JP5085908B2 - Copper alloy for electronic materials and manufacturing method thereof - Google Patents

Copper alloy for electronic materials and manufacturing method thereof Download PDF

Info

Publication number
JP5085908B2
JP5085908B2 JP2006271770A JP2006271770A JP5085908B2 JP 5085908 B2 JP5085908 B2 JP 5085908B2 JP 2006271770 A JP2006271770 A JP 2006271770A JP 2006271770 A JP2006271770 A JP 2006271770A JP 5085908 B2 JP5085908 B2 JP 5085908B2
Authority
JP
Japan
Prior art keywords
mass
conductivity
strength
copper alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006271770A
Other languages
Japanese (ja)
Other versions
JP2008088512A (en
Inventor
寛 桑垣
尚彦 江良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2006271770A priority Critical patent/JP5085908B2/en
Priority to TW096135312A priority patent/TWI415958B/en
Priority to CN2007800372036A priority patent/CN101522927B/en
Priority to KR1020097006854A priority patent/KR101127000B1/en
Priority to PCT/JP2007/069269 priority patent/WO2008041696A1/en
Publication of JP2008088512A publication Critical patent/JP2008088512A/en
Application granted granted Critical
Publication of JP5085908B2 publication Critical patent/JP5085908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

本発明は端子、コネクタ、スイッチ、リレー用途に使用される素材として好適な強度、導電率及び曲げ加工性のバランスに優れた電子材料用銅合金に関するものである。   The present invention relates to a copper alloy for electronic materials having an excellent balance of strength, conductivity and bending workability suitable as a material used for terminals, connectors, switches and relays.

Cu−Ni−Si系合金は析出型銅合金であり、Ni−Si系金属間化合物が母相中に析出することにより強度と導電率が上昇することが知られているが、CoもNiと同様に銅合金中でSiと化合物を形成し、機械強度を向上させる(特許文献1)。このCu−Co−Si系合金は、Cu−Ni−Si系合金より機械的強度、導電性ともに僅かに良くなることが知られている(特許文献2「0022」)。
一方、Cu−Cr−Si系合金では、CrはNi、Coと同様にSiと化合物を形成し、又は単体Crとして母相中に析出し、強度を上昇させると報告された(特許文献3第3頁)。
特表2005−532477号公報 特開平11−222641号公報 特開昭62−180025号公報
It is known that Cu—Ni—Si-based alloys are precipitation-type copper alloys, and Ni—Si-based intermetallic compounds are known to increase in strength and conductivity due to precipitation in the parent phase. Similarly, Si and a compound are formed in a copper alloy to improve mechanical strength (Patent Document 1). It is known that this Cu—Co—Si alloy is slightly better in mechanical strength and conductivity than the Cu—Ni—Si alloy (Patent Document 2 “0022”).
On the other hand, in the Cu—Cr—Si based alloy, it is reported that Cr forms a compound with Si similarly to Ni and Co, or precipitates as a single Cr in the parent phase to increase the strength (Patent Document 3 No. 3). Page 3).
JP 2005-532477 A Japanese Patent Application Laid-Open No. 11-222641 JP 62-180025 A

しかし、上記Cu−Co−Si系合金は溶体化処理するための温度(Co、Siの固溶する温度)が高くなるため、完全に溶体化処理をするのは困難であり、所望の特性を得ることができない(特許文献1)。従って、従来Coに完全に置き換える例は少なかった。
一方、上記Cu−Cr−Si系合金では、Crは強度に寄与しないカーバイド化合物(Cr−C)を形成しやすく所望の強度を安定して得難い。又、強度に寄与しない粗大なCr系の化合物が形成されても、所望の特性を得ることができない。更にCr−Cが形成されるとSiと結合するCrが低減するため、Crと結合できなかったSiが母相中に過剰に固溶し導電率を顕著に低下させるという欠点があった。
However, since the temperature for solution treatment (the temperature at which Co and Si are dissolved) increases in the Cu-Co-Si alloy, it is difficult to completely perform solution treatment, and the desired characteristics are obtained. It cannot be obtained (Patent Document 1). Therefore, there have been few examples of completely replacing with conventional Co.
On the other hand, in the Cu—Cr—Si based alloy, Cr easily forms a carbide compound (Cr—C) that does not contribute to strength, and it is difficult to stably obtain desired strength. Further, even if a coarse Cr-based compound that does not contribute to strength is formed, desired characteristics cannot be obtained. Furthermore, when Cr—C is formed, Cr bonded to Si is reduced, so that Si that could not be bonded to Cr is excessively dissolved in the matrix phase and the conductivity is remarkably lowered.

本発明は、下記構成を採用することにより、従来に比べて強度及び電気伝導性に優れた電子材料用銅合金を達成した。
(1)Co:1.00〜2.50質量%、Si:0.20〜0.70質量%を含有し、残部Cu及び不可避的不純物から構成され、CoとSiの質量濃度比(Co/Si比)が3.5≦Co/Si≦5であり、導電率が55%IACS以上であることを特徴とする電子材料用銅合金。
(2)Co:1.00〜2.50質量%、Cr:0.05〜0.50質量%、Si:0.20〜0.70質量%を含有し、残部Cu及び不可避的不純物から構成され、CoとSiの質量濃度比(Co/Si比)が3.5≦Co/Si≦5であり、導電率が60%IACS以上であることを特徴とする電子材料用銅合金。
(3)Co:1.00〜2.50質量%、Cr:0.05〜0.50質量%、Si:0.20〜0.70質量%を含有し、更に不可避的不純物たる炭素が50ppm以下であり、残部Cu及び不可避的不純物から構成され、CoとSiの質量濃度比(Co/Si比)が3.5≦Co/Si≦5であり、導電率が60%IACS以上であることを特徴とする電子材料用銅合金。
(4)更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの群から選ばれる少なくとも1種を0.001〜0.300質量%含有することを特徴とする上記記載の電子材料用銅合金。
(5)溶解鋳造した後に熱間圧延と冷間圧延を行い、最終冷間圧延前に700℃〜1050℃に加熱後毎秒10℃以上で冷却する熱処理を行うことを特徴とする、上記に記載の電子材料用銅合金の製造方法。
The present invention achieves a copper alloy for electronic materials that is superior in strength and electrical conductivity by adopting the following configuration.
(1) Co: 1.00-2.50% by mass, Si: 0.20-0.70% by mass, composed of the balance Cu and unavoidable impurities, and the mass concentration ratio of Co and Si (Co / A copper alloy for electronic materials, wherein the Si ratio) is 3.5 ≦ Co / Si ≦ 5 and the electrical conductivity is 55% IACS or more.
(2) Co: 1.00-2.50% by mass, Cr: 0.05-0.50% by mass, Si: 0.20-0.70% by mass, comprising the remainder Cu and inevitable impurities A copper alloy for electronic materials, wherein the mass concentration ratio of Co and Si (Co / Si ratio) is 3.5 ≦ Co / Si ≦ 5 and the electrical conductivity is 60% IACS or more.
(3) Co: 1.00-2.50% by mass, Cr: 0.05-0.50% by mass, Si: 0.20-0.70% by mass, and carbon as an inevitable impurity is 50 ppm. It is composed of the remainder Cu and inevitable impurities, the mass concentration ratio of Co and Si (Co / Si ratio) is 3.5 ≦ Co / Si ≦ 5, and the conductivity is 60% IACS or more. A copper alloy for electronic materials.
(4) Further, 0.001 to 0.300% by mass of at least one selected from the group consisting of Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag. The copper alloy for electronic materials as described in the above item.
(5) The hot-rolling and the cold-rolling are performed after the melt casting, and the heat treatment is performed at 700 ° C. to 1050 ° C. before the final cold rolling, followed by cooling at 10 ° C. or more per second. Of producing a copper alloy for electronic materials.

Co及びSi添加量:
CoはSiと金属間化合物を形成する。Cu−Co−Si系銅合金はCu−Ni−Si系銅合金に比べて、強度を維持しつつ高導電化が図れる。Co及びSiの添加量がCo:1.00質量%未満及び/又はSi:0.20質量%未満では所望の強度が得られず、Co:2.50質量%を超え及び/又はSi:0.70質量%を超える場合は高強度化は図れるが導電率が著しく低下し、更に熱間加工性が劣化する。よってCo及びSiの添加量はCo:1.00〜2.50質量%、Si:0.20〜0.70質量%とした。好ましくはCo:1.50〜2.20質量%、Si:0.35〜0.50質量%である。
Co and Si addition amount:
Co forms an intermetallic compound with Si. The Cu—Co—Si based copper alloy can achieve higher conductivity while maintaining the strength as compared with the Cu—Ni—Si based copper alloy. If the addition amount of Co and Si is less than Co: 1.00% by mass and / or Si: less than 0.20% by mass, a desired strength cannot be obtained, and Co exceeds 2.50% by mass and / or Si: 0. When it exceeds 70 mass%, the strength can be increased, but the electrical conductivity is remarkably lowered, and the hot workability is further deteriorated. Therefore, the addition amounts of Co and Si were set to Co: 1.00 to 2.50 mass% and Si: 0.20 to 0.70 mass%. Preferably, they are Co: 1.50-2.20 mass%, Si: 0.35-0.50 mass%.

Co/Si比:
合金中のCoとSiの重量比を金属間化合物であるCo2Siの濃度に近づけることにより更に特性の改善を図れる。重量濃度比がCo/Si<3.5の場合には、Si濃度が高いため導電率が低下する。一方Co/Si>5の場合には、Co濃度が高いため導電率が著しく低下し、電子材料用として好ましくない。好ましくは4.0<Co/Si<4.5である。
Co / Si ratio:
The characteristics can be further improved by bringing the weight ratio of Co and Si in the alloy closer to the concentration of Co 2 Si which is an intermetallic compound. When the weight concentration ratio is Co / Si <3.5, the conductivity is lowered because the Si concentration is high. On the other hand, in the case of Co / Si> 5, since the Co concentration is high, the conductivity is remarkably lowered, which is not preferable for an electronic material. Preferably 4.0 <Co / Si <4.5.

導電率(EC):
本発明の合金は、高導電性、中強度を必要とする車載用及び通信機用等の端子、コネクタ、スイッチ、リレーの材料として利用するため、導電率は55%IACS以上、好ましくは60%IACS以上、更に好ましくは62%IACS以上である。導電率は、JIS H 0505に準拠して測定し、%IACSで表示した値である。導電率が55%IACS未満であると、本発明の目的とする電子材料用合金の用途に適切でない。本発明の導電率を有する銅合金は、下記の製造方法で製造できる。
Conductivity (EC):
Since the alloy of the present invention is used as a material for terminals, connectors, switches, and relays for vehicles and communication devices that require high conductivity and medium strength, the conductivity is 55% IACS or more, preferably 60%. IACS or more, more preferably 62% IACS or more. The conductivity is a value measured in accordance with JIS H 0505 and expressed in% IACS. If the electrical conductivity is less than 55% IACS, it is not suitable for the use of the alloy for electronic materials which is the object of the present invention. The copper alloy having conductivity according to the present invention can be manufactured by the following manufacturing method.

Cr添加量:
Crは、Coと結合しなかった固溶Siと結合して母相中にCr−Si系化合物として析出する。その結果、母相の銅純度が増加して導電率が更に上昇する。又、Cr−Si系化合物の析出硬化で、強度も上昇する。0.05質量%未満では効果が小さく、0.50質量%を超えるとCr−Si系又はCr単体で析出しなかった固溶Crが増加するため導電率が顕著に低下し、1000℃でCu中に固溶するCr量は約0.50質量%なので、固溶しなかったCrにより曲げ加工性に悪影響を及ぼす。よってCr添加量を0.05〜0.50質量%とした。好ましくは0.10〜0.30質量%である。
Cr addition amount:
Cr binds to solute Si that has not been bonded to Co and precipitates as a Cr—Si compound in the parent phase. As a result, the copper purity of the parent phase increases and the conductivity further increases. In addition, the strength increases due to precipitation hardening of the Cr-Si compound. If the amount is less than 0.05% by mass, the effect is small, and if it exceeds 0.50% by mass, the solid solution Cr that does not precipitate in the Cr—Si system or Cr alone increases, so that the conductivity is remarkably reduced. Since the amount of Cr dissolved in the solution is about 0.50% by mass, the Cr not solid-dissolved adversely affects the bending workability. Therefore, the Cr addition amount is set to 0.05 to 0.50 mass%. Preferably it is 0.10-0.30 mass%.

含有炭素量:
Crは炭素が存在すると強度に寄与しないCr−Cを形成しやすい。合金中の含有炭素が50ppmを超えると所望の強度が得られない。更に、Cr−Cが形成されるとSiと結合するCrが低減するため、Crと結合できなかったSiが母相中に過剰に固溶し導電率を顕著に低下させる。よって含有炭素量は好ましくは50ppm以下、更に好ましくは30ppm以下である。炭素の制御方法は、例えば溶解鋳造前に原材料中に炭素分が混入しないように脱脂を行うこと、真空や不活性雰囲気(例えばAr)下で溶解鋳造を行うこと、溶解鋳造の際に木炭被覆を採用せず、炭素含有部材を含む設備を使用しないこと等が挙げられる。
Carbon content:
Cr tends to form Cr—C that does not contribute to strength when carbon is present. If the carbon content in the alloy exceeds 50 ppm, the desired strength cannot be obtained. Furthermore, when Cr—C is formed, Cr that is bonded to Si is reduced. Therefore, Si that cannot be bonded to Cr is excessively dissolved in the matrix and the conductivity is significantly reduced. Therefore, the carbon content is preferably 50 ppm or less, more preferably 30 ppm or less. Carbon control methods include, for example, degreasing so as not to mix carbon in the raw material before melt casting, melt casting under vacuum or inert atmosphere (eg Ar), and charcoal coating during melt casting And not using equipment including carbon-containing members.

Mg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの少なくとも1種の添加は、化合物を形成しないため固溶強化効果を補強し、特性を改善する効果がある。上記元素の添加量は0.001質量%未満では添加効果がなく、0.300質量%を超えると導電率が低下する。従って、添加量は0.001〜0.300質量%、好ましくは0.01〜0.10質量%である。
本発明の合金は、高導電性、中強度を必要とする車載用及び通信機用等の端子、コネクタ、スイッチ、リレーの材料として利用するため、引張強さの降伏強度(YS:Yield strength)は好ましくは650MPa以上、更に好ましくは670MPa以上である。
Addition of at least one of Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag reinforces the solid solution strengthening effect because it does not form a compound, and has characteristics. There is an effect to improve. If the addition amount of the above elements is less than 0.001% by mass, there is no effect of addition, and if it exceeds 0.300% by mass, the conductivity decreases. Therefore, the addition amount is 0.001 to 0.300 mass%, preferably 0.01 to 0.10 mass%.
The alloy of the present invention is used as a material for terminals, connectors, switches, and relays for in-vehicle and communication devices that require high conductivity and medium strength, and therefore yield strength (YS: Yield strength). Is preferably 650 MPa or more, more preferably 670 MPa or more.

製造方法:
Cu−Co−Si系合金はCu−Ni−Si系合金に比べて溶体化温度が高いため溶体化をするのは困難である。即ち、Co及びSi添加量(Co添加量とSi添加量の総量)が2.0質量%未満だと完全な溶体化処理は1000℃以下でできるが、Co及びSi添加量が2.0質量%以上だと完全に溶体化処理をするためには1000℃以上必要であり、更に2.5質量%以上だと1050℃以上となる。この温度は融点近傍であり、溶体化処理中に溶解してしまう恐れがあるため、2.5質量%以上のCo及びSi添加量を銅中に固溶させるのは困難である。しかし、溶体化処理が不完全な場合、強度は低下するが導電率は向上する。そこで本発明の銅合金を製造するためには、Co及びSi添加量が2.5質量%以上の場合でも、完全に溶体化する温度よりも低い温度に加熱後、比較的急速に冷却すると高い導電率を得ることができる。その場合、所望の強度はCo及びSi添加量を高くすることにより確保でき、本発明の導電率及び強度の特性バランスのとれた銅合金が製造できる。
溶体化温度700℃未満では、溶体化処理が不充分すぎるため、所望の強度を得ることができず、1050℃を超えると完全に溶解する恐れがある。よって、溶体化温度は700〜1050℃であり、好ましくはCo及びSi添加量が1.20質量%以上2.00質量%未満の場合に800〜900℃、2.00質量%以上2.50質量%未満の場合に.900〜1000℃、2.50質量%以上3.20質量%未満の場合に1000〜1050℃である。
溶体化処理後の冷却速度が毎秒10℃未満だと、強度に寄与しない粗大なCr系化合物が析出するため、強度が低下する。よって、加熱後の冷却速度は毎秒10℃以上、好ましくは毎秒20℃以上必要である。
上記溶体化処理は、最終冷間圧延前に行われれば本発明の効果を達成することができ、上記溶体化処理の前又は後に冷間圧延や時効処理を行ってもよい。
Production method:
A Cu—Co—Si based alloy has a higher solution temperature than that of a Cu—Ni—Si based alloy, so it is difficult to form a solution. That is, when the amount of Co and Si added (the total amount of Co added and Si added) is less than 2.0% by mass, complete solution treatment can be performed at 1000 ° C. or less, but the amount of Co and Si added is 2.0% by mass. If it is at least%, it requires 1000 ° C. or more for complete solution treatment, and if it is at least 2.5% by mass, it will be 1050 ° C. or more. Since this temperature is close to the melting point and may be dissolved during the solution treatment, it is difficult to make a solid solution of Co and Si addition amounts of 2.5 mass% or more in copper. However, when the solution treatment is incomplete, the strength is reduced but the conductivity is improved. Therefore, in order to produce the copper alloy of the present invention, even when the amount of Co and Si added is 2.5% by mass or more, it is high when heated to a temperature lower than the temperature at which it completely dissolves and then cooled relatively quickly. Conductivity can be obtained. In that case, the desired strength can be ensured by increasing the amount of Co and Si added, and the copper alloy having a good balance between the electrical conductivity and strength of the present invention can be produced.
If the solution temperature is less than 700 ° C., the solution treatment is insufficient, so that the desired strength cannot be obtained, and if it exceeds 1050 ° C., there is a possibility that the solution is completely dissolved. Therefore, the solution temperature is 700 to 1050 ° C., preferably 800 to 900 ° C. and 2.00% to 2.50% when the addition amount of Co and Si is 1.20% by mass or more and less than 2.00% by mass. If less than% by mass. In the case of 900-1000 degreeC and 2.50 mass% or more and less than 3.20 mass%, it is 1000-1050 degreeC.
If the cooling rate after the solution treatment is less than 10 ° C. per second, a coarse Cr-based compound that does not contribute to the strength is precipitated, so that the strength is lowered. Therefore, the cooling rate after heating needs to be 10 ° C. or more per second, preferably 20 ° C. or more per second.
The effect of the present invention can be achieved if the solution treatment is performed before the final cold rolling, and cold rolling or aging treatment may be performed before or after the solution treatment.

以下、本実施例に係る条件を示すが、本発明の実施形態は、本発明の作用効果を奏する限り、下記に限定されない。
試料の製造:
高周波溶解炉にて真空中又はアルゴン雰囲気中で内径110mm、深さ230mmのアルミナ又はマグネシア製るつぼ中で電気銅或いは無酸素銅2.50kgを溶解した。表1又は2の組成に応じCo、Cr、Si、Mg、Sn、Ag、Znを添加し、溶銅温度を1300℃に調整した後、溶湯を鋳型(材質:鋳鉄)を使用して30×60×120mmのインゴットに鋳造した。熱間圧延、酸化スケールの研削除去、熱間圧延、冷間圧延、次に700℃〜1050℃に加熱後毎秒20℃で冷却する溶体化熱処理を行い、更に加工度10〜60%の冷間圧延と250℃〜550℃での熱処理とを繰り返して、厚さ0.10mmの平板とした。得られた板材各種の試験片を採取して物性評価試験を行った。
試験片の物性評価:
強度は、引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS Z 2241規定の引張試験により試験片を用いて行い、引張強さの降伏強度(単位MPa)を測定した。
導電率は、JIS H 0505に準拠して4端子法を用いて測定し、%IACSで表示した。
曲げ加工性は、幅10mmの短冊形試料を用い、JISH3110規定のW曲げ試験を実施した。曲げ方向はGood Way及びBad Wayとし、(曲げ半径R/板厚t=1.0)とした。
曲げ後の試料につき、曲げ部の表面及び断面から、割れの有無を光学顕微鏡で観察し、Good Way及びBad Wayともに割れが発生しなかった場合を○、Good Way及びBad Wayの両方又は片方で割れが発生した場合を×と評価した。
Hereinafter, although the conditions according to the present example will be described, the embodiment of the present invention is not limited to the following as long as the effects of the present invention are exhibited.
Sample manufacture:
In a high frequency melting furnace, 2.50 kg of electrolytic copper or oxygen-free copper was dissolved in an alumina or magnesia crucible having an inner diameter of 110 mm and a depth of 230 mm in a vacuum or argon atmosphere. Co, Cr, Si, Mg, Sn, Ag, Zn is added according to the composition of Table 1 or 2, the molten copper temperature is adjusted to 1300 ° C., and then the molten metal is cast using a mold (material: cast iron) 30 × Cast into a 60 × 120 mm ingot. Hot rolling, grinding removal of oxide scale, hot rolling, cold rolling, followed by solution heat treatment that is heated to 700 ° C. to 1050 ° C. and then cooled at 20 ° C. per second, and further cold processed with a working degree of 10 to 60% Rolling and heat treatment at 250 ° C. to 550 ° C. were repeated to form a flat plate having a thickness of 0.10 mm. Various test pieces of the obtained plate material were collected and subjected to physical property evaluation tests.
Physical property evaluation of test piece:
As for the strength, a JIS 13B test piece was prepared using a press so that the tensile direction was parallel to the rolling direction. A tensile test according to JIS Z 2241 was conducted using the test piece, and the yield strength (unit: MPa) of the tensile strength was measured.
The conductivity was measured using a four-terminal method in accordance with JIS H 0505 and displayed in% IACS.
For the bending workability, a strip-shaped sample having a width of 10 mm was used, and a W bending test specified by JISH3110 was performed. The bending direction was set to Good Way and Bad Way (bending radius R / plate thickness t = 1.0).
With respect to the sample after bending, from the surface and cross section of the bent portion, the presence or absence of cracks was observed with an optical microscope, and when no cracks occurred on Good Way and Bad Way, ○, Good Way and Bad Way both or one side The case where cracking occurred was evaluated as x.

本発明の実施例を、比較例とともに表1〜3で説明する。尚、表中の「−」は添加無しを表す。
表1はCu−Co−Si系合金の結果を表し、実施例1〜10の合金は、いずれも優れた強度、導電率(55%IACS以上)及び曲げ加工性を具備していた。
比較例11及び12は、Co及びSi量がそれぞれ本発明の下限未満又は上限を超えるため、強度(YS)が低いか導電率が低く曲げ加工性に劣る。比較例13及び14は、Co/Si比がそれぞれ本発明の下限未満又は上限を超えるため導電率が低い。比較例15は、Co量及びCo/Si比がそれぞれ本発明の下限未満であるため強度が低い。比較例16は、Co量が本発明の上限を超えるため導電率が低い。比較例17は、Si量が本発明の下限未満でありCo/Si比が本発明の上限を超えるため導電率が低い。比較例18は、Si量が本発明の上限を超えCo/Si比が本発明の下限未満であるため導電率が低い。比較例19及び20は、Mg等の第三金属量がそれぞれ本発明の上限を超えるため導電率が低く、曲げ加工性に劣る場合もある。
比較例21〜31は、溶体化処理において十分に固溶する条件で行ったため、導電率が低く本発明の範囲外である。
Examples of the present invention will be described in Tables 1 to 3 together with Comparative Examples. In addition, "-" in a table | surface represents no addition.
Table 1 shows the results of Cu—Co—Si alloys, and the alloys of Examples 1 to 10 all had excellent strength, conductivity (55% IACS or more), and bending workability.
In Comparative Examples 11 and 12, since the amounts of Co and Si are less than the lower limit or the upper limit of the present invention, respectively, the strength (YS) is low or the conductivity is low and the bending workability is poor. Comparative Examples 13 and 14 have low conductivity because the Co / Si ratio is less than the lower limit or exceeds the upper limit of the present invention, respectively. Comparative Example 15 has low strength because the Co amount and the Co / Si ratio are less than the lower limit of the present invention, respectively. In Comparative Example 16, the electrical conductivity is low because the amount of Co exceeds the upper limit of the present invention. In Comparative Example 17, the Si amount is less than the lower limit of the present invention, and the Co / Si ratio exceeds the upper limit of the present invention, so the conductivity is low. In Comparative Example 18, since the Si amount exceeds the upper limit of the present invention and the Co / Si ratio is less than the lower limit of the present invention, the conductivity is low. In Comparative Examples 19 and 20, since the amount of the third metal such as Mg exceeds the upper limit of the present invention, the electrical conductivity is low and the bending workability may be inferior.
Since Comparative Examples 21 to 31 were performed under the condition that they were sufficiently dissolved in the solution treatment, the electrical conductivity was low and outside the scope of the present invention.

表2はCu−Co−Cr−Si系合金の結果を表し、実施例32〜45の合金は、いずれも優れた強度、導電率(60%IACS以上)及び曲げ加工性を具備していた。
参考例46及び47は、実施例1、2に対応し、Crが添加されていないので実施例32〜45と比較すると導電率が低い。
比較例48は、Co及びSi量がそれぞれ本発明の下限未満であるため、強度が低い。比較例49は、Co及びSi量が本発明の上限を超えるため、導電率が低く曲げ加工性に劣る。比較例50及び51は、Co/Si比がそれぞれ本発明の下限未満又は上限を超えるため導電率が低い。比較例52及び53は、Cr量がそれぞれ本発明の下限未満又は上限を超えるため導電率が低く、上限を超えると曲げ加工性にも劣る。比較例54は、Co量、Cr量及びCo/Si比が本発明の下限未満であるため強度に劣る。比較例55は、Co量及びCr量が本発明の上限を超えるため導電率が低く、曲げ加工性に劣る。比較例56は、Cr量及びSi量がそれぞれ本発明の下限未満でCo/Si比が本発明の上限を超えるため、導電率が低い。比較例57は、Cr量及びSi量がそれぞれ本発明の上限を超え、Co/Si比が本発明の下限未満であるため、導電率が低く曲げ加工性に劣る。比較例58は、Co、Cr及びSi量がそれぞれ本発明の下限未満であり、強度に劣る。比較例59は、Co、Cr及びSi量がそれぞれ本発明の上限を超え、導電率が低く曲げ加工性に劣る。比較例60及び61は、C量が本発明の上限を超え、導電率が低く曲げ加工性に劣り、強度に劣る場合もある。比較例62及び63は、Mg等の第三金属量がそれぞれ本発明の上限を超えるため、導電率が低く、曲げ加工性に劣る場合もある。
比較例64〜76は、溶体化処理において十分に固溶する条件で行ったため、導電率が低く本発明の範囲外である。
Table 2 shows the results of the Cu—Co—Cr—Si based alloy, and the alloys of Examples 32 to 45 all had excellent strength, electrical conductivity (60% IACS or more), and bending workability.
Reference Examples 46 and 47 correspond to Examples 1 and 2, and since Cr is not added, the conductivity is low as compared with Examples 32-45.
In Comparative Example 48, the amounts of Co and Si are less than the lower limit of the present invention, respectively, so the strength is low. In Comparative Example 49, the amounts of Co and Si exceed the upper limit of the present invention, so the conductivity is low and the bending workability is poor. Comparative Examples 50 and 51 have low electrical conductivity because the Co / Si ratio is less than the lower limit or exceeds the upper limit of the present invention. In Comparative Examples 52 and 53, since the Cr amount is less than the lower limit or the upper limit of the present invention, the conductivity is low, and when the upper limit is exceeded, the bending workability is also inferior. Comparative Example 54 is inferior in strength because the Co amount, Cr amount, and Co / Si ratio are less than the lower limit of the present invention. In Comparative Example 55, the Co amount and the Cr amount exceed the upper limit of the present invention, so the conductivity is low and the bending workability is poor. In Comparative Example 56, since the Cr amount and the Si amount are less than the lower limit of the present invention and the Co / Si ratio exceeds the upper limit of the present invention, the electrical conductivity is low. In Comparative Example 57, the amount of Cr and the amount of Si each exceed the upper limit of the present invention, and the Co / Si ratio is less than the lower limit of the present invention, so the conductivity is low and the bending workability is poor. In Comparative Example 58, the amounts of Co, Cr, and Si are less than the lower limit of the present invention, respectively, and are inferior in strength. In Comparative Example 59, the amounts of Co, Cr, and Si each exceed the upper limit of the present invention, and the electrical conductivity is low and the bending workability is poor. In Comparative Examples 60 and 61, the C amount exceeds the upper limit of the present invention, the electrical conductivity is low, the bending workability is inferior, and the strength may be inferior. In Comparative Examples 62 and 63, since the amount of the third metal such as Mg exceeds the upper limit of the present invention, the electrical conductivity is low and the bending workability may be inferior.
Since Comparative Examples 64-76 were performed on the conditions which fully dissolve in solution treatment, electrical conductivity is low and it is outside the range of the present invention.

表3は実施例32〜34の溶体化処理後の冷却速度を変化させた結果を示す。実施例32'、33'及び34'は冷却速度が毎秒10℃未満であるため、溶体化処理後の導電率が上昇し、冷間圧延及び熱処理の繰り返し後に得られる平板の導電率も上昇するが強度は低下する。実施例32、32''、33、33''、34及び34''は冷却速度が毎秒10℃以上であるため、いずれの実施例結果も強度、導電率(60%IACS以上)及び曲げ加工性のバランスに優れたものであった。従って、溶体化処理後の冷却速度は毎秒10℃以上が好ましい。   Table 3 shows the results of changing the cooling rate after the solution treatment of Examples 32-34. In Examples 32 ′, 33 ′, and 34 ′, the cooling rate is less than 10 ° C. per second, so the conductivity after the solution treatment increases, and the conductivity of the flat plate obtained after repeated cold rolling and heat treatment also increases. However, the strength decreases. Since Examples 32, 32 ″, 33, 33 ″, 34 and 34 ″ have a cooling rate of 10 ° C. or more per second, the results of all Examples are strength, conductivity (60% IACS or more) and bending. Excellent balance of sex. Accordingly, the cooling rate after the solution treatment is preferably 10 ° C. or more per second.

Figure 0005085908
Figure 0005085908

Figure 0005085908
Figure 0005085908

Figure 0005085908
Figure 0005085908

Claims (5)

Co:1.0〜2.50質量%、Si:0.20〜0.70質量%を含有し、残部Cu及び不可避的不純物から構成され、CoとSiの質量濃度比(Co/Si比)が3.5≦Co/Si≦5であり、導電率が55%IACS以上であることを特徴とする電子材料用銅合金。 Co: 1. It contains 80 to 2.50 mass%, Si: 0.20 to 0.70 mass%, is composed of the balance Cu and inevitable impurities, and the mass concentration ratio of Co and Si (Co / Si ratio) is 3. 5. Copper alloy for electronic materials, wherein 5 ≦ Co / Si ≦ 5 and conductivity is 55% IACS or more. Co:1.0〜2.50質量%、Cr:0.05〜0.50質量%、Si:0.20〜0.70質量%を含有し、残部Cu及び不可避的不純物から構成され、CoとSiの質量濃度比(Co/Si比)が3.5≦Co/Si≦5であり、導電率が60%IACS以上であることを特徴とする電子材料用銅合金。 Co: 1. 80 to 2.50% by mass, Cr: 0.05 to 0.50% by mass, Si: 0.20 to 0.70% by mass, composed of the balance Cu and unavoidable impurities, Co and Si A copper alloy for electronic materials, characterized in that the mass concentration ratio (Co / Si ratio) is 3.5 ≦ Co / Si ≦ 5 and the electrical conductivity is 60% IACS or more. Co:1.0〜2.50質量%、Cr:0.05〜0.50質量%、Si:0.20〜0.70質量%を含有し、更に不可避的不純物たる炭素が50ppm以下であり、残部Cu及び不可避的不純物から構成され、CoとSiの質量濃度比(Co/Si比)が3.5≦Co/Si≦5であり、導電率が60%IACS以上であることを特徴とする電子材料用銅合金。 Co: 1. 80 to 2.50% by mass, Cr: 0.05 to 0.50% by mass, Si: 0.20 to 0.70% by mass, carbon as an inevitable impurity is 50 ppm or less, and the balance Cu And an inevitable impurity, wherein the mass concentration ratio of Co and Si (Co / Si ratio) is 3.5 ≦ Co / Si ≦ 5 and the electrical conductivity is 60% IACS or more Copper alloy. 更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの群から選ばれる少なくとも1種を0.001〜0.300質量%含有することを特徴とする請求項1〜3の何れかに記載の電子材料用銅合金。 Furthermore, it contains 0.001 to 0.300 mass% of at least one selected from the group of Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag. The copper alloy for electronic materials according to any one of claims 1 to 3. 溶解鋳造した後に熱間圧延と冷間圧延を行い、最終冷間圧延前に900〜1050℃に加熱後毎秒10℃以上で冷却する熱処理を行うことを特徴とする、請求項1〜4の何れかに記載の電子材料用銅合金の製造方法。 Perform hot rolling and cold rolling after melting and casting, and performing heat treatment to cool the heating after every second 10 ° C. or higher before the final cold rolling to 900 to 1050 ° C., either of claims 1 to 4 method for producing a copper alloy for electronic materials according to any.
JP2006271770A 2006-10-03 2006-10-03 Copper alloy for electronic materials and manufacturing method thereof Active JP5085908B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006271770A JP5085908B2 (en) 2006-10-03 2006-10-03 Copper alloy for electronic materials and manufacturing method thereof
TW096135312A TWI415958B (en) 2006-10-03 2007-09-21 Copper alloy for electronic material and method for manufacturing the same
CN2007800372036A CN101522927B (en) 2006-10-03 2007-10-02 Method for production of copper alloy for electronic material
KR1020097006854A KR101127000B1 (en) 2006-10-03 2007-10-02 Copper alloy for electronic material and method for the same
PCT/JP2007/069269 WO2008041696A1 (en) 2006-10-03 2007-10-02 Method for production of copper alloy for electronic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271770A JP5085908B2 (en) 2006-10-03 2006-10-03 Copper alloy for electronic materials and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008088512A JP2008088512A (en) 2008-04-17
JP5085908B2 true JP5085908B2 (en) 2012-11-28

Family

ID=39268550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271770A Active JP5085908B2 (en) 2006-10-03 2006-10-03 Copper alloy for electronic materials and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP5085908B2 (en)
KR (1) KR101127000B1 (en)
CN (1) CN101522927B (en)
TW (1) TWI415958B (en)
WO (1) WO2008041696A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006405B2 (en) * 2007-11-01 2012-08-22 古河電気工業株式会社 Conductor wire for electronic equipment and wiring wire using the same
WO2009116649A1 (en) * 2008-03-21 2009-09-24 古河電気工業株式会社 Copper alloy material for electric and electronic components
WO2010013790A1 (en) 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP5619389B2 (en) * 2008-08-05 2014-11-05 古河電気工業株式会社 Copper alloy material
WO2010016429A1 (en) 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
KR20110039372A (en) * 2008-08-05 2011-04-15 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for electrical/electronic component
JP4708485B2 (en) * 2009-03-31 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5619391B2 (en) * 2009-08-12 2014-11-05 古河電気工業株式会社 Copper alloy material and method for producing the same
CN102639732B (en) * 2009-12-02 2017-08-04 古河电气工业株式会社 copper alloy plate
JP4620173B1 (en) * 2010-03-30 2011-01-26 Jx日鉱日石金属株式会社 Cu-Co-Si alloy material
JP4830035B2 (en) 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
JP4708497B1 (en) * 2010-06-03 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si alloy plate and method for producing the same
JP2012144789A (en) * 2011-01-13 2012-08-02 Jx Nippon Mining & Metals Corp Cu-Co-Si-Zr ALLOY MATERIAL
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
JP5451674B2 (en) * 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP6077755B2 (en) * 2012-03-30 2017-02-08 Jx金属株式会社 Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
CN105400984A (en) * 2015-11-13 2016-03-16 太仓荣中机电科技有限公司 Electronic alloy material with balanced performance
JP6600401B1 (en) * 2018-10-11 2019-10-30 三芳合金工業株式会社 Method for producing age-hardening type copper alloy
KR102005332B1 (en) * 2019-04-09 2019-10-01 주식회사 풍산 Method for manufacturing Cu-Co-Si-Fe-P alloy having Excellent Bending Formability
JP7215735B2 (en) * 2019-10-03 2023-01-31 三芳合金工業株式会社 Age-hardenable copper alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260435A (en) * 1979-07-02 1981-04-07 Ampco-Pittsburgh Corporation Copper-nickel-silicon-chromium alloy having improved electrical conductivity
JP2514926B2 (en) * 1986-02-04 1996-07-10 古河電気工業株式会社 Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
KR950004935B1 (en) * 1986-09-30 1995-05-16 후루까와 덴끼 고교 가부시끼가이샤 Copper alloy for electronic instruments
JPS63307232A (en) * 1987-06-04 1988-12-14 Sumitomo Metal Mining Co Ltd Copper alloy
JPH02277735A (en) * 1989-04-20 1990-11-14 Sumitomo Metal Mining Co Ltd Copper alloy for lead frame

Also Published As

Publication number Publication date
JP2008088512A (en) 2008-04-17
TW200823303A (en) 2008-06-01
CN101522927A (en) 2009-09-02
TWI415958B (en) 2013-11-21
CN101522927B (en) 2011-01-12
KR20090050101A (en) 2009-05-19
WO2008041696A1 (en) 2008-04-10
KR101127000B1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP3999676B2 (en) Copper-based alloy and method for producing the same
TWI502086B (en) Copper alloy sheet and method for producing same
CN102630251B (en) There is copper alloy plate and its manufacture method of low Young&#39;s modulus
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
TWI465591B (en) Cu-Ni-Si alloy and its manufacturing method
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP2007126739A (en) Copper alloy for electronic material
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
JP2021523977A (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
WO2012133651A1 (en) Copper alloy and method for producing copper alloy
CN111212923B (en) Casting die material and copper alloy material
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4130593B2 (en) High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics
CN112567058B (en) Method for producing copper alloy sheet having excellent strength and conductivity, and copper alloy sheet produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5085908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250