffraction intensity from the {200} plane to these diffraction strengths is R {200} = I {200} / (I {111}). In the case of + I {200} + I {220} + I {311}), a technique for improving bending workability by setting R {200} to a certain level or more is described, and specifically, the final diffraction heat treatment. This is achieved by introducing intermediate annealing to the extent that the processed structure does not completely recrystallize, and in addition, intermediate rolling.

今後も、コルソン銅合金に高強度かつ高導電に加えて曲げ性も求められること、および一般に強度と曲げ性とは両立が困難であり、信頼性の向上の観点から改善の余地が残されている。 In the future, the Corson copper alloy will be required to have high strength and high conductivity as well as bendability, and it is generally difficult to achieve both strength and bendability, so there is room for improvement from the viewpoint of improving reliability. There is.

本発明者が鋭意研究した結果、Cu−Ni−Co−Si合金において、結晶粒径のばらつきを抑えることができれば、転位が一様になり、曲げ加工時の応力が分散されることになり、曲げ加工性の向上が期待されるという観点から、最適な溶体化処理条件を見出し、本発明を完成した。 As a result of diligent research by the present inventor, in the Cu—Ni—Co—Si alloy, if the variation in the crystal grain size can be suppressed, the dislocations become uniform and the stress during bending is dispersed. From the viewpoint that improvement in bending workability is expected, the optimum solution treatment conditions have been found, and the present invention has been completed.

すなわち、本発明は、
(1)3.0〜4.5質量%のNi、および0.1〜1.0質量%のCoを含有し、Coに対するNiの濃度(質量%)比(Ni/Co)が3.5〜30になるように調整し、かつ、Siを(Ni+Co)/Si質量比が3〜5となるように含有し、ならびに残部がCuおよび不可避的不純物からなり、圧延方向に平行な断面において電子後方散乱回折測定を行って、方位差5°以上を結晶粒界とみなしたときの結晶粒径の変動係数が30%以下である電子部品用Cu−Ni−Co−Si合金。
(2)更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnの群から選ばれる少なくとも1種を総計で最大2.5質量%含有する(1)に記載の合金。
(3)粒径が5〜30nmの第二相粒子の個数の平均が、0.5×109個/mm2以上である、(1)または(2)に記載の合金。
(4)圧延方向に平行な方向での0.2%耐力が900MPa以上であり、かつ、導電率が30%IACS以上である、(1)〜(3)のいずれかに記載の合金。
(5)曲げ半径(R)/板厚(t)=1.0としてBadway(曲げ軸が圧延方向と同一方向)でW曲げ試験したときの曲げ部表面の平均粗さRaが1.0μm以下である、(1)〜(4)のいずれかに記載の合金。
(6)(1)〜(5)のいずれかに記載の合金を備えた電子部品。
That is, the present invention
(1) It contains 3.0 to 4.5% by mass of Ni and 0.1 to 1.0% by mass of Co, and the concentration (mass%) ratio (Ni / Co) of Ni to Co is 3.5. Adjusted to ~ 30, and contains Si so that the mass ratio of (Ni + Co) / Si is 3 to 5, and the balance consists of Cu and unavoidable impurities, and electrons are used in the cross section parallel to the rolling direction. A Cu-Ni-Co-Si alloy for electronic parts in which the variation coefficient of the crystal grain size is 30% or less when the orientation difference of 5 ° or more is regarded as the grain boundary by performing backward scattering diffraction measurement.
(2) Further described in (1), further containing at least one selected from the group of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn in a total of up to 2.5% by mass. alloy.
(3) The alloy according to (1) or (2), wherein the average number of second-phase particles having a particle size of 5 to 30 nm is 0.5 × 10 9 particles / mm 2 or more.
(4) The alloy according to any one of (1) to (3), wherein the 0.2% proof stress in the direction parallel to the rolling direction is 900 MPa or more and the conductivity is 30% IACS or more.
(5) The average roughness Ra of the surface of the bent portion when the W bending test is performed in Badway (the bending axis is in the same direction as the rolling direction) with the bending radius (R) / plate thickness (t) = 1.0 is 1.0 μm or less. The alloy according to any one of (1) to (4).
(6) An electronic component provided with the alloy according to any one of (1) to (5).

本発明によれば、コルソン銅合金に高強度かつ高導電に加えて、一般に強度の両立が困難である曲げ性も付与された信頼性が向上した電子部品用Cu−Ni−Co−Si合金が提供される。 According to the present invention, in addition to high strength and high conductivity, a Cu-Ni-Co-Si alloy for electronic parts, which is generally difficult to achieve both strength and has improved reliability, is provided to the Corson copper alloy. Provided.

以下、本発明に係る電子部品用Cu−Ni−Co−Si合金の一実施形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, an embodiment of the Cu—Ni—Co—Si alloy for electronic components according to the present invention will be described. In the present invention,% means mass% unless otherwise specified.

(1)基材の組成
先ず、合金組成について説明する。本発明の銅合金は、Cu−Ni−Co−Si合金である。なお、本明細書では、Cu−Ni−Co−Siの基本成分にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnなどのその他の合金元素を添加した銅合金も、包括的にCu−Ni−Co−Si合金と称する。
(1) Composition of base material First, the alloy composition will be described. The copper alloy of the present invention is a Cu—Ni—Co—Si alloy. In this specification, a copper alloy obtained by adding other alloying elements such as Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn to the basic components of Cu—Ni—Co—Si. Is also collectively referred to as a Cu-Ni-Co-Si alloy.

Niは、後述のCo、Siとともに、Ni−Co−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Ni含有量が小さすぎる場合には、この効果を十分に発揮させるのが困難である。そのため、Ni含有量は、3.0質量%以上にするのが好ましく、3.2質量%以上にするのが更に好ましく、3.4質量%以上にするのが一層好ましい。一方、Ni含有量が大きすぎると、強度向上効果が飽和するうえ、導電率が低下する。また、粗大な析出物が生成し易く、曲げ加工時の割れの原因になる。そのため、Ni含有量は、4.5質量%以下にするのが好ましく、4.1質量%以下にするのが更に好ましい。 Ni has the effect of forming a Ni—Co—Si-based precipitate together with Co and Si described later to improve the strength and conductivity of the copper alloy plate material. If the Ni content is too small, it is difficult to fully exert this effect. Therefore, the Ni content is preferably 3.0% by mass or more, more preferably 3.2% by mass or more, and even more preferably 3.4% by mass or more. On the other hand, if the Ni content is too large, the strength improving effect is saturated and the conductivity is lowered. In addition, coarse precipitates are likely to be formed, which causes cracks during bending. Therefore, the Ni content is preferably 4.5% by mass or less, and more preferably 4.1% by mass or less.

Coは、Ni、Siとともに、Ni−Co−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Co含有量が小さすぎる場合には、この効果を十分に発揮させるのが困難である。そのため、Co含有量は、0.1質量%以上にするのが好ましく、0.2質量%以上にするのが更に好ましく、0.3質量%以上にするのが一層好ましい。一方、Coの融点はNiよりも高いので、Co含有量が大きすぎると、完全固溶は困難であり、未固溶の部分は強度に寄与しない。そのため、Co含有量は、1.0質量%以下にするのが好ましく、0.8質量%以下にするのが更に好ましい。 Co has the effect of forming Ni—Co—Si-based precipitates together with Ni and Si to improve the strength and conductivity of the copper alloy plate material. If the Co content is too small, it is difficult to fully exert this effect. Therefore, the Co content is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and even more preferably 0.3% by mass or more. On the other hand, since the melting point of Co is higher than that of Ni, if the Co content is too large, complete solid solution is difficult, and the unsolid solution portion does not contribute to the strength. Therefore, the Co content is preferably 1.0% by mass or less, and more preferably 0.8% by mass or less.

また、結晶粒径のばらつきを抑えるという観点から、Ni/Co濃度(質量%)比が3.5〜30、好ましくは5〜15となるように調整しておくとよい。 Further, from the viewpoint of suppressing variation in crystal grain size, it is preferable to adjust the Ni / Co concentration (mass%) ratio to be 3.5 to 30, preferably 5 to 15.

Siは、Ni、Coとともに、Ni−Co−Si系析出物を生成する。但し、合金中のNi、CoおよびSiは、時効処理によって全てが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNi、CoおよびSiは、銅合金板材の強度を若干向上させるが、析出状態と比べてその効果は小さく、また、導電率を低下させる要因になる。そのため、Siの含有量は、一般的には、できるだけ析出物(Ni+Co)2Siの組成比に近づけるのが好ましい。すなわち、(Ni+Co)/Si質量比を、約4.2を中心として3〜5に調整するのが一般的であり、Siは(Ni+Co)/Si質量比がこの範囲となるように添加される。 Si, together with Ni and Co, produces Ni—Co—Si-based precipitates. However, not all of Ni, Co and Si in the alloy become precipitates by the aging treatment, and they exist in a solid solution state in the Cu matrix to some extent. Ni, Co, and Si in the solid solution state slightly improve the strength of the copper alloy plate material, but the effect is smaller than that in the precipitated state, and it becomes a factor of lowering the conductivity. Therefore, it is generally preferable that the Si content be as close as possible to the composition ratio of the precipitate (Ni + Co) 2 Si. That is, it is common to adjust the (Ni + Co) / Si mass ratio to 3 to 5 centered on about 4.2, and Si is added so that the (Ni + Co) / Si mass ratio is in this range. ..

本発明の銅合金板材には、必要に応じて、Fe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnなどを添加してもよい。例えば、SnとMgは耐応力緩和特性の向上効果があり、Znは銅合金板材のはんだ付け性および鋳造性を改善する効果があり、Fe、Cr、Mn、Ti、Zr、Alなどは強度を向上させる作用を有する。そのほかに、Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。ただし、これら添加元素の量が大きすぎると、製造性が大きく損なわれる。そこで、合計で0〜2.5質量%含有することができる。また、強度、導電率、曲げ性のバランスを考慮すると、上記元素の1種以上を総量で0.2〜1.0質量%含有させることが好ましい。なお、添加元素ごとには、耐応力緩和特性、強度、はんだ付け性、鋳造性、熱間加工性の向上などのバランスを考慮して、合計量を超えない範囲で、Znは0.1質量%以上2.0質量%以下含有させることができ、SnおよびCrは0.1質量%以上1.0質量%以下含有させることができ、Fe、MgおよびMnは0.1質量%以上0.5質量%以下含有させることができ、B、P、Zr、TiおよびAlは0.01質量%以上0.3質量%以下含有させることができる。 Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, Mn and the like may be added to the copper alloy plate material of the present invention, if necessary. For example, Sn and Mg have the effect of improving stress relaxation resistance, Zn has the effect of improving the solderability and castability of copper alloy plates, and Fe, Cr, Mn, Ti, Zr, Al and the like have the effect of improving strength. It has the effect of improving. In addition, P has a deoxidizing effect, B has an effect of refining the cast structure, and has an effect of improving hot workability. However, if the amount of these additive elements is too large, the manufacturability is greatly impaired. Therefore, a total of 0 to 2.5% by mass can be contained. Further, considering the balance between strength, conductivity and bendability, it is preferable to contain one or more of the above elements in a total amount of 0.2 to 1.0% by mass. For each added element, considering the balance of stress relaxation resistance, strength, solderability, castability, hot workability, etc., Zn is 0.1 mass in the range not exceeding the total amount. % Or more and 2.0% by mass or less can be contained, Sn and Cr can be contained in an amount of 0.1% by mass or more and 1.0% by mass or less, and Fe, Mg and Mn can be contained in an amount of 0.1% by mass or more and 0% by mass. It can contain 5% by mass or less, and B, P, Zr, Ti and Al can be contained in an amount of 0.01% by mass or more and 0.3% by mass or less.

(2)結晶粒径
本発明の合金は、結晶粒径の相対的なばらつきが小さいことが特徴である。このばらつきを、以下の方法で測定した平均結晶粒径と標準偏差とから標準偏差/平均粒径×100から算出される変動係数を用いて評価し、この値を30%以下、好ましくは20%以下とする。
なお、析出物の粒径測定は、圧延方向に平行な断面において電子後方散乱回折測定を行って、方位差5°以上を結晶粒界とみなしたときの結晶粒径として行う。
(2) Crystal grain size The alloy of the present invention is characterized in that the relative variation in crystal grain size is small. This variation is evaluated using a coefficient of variation calculated from standard deviation / average particle size × 100 from the average crystal grain size and standard deviation measured by the following method, and this value is 30% or less, preferably 20%. It is as follows.
The particle size of the precipitate is measured by performing electron backscattering diffraction measurement in a cross section parallel to the rolling direction, and using an orientation difference of 5 ° or more as a crystal grain boundary.

(3)強度および導電率
本発明の合金は、高強度であり、かつ、高導電率であり、電子部品、特にコネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等に好適である。
ここで、強度を、引張方向が圧延方向と平行になるように、プレス機を用いてJIS 13B号試験片を作製し、JIS−Z2241に従ってこの試験片の引張試験を行なうことで測定した圧延平行方向の0.2%耐力(YS)として評価する。上述した用途の観点から、0.2%耐力は、900MPa以上であることが好ましく、特に950MPa以上である。
また、導電率を、JIS H 0505に準拠し、4端子法にて測定した導電率(EC:%IACS)として評価する。上述した用途の観点から、この導電率は、30%IACS以上であることが好ましく、特に35%IACS以上である。
(3) Strength and Conductivity The alloy of the present invention has high strength and high conductivity, and is suitable for electronic components, particularly connectors, battery terminals, jacks, relays, switches, lead frames and the like.
Here, the strength is measured by preparing a JIS 13B test piece using a press machine so that the tensile direction is parallel to the rolling direction, and performing a tensile test of this test piece in accordance with JIS-Z2241. Evaluate as 0.2% bearing capacity (YS) in the direction. From the viewpoint of the above-mentioned applications, the 0.2% proof stress is preferably 900 MPa or more, and particularly 950 MPa or more.
Further, the conductivity is evaluated as the conductivity (EC:% IACS) measured by the 4-terminal method in accordance with JIS H 0505. From the viewpoint of the above-mentioned applications, the conductivity is preferably 30% IACS or more, and particularly 35% IACS or more.

(4)曲げ性表面粗さ
本発明においては、曲げ性を、W曲げ試験したときの曲げ部表面の平均粗さRaとして評価する。
すなわち、曲げ半径(R)/板厚(t)=1.0としてBadway(曲げ軸が圧延方向と同一方向)でW曲げ試験したときの曲げ部表面の平均粗さRaが、小さいほど曲げ加工時の応力が分散され、曲げ加工性の向上が期待される。この観点から、この曲げ部表面の平均粗さRaは1.0μm以下であることが好ましい。
(5)析出物の個数濃度
本発明においては、析出物を制御することにより強度、導電率および曲げ性の改善を課題としている。そこで、その析出物の個数を評価することが好ましい。すなわち、析出物の個数濃度を、粒径が5〜30nmの第2相粒子の個数をカウントし、観察面積で除し、個数濃度(×109個/mm2)を算出し、同様に20視野(各視野1μm×1μm)について算出して、その平均値として評価する。
具体的には、圧延方向に平行な断面を集束イオンビーム(FIB)にて切断することで断面を露出させた後、走査型透過電子顕微鏡(日本電子株式会社 型式:JEM−2100F)を用いて測定される析出物の個数濃度を求める。この析出物の個数濃度は、十分な強度(0.2%耐力)の確保の観点から、0.5×109個/mm2以上であることが好ましく、さらに1.5×109個/mm2以上であることが好ましい。
ここで、第二相粒子とは、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言い、通常はCo−Si系、またはNi−Si系の組成をもつが、本発明の場合Ni−Co−Si系の組成をもつことが典型的である。第二相粒子の大きさは、電子顕微鏡による観察で圧延方向に平行な断面を組織観察したとき、析出物に包囲されることのできる最大円の直径として定義される。
(4) Bendability Surface Roughness In the present invention, the bendability is evaluated as the average roughness Ra of the surface of the bent portion when the W bending test is performed.
That is, the smaller the average roughness Ra of the surface of the bent portion when the W bending test is performed in Badway (the bending axis is in the same direction as the rolling direction) with the bending radius (R) / plate thickness (t) = 1.0, the more the bending process is performed. The stress at the time is dispersed, and it is expected that the bending workability will be improved. From this viewpoint, the average roughness Ra of the surface of the bent portion is preferably 1.0 μm or less.
(5) Number Concentration of Precipitates In the present invention, improvement of strength, conductivity and bendability is an object of the present invention by controlling the precipitates. Therefore, it is preferable to evaluate the number of precipitates. That is, the number density of precipitates having a particle size counts the number of second phase particles of 5 to 30 nm, divided by the observation area, and calculates the number density (× 10 9 pieces / mm 2), similarly 20 A visual field (1 μm × 1 μm for each visual field) is calculated and evaluated as an average value thereof.
Specifically, after exposing the cross section by cutting the cross section parallel to the rolling direction with a focused ion beam (FIB), a scanning transmission electron microscope (JEOL Ltd. model: JEM-2100F) is used. Determine the number concentration of precipitates to be measured. From the viewpoint of ensuring sufficient strength (0.2% proof stress), the number concentration of the precipitates is preferably 0.5 × 10 9 pieces / mm 2 or more, and more preferably 1.5 × 10 9 pieces / mm 2. It is preferably mm 2 or more.
Here, the second phase particles are crystallization generated in the solidification process of melt casting, precipitates generated in the subsequent cooling process, precipitates generated in the cooling process after hot rolling, and cooling process after solution treatment. It refers to the precipitates that are formed and the precipitates that are formed during the aging treatment process, and usually has a Co-Si-based or Ni-Si-based composition, but in the case of the present invention, it has a Ni-Co-Si-based composition. Is typical. The size of the second phase particles is defined as the diameter of the maximum circle that can be surrounded by the precipitate when the cross section parallel to the rolling direction is observed by electron microscopy.

(6)用途
本発明に係るCu−Ni−Co−Si合金は、種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明の銅合金は、限定的ではないが、コネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等の電子部品材料として好適である。
(6) Applications The Cu-Ni-Co-Si alloy according to the present invention can be processed into various copper products such as plates, strips, pipes, rods and wires. The copper alloy of the present invention is suitable as a material for electronic components such as connectors, battery terminals, jacks, relays, switches, and lead frames, although it is not limited.

(7)製造方法
本発明の実施形態に係る電子部品用Cu−Ni−Co−Si合金は、インゴットの溶解鋳造(工程1)−均質焼鈍、熱間圧延、急冷(工程2)−冷間圧延、溶体化処理(工程3)−時効処理(工程4)を経て製造される。
(7) Manufacturing Method The Cu-Ni-Co-Si alloy for electronic parts according to the embodiment of the present invention is melt-casted ingot (step 1) -homogeneous annealing, hot rolling, quenching (step 2) -cold rolling. , Dissolved treatment (step 3) -manufactured through aging treatment (step 4).

<インゴット製造>
大気溶解炉を用い、電気銅、Ni、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。Ni、Co、Si以外の添加元素はFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、Al及びMnからなる群から1種または2種以上を合計で0〜2.5質量%含有するように添加する。
<Ingot manufacturing>
Using an atmospheric melting furnace, raw materials such as electrolytic copper, Ni, Co, and Si are melted to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Additive elements other than Ni, Co, and Si are one or more from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, and Mn, totaling 0 to 2.5 mass. % Is added so as to contain.

<均質化焼鈍及び熱間圧延>
インゴット製造時に生じる凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これらは曲げ加工性に悪影響を与え、母相に固溶させることにより曲げ割れの防止に効果があるからである。
具体的には、インゴット製造工程後には、900〜1050℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施する。元厚から全体の圧下率が90%までのパスは700℃以上とするのが好ましい。その後、水冷にて室温まで急速に冷却させる。
<Homogeneous annealing and hot rolling>
Since the solidification segregation and crystallization generated during the production of ingots are coarse, it is desirable to dissolve them in the matrix as much as possible by homogenization annealing to make them as small as possible and eliminate them as much as possible. This is because these have an adverse effect on bending workability and are effective in preventing bending cracks by being dissolved in the matrix phase.
Specifically, after the ingot manufacturing process, hot rolling is carried out after heating to 900 to 1050 ° C. and homogenizing annealing for 3 to 24 hours. The path from the original thickness to the total reduction rate of 90% is preferably 700 ° C. or higher. Then, it is rapidly cooled to room temperature by water cooling.

<冷間圧延および溶体化処理>
その後、加工度(圧下率)50%以上、好ましくは70%以上の条件にて冷間圧延を行った後に、溶体化処理を行う。具体的には、900〜1050℃に加熱して30秒〜10分加熱する。溶体化処理ではNi、Co、Siをはじめとする添加元素を固溶させることを目的としている。そのため、加熱温度や加熱時間に加えて、昇温速度及び冷却速度も制御することが肝要である。溶体化処理前の昇温時において、Coを含有する第2相粒子の析出に影響する600〜700℃の昇温速度は50℃/秒以上に制御する。一方、溶体化処理の後の同温度範囲における冷却速度も50℃/秒以上に制御する。その他の温度領域についても昇温速度及び冷却速度は極力速くすることが好ましい。また、このとき材料に付与する張力を1MPa以上10MPa以下に調整することで、第二相粒子の析出をより都合よく制御することが可能になり、圧延方向に平行な断面において電子後方散乱回折測定を行って、方位差5°以上を結晶粒界とみなしたときの結晶粒径の変動係数を30%以下とすることができ、粒径5〜30nmの析出物の個数濃度を十分に確保でき、十分な強度を付与することを可能にする。
<Cold rolling and solution treatment>
Then, cold rolling is performed under the conditions of a degree of processing (rolling ratio) of 50% or more, preferably 70% or more, and then solution treatment is performed. Specifically, it is heated to 900 to 1050 ° C. for 30 seconds to 10 minutes. The purpose of the solution treatment is to dissolve additive elements such as Ni, Co, and Si as a solid solution. Therefore, it is important to control the heating rate and the cooling rate in addition to the heating temperature and the heating time. At the time of temperature rise before the solution treatment, the temperature rise rate of 600 to 700 ° C., which affects the precipitation of the second phase particles containing Co, is controlled to 50 ° C./sec or more. On the other hand, the cooling rate in the same temperature range after the solution treatment is also controlled to 50 ° C./sec or more. It is preferable that the temperature rising rate and the cooling rate be as high as possible in other temperature regions as well. Further, by adjusting the tension applied to the material at this time to 1 MPa or more and 10 MPa or less, it becomes possible to more conveniently control the precipitation of the second phase particles, and electron rear scattering diffraction measurement in a cross section parallel to the rolling direction. The fluctuation coefficient of the crystal grain size when the orientation difference of 5 ° or more is regarded as the crystal grain boundary can be set to 30% or less, and the number concentration of precipitates having a particle size of 5 to 30 nm can be sufficiently secured. , Makes it possible to impart sufficient strength.

このように、溶体化処理中の600〜700℃における昇温及び冷却速度を速くすることでCo−Si系化合物の析出が抑制され、結果としてNi−Co−Si系化合物の析出物が生成されたものと考えられる。また溶体化処理中の材料の張力を従来の20MPa程度よりも低くすることで高強度化した。このメカニズムは不明であるが、前工程にて冷間圧延を行った場合に導入された歪がこの昇温速度の制御により一様に解放されることで、その後の時効処理によって高強度化したのではないかと考えられる。 As described above, by increasing the temperature rise and cooling rate at 600 to 700 ° C. during the solution treatment, the precipitation of the Co—Si compound is suppressed, and as a result, the precipitate of the Ni—Co—Si compound is produced. It is thought that it was. Further, the strength of the material during the solution treatment was increased by lowering the tension of the material from the conventional value of about 20 MPa. Although this mechanism is unknown, the strain introduced when cold rolling was performed in the previous process was uniformly released by controlling the temperature rise rate, and the strength was increased by the subsequent aging treatment. It is thought that it may be.

<時効処理>
溶体化処理に引き続いて時効処理を行う。材料温度400〜550℃で5〜25時間加熱することが好ましく、材料温度420〜500℃で10〜20時間加熱することがより好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging process>
Following the solution treatment, aging treatment is performed. It is preferable to heat at a material temperature of 400 to 550 ° C. for 5 to 25 hours, and more preferably to heat at a material temperature of 420 to 500 ° C. for 10 to 20 hours. The aging treatment is preferably carried out in an inert atmosphere such as Ar, N 2 or H 2 in order to suppress the formation of an oxide film.

<最終の冷間圧延>
時効処理に引き続いて最終の冷間圧延を行う。最終の冷間加工によって強度を高めることができるが、本発明において意図されるような高強度および曲げ加工性の良好なバランスを得るためには圧下率を15〜45%、好ましくは20〜40%とすることが望ましい。
<Final cold rolling>
Following the aging process, the final cold rolling is performed. The strength can be increased by the final cold working, but in order to obtain a good balance between high strength and bending workability as intended in the present invention, the reduction ratio is set to 15 to 45%, preferably 20 to 40. It is desirable to set it to%.

<歪取焼鈍>
最終の冷間圧延に引き続いて、歪取焼鈍を行う。材料温度350〜650℃で1〜3600秒間加熱することが好ましく、材料温度350〜450℃で1500〜3600秒、材料温度450〜550℃で500〜1500秒、材料温度550〜650℃で1〜500秒間加熱することがより好ましい。
<Distortion annealing>
Following the final cold rolling, strain relief annealing is performed. It is preferable to heat at a material temperature of 350 to 650 ° C. for 1 to 600 seconds, a material temperature of 350 to 450 ° C. for 1500 to 3600 seconds, a material temperature of 450 to 550 ° C. for 500 to 1500 seconds, and a material temperature of 550 to 650 ° C. for 1 to 1 to 1. It is more preferable to heat for 500 seconds.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。 It should be understood that those skilled in the art can appropriately perform steps such as grinding, polishing, and shot blast pickling for removing the oxide scale on the surface between the above steps.

以下に本発明の実施例(発明例)を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention (invention examples) are shown below together with comparative examples, but these are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention. ..

表1に記載の各添加元素を含有し、残部が銅及び不純物からなる銅合金を、高周波溶解炉にて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で3時間加熱後、板厚10mmまで熱間圧延し、熱間圧延終了後は速やかに冷却した。次いで、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延により厚さ0.120〜0.175mmの板とした。次に950℃で溶体化処理を120秒行った。このときの600〜700℃の温度範囲における昇温速度及び冷却速度、張力は表1の通りである。その後、表1の条件で時効処理、冷間圧延を加え、板厚0.1mmとした。最後に、材料温度400℃で2000秒間の歪取り焼鈍を加えた。 A copper alloy containing each of the additive elements shown in Table 1 and having a balance of copper and impurities was melted at 1300 ° C. in a high-frequency melting furnace and cast into an ingot having a thickness of 30 mm. Next, the ingot was heated at 1000 ° C. for 3 hours, hot-rolled to a plate thickness of 10 mm, and cooled quickly after the hot rolling was completed. Next, the surface was surface-cut to a thickness of 9 mm to remove scale, and then cold-rolled to obtain a plate having a thickness of 0.120 to 0.175 mm. Next, the solution treatment was performed at 950 ° C. for 120 seconds. Table 1 shows the heating rate, cooling rate, and tension in the temperature range of 600 to 700 ° C. at this time. Then, aging treatment and cold rolling were added under the conditions shown in Table 1 to obtain a plate thickness of 0.1 mm. Finally, strain relief annealing was applied at a material temperature of 400 ° C. for 2000 seconds.

Figure 0006830135
Figure 0006830135

作製した製品試料について、次の評価を行った。評価の結果を表2に示す。
(1)0.2%耐力
引張方向が圧延方向と平行になるように、プレス機を用いてJIS 13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
The following evaluation was performed on the prepared product sample. The evaluation results are shown in Table 2.
(1) 0.2% proof stress A JIS 13B test piece was prepared using a press machine so that the tensile direction was parallel to the rolling direction. A tensile test of this test piece was carried out according to JIS-Z2241 to measure 0.2% proof stress (YS) in the rolling parallel direction.

(2)導電率
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
(2) Conductivity The conductivity (EC:% IACS) was measured by the 4-terminal method in accordance with JIS H 0505.

(3)曲げ部の表面粗さ
JIS−H3130(2012)に従いW曲げ試験をBadway(曲げ軸が圧延方向と同一方向)、r/t=1.0(t=0.1mm)で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS−B0601:2013に準拠)を測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できず、平均粗さRaはいずれも0.2μm以下であった。
曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
(3) Surface roughness of bent portion A W bending test was carried out in accordance with JIS-H3130 (2012) at Badway (the bending axis is in the same direction as the rolling direction) and r / t = 1.0 (t = 0.1 mm). The outer peripheral surface of the bent portion of this test piece was observed. As an observation method, the outer peripheral surface of the bent portion was photographed using a lasertec confocal microscope HD100, and the average roughness Ra (based on JIS-B0601: 2013) was measured and compared using the attached software. When the sample surface before bending was observed using a confocal microscope, no unevenness could be confirmed, and the average roughness Ra was 0.2 μm or less.
The case where the surface average roughness Ra after bending was 1.0 μm or less was evaluated as ◯, and the case where Ra exceeded 1.0 μm was evaluated as x.

(4)粒径5〜30nmの析出物の個数濃度
圧延方向に平行な断面を集束イオンビーム(FIB)にて切断することで断面を露出させた後、走査型透過電子顕微鏡(日本電子株式会社、型式:JEM−2100F)を用いて析出物の個数濃度を測定した。
具体的には、加速電圧200kV、観察倍率100万倍とし、粒径が5〜30nmの第2相粒子の個数をカウントし、観察面積で除し、個数濃度(×109個/mm2)を算出した。同様に20視野について測定を行い、その平均値を個数濃度とした。
(4) Number concentration of precipitates having a particle size of 5 to 30 nm After exposing the cross section by cutting the cross section parallel to the rolling direction with a focused ion beam (FIB), a scanning transmission electron microscope (JEOL Ltd.) , Model: JEM-2100F) was used to measure the number concentration of precipitates.
Specifically, the acceleration voltage is 200 kV, the observation magnification is 1 million times, the number of second phase particles having a particle size of 5 to 30 nm is counted, divided by the observation area, and the number concentration (× 10 9 particles / mm 2 ). Was calculated. Similarly, measurements were performed on 20 fields of view, and the average value was taken as the number concentration.

(5)結晶粒径の変動係数
得られた銅合金材料について、圧延方向に平行な断面を集束イオンビーム(FIB)にて切断することで断面を露出させた後、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定を行った。
・観察視野:200μm×200μm
・ステップ間隔:0.5μm
結晶粒径の測定にはEBSDに付属のOIM Analysis(Ver.5.3)を用いて結晶粒解析を行った。方位差5°以上を結晶粒界とみなし、平均粒径及び標準偏差を算出し、変動係数(標準偏差/平均粒径×100)を求めた。
(5) Fluctuation coefficient of crystal grain size After exposing the cross section of the obtained copper alloy material by cutting a cross section parallel to the rolling direction with a focused ion beam (FIB), EBSD (Electron Backscatter Diffraction:): Electron backscatter diffraction) measurement was performed.
・ Observation field of view: 200 μm × 200 μm
・ Step interval: 0.5 μm
For the measurement of the crystal grain size, crystal grain analysis was performed using OIM Analysis (Ver. 5.3) attached to EBSD. The azimuth difference of 5 ° or more was regarded as a grain boundary, the average particle size and the standard deviation were calculated, and the coefficient of variation (standard deviation / average particle size × 100) was obtained.

Figure 0006830135
Figure 0006830135

発明例1〜24は、いずれも結晶粒径の変動係数も30%以下であり、析出物の粒径の相対的なばらつきが小さく、さらに0.2%耐力が900MPa以上であり、導電率が30%IACS以上であり、曲げ部の表面粗さが1.0μm以下と良好であった。これらの銅合金材料は、高強度、高導電率、高い曲げ加工性のバランスに優れたものであるといえる。 In Invention Examples 1 to 24, the coefficient of variation of the crystal particle size is 30% or less, the relative variation in the particle size of the precipitate is small, the 0.2% proof stress is 900 MPa or more, and the conductivity is high. It was 30% IACS or more, and the surface roughness of the bent portion was 1.0 μm or less, which was good. It can be said that these copper alloy materials have an excellent balance of high strength, high conductivity, and high bending workability.

比較例1〜18は、それぞれ第二相粒子の析出を十分に制御できなかったと考えられる具体例である。
比較例1は、溶体化処理時の昇温速度が50℃/sよりも小さく、また、比較例2は、溶体化処理時の冷却速度が50℃/sより小さい具体例である。比較例3、4は、溶体化処理時に合金材料に付与する張力が小さすぎる具体例(比較例3)および大きすぎる具体例(比較例4)である。比較例1〜4はいずれも、結晶粒径の変動係数が大きすぎてしまい、十分な曲げ加工性を発揮させることが難しく、特に比較例3、4ではさらに強度も低いことが分かった。
Comparative Examples 1 to 18 are specific examples in which it is considered that the precipitation of the second phase particles could not be sufficiently controlled.
Comparative Example 1 is a specific example in which the temperature rising rate during the solution treatment is smaller than 50 ° C./s, and Comparative Example 2 is a specific example in which the cooling rate during the solution treatment is lower than 50 ° C./s. Comparative Examples 3 and 4 are a specific example in which the tension applied to the alloy material during the solution treatment is too small (Comparative Example 3) and a specific example in which the tension is too large (Comparative Example 4). It was found that in all of Comparative Examples 1 to 4, the coefficient of variation of the crystal grain size was too large, and it was difficult to exhibit sufficient bending workability, and in particular, Comparative Examples 3 and 4 had even lower strength.

比較例5、6は、溶体化処理後の時効処理における加熱条件が、400〜550℃から外れる具体例である。その結果、強度に寄与すると考えられる粒径5〜30nmの析出物の個数濃度において十分な量を確保できず、十分な強度を発揮させることが難しく、さらに時効処理の温度が低すぎると十分な導電率を発揮させることも難しいことが分かった。 Comparative Examples 5 and 6 are specific examples in which the heating conditions in the aging treatment after the solution treatment deviate from 400 to 550 ° C. As a result, it is not possible to secure a sufficient amount in the number concentration of precipitates having a particle size of 5 to 30 nm, which is considered to contribute to the strength, it is difficult to exert sufficient strength, and it is sufficient if the aging treatment temperature is too low. It turned out that it is also difficult to exert conductivity.

比較例7は、銅合金の成分中のNi含有量が3.0質量%よりも小さい具体例である。Ni含有量が小さいと、十分な強度を発揮させることが難しいことが分かった。
比較例8は、銅合金の成分中のNi含有量が4.5質量%を超える具体例である。Ni含有量が大きいと、熱間圧延時に割れが生じてしまい、製品が得られなかった。
Comparative Example 7 is a specific example in which the Ni content in the components of the copper alloy is less than 3.0% by mass. It was found that when the Ni content is small, it is difficult to exert sufficient strength.
Comparative Example 8 is a specific example in which the Ni content in the components of the copper alloy exceeds 4.5% by mass. If the Ni content is large, cracks occur during hot rolling, and a product cannot be obtained.

比較例9は、銅合金にCoが含有されない具体例であり、比較例10は、銅合金の成分中のCo含有量が1.0質量%を超える具体例である。Co含有量が適正な範囲にないと、十分な曲げ加工性を発揮させることが難しいことが分かった。 Comparative Example 9 is a specific example in which Co is not contained in the copper alloy, and Comparative Example 10 is a specific example in which the Co content in the components of the copper alloy exceeds 1.0% by mass. It was found that it is difficult to exhibit sufficient bending workability unless the Co content is within an appropriate range.

比較例11、12は、銅合金中の(Ni+Co)/Si質量比が大きすぎる具体例(比較例11)、および小さすぎる具体例(比較例12)である。(Ni+Co)/Si質量比が適正な範囲にないと、粒径5〜30nmの析出物の個数濃度が十分なものとならず、強度および導電率の両方の面から劣るという結果となった。 Comparative Examples 11 and 12 are a specific example in which the (Ni + Co) / Si mass ratio in the copper alloy is too large (Comparative Example 11) and a specific example in which the mass ratio is too small (Comparative Example 12). If the (Ni + Co) / Si mass ratio is not in an appropriate range, the number concentration of precipitates having a particle size of 5 to 30 nm is not sufficient, resulting in inferiority in terms of both strength and conductivity.

比較例13、14は、銅合金中の第二相粒子の析出前のNi/Co濃度比が小さすぎる具体例(比較例13)、および大きすぎる具体例(比較例14)である。比較例13、14はいずれも、結晶粒径の変動係数が大きすぎてしまい、十分な曲げ加工性を発揮させることが難しいことが分かった。 Comparative Examples 13 and 14 are a specific example in which the Ni / Co concentration ratio before precipitation of the second phase particles in the copper alloy is too small (Comparative Example 13) and a specific example in which the Ni / Co concentration ratio is too large (Comparative Example 14). It was found that in all of Comparative Examples 13 and 14, the coefficient of variation of the crystal grain size was too large, and it was difficult to exhibit sufficient bending workability.

比較例15は、Ni、Co、Si以外の第三の添加元素の総量が2.5を超える具体例である。第三の添加元素が多すぎると、結晶粒径の変動係数が大きすぎてしまい、曲げ加工性および導電率において劣るという結果となった。 Comparative Example 15 is a specific example in which the total amount of the third additive element other than Ni, Co, and Si exceeds 2.5. If the amount of the third additive element is too large, the coefficient of variation of the crystal grain size becomes too large, resulting in inferior bending workability and conductivity.

比較例16〜18は、溶体化処理時に合金材料に付与する張力が大きい具体例である。
比較例18は、特許文献3の態様を代表する具体例である。結晶粒径の変動係数が30%以上となり、粒径5〜30nmの析出物の個数濃度も小さく、十分な強度を発揮させることが難しいことが分かった。
比較例17は、比較例18の条件においてさらに溶体化処理時の冷却速度を50℃/sより小さくし、特許文献2の態様を代表する具体例である。結晶粒径の変動係数が30%以上となり、十分な曲げ加工性を発揮させることが難しいことが分かった。
比較例16は、比較例17の条件においてさらに溶体化処理後の時効処理を所定の範囲よりも低い温度条件で行った、特許文献1の態様を代表する具体例である。この場合においても、結晶粒径の変動係数が30%以上となり、十分な曲げ加工性を発揮させることが難しいことが分かった。
Comparative Examples 16 to 18 are specific examples in which the tension applied to the alloy material during the solution treatment is large.
Comparative Example 18 is a specific example representing the aspect of Patent Document 3. It was found that the coefficient of variation of the crystal particle size was 30% or more, the number concentration of precipitates having a particle size of 5 to 30 nm was small, and it was difficult to exert sufficient strength.
Comparative Example 17 is a specific example representative of the aspect of Patent Document 2 in which the cooling rate during the solution treatment is further reduced to less than 50 ° C./s under the conditions of Comparative Example 18. It was found that the coefficient of variation of the crystal grain size was 30% or more, and it was difficult to exhibit sufficient bending workability.
Comparative Example 16 is a specific example representative of the aspect of Patent Document 1, in which the aging treatment after the solution treatment was further performed under the conditions of Comparative Example 17 under a temperature condition lower than a predetermined range. Even in this case, it was found that the coefficient of variation of the crystal grain size was 30% or more, and it was difficult to exhibit sufficient bending workability.

Claims (5)

3.〜4.5質量%のNi、および0.1〜1.0質量%のCoを含有し、Coに対するNiの濃度(質量%)比(Ni/Co)が3.5〜30になるように調整し、かつ、Siを(Ni+Co)/Si質量比が3〜5となるように含有し、ならびに残部がCuおよび不可避的不純物からなり、圧延方向に平行な断面において電子後方散乱回折測定を行って、方位差5°以上を結晶粒界とみなしたときの結晶粒径の変動係数が30%以下であり、粒径が5〜30nmの第二相粒子の個数の平均が、0.5×10 9 個/mm 2 以上である電子部品用Cu−Ni−Co−Si合金。 3. 3. It contains 2 to 4.5% by mass of Ni and 0.1 to 1.0% by mass of Co, so that the concentration (mass%) ratio (Ni / Co) of Ni to Co is 3.5 to 30. , And Si is contained so that the mass ratio of (Ni + Co) / Si is 3 to 5, and the balance is composed of Cu and unavoidable impurities, and electron rear scattering diffraction measurement is performed in a cross section parallel to the rolling direction. go to state, and are variation coefficient of 30% or less of the grain diameter when the above misorientation 5 ° was regarded as crystal grain boundaries, the average particle size of the number of second-phase particles of 5~30nm is 0. 5 × 10 9 pieces / mm 2 or more der Ru electronic component Cu-Ni-Co-Si alloy. 更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnの群から選ばれる少なくとも1種を総計で最大2.5質量%含有する請求項1に記載の合金。 The alloy according to claim 1, further containing at least one selected from the group of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and Mn in a total of up to 2.5% by mass. 圧延方向に平行な方向での0.2%耐力が900MPa以上であり、かつ、導電率が30%IACS以上である、請求項1又は2に記載の合金。 The alloy according to claim 1 or 2 , wherein the 0.2% proof stress in the direction parallel to the rolling direction is 900 MPa or more and the conductivity is 30% IACS or more. 曲げ半径(R)/板厚(t)=1.0としてBadway(曲げ軸が圧延方向と同一方向)でW曲げ試験したときの曲げ部表面の平均粗さRaが1.0μm以下である、請求項1〜のいずれか項に記載の合金。 The average roughness Ra of the surface of the bent portion when the W bending test is performed in Badway (the bending axis is in the same direction as the rolling direction) with the bending radius (R) / plate thickness (t) = 1.0 is 1.0 μm or less. alloy according to any one of claims 1-3. 請求項1〜のいずれか項に記載の合金を備えた電子部品。 Electronic component having an alloy according to any one of claims 1-4.
JP2019144869A 2019-08-06 2019-08-06 Cu-Ni-Co-Si alloy for electronic components Active JP6830135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019144869A JP6830135B2 (en) 2019-08-06 2019-08-06 Cu-Ni-Co-Si alloy for electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019144869A JP6830135B2 (en) 2019-08-06 2019-08-06 Cu-Ni-Co-Si alloy for electronic components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015056793A Division JP6821290B2 (en) 2015-03-19 2015-03-19 Cu-Ni-Co-Si alloy for electronic components

Publications (2)

Publication Number Publication Date
JP2019203202A JP2019203202A (en) 2019-11-28
JP6830135B2 true JP6830135B2 (en) 2021-02-17

Family

ID=68726303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144869A Active JP6830135B2 (en) 2019-08-06 2019-08-06 Cu-Ni-Co-Si alloy for electronic components

Country Status (1)

Country Link
JP (1) JP6830135B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170881B2 (en) * 2007-03-26 2013-03-27 古河電気工業株式会社 Copper alloy material for electrical and electronic equipment and method for producing the same
JP5367999B2 (en) * 2008-03-31 2013-12-11 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy for electronic materials
JP5619389B2 (en) * 2008-08-05 2014-11-05 古河電気工業株式会社 Copper alloy material
JP5961335B2 (en) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components

Also Published As

Publication number Publication date
JP2019203202A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
KR101297485B1 (en) Cu-ni-si-co-cr alloy for electronic material
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR20120130344A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
KR20120130342A (en) Cu-ni-si alloy for electronic material
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2012107297A (en) Copper alloy for electric and electronic components, and method of manufacturing the same
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2019194361A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R151 Written notification of patent or utility model registration

Ref document number: 6830135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250