TW200823303A - Method for production of copper alloy for electronic material - Google Patents

Method for production of copper alloy for electronic material Download PDF

Info

Publication number
TW200823303A
TW200823303A TW096135312A TW96135312A TW200823303A TW 200823303 A TW200823303 A TW 200823303A TW 096135312 A TW096135312 A TW 096135312A TW 96135312 A TW96135312 A TW 96135312A TW 200823303 A TW200823303 A TW 200823303A
Authority
TW
Taiwan
Prior art keywords
mass
copper alloy
alloy
conductivity
strength
Prior art date
Application number
TW096135312A
Other languages
Chinese (zh)
Other versions
TWI415958B (en
Inventor
Hiroshi Kuwagaki
Naohiko Era
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW200823303A publication Critical patent/TW200823303A/en
Application granted granted Critical
Publication of TWI415958B publication Critical patent/TWI415958B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Disclosed is a copper alloy for an electronic material, which has a satisfactory balance among strength, electric conductivity and bending workability to be used as a material for a terminal, a connector, a switch or a relay. Specifically disclosed is a copper alloy for an electronic material, which comprises 1.00 to 2.50 mass% of Co and 0.20 to 0.70 mass% of Si, with the remainder being Cu and unavoidable impurities, and which has a mass-based concentration ratio between Co and Si (a Co/Si ratio) satisfying the following formula: 3.5 ≤ Co/Si ≤ 5 and an electric conductivity of 55% IACS or greater, preferably 60% IACS or greater. Preferably, the copper alloy may contain Cr in an amount of 0.05 to 0.50 mass%, have a content of carbon (an unavoidable impurity) of 50 ppm or less, and further contain at least one element selected form Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn and Ag in an amount of 0.001 to 0.300 mass%. Also disclosed is a method for producing the alloy, which comprises the steps of conducting melting/casting and subsequently conducting hot rolling and cold rolling, wherein a thermal treatment for heating to 700 to 1050 DEG C and then cooling at a rate of 10 DEG C/sec. Is conducted prior to the final cold rolling procedure.

Description

200823303 九、發明說明: 【發明所屬之技術領域】 本發明係關種電子材料用銅合金,其作為於端子、 連接器、開關、繼電器用途所使用之素材時具有較佳強度、 在導電率及彎曲加工性平衡優異。 【先前技術】200823303 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a copper alloy for electronic materials, which has better strength and electrical conductivity as materials used for terminals, connectors, switches, and relay applications. Excellent bending workability balance. [Prior Art]

已知,Cu-Ni-Si系合金為析出型銅合金因母相中析 出:Nh-Si系、金屬間化合物而強度及導電率上升,而亦與 曰曰相同於銅口金中與Sl形成化合物,使機械強度得以 ,汁(專利文獻1)。目前已知該Cu_c〇-Si系合金之機械強 =、導電性均略優於Cu抓Si系合金(專利文獻2段落 另一方面,有報告稱,Cu_Cr_Si系合金中,Cn CM目同’會與㈣成化合物’或以單體^的形式於母相 中析出,使強度提高(專利文獻3第3頁)。 專利文獻1 .日本專利特表2〇〇5_ 532477號公報 專利文獻2:日本專利特開平u — 222641號公報 專利文獻3:日本專利特開昭62-1_25號公報 然而’對於上述Cll-Cn Q·么人 &上 CG_Sl糸合金而言,由於用以固溶 化處理之溫度(Co、Si夕m 少一 之口》谷溫度)較高,故難以完全地進 行固溶化處理而無法_ p 獲侍所需特性(專利文獻1)。因此, 5 200823303 以往完全取代為Co之例子較少。 另一方面,對於上述Cu-Cr-Si系合金而言,Cr容易形 成無助於強度之碳化物(c卜c),故難以穩定獲得所需強度。 又’即便形成無助於強度之粗大的Cr系化合物,亦無法 獲得所需特性。進而,若形成Cr-c則與Si鍵結之Cr會減 少’因此存在無法與Cr鍵結之Si過剩地固溶於母相中而 導致導電率顯著降低的缺點。It is known that the Cu-Ni-Si alloy is a precipitation type copper alloy which precipitates in the matrix phase: Nh-Si-based or intermetallic compound, and the strength and electrical conductivity increase, and is also the same as the bismuth in the copper-gold. To make the mechanical strength, juice (Patent Document 1). It is known that the mechanical strength of the Cu_c〇-Si alloy is better than that of the Cu scratching Si alloy. (Patent Document 2, on the other hand, it is reported that in the Cu_Cr_Si alloy, Cn CM is the same as It is precipitated in the parent phase with the (tetra) compound or in the form of a monomer, and the strength is increased (Patent Document 3, page 3). Patent Document 1. Japanese Patent Publication No. 2-5_532477 Patent Document 2: Japan Japanese Patent Laid-Open No. 62-1_25, however, 'for the above-mentioned Cll-Cn Q·Mr. & upper CG_Sl alloy, due to the temperature for solution treatment (Co, Si Xim, the mouth of the valley, the valley temperature) is high, so it is difficult to completely perform the solution treatment and cannot obtain the required characteristics (Patent Document 1). Therefore, 5 200823303 was completely replaced by Co in the past. On the other hand, in the above-mentioned Cu-Cr-Si alloy, Cr easily forms a carbide which does not contribute to strength (c c), so that it is difficult to stably obtain the required strength. It is also impossible to obtain a large-scale Cr-based compound. Characteristic. Further, if the formation of the Cr-c Si-bonded to Cr will reduce the 'there is not excessive solid solution in the matrix to Cr and Si bonding leads to a disadvantage of significant reduction in electrical conductivity.

本發明可藉由採用下述結構,而實現強度及導電性優 於先前之電子材料用銅合金。 (1) 一種電子材料用銅合金,其特徵在於:含有 1.00〜2.50質量%之c〇及〇·2〇〜〇·7〇質量%之si,且剩餘部 分由CU及無法避免之雜質構成,並且Co與Si之質量濃 度比(Co/Si比)為3.5SCo/Si$5 ,導電率為 S(Internati〇nal Anneal Copper Standard,國際退火 銅標準)以上。 (2) —種電子材料用鋼合金,其特徵在於··含有 〜。2.50質量%之Co、0.05〜0.50質量%之Cr及0.20〜0·70 貝里%之Si ’且剩餘部分由Cu及無法避免之雜質構成, 並且Co與Si之質量濃度比(c〇/Si比)為, 導電率為60%IACS以上。 (3) —種電子材料用鋼合金,其特徵在於:含有 =〜。2 5〇 f 4 %之 C〇、〇·05〜〇·50 質量 %之 Cr 及 〇·20〜0·70 貝里%之Sl ’進而,無法避免之雜質碳為50 ppm以下,且 剩餘部分由Cu及無法避免 之雜質構成,並且Co與Si之 6 200823303 質量濃度比(Co/Si比)為3.5$c〇/Si<5,導雷童生αThe present invention can achieve higher strength and conductivity than the prior copper alloy for electronic materials by adopting the following structure. (1) A copper alloy for an electronic material, which comprises: 1.00 to 2.50 mass% of c〇 and 〇·2〇~〇·7〇% by mass of si, and the remainder is composed of CU and unavoidable impurities, Further, the mass concentration ratio (Co/Si ratio) of Co to Si is 3.5 SCo/Si$5, and the conductivity is S (Internati〇nal Anneal Copper Standard) or more. (2) A steel alloy for electronic materials, characterized in that it contains ~. 2.50% by mass of Co, 0.05 to 0.50% by mass of Cr and 0.20 to 0·70% of Si' and the remainder is composed of Cu and unavoidable impurities, and the mass concentration ratio of Co to Si (c〇/Si The ratio is such that the conductivity is 60% IACS or more. (3) A steel alloy for electronic materials, characterized in that it contains =~. 2 5〇f 4 % C〇, 〇·05~〇·50% by mass of Cr and 〇·20~0·70 Berry% of Sl' Further, unavoidable impurity carbon is 50 ppm or less, and the rest It consists of Cu and unavoidable impurities, and the ratio of Co to Si of Co and Si is 2008. The mass ratio (Co/Si ratio) is 3.5$c〇/Si<5.

V虿率為60%iACS 以上。 (4)如上所述之電子材料用銅合金’其進一步含有 0.001-0.300 質量 %之選自 Mg、p、As、Sb、如、B 、 Sn、Ti、Zr、A卜Fe、〜及Ag之群中的至少—種。ηThe V虿 rate is 60% iACS or more. (4) The copper alloy for electronic materials as described above, which further contains 0.001 to 0.300% by mass selected from the group consisting of Mg, p, As, Sb, B, Sn, Ti, Zr, A, Fe, and Ag. At least one of the groups. η

(5)一種電子材料用銅合金之製造方法,其係製造如上 所述之電子材料用鋼合金之方法,其特徵在於:於溶融鱗 造後進行熱IL及冷軋’且於最終冷軋前進行如下敎處理,' 即,加熱至了贼〜⑽代後以每秒听以上之速度 卻。 7 L實施方式】(5) A method for producing a copper alloy for an electronic material, which is a method for producing a steel alloy for an electronic material as described above, characterized in that: after the molten scale is formed, hot IL and cold rolling are performed, and before the final cold rolling Perform the following treatment, 'that is, after heating to the thief ~ (10) generation, listen to the above speed every second. 7 L implementation]

Co及Si添加量:Co and Si addition amount:

Co與Si形成金屬間化合物。Cu_c〇_si系銅合金與 Cu-Ni-Si系銅合金相比,可維持強度並且實現高導電化了 Co及Si之添加量中,若c〇未滿! 〇〇質量%及/或w未滿 〇.2〇質量%時’則無法獲得所需強度,而&超過25〇質 量%及/或Si超過0.70質量%時,則雖可實現高強度化# 會使導電率顯著下降,進而使熱加卫性劣化。因此,使c〇 及Si之添加量為:c〇為1〇〇〜2 5〇質量%,以為〇 2〇〜〇 質量。/。。較佳為:C….50〜2·2〇質量%,si為〇35〜〇5〇 質量%。Co forms an intermetallic compound with Si. Cu_c〇_si-based copper alloy maintains strength and achieves high conductivity compared with Cu-Ni-Si-based copper alloy. If Co and Si are added, if c〇 is not full! When the mass % and/or w is less than 〇.2〇% by mass, the required strength cannot be obtained, and when & exceeds 25〇 mass% and/or Si exceeds 0.70 mass%, the strength can be increased. # The conductivity is significantly reduced, which in turn deteriorates the thermal enhancement. Therefore, the amount of addition of c〇 and Si is such that c〇 is from 1〇〇 to 25% by mass, and is considered to be 〇 2〇 to 〇 mass. /. . Preferably, it is C....50~2·2〇% by mass, and si is 〇35~〇5〇% by mass.

Co/Si 比: 可藉由使合金中Co與Sl之重量比接近作為金屬間化 7 200823303 合物之Cc^Si濃度,而進一步使特性改善。重量濃度比為 Co/Si&lt; 3.5時,則會因Si濃度較高,而使導電率下降。另 一方面,C〇/Si&gt;5時,則會因C()濃度較高,而使導電率 顯著下降,故不適用作電子材料。較佳為4 〇〈 c〇/si&lt; 4 5。 導電率(EC,Electronic conductivity): 本發明之合金由於用作需要高導電性、中等強度之車 載用及通訊器材用等之端子、連接器、開_、繼電器之材Co/Si ratio: The characteristics can be further improved by making the weight ratio of Co to S1 in the alloy close to the Cc^Si concentration of the intermetallic compound 7 200823303 compound. When the weight concentration ratio is Co/Si &lt; 3.5, the conductivity is lowered due to the high Si concentration. On the other hand, when C〇/Si&gt;5, the conductivity is remarkably lowered due to the high concentration of C(), so it is not suitable for use as an electronic material. It is preferably 4 〇 < c〇/si &lt; 4 5. Conductivity (EC): The alloy of the present invention is used as a terminal, a connector, an opening, and a relay for a vehicle or a communication device that requires high conductivity and medium strength.

料’因此’導電率為55%IACS以上,較佳為6G%IACs以 上更么為62%IACS以上。導電率係以JISH 〇5〇5為基準 、’J定且以/〇IACS表不之數值。當導電率未滿55%iacs 日才’則不適於作為本發明目的之電子材料用合金之用途。 具有本發明導電率之鋼合金可由下述製造方法製造。The material &apos;hence&apos; conductivity is 55% IACS or higher, preferably 6 G% IACs or more, 62% IACS or more. The conductivity is based on JISH 〇5〇5, and is determined by the value of /〇IACS. When the conductivity is less than 55% iacs, then it is not suitable for use as an alloy for electronic materials for the purpose of the present invention. The steel alloy having the electrical conductivity of the present invention can be produced by the following production method.

Cr添加量:Cr addition amount:

Cr與並未鍵杜於 硬、、。於Co上之固溶Si鍵結,並於母相 ^ ^ ^----- 〇 1 m ^,亚π母彳目甲以 :Si系化合物的形式析出。其結果,母相之銅純度增加, 進而使導電率提高。 私— 。 又,由於Cr-Si系化合物之析出硬化, 強度亦传以提高。當曰 ^ 田添加ϊ未滿0.05質量%時,效果 較小,超過〇.5〇暂旦n/ + ^ ^ ^ 貝里/〇日可,則會因為未以Cr-Si系或Cr單 體形式析出之固、、贫 'Cr ★曰加而導致導電率顯著下降,在 1000 C下固溶於Γη 士 ^ ^ ^ u中之Cr量約為〇.5〇質量%,故未固溶 之Cr會對蠻曲4» ^ 口工性造成不良影響。因此,將Cr添加量 疋為0.05〜〇·5〇質量0 、里/〇。較佳為〇· 10〜0.30質量% 〇 含碳量: 當存在碳時Cr and no keys are harder than hard. The solid solution Si bond on Co is precipitated in the form of a Si-based compound in the mother phase ^ ^ ^----- 〇 1 m ^. As a result, the purity of the copper of the parent phase increases, which in turn increases the electrical conductivity. Private -. Further, since the precipitation of the Cr-Si-based compound is hardened, the strength is also improved. When 曰^田 added ϊ less than 0.05% by mass, the effect is small, exceeding 〇.5〇暂旦n/ + ^ ^ ^ Berry/〇日可, because there is no Cr-Si system or Cr monomer The form of precipitated solid, poor 'Cr ★ increased and led to a significant decrease in electrical conductivity, the amount of Cr dissolved in Γη士 ^ ^ ^ u at 1000 C is about 〇.5〇 mass%, so it is not solid solution Cr will have an adverse effect on the 4:^ oral work. Therefore, the amount of Cr added is 0.05 0.05 to 〇·5 〇 mass 0, 里/〇. It is preferably 〇·10 to 0.30% by mass 〇 Carbon content: When carbon is present

CrS易形成無助於強度之Cr-C。合金中 8 200823303 之含碳量超過50Ppm時,則無法獲得所需之強度。進而, 若形成Cr-C,則與Si鍵結之Cr會減少,因此,無法與Cr 鍵結之Si將過剩地固溶於母相中,導致導電率顯著降低。 因此,含碳量較佳為50 ppm以下,更佳為3〇 ppm以下。 碳之控制方法,例如可列舉··於熔融鑄造前進行脫脂,使 石=分不致混入原材料中之方&amp;,或者於真空或惰性氣體 裒兄(例如Ar)下進行溶融鑄造之方法,以及熔融鑄造時不 採用木炭被覆,且不使用含有含碳構件之設備之方法等。 添加 Mg、P、As、Sb、Be、B、Mn、Sn、乃、^、ai、CrS easily forms Cr-C which does not contribute to strength. When the carbon content of the alloy 8 200823303 exceeds 50 Ppm, the required strength cannot be obtained. Further, when Cr-C is formed, Cr bonded to Si is reduced. Therefore, Si which cannot be bonded to Cr is excessively dissolved in the matrix phase, and the conductivity is remarkably lowered. Therefore, the carbon content is preferably 50 ppm or less, more preferably 3 〇 ppm or less. Examples of the method for controlling the carbon include a method of degreasing before melt casting, a method in which stone is not mixed into a raw material, or a method of melt-casting under vacuum or an inert gas (for example, Ar), and A method in which charcoal coating is not used in melt casting, and a device containing a carbonaceous member is not used. Add Mg, P, As, Sb, Be, B, Mn, Sn, Na, ^, ai,

Fe Zn及Ag中之至少一種’因不會形成化合物,故具有 能夠增強固溶強化效果,改善特性之效果。當上述元素之 添力一口量未滿質量%時,則並無添加效果,而超過〇 3〇〇 f $ %時則導電率會下降。因此’添加量為0.001〜0.300質 里乂’較佳為〇.〇1〜0.10質量% 〇 本發明之合金係用作需要高導電性、中等強度之車載 用及通訊機用等之端子、查 連接。。、開關、繼電器之材料, 口此’拉伸強度之降伏強产Since at least one of Fe Zn and Ag does not form a compound, it has an effect of enhancing the solid solution strengthening effect and improving the properties. When the amount of the above element is less than the mass %, there is no effect added, and when it exceeds 〇 3〇〇 f $ %, the conductivity decreases. Therefore, the 'addition amount is 0.001 to 0.300 质 乂' is preferably 〇. 〇1 to 0.10% by mass 〇 The alloy of the present invention is used as a terminal for in-vehicle use and communication equipment requiring high conductivity and medium strength, and connection. . , switch, relay material, the strength of the tensile strength of the mouth

Mpa , 又(S,Yleld strength)較佳為 65〇 MPa以上,更佳為670 MPa以上。 製造方法: 與Cu-Ni-Si系合金相比,c 度較高,妗雜 _Sl系a金之固溶化溫 車又间故難以進行固溶處理。亦即 與Si之總添加量)未滿20f量 乂 Sl之添加置(Co 10〇〇°c以下進行,^與Si^ 70全固溶化處理可於 進行完全固溶化處理,則必㈣^^質量⑽上時^ 肩使酿度為l〇0(TC以上,進而, 200823303Mpa and (S, Yleld strength) are preferably 65 MPa or more, and more preferably 670 MPa or more. Manufacturing method: Compared with the Cu-Ni-Si alloy, the c degree is high, and the solid solution of the doped _Sl system a gold is difficult to be solution treated. That is, the total addition amount of Si is less than 20f, and the addition of S1 is performed (Co 10〇〇°c or less, and the total solid solution treatment of ^^ and Si^70 can be performed for complete solution treatment, then (4)^^ When the quality is (10), the shoulder is made to be l〇0 (TC or more, and further, 200823303)

Co與以添加量為2·5質量%以上時,則溫度為1〇5〇。〇以上。 该溫度處於溶點附近,可能會導致於固溶化處理中熔融, 口此’難以使2.5質量%以上添加量之Co與Si固溶於銅 中。然而,若固溶化處理不完全,則雖然強度會下降但導 電率會得到提高。因此,為製造本發明之銅合金,即便是When the amount of Co and the added amount is 2.5% by mass or more, the temperature is 1〇5〇. 〇 Above. When the temperature is in the vicinity of the melting point, it may cause melting in the solution treatment, and it is difficult to dissolve the Co and Si in an amount of 2.5% by mass or more in the copper. However, if the solution treatment is incomplete, the strength will decrease but the conductivity will increase. Therefore, in order to manufacture the copper alloy of the present invention, even

Co與Si之添加量為2·5質量%以上的情況,若加熱至低於 70王口 ’谷化’皿度之溫度後以較急速地進行冷卻,則亦可獲 得較高之導電率。此時,所需之強度可藉由增加Co與Si 添加量而得到確保,因此可製造獲得本發明之導電率與強 度特性平衡之鋼合金。 ^ 當固溶化溫度未滿7〇〇。〇時,固溶化處理會過於不充 分,故無法獲得所需強度,而固溶化溫度超過1〇5〇。〇時, 則可能會完全熔融。因此,固溶化溫度為7〇〇〜1〇5〇它,較 佳為,Co與Si添加量為120%以上且未滿2〇〇質量%時, 固溶化溫度為800〜9〇〇t: , c〇與Si添加量為2 〇〇%以上且 未滿2.50質量%時,固溶化溫度為9〇〇〜1〇〇(rc,c〇與&amp; 添加量為2·50質量%以上且未滿3·2〇質量%時,固溶/化溫 度為 1000〜1050°C。 固溶化處理後的冷卻速度若未滿每秒〗,則會析出 無助於強度之粗大Cr系化合物,使強度下降。因此,加 熱後之冷卻速度必須為每秒1(rc以上,較佳為必須為每秒 20°C以上。 上述固溶化處理若於最終冷軋前進行,則可實現本發 明之效果,亦可於上述固溶化處理之前或之後進行冷軋或 200823303 時效處理。 [實施例] 以下’表不本實施例之條件,但本發明之實施形態只 要能夠實現本發明之作用效果,則並不限定於下述條件。 樣品之製造二 於高頻熔融爐中,於真空中或氬氣環境中,於内徑為 110 mm、深度為230 mm之氧化鋁或氧化鎂製坩堝中熔融 2.50 kg電解銅或無氧銅。依據表i或2之組成添加c〇、Cr、 Si、Mg、Sn、Ag、Zn,並將熔銅溫度調整為13()(rc後, 使用鑄模(材質··鑄鐵)將熔融液鑄造為3〇χ6〇χ12〇 mm之 ^叙進行熱乳、氧化锅垢(oxidized scale)之研磨除去、 熱軋、冷軋,繼而進行加熱至7〇〇。(:〜1〇5〇。(::後以每秒2〇。(:: 進仃冷部之固溶化熱處理,進而重複進行加工度為丨〇〜6〇% 之冷軋及250。(:〜550°C下之熱處理,製成厚度為〇1〇 mm 之平板。對所獲得之板材採取各種測試片,進行物性評估 測試。 Μ試片之物性評仕: 強度方面係以使拉伸方向與壓延方向平行之方式,使 用加壓機製作JIS13B號測試片。依照JISZ 2241規定之拉 伸測試,使用測試片進行螂試,測定拉伸強度之降伏強度(單 位為MPa)。 ^昏電率係以JIS Η 0505為基準,使用4端子法進行測 定,1U%IACS表示。 對於彎曲加工性,使用寬度為1〇爪瓜之長方形樣品’ 200823303 實施JIS Η 3110規定之Wf曲測試。使彎曲方向為G〇〇d Way及Bad Way,且使彎曲半徑R/板厚t= 1〇。 對彎曲後之樣品,自彎曲部之表面及斷面,利用光學 頦微鏡觀察有無裂紋,Good Way及Bad Way均未產生裂 紋時評估為〇,Good Way及Bad Way兩者或其中之一者 產生裂紋時則評估為X。 於表1〜3中就本發明之實施例連同比較例加以說明。 再者,表中之「一」表示未添加。 表1表示Cu-Co-Si系合金之結果,實施例jyo之合 孟均具備優異之強度、導電率(55 %i ACS以上)及彎曲加工 性。 比較例11及12中,由於Co及Si之量分別未滿本發 明之下限或超過上限,故強度(YS)較低或導電率較低,彎 曲加工性差。比較例13及14中,c〇/Si比分別未滿本發 明之下限或超過上限,故導電率較低。比較例15中,c〇 夏及Co/Si比分別未滿本發明之下限,故強度較低。比較 例16中,Co量超過本發明之上限,故導電率較低。比較 例17中,Si量未滿本發明之下限且c〇/si比超過本發明之 上限,故導電率較低。比較例! 8中,si量超過本發明之 上限且Co/Si比未滿本發明之下限,故導電率較低。比較 例19及20中,Mg等第三金屬量分別超過本發明之上限, 故有時導電率較低,彎曲加工性亦較差。 比較例21〜31係以固溶化處理中充分進行固溶之條件 進行的,故導電率較低,不屬於本發明之範圍。 12 200823303 ♦ 2表示Cu-Co-Cr-Si系合金之結果,實施例32〜45 之口孟均具備優異之強度、導電率以上)及彎曲 加工性。 參考例46及47對應於實施例丨、2,因未添加心,因 此導電率低於實施例32〜45。 七車乂例48中’ Co及si量分別未滿本發明之下限,故 強度較低。比較例49中’ c〇及Si量超過本發明之上限, 故導電率較低且·彎曲加卫性差。比較例5G及51 _,c〇/si 比分別未滿本發明之下限或超過上限,故導電率較低。比 幸乂例52及53中,Cr量分別未滿本發明之下限或超過上限, 故昏電率較低,且當超過上限時彎曲加工性亦較差。比較 幻4中 C〇里、Cr 1及c〇/Si比未滿本發明之下限,故 強度差比較例5 5中,C 〇量及d r量超過本發明之上限, 故導電率較低、彎曲加工性差。比較例56中,Cr量及以 置分別未滿本發明之下限且Co/Si比超過本發明之上限, 故導電率較低。比較例57中,Cr量及si量分別超過本發 月之上限,且C〇/Si比未滿本發明之下限,故導電率較低, 彎曲加工性差。比較例58中,Co、Cr及Si量分別未滿本 發明之下限,強度差。比較例59中,Co、Cr及Si量分別 超過本發明之上限,導電率較低,彎曲加工性差。比較例 60及61中,C量超過本發明之上限,導電率較低且彎曲 加工性差’有時強度亦較差。比較例62及63中,Mg等 第三金屬量分別超過本發明之上限,故導電率較低,有時 彎曲加工性亦較差。 13 200823303 比較例64〜76係以固溶化處理中充分進行固溶之條件 進行的,故導電率較低,不屬於本發明之範圍。 表3表示改變實施例32〜34之固溶化處理後之冷卻速 度之結果。實施例32,、33,及34,中,冷卻速度未滿每秒 10 C,故固溶化處理後之導電率上升,且重複進行冷軋及 熱處理後所得之平板之導電率亦提高,但強度下降。實施 例32、32”、33、33”、34及34”中,冷卻速度為每秒1〇t: 以上’故任一實施例均獲得強度、導電率(60%IACS以上) 及’寫曲加工性之平衡優異之結果。因此,固溶化處理後之 冷卻速度較佳為每秒丨〇。〇以上。 200823303 [表l]When the amount of addition of Co and Si is 2.5% by mass or more, if the temperature is lowered to a temperature lower than 70 valences and then cooled rapidly, a higher electrical conductivity can be obtained. At this time, the required strength can be secured by increasing the amount of addition of Co and Si, so that a steel alloy which achieves the balance of conductivity and strength characteristics of the present invention can be produced. ^ When the solution temperature is less than 7〇〇. In the case of hydrazine, the solution treatment is too insufficient to obtain the required strength, and the solution temperature exceeds 1 〇 5 Torr. When it is smashed, it may melt completely. Therefore, the solution temperature is 7 〇〇 〜1 〇 5 〇, preferably, when the addition amount of Co and Si is 120% or more and less than 2 〇〇 mass%, the solution temperature is 800 to 9 〇〇t: When the amount of c〇 and Si added is 2% or more and less than 2.50% by mass, the solution temperature is 9〇〇~1〇〇 (rc, c〇 and &gt; the amount of addition is 2.50% by mass or more When the amount is less than 3% by mass, the solution/chemical temperature is 1000 to 1050 ° C. If the cooling rate after the solution treatment is less than or equal to each other, a coarse Cr-based compound which does not contribute to strength is precipitated. Therefore, the cooling rate after heating must be 1 (rc or more per second, preferably 20 ° C or more per second. The above solution treatment can be carried out before final cold rolling to achieve the effect of the present invention. Cold rolling or 200823303 aging treatment may be performed before or after the above solution treatment. [Examples] The following descriptions of the conditions of the examples, but the embodiments of the present invention are capable of achieving the effects of the present invention. It is not limited to the following conditions. The production of the sample is in a high frequency melting furnace, in a vacuum or In an argon atmosphere, 2.50 kg of electrolytic copper or oxygen-free copper is melted in an alumina or magnesia crucible having an inner diameter of 110 mm and a depth of 230 mm. Add c〇, Cr, Si according to the composition of Table i or 2. Mg, Sn, Ag, Zn, and adjust the temperature of the molten copper to 13 () (rc, then use a mold (material · · cast iron) to cast the melt into 3〇χ6〇χ12〇mm. Grinding removal, hot rolling, cold rolling, and then heating to 7 〇〇. (:~1〇5〇. (:: after 2 每秒 per second. (:: into the cold part of the solid After the heat treatment by melting, the cold rolling and the processing degree of 丨〇~6〇% are repeated, and 250. (: heat treatment at 550 ° C, a flat plate having a thickness of 〇1 〇 mm is prepared. Various tests are performed on the obtained sheet. For the evaluation of the physical properties of the test piece, the physical properties of the test piece: In terms of strength, JIS 13B test piece is produced by using a press machine in such a manner that the stretching direction is parallel to the rolling direction. The tensile test according to JIS Z 2241 is used. The test piece was subjected to a test to determine the tensile strength of the tensile strength (in MPa). The measurement was performed by the 4-terminal method based on JIS Η 0505, and was expressed by 1 U% IACS. For the bending workability, the Wf curve test specified in JIS Η 3110 was carried out using a rectangular sample of the width of 1 〇 claw melon 200823303. G〇〇d Way and Bad Way, and the bending radius R/plate thickness t=1〇. For the curved sample, observe the presence or absence of cracks from the surface and section of the curved part by optical micromirror, Good Way and Bad The Way is evaluated as 〇 when no crack occurs, and X is evaluated when either or both of Good Way and Bad Way are cracked. Examples of the present invention are described in conjunction with Comparative Examples in Tables 1 to 3. Furthermore, the "one" in the table indicates that it has not been added. Table 1 shows the results of the Cu-Co-Si alloy, and the combination of the examples jyo has excellent strength, electrical conductivity (55 % i ACS or more) and bending workability. In Comparative Examples 11 and 12, since the amounts of Co and Si were not lower than the lower limit of the present invention or exceeded the upper limit, the strength (YS) was low, the electrical conductivity was low, and the bending workability was poor. In Comparative Examples 13 and 14, the c〇/Si ratios were not lower than the lower limit of the present invention or exceeded the upper limit, so that the electrical conductivity was low. In Comparative Example 15, since the c〇 summer and the Co/Si ratio were not lower than the lower limit of the present invention, respectively, the strength was low. In Comparative Example 16, the amount of Co exceeded the upper limit of the present invention, so the electrical conductivity was low. In Comparative Example 17, the amount of Si was less than the lower limit of the present invention and the c〇/si ratio exceeded the upper limit of the present invention, so that the electrical conductivity was low. Comparative example! In 8, the amount of si exceeds the upper limit of the present invention and the Co/Si ratio is less than the lower limit of the present invention, so the electrical conductivity is low. In Comparative Examples 19 and 20, the amount of the third metal such as Mg exceeded the upper limit of the present invention, respectively, so that the electrical conductivity was low and the bending workability was also inferior. Comparative Examples 21 to 31 were carried out under the conditions of sufficiently solid solution in the solution treatment, so that the electrical conductivity was low and did not fall within the scope of the present invention. 12 200823303 ♦ 2 shows the results of the Cu-Co-Cr-Si alloy, and the examples 8 to 45 have excellent strength and electrical conductivity, and the bending workability. Reference Examples 46 and 47 correspond to Examples 丨 and 2, and since no core was added, the conductivity was lower than that of Examples 32 to 45. In the seven-car case 48, the amounts of 'Co and si' are not below the lower limit of the present invention, respectively, so the strength is low. In Comparative Example 49, the amount of 'c〇 and Si exceeded the upper limit of the present invention, so that the conductivity was low and the bending property was poor. In Comparative Examples 5G and 51, the _, c 〇 / si ratios were respectively less than the lower limit of the present invention or exceeded the upper limit, so the electrical conductivity was low. In the case of the examples 52 and 53, the amount of Cr is less than the lower limit or the upper limit of the present invention, respectively, so that the dim rate is low, and the bending workability is also poor when the upper limit is exceeded. In Comparative Example 4, the ratio of C〇, Cr 1 and c〇/Si is less than the lower limit of the present invention. Therefore, in the case of the strength difference, in Comparative Example 5, the amount of C 及 and the amount of dr exceed the upper limit of the present invention, so the conductivity is low. Poor bending workability. In Comparative Example 56, since the amount of Cr and the amount of the Cr were less than the lower limit of the present invention and the Co/Si ratio exceeded the upper limit of the present invention, the electrical conductivity was low. In Comparative Example 57, the amount of Cr and the amount of Si exceeded the upper limit of the present month, respectively, and the C〇/Si ratio was less than the lower limit of the present invention, so that the electrical conductivity was low and the bending workability was poor. In Comparative Example 58, the amounts of Co, Cr and Si were not lower than the lower limit of the present invention, respectively, and the strength was poor. In Comparative Example 59, the amounts of Co, Cr and Si exceeded the upper limit of the present invention, respectively, and the electrical conductivity was low, and the bending workability was poor. In Comparative Examples 60 and 61, the amount of C exceeded the upper limit of the present invention, and the electrical conductivity was low and the bending workability was poor, and the strength was also inferior. In Comparative Examples 62 and 63, since the amount of the third metal such as Mg exceeded the upper limit of the present invention, the electrical conductivity was low and the bending workability was inferior. 13 200823303 Comparative Examples 64 to 76 were carried out under the conditions of sufficiently solid solution in the solution treatment, so that the electrical conductivity was low and did not fall within the scope of the present invention. Table 3 shows the results of changing the cooling rate after the solution treatment of Examples 32 to 34. In Examples 32, 33, and 34, the cooling rate was less than 10 C per second, so that the conductivity after the solution treatment increased, and the conductivity of the flat plate obtained after repeated cold rolling and heat treatment was also improved, but the strength was increased. decline. In Examples 32, 32", 33, 33", 34, and 34", the cooling rate was 1 〇t: per second. Therefore, in any of the examples, the strength, the electrical conductivity (60% IACS or more), and the writing were obtained. The result of excellent balance of workability. Therefore, the cooling rate after the solution treatment is preferably 丨〇 丨〇 or more. 200823303 [Table l]

No. Cu-Co-Si系組成(質量%) 固溶化溫度°C 特性 Co Si Co/Si 其他 YS(MPa) EC(%IACS) 彎曲性 1 1.3 0.31 4.2 — 900 670 58 〇 2 1.8 0.43 4.2 — 950 715 57 〇 3 2.4 0.57 4.2 — 1000 735 55 〇 實 4 1.3 0.36 3.6 — 900 675 56 〇 5 1.8 0.52 3.5 — 1000 715 55 〇 6 1.3 0.27 4.8 — 850 655 56 〇 例 7 1.8 0.38 4.7 — 950 702 55 〇 8 1.8 0.43 4.2 O.lMg 950 745 55 〇 9 1.8 0.43 4.2 0.05Sn 950 720 56 〇 10 1.8 0.43 4.2 0.1 Ag 950 715 57 〇 11 0.7 0.17 4.1 — 900 600 63 〇 12 3.0 0.71 4.2 — 1000 768 48 X 13 1.8 0.60 3.0 — 1000 715 47 〇 14 1.8 0.32 5.6 — 950 660 48 〇 15 0.7 0.22 3.2 — 850 585 60 〇 16 2.8 0.69 4.1 — 1000 750 43 〇 17 1.8 0.17 10.6 — 950 660 50 〇 18 1.8 0.75 2.4 — 1000 715 47 〇 19 1.8 0.43 4.2 0.5Mg 950 788 41 X 比 20 1.8 0.43 4.2 0.3Mg、0·2Ζη 950 772 41 〇 較 21 1.3 0.31 4.2 — 950 755 51 〇 例 22 1.8 0.43 4.2 — 1020 790 50 〇 23 1.3 0.31 4.2 — 960 720 51 〇 24 1.8 0.43 4.2 — 1020 748 50 〇 25 1.3 0.36 3.6 — 980 715 51 〇 26 1.8 0.52 3.5 — 1050 755 50 〇 27 1.3 0.27 4.8 — 950 695 51 〇 28 1.8 0.38 4.7 — 1020 742 49 〇 29 1.8 0.43 4.2 O.lMg 1020 785 49 〇 30 1.8 0.43 4.2 0.05Sn 1020 760 51 〇 31 1.8 0.43 4.2 O.lAg 1020 755 52 〇 15 200823303 [表2]No. Cu-Co-Si composition (% by mass) Solution temperature °C Characteristics Co Si Co/Si Other YS (MPa) EC (% IACS) Flexibility 1 1.3 0.31 4.2 — 900 670 58 〇2 1.8 0.43 4.2 — 950 715 57 〇3 2.4 0.57 4.2 — 1000 735 55 〇 4 4 1.3 0.36 3.6 — 900 675 56 〇 5 1.8 0.52 3.5 — 1000 715 55 〇 6 1.3 0.27 4.8 — 850 655 56 Example 7 1.8 0.38 4.7 — 950 702 55 〇8 1.8 0.43 4.2 O.lMg 950 745 55 〇9 1.8 0.43 4.2 0.05Sn 950 720 56 〇10 1.8 0.43 4.2 0.1 Ag 950 715 57 〇11 0.7 0.17 4.1 — 900 600 63 〇12 3.0 0.71 4.2 — 1000 768 48 X 13 1.8 0.60 3.0 — 1000 715 47 〇14 1.8 0.32 5.6 — 950 660 48 〇15 0.7 0.22 3.2 — 850 585 60 〇16 2.8 0.69 4.1 — 1000 750 43 〇17 1.8 0.17 10.6 — 950 660 50 〇18 1.8 0.75 2.4 — 1000 715 47 〇19 1.8 0.43 4.2 0.5Mg 950 788 41 X Ratio 20 1.8 0.43 4.2 0.3Mg, 0·2Ζη 950 772 41 〇 Compared with 21 1.3 0.31 4.2 — 950 755 51 Example 22 1.8 0.43 4.2 — 1020 790 50 〇23 1.3 0.31 4.2 — 960 720 51 〇24 1.8 0.43 4.2 — 1020 748 50 〇25 1.3 0.36 3.6 — 980 715 51 〇26 1.8 0.52 3.5 — 1050 755 50 〇27 1.3 0.27 4.8 — 950 695 51 〇28 1.8 0.38 4.7 — 1020 742 49 〇29 1.8 0.43 4.2 O.lMg 1020 785 49 〇30 1.8 0.43 4.2 0.05Sn 1020 760 51 〇31 1.8 0.43 4.2 O.lAg 1020 755 52 〇15 200823303 [Table 2]

No. Cu-Co-Cr-Si系組成(質量%) 固溶化 溫度°C 特性 Co Cr Si C Co/Si 其他 YS(MPa) EC(%IACS) 彎曲性 實 施 例 32 1.3 0.20 0.31 0.003 4.2 — 900 680 63 〇 33 1.8 0.20 0.43 0.003 4.2 — 950 728 62 〇 34 2.4 0.20 0.57 0.003 4.2 — 1000 747 60 〇 35 1.3 0.08 0.31 0.003 4.2 — 900 675 61 〇 36 1.8 0.08 0.43 0.003 4.2 — 950 720 60 〇 37 1.3 0.40 0.31 0.003 4.2 — 900 690 62 〇 38 1.8 0.40 0.43 0.003 4.2 — 950 738 61 〇 39 13 0.20 0.36 0.003 3.6 — 900 685 61 〇 40 1.8 0.20 0.52 &lt;0.001 3.5 — 1000 730 60 〇 41 1.3 0.20 0.27 &lt;0.001 4.8 — 850 670 61 〇 42 1.8 0.20 0.38 0.003 4.7 — 950 715 60 〇 43 1.8 0.20 0.43 0.003 4.2 O.lMg 950 758 60 〇 44 1.8 0.20 0.43 0.003 4.2 0.05Sn 950 735 61 〇 45 1.8 0.20 0.43 0.003 4.2 0.1 Ag 950 730 62 〇 參 考 例 46 1.3 — 0.31 0.003 4.2 — 900 670 58 〇 47 1.8 — 0.42 0.003 4.3 — 950 718 57 〇 比 較 例 48 0.7 0.20 0.17 0.003 4.1 — 900 615 68 〇 49 3.0 0.20 0.71 0.003 4.2 — 1000 778 53 X 50 1.8 0.20 0.60 0.003 3.0 — 1000 725 52 〇 51 1.8 0.20 0.32 0.003 5.6 — 950 670 53 〇 52 1.8 0.02 0.44 0.003 4.1 — 950 715 57 〇 53 1.8 0.80 0.43 0.003 4.2 — 950 730 55 X 54 0.7 0.02 0.22 0.003 3.2 — 850 600 65 〇 55 2.8 0.70 0.69 0.003 4.1 — 1000 760 47 X 56 1.8 - 0.02 0.17 0.003 10.6 — 950 670 55 〇 57 1.8 0.70 0.75 0.003 2.4 — 1000 725 51 X 58 0.7 0.01 0.16 0.003 4.4 — 850 600 65 〇 59 3.0 0.70 0.75 0.003 4.0 — 1000 780 45 X 60 1.3 0.20 0.31 0.020 4.2 — 900 600 59 X 61 1.8 0.20 0.43 0.050 4.2 — 950 648 57 X 62 1.8 0.20 0.43 0.003 4.2 0.5Mg 950 800 46 X 63 1.8 0.20 0.43 0.003 4.2 0.3Mg、0·2Ζη 950 785 45 〇 64 1.3 0.20 0.31 0.003 4.2 — 950 730 55 〇 65 1.8 0.20 0.43 0.003 4.2 — 1020 765 54 〇 66 1.3 0.08 0.31 0.003 4.2 950 715 55 〇 67 1.8 0.08 0.43 0.003 4.2 — 1020 760 54 〇 68 1.3 0.40 0.31 0.003 4.2 — 960 735 55 〇 69 1.8 0.40 0.43 0.003 4.2 — 1020 778 54 〇 70 1.3 0.20 0.36 0.003 3.6 — 980 725 54 〇 71 1.8 0.20 0.52 0.003 3.5 — 1050 770 53 〇 72 1.3 0.20 0.27 0.003 4.8 — 950 710 54 〇 73 1.8 0.20 0.38 0.003 4.7 — 1020 755 54 〇 74 1.8 0.20 0.43 0.003 4.2 O.lMg 1020 798 52 〇 75 1.8 0.20 0.43 0.003 4.2 0.05Sn 1020 775 54 〇 76 1.8 0.20 0.43 0.003 4.2 0.1 Ag 1020 768 55 〇 16 200823303 [表3] 組成(質量%) 固溶化後之 冷卻速度 (°C/s) 固溶化後之 導電率 (%IACS) 特性 Co Cr Si C Co/Si YS(MPa) EC(%IACS) 彎曲性 實施例32’ 1.30 0.20 0.31 0.003 4.2 5 29 570 68 〇 實施例32&quot; 1.30 0.20 0.31 0.003 4.2 10 25 655 65 〇 實施例32 1.30 0.20 0.31 0.003 4.2 20 23 680 63 〇 實施例33’ 1.80 0.20 0.43 0.003 4.2 5 28 590 66 〇 實施例33” 1.80 0.20 0.43 0.003 4.2 10 24 675 64 〇 實施例33 1.80 0.20 0.43 0.003 4.2 20 22 728 62 〇 實施例34’ 2.40 0.20 0.57 0.003 4.2 5 27 620 65 〇 實施例34” 2.40 0.20 0.57 0.003 4.2 10 22 670 62 〇 實施例34 2.40 0.20 0.57 0.003 4.2 20 20 747 60 〇No. Cu-Co-Cr-Si composition (% by mass) Solution temperature °C Characteristics Co Cr Si C Co/Si Other YS (MPa) EC (% IACS) Flexibility Example 32 1.3 0.20 0.31 0.003 4.2 — 900 680 63 〇33 1.8 0.20 0.43 0.003 4.2 — 950 728 62 〇34 2.4 0.20 0.57 0.003 4.2 — 1000 747 60 〇35 1.3 0.08 0.31 0.003 4.2 — 900 675 61 〇36 1.8 0.08 0.43 0.003 4.2 — 950 720 60 〇37 1.3 0.40 0.31 0.003 4.2 — 900 690 62 〇38 1.8 0.40 0.43 0.003 4.2 — 950 738 61 〇39 13 0.20 0.36 0.003 3.6 — 900 685 61 〇40 1.8 0.20 0.52 &lt;0.001 3.5 — 1000 730 60 〇41 1.3 0.20 0.27 &lt;0.001 4.8 — 850 670 61 〇42 1.8 0.20 0.38 0.003 4.7 — 950 715 60 〇43 1.8 0.20 0.43 0.003 4.2 O.lMg 950 758 60 〇44 1.8 0.20 0.43 0.003 4.2 0.05Sn 950 735 61 〇45 1.8 0.20 0.43 0.003 4.2 0.1 Ag 950 730 62 〇Reference Example 46 1.3 — 0.31 0.003 4.2 — 900 670 58 〇47 1.8 — 0.42 0.003 4.3 — 950 718 57 〇Comparative Example 48 0.7 0.20 0.17 0.003 4.1 — 900 615 68 〇49 3.0 0.20 0.71 0.003 4.2 — 10 00 778 53 X 50 1.8 0.20 0.60 0.003 3.0 — 1000 725 52 〇51 1.8 0.20 0.32 0.003 5.6 — 950 670 53 〇52 1.8 0.02 0.44 0.003 4.1 — 950 715 57 〇53 1.8 0.80 0.43 0.003 4.2 — 950 730 55 X 54 0.7 0.02 0.22 0.003 3.2 — 850 600 65 〇55 2.8 0.70 0.69 0.003 4.1 — 1000 760 47 X 56 1.8 - 0.02 0.17 0.003 10.6 — 950 670 55 〇57 1.8 0.70 0.75 0.003 2.4 — 1000 725 51 X 58 0.7 0.01 0.16 0.003 4.4 — 850 600 65 〇59 3.0 0.70 0.75 0.003 4.0 — 1000 780 45 X 60 1.3 0.20 0.31 0.020 4.2 — 900 600 59 X 61 1.8 0.20 0.43 0.050 4.2 — 950 648 57 X 62 1.8 0.20 0.43 0.003 4.2 0.5Mg 950 800 46 X 63 1.8 0.20 0.43 0.003 4.2 0.3Mg, 0·2Ζη 950 785 45 〇64 1.3 0.20 0.31 0.003 4.2 — 950 730 55 〇65 1.8 0.20 0.43 0.003 4.2 — 1020 765 54 〇66 1.3 0.08 0.31 0.003 4.2 950 715 55 〇67 1.8 0.08 0.43 0.003 4.2 — 1020 760 54 〇68 1.3 0.40 0.31 0.003 4.2 — 960 735 55 〇69 1.8 0.40 0.43 0.003 4.2 — 1020 778 54 〇70 1.3 0.20 0.36 0.003 3.6 — 980 725 54 〇71 1.8 0.20 0.52 0.003 3.5 — 1050 770 53 〇72 1.3 0.20 0.27 0.003 4.8 — 950 710 54 〇73 1.8 0.20 0.38 0.003 4.7 — 1020 755 54 〇74 1.8 0.20 0.43 0.003 4.2 O.lMg 1020 798 52 〇75 1.8 0.20 0.43 0.003 4.2 0.05Sn 1020 775 54 〇76 1.8 0.20 0.43 0.003 4.2 0.1 Ag 1020 768 55 〇16 200823303 [Table 3] Composition (% by mass) Cooling rate after solutionization (°C/s) Conduction after solutionization Rate (% IACS) Characteristics Co Cr Si C Co/Si YS (MPa) EC (% IACS) Flexibility Example 32' 1.30 0.20 0.31 0.003 4.2 5 29 570 68 〇Example 32&quot; 1.30 0.20 0.31 0.003 4.2 10 25 655 65 〇 Example 32 1.30 0.20 0.31 0.003 4.2 20 23 680 63 〇Example 33' 1.80 0.20 0.43 0.003 4.2 5 28 590 66 〇Example 33" 1.80 0.20 0.43 0.003 4.2 10 24 675 64 〇Example 33 1.80 0.20 0.43 0.003 4.2 20 22 728 62 〇Example 34' 2.40 0.20 0.57 0.003 4.2 5 27 620 65 〇Example 34" 2.40 0.20 0.57 0.003 4.2 10 22 670 62 〇Example 34 2.40 0.20 0.57 0.003 4.2 20 20 747 60 〇

【圖式簡單說明】 (無) 【主要元件符號說明】 (無) 17[Simple description of the diagram] (None) [Explanation of main component symbols] (None) 17

Claims (1)

200823303 十、申請專利範園: 併旦種電子材料用銅合金,其特徵在於:含有丨綱.Μ 貝里%之Co及0.20〜〇·7〇質量%之&amp;且剩餘部分由以 及無法避免之雜質構成,並 u4 上且Co與Sl之質量濃度比(Co/Si 比)為3.BCo/Sig,導電率為55%1奶以上。 新旦種電子材料用銅合金,其特徵在於:含有ι剔5〇 貝置%之Co、〇 〇5〜0 50哲® 〇/ ·υ:&gt; U·50貝置〇/〇之Cr及0.20〜0.70質量%之200823303 X. Application for Patent Park: A copper alloy for electronic materials, which is characterized by: containing Co., Ltd., ΜBerry% Co and 0.20~〇·7〇% by mass &amp; The impurity is composed of u4 and the mass concentration ratio (Co/Si ratio) of Co to S1 is 3.BCo/Sig, and the conductivity is 55% 1 milk or more. A copper alloy for a new type of electronic material, characterized in that it contains Co, which is ι5 〇 置 置 置 置 〜 〜 〜 〜 〜 〜 U 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及0.20 to 0.70% by mass 且剩餘部分由Cu及無法避免之雜質構成,並且C〇與 Sl之質量濃度比(C〇/Si比1 /c./C . 6〇%ΐΑ。以上。 )為3.5以—5’導電率為 斩旦y.-種電子材料用銅合金,其特徵在於m屬〜2 之Co 〇.〇5〜〇‘5〇質量0/。之Cr及〇 2〇〜〇 7〇質量%之 :,進而無法避免之雜質碳為5〇ppm以下,且剩餘部分由 及無法避免之雜質構成,並i CO肖Si之質量濃度比 (C〇/Si 比)為 3.BCo/Sg5,導電率為 6〇%iAcs 以上。 4.如申請專利範圍第】i 3項中任一項之電子材料用 一合金’其進-步含有〇·_〜〇 質量%之選自峋、p、 As、Sb、Be、B、Μη、% χ· ^ Sn Tl、Zr、A卜 Fe、Zn 及 Ag 之 群中的至少一種。 5·-種電子材料用鋼合金之製造方法,係用以製造申 =專利範圍第丄至4項中任一項之電子材料用銅合金;其 =徵在於:於熔融鑄造後進行熱軋及冷軋,且於最終冷軋 W進行加熱至700°c〜105〇°c後以每秒阶以上之速度冷卻 之熱處理。 18And the remaining part is composed of Cu and unavoidable impurities, and the mass concentration ratio of C〇 to S1 (C〇/Si ratio 1 /c./C. 6〇%ΐΑ. above) is 3.5 to -5' conductivity It is a copper alloy for electronic materials, which is characterized by a mass of ~2 of Co 〇.〇5~〇'5〇 mass 0/. Cr and 〇2〇~〇7〇% by mass:, and further, the unavoidable impurity carbon is 5〇ppm or less, and the remaining part is composed of unavoidable impurities, and the mass concentration ratio of i CO Xiao Si (C〇 The /Si ratio is 3.BCo/Sg5, and the conductivity is 6〇% iAcs or more. 4. An alloy for an electronic material according to any one of the claims of the invention, wherein the step-by-step contains 〇·_~〇% by mass selected from the group consisting of 峋, p, As, Sb, Be, B, Μη At least one of a group of % χ·^ Sn Tl, Zr, A, Fe, Zn, and Ag. 5. A method for producing a steel alloy for an electronic material, which is used for manufacturing a copper alloy for an electronic material according to any one of the fourth to fourth aspects of the patent; wherein the hot rolling is performed after the molten casting and Cold rolling, and heat treatment after cooling to 700 ° c to 105 ° ° C in the final cold rolling W at a speed of more than steps per second. 18
TW096135312A 2006-10-03 2007-09-21 Copper alloy for electronic material and method for manufacturing the same TWI415958B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271770A JP5085908B2 (en) 2006-10-03 2006-10-03 Copper alloy for electronic materials and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200823303A true TW200823303A (en) 2008-06-01
TWI415958B TWI415958B (en) 2013-11-21

Family

ID=39268550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096135312A TWI415958B (en) 2006-10-03 2007-09-21 Copper alloy for electronic material and method for manufacturing the same

Country Status (5)

Country Link
JP (1) JP5085908B2 (en)
KR (1) KR101127000B1 (en)
CN (1) CN101522927B (en)
TW (1) TWI415958B (en)
WO (1) WO2008041696A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422693B (en) * 2010-06-03 2014-01-11 Jx Nippon Mining & Metals Corp Cu-Co-Si alloy sheet and method for producing the same
TWI447241B (en) * 2011-03-09 2014-08-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si alloy and its manufacturing method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006405B2 (en) * 2007-11-01 2012-08-22 古河電気工業株式会社 Conductor wire for electronic equipment and wiring wire using the same
EP2267172A1 (en) * 2008-03-21 2010-12-29 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
CN102112639A (en) 2008-07-31 2011-06-29 古河电气工业株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefof
EP2333127A4 (en) * 2008-08-05 2012-07-04 Furukawa Electric Co Ltd Copper alloy material for electrical/electronic component
WO2010016429A1 (en) 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
JP5619389B2 (en) * 2008-08-05 2014-11-05 古河電気工業株式会社 Copper alloy material
JP4708485B2 (en) * 2009-03-31 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5619391B2 (en) * 2009-08-12 2014-11-05 古河電気工業株式会社 Copper alloy material and method for producing the same
JP4934759B2 (en) * 2009-12-02 2012-05-16 古河電気工業株式会社 Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP4620173B1 (en) 2010-03-30 2011-01-26 Jx日鉱日石金属株式会社 Cu-Co-Si alloy material
JP4830035B2 (en) * 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
JP2012144789A (en) * 2011-01-13 2012-08-02 Jx Nippon Mining & Metals Corp Cu-Co-Si-Zr ALLOY MATERIAL
JP5451674B2 (en) * 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP6077755B2 (en) * 2012-03-30 2017-02-08 Jx金属株式会社 Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
CN105400984A (en) * 2015-11-13 2016-03-16 太仓荣中机电科技有限公司 Electronic alloy material with balanced performance
JP6600401B1 (en) * 2018-10-11 2019-10-30 三芳合金工業株式会社 Method for producing age-hardening type copper alloy
KR102005332B1 (en) * 2019-04-09 2019-10-01 주식회사 풍산 Method for manufacturing Cu-Co-Si-Fe-P alloy having Excellent Bending Formability
JP7215735B2 (en) * 2019-10-03 2023-01-31 三芳合金工業株式会社 Age-hardenable copper alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260435A (en) * 1979-07-02 1981-04-07 Ampco-Pittsburgh Corporation Copper-nickel-silicon-chromium alloy having improved electrical conductivity
JP2514926B2 (en) * 1986-02-04 1996-07-10 古河電気工業株式会社 Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
KR950004935B1 (en) * 1986-09-30 1995-05-16 후루까와 덴끼 고교 가부시끼가이샤 Copper alloy for electronic instruments
JPS63307232A (en) * 1987-06-04 1988-12-14 Sumitomo Metal Mining Co Ltd Copper alloy
JPH02277735A (en) * 1989-04-20 1990-11-14 Sumitomo Metal Mining Co Ltd Copper alloy for lead frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422693B (en) * 2010-06-03 2014-01-11 Jx Nippon Mining & Metals Corp Cu-Co-Si alloy sheet and method for producing the same
TWI447241B (en) * 2011-03-09 2014-08-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si alloy and its manufacturing method

Also Published As

Publication number Publication date
CN101522927A (en) 2009-09-02
TWI415958B (en) 2013-11-21
JP5085908B2 (en) 2012-11-28
KR101127000B1 (en) 2012-04-12
CN101522927B (en) 2011-01-12
WO2008041696A1 (en) 2008-04-10
KR20090050101A (en) 2009-05-19
JP2008088512A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
TW200823303A (en) Method for production of copper alloy for electronic material
CN102630251B (en) There is copper alloy plate and its manufacture method of low Young&#39;s modulus
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
TWI571519B (en) Cu-ni-co-si based copper alloy sheet material and manufacturing method thereof
JP4247922B2 (en) Copper alloy sheet for electrical and electronic equipment and method for producing the same
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
TW201229257A (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, and rolled copper alloy for electronic device
CN108431257B (en) Copper alloy for electronic/electrical equipment, copper alloy strip material for electronic/electrical equipment, module for electronic/electrical equipment, terminal, bus bar, and movable piece for relay
TW201213562A (en) Copper alloy for electronic device, manufacturing method thereof, and rolled copper alloy for electronic device
TW201233818A (en) Copper alloy for electronic and/or electrical device, copper alloy thin plate, and conductive member
JP3977376B2 (en) Copper alloy
WO2006093140A1 (en) Copper alloy
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
TWI429767B (en) Copper alloy
CN107614714B (en) Copper alloy sheet for electronic/electrical equipment, copper alloy plastic working material for electronic/electrical equipment, module for electronic/electrical equipment, terminal, and bus bar
CN101270423A (en) Cu-Ni-Si based copper alloy for electronic material
WO2011096632A2 (en) Copper alloy having high strength and high conductivity, and preparation method thereof
JP2019507252A (en) Copper alloy material for automobile and electric / electronic parts and method for producing the same
TWI763982B (en) Copper alloy plate and method for producing same
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP5207927B2 (en) Copper alloy with high strength and high conductivity
JP2001226754A (en) Method of manufacturing for heat resistant aluminum alloy and electric cable
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
JP2018070944A (en) Copper alloy sheet material and manufacturing method therefor
JP4937628B2 (en) Copper alloy with excellent hot workability