JP4937628B2 - Copper alloy with excellent hot workability - Google Patents

Copper alloy with excellent hot workability Download PDF

Info

Publication number
JP4937628B2
JP4937628B2 JP2006100338A JP2006100338A JP4937628B2 JP 4937628 B2 JP4937628 B2 JP 4937628B2 JP 2006100338 A JP2006100338 A JP 2006100338A JP 2006100338 A JP2006100338 A JP 2006100338A JP 4937628 B2 JP4937628 B2 JP 4937628B2
Authority
JP
Japan
Prior art keywords
precipitates
alloy
major axis
copper alloy
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006100338A
Other languages
Japanese (ja)
Other versions
JP2007270314A (en
Inventor
雅俊 衛藤
智 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2006100338A priority Critical patent/JP4937628B2/en
Priority to TW096108678A priority patent/TW200741019A/en
Priority to KR1020070030786A priority patent/KR100885825B1/en
Priority to CN2007100921783A priority patent/CN101045969B/en
Publication of JP2007270314A publication Critical patent/JP2007270314A/en
Application granted granted Critical
Publication of JP4937628B2 publication Critical patent/JP4937628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、高強度、高導電性の電子機器部品用の、熱間加工性に優れた銅合金に関するものであり、特に小型、高集積化された半導体機器リード用及び端子コネクタ用銅合金において、曲げ加工性を損なうことなく特に強度、導電性に優れた、熱間加工性に優れた電子部品用銅合金に関する。   The present invention relates to a copper alloy excellent in hot workability for high-strength, high-conductivity electronic device parts, and particularly in a small and highly integrated copper alloy for semiconductor device leads and terminal connectors. The present invention relates to a copper alloy for electronic parts that is particularly excellent in strength and conductivity without deteriorating bending workability and excellent in hot workability.

銅及び銅合金は、コネクタ、リード端子等の電子部品及びフレキシブル回路基板用として多用途に亘って幅広く利用されている材料であり、急速に展開するIT化による情報機器の高機能化及び小型化・薄肉化に対応して更なる特性(強度、曲げ加工性、導電性)の向上を要求されている。
又、ICの高集積化に伴い、消費電力の高い半導体素子が多く使用されるようになり、半導体機器のリードフレーム材には、放熱性(導電性)の良いCu−Ni−Si系やCu−Fe−P系、Cu−Cr−Sn系、Cu−Ni−P系等の析出型合金が使用されるようになった。上記Cu−Ni−P系合金はNi−P系化合物の微細析出により強化が生じるが、特許文献1では合金中のNi、P、Mg成分量を調整して、強度及び導電性、耐応力緩和性を備えた合金を得たことが報告されている。
Copper and copper alloys are materials that are widely used for electronic parts such as connectors and lead terminals and flexible circuit boards, and are highly functional and miniaturized due to the rapid development of IT.・ Further improvements in properties (strength, bending workability, conductivity) are required in response to thinning.
In addition, with the high integration of ICs, many semiconductor elements with high power consumption are used, and the lead frame material of semiconductor devices has a good heat dissipation (conductivity) such as Cu-Ni-Si or Cu. Precipitation alloys such as -Fe-P, Cu-Cr-Sn, and Cu-Ni-P have come to be used. The Cu—Ni—P alloy is strengthened by the fine precipitation of the Ni—P compound, but in Patent Document 1, the amount of Ni, P, and Mg components in the alloy is adjusted to reduce the strength, conductivity, and stress resistance. It has been reported that an alloy with properties is obtained.

特開2000−273562号公報JP 2000-273562 A

一般に、銅合金の鋳造、例えば連続或いは半連続鋳造において、鋳塊はモールドにより抜熱され、鋳塊の表層の数mmを除いて内部はやや時間をかけて凝固する。この際に、凝固時及び凝固後の冷却過程で限界を超えて含有された合金元素が結晶粒界及び結晶粒内に晶出又は析出する。1.0%以上のNi及び0.2%以上のPを含有する銅合金は、高強度高導電という長所を有するが、室温においてはCu母相への固溶限以上のNi−P成分を多く含有しているため、鋳塊を製造すると通常はNi−P系化合物が結晶粒界に晶出又は析出してしまう。そして、Cu−Ni−P系合金の結晶粒界に晶出又は析出したNi−P系化合物は母相のCuより融点が低いため、これら銅合金の凝固は不均一なものとなり内部歪が発生し、その応力や外力によりNi−P系化合物の部分で破壊が生じ、鋳造、冷却段階での割れを引き起こす。又、熱間圧延の加熱時にもNi−P系化合物が母相よりも先に軟化又は液相化するため同様に割れが生じる。
しかし、特許文献1のCu−Ni−P系合金の組成はNiが0.01〜1.0%、Pが0.01〜0.2%であるため上記問題は特に意識されていなかった。
本発明の目的は、鋳造、冷却、熱間加工加熱又は熱間加工中に発生する割れを防止し、高温延性に優れており熱間加工性が良好なCu−Ni−P−Mg系合金を提供しようとするものである。
In general, in the casting of a copper alloy, for example, continuous or semi-continuous casting, the ingot is removed by a mold, and the inside solidifies over some time except for several mm of the surface layer of the ingot. At this time, alloy elements contained exceeding the limit during the solidification and after the solidification cooling process are crystallized or precipitated in the crystal grain boundaries and in the crystal grains. A copper alloy containing 1.0% or more of Ni and 0.2% or more of P has the advantage of high strength and high conductivity, but at room temperature, it has a Ni-P component exceeding the solid solubility limit in the Cu matrix. Since it is contained in a large amount, when an ingot is produced, a Ni-P compound is usually crystallized or precipitated at the crystal grain boundary. And since the melting point of the Ni-P compound compound crystallized or precipitated at the grain boundary of the Cu-Ni-P alloy is lower than that of the parent phase Cu, the solidification of these copper alloys becomes uneven and internal strain occurs. However, due to the stress and external force, fracture occurs in the Ni-P-based compound portion, causing cracks in the casting and cooling stages. Moreover, since the Ni-P compound softens or becomes a liquid phase prior to the parent phase during the hot rolling, cracks are similarly generated.
However, since the composition of the Cu-Ni-P alloy of Patent Document 1 is 0.01 to 1.0% for Ni and 0.01 to 0.2% for P, the above problem was not particularly conscious.
An object of the present invention is to prevent a Cu-Ni-P-Mg alloy having excellent hot workability by preventing cracks occurring during casting, cooling, hot working heating or hot working. It is something to be offered.

本発明者らは上記の目的を達成すべく、研究を重ねた結果、下記構成を特定することにより優れた熱間加工性と優れた強度及び導電性を具備するCu−Ni−P−Mg系合金が得られることを見出した。
本発明は銅合金においてNi:1.0%〜2.0%(本明細書では、成分割合を表す%は質量%とする)、P:0.10%〜0.50%、Mg:0.01%〜0.20%を含有し、NiとPの含有量比率Ni/P:4.0〜6.5で且つ、B:0.005%以上0.070%以下で残部がCu及び不可避的不純物から成り、最終冷間圧延前のNi−P−Mg系析出物の大きさと形状について、長径:a、短径:bとした時、少なくともアスペクト比a/bが2〜50で且つ短径bが10〜25nmとなる析出物を有し、左記析出物とアスペクト比a/bが2未満で且つ長径aが20〜50nmとなる析出物の面積の総和が銅合金中の全析出物の面積の総和に対して80%以上を占めることを特徴とする熱間加工性に優れた銅合金であり、好ましくは長径5〜50μmの介在物の個数が1mm2当たり100個以下であり、且つ長径50μmを超える介在物の個数が1mm2当たり0個である銅合金に関する。
The present inventors have conducted research to achieve the above object, and as a result, the following structure is specified, whereby a Cu-Ni-P-Mg system having excellent hot workability, excellent strength and conductivity is provided. It has been found that an alloy can be obtained.
In the copper alloy according to the present invention, Ni: 1.0% to 2.0% (in the present specification,% representing the component ratio is mass%), P: 0.10% to 0.50%, Mg: 0 0.01% to 0.20%, Ni / P content ratio Ni / P: 4.0 to 6.5, and B: 0.005% to 0.070% with the balance being Cu and Ri inevitable impurities, about the size and shape of the final cold rolling before the Ni-P-Mg-based precipitates, major axis: a, minor: when is b, at least an aspect ratio a / b is from 2 to 50 In addition, the total of the areas of the precipitates with the minor axis b of 10 to 25 nm, the deposits with the aspect ratio a / b of less than 2, and the major axis a of 20 to 50 nm is the total in the copper alloy. to 80% or more with respect to the total sum of the areas of the precipitates are excellent copper alloy in hot workability characterized by, preferred Ku is the number of major axis 5~50μm of inclusions is not more than 100 per 1 mm 2, and the number of inclusions exceeding diameter 50μm is directed to copper alloys is 0 per 1 mm 2.

本発明は、Cu−Ni−P−Mg系合金にBを特定量添加することによって、Ni−P−Mg系化合物の結晶粒界への晶出又は析出を抑制し、好ましくは鋳造時の冷却速度を制御することで粗大なNi−P−Mg−B系及びP−B系化合物の生成を抑制する。上記構成を採用することによって、本発明は粒界の高温脆性を改善して熱間加工性の向上を図ったものである。
本発明の熱間加工性に優れた銅合金は高強度高導電電子機器用として優れた効果を奏する。
In the present invention, by adding a specific amount of B to a Cu—Ni—P—Mg alloy, crystallization or precipitation of the Ni—P—Mg compound at the crystal grain boundary is suppressed, preferably cooling during casting. By controlling the speed, the formation of coarse Ni—P—Mg—B and PB compounds is suppressed. By adopting the above configuration, the present invention improves the hot workability by improving the high temperature brittleness of the grain boundaries.
The copper alloy excellent in hot workability of the present invention has an excellent effect for high-strength and high-conductivity electronic equipment.

次に、本発明において銅合金の成分組成の数値範囲を限定した理由をその作用と共に説明する。
[Ni量]
Niは合金の強度及び耐熱性を確保する作用があると共に後述するPとのNi−P系化合物を析出させ、合金の強度上昇に寄与する。しかし、その含有量が1.0%未満であると所望の強度が得られず、一方、2.0%を超えてNiを含有させると熱間加工性が低下すると共に製品の曲げ加工性及び導電率の低下が顕著となる。更にその上、長径の大きなNi−P−Mg系析出物の面積率を増してしまい好ましくない。Ni及びPの含有量和(Ni+P)が2.5%を超えると粗大粒子の晶出量が増大し、更に時効処理での析出が顕著になり大きさ50nm以下の微細なNi−P−Mgの析出の制御が難しくなる。従って本発明の合金のNi含有量は1.0%〜2.0%、好ましくは1.1〜1.8%である。
Next, the reason for limiting the numerical range of the component composition of the copper alloy in the present invention will be described together with its action.
[Ni content]
Ni has the effect of ensuring the strength and heat resistance of the alloy and precipitates a Ni—P compound with P, which will be described later, thereby contributing to an increase in the strength of the alloy. However, if the content is less than 1.0%, the desired strength cannot be obtained. On the other hand, if Ni exceeds 2.0%, the hot workability decreases and the bending workability of the product and The decrease in conductivity becomes remarkable. Furthermore, the area ratio of Ni—P—Mg based precipitates having a large major axis is increased, which is not preferable. When the total content of Ni and P (Ni + P) exceeds 2.5%, the crystallization amount of coarse particles increases, and precipitation by aging treatment becomes more prominent and fine Ni-P-Mg having a size of 50 nm or less. It becomes difficult to control the precipitation. Therefore, the Ni content of the alloy of the present invention is 1.0% to 2.0%, preferably 1.1 to 1.8%.

[P量]
Pは、Niとの化合物を析出して合金の強度及び耐熱性を向上させる。P含有量が0.10%未満であると化合物の析出が不充分であるため、所望の強度が得られない。一方、P含有量が0.50%を超えて含有させると熱間加工性が低下すると共に導電率の低下が顕著となる。更にその上、長径の大きなNi−P系析出物の面積率を増してしまい好ましくない。従って本発明の合金のP含有量は0.10%〜0.50%、好ましくは0.20〜0.40%である。
[Mg量]
Mgは、Ni及びPとの化合物を析出して合金の強度及び耐熱性を向上させる。また、Mgを添加するとNi−P−Mg系の繊維状の析出物が生成し、Mgを添加しないCu−Ni−P系合金に比べ、より高強度が得られる。さらに、その効果は、Mgが母相中に固溶して得られる強度の上昇より大きい。ただし、Mg含有量が0.01%未満であると所望の強度及び耐熱性が得られない。一方、Mg含有量が0.20%を超えて含有させると熱間加工性を著しく低下させると共に導電率の低下が顕著となる。また、粗大な析出物が生じ、強度の向上が妨げられる。
従って本発明の合金のMg含有量は、0.01%〜0.20%、好ましくは0.02%〜0.15%である。
[P amount]
P precipitates a compound with Ni to improve the strength and heat resistance of the alloy. If the P content is less than 0.10%, precipitation of the compound is insufficient, so that the desired strength cannot be obtained. On the other hand, when the P content exceeds 0.50%, hot workability is lowered and the conductivity is significantly lowered. Furthermore, the area ratio of Ni—P-based precipitates having a large major axis is increased, which is not preferable. Therefore, the P content of the alloy of the present invention is 0.10% to 0.50%, preferably 0.20 to 0.40%.
[Mg amount]
Mg precipitates a compound with Ni and P to improve the strength and heat resistance of the alloy. Further, when Mg is added, a Ni-P-Mg-based fibrous precipitate is generated, and higher strength can be obtained as compared with a Cu-Ni-P-based alloy not added with Mg. Furthermore, the effect is greater than the increase in strength obtained when Mg is dissolved in the matrix. However, when the Mg content is less than 0.01%, desired strength and heat resistance cannot be obtained. On the other hand, when the Mg content exceeds 0.20%, hot workability is remarkably lowered and the conductivity is remarkably lowered. In addition, coarse precipitates are generated, and improvement in strength is hindered.
Therefore, the Mg content of the alloy of the present invention is 0.01% to 0.20%, preferably 0.02% to 0.15%.

[Ni/P比]
NiとPの含有量が上記の限定範囲内にあってもNiとPの含有比率Ni/PがNi−P系化合物の適切な化学量論的組成比から外れると、すなわち、4.0未満の場合にはPの、6.5を超えた場合にはNiの固溶する量が増大してしまい、導電率の低下が顕著となり好ましくない。従って本発明の合金のNi/P比は4.0〜6.5、好ましくは4.5〜6.0である。
[Ni / P ratio]
If the Ni / P content ratio Ni / P deviates from the appropriate stoichiometric composition ratio of the Ni-P compound even if the Ni and P contents are within the above-mentioned limited range, that is, less than 4.0 In this case, when P exceeds 6.5, the amount of Ni dissolved increases, which is not preferable because the decrease in conductivity is remarkable. Therefore, the Ni / P ratio of the alloy of the present invention is 4.0 to 6.5, preferably 4.5 to 6.0.

[Ni−P−Mg系析出物の大きさと面積率]
Ni−P−Mg系析出物の長径をa(nm)、短径をb(nm)としてアスペクト比a/bによって分類すると、当該銅合金ではa/b=2〜50程度のアスペクト比が大きな針状及び繊維状とa/bが2未満の粒状の析出物を生成させることが可能である。時効処理前の加工歪ηを0.4未満、好ましくは0.1未満にすることで針状及び繊維状の析出物、時効処理前の加工歪ηを0.4以上にすることで粒状の析出物を生成する。
析出物の大きさを規定する理由は次の通りである。最終冷間圧延前の短径bが10nm未満の析出物は、加工歪η=2以上の圧延加工を行うと、析出物が破壊、分解して銅中に再固溶してしまい導電率を低下させて好ましくない。一方、最終冷間圧延前の短径bが10nm以上の析出物は、加工歪η=2以上の圧延加工でも再固溶しにくく、10nm以上の析出物として存在する。特に短径bが20nm以上の析出物は圧延前後で大きさの変化が少なく、冷間加工によって析出物が破壊、固溶しづらくなる。一方、圧延前の長径aが50nmを超え、且つ短径bが25nmを超える析出物は圧延後もその大きさを保つが、個々の析出物の体積が大きいため、銅合金中の析出物の分散間隔が大きくなりすぎるため析出強化及び加工強化が得られなくなる。
尚、長径a及び短径bは最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面画像を画像解析装置を用いて5nm以上の析出物のすべてについて測定した全析出物の長径及び短径それぞれの平均値である。又、加工歪ηは、圧延前の板厚をt、圧延後の板厚をtとした場合、η=ln(t/t)で表される。
上記より、本発明の合金の最終冷間圧延前のNi−P−Mg系析出物の大きさは、アスペクト比a/bが2〜50で且つ短径bが10〜25nmとなる析出物を有し、加えてアスペクト比a/bが2未満で且つ長径aが20〜50nmである。
[Size and area ratio of Ni-P-Mg-based precipitates]
When the major axis of the Ni—P—Mg based precipitate is classified as a (nm) and the minor axis is b (nm) according to the aspect ratio a / b, the copper alloy has a large aspect ratio of about a / b = 2-50. It is possible to produce acicular and fibrous precipitates having a / b of less than 2. By making the processing strain η before aging treatment less than 0.4, preferably less than 0.1, acicular and fibrous precipitates, and by making the processing strain η before aging treatment 0.4 or more A precipitate is formed.
The reason for defining the size of the precipitate is as follows. Precipitates whose minor axis b before final cold rolling is less than 10 nm are subjected to a rolling process with a work strain η = 2 or more, and the precipitates are broken and decomposed and re-dissolved in copper. Lowering is not preferable. On the other hand, a precipitate having a minor axis b of 10 nm or more before the final cold rolling is not easily re-dissolved even in a rolling process with a work strain η = 2 or more, and exists as a precipitate of 10 nm or more. In particular, precipitates having a minor axis b of 20 nm or more have little change in size before and after rolling, and the precipitates are not easily broken or dissolved by cold working. On the other hand, the precipitate with the major axis a before rolling exceeding 50 nm and the minor axis b exceeding 25 nm maintains its size after rolling, but the volume of the individual precipitates is large, so the precipitates in the copper alloy Since the dispersion interval becomes too large, precipitation strengthening and work strengthening cannot be obtained.
The major axis a and the minor axis b are total precipitates obtained by cutting the alloy strips before the final cold rolling in a direction perpendicular to the thickness parallel to the rolling direction, and measuring all of the precipitates of 5 nm or more using an image analyzer. It is the average value of the major axis and minor axis of the product. Further, the processing strain eta, the plate thickness before rolling t 0, when the plate thickness after rolling was t, is expressed by η = ln (t 0 / t ).
From the above, the size of the Ni—P—Mg-based precipitate before the final cold rolling of the alloy of the present invention is such that the aspect ratio a / b is 2 to 50 and the minor axis b is 10 to 25 nm. In addition, the aspect ratio a / b is less than 2 and the major axis a is 20 to 50 nm.

しかしながら、全ての析出物を上記a及びa/bの好ましい範囲内にすることは困難であるため、上記a及びa/bの範囲となる析出物の全析出物に対する割合が重要になる。そこで、合金中の全析出物の面積総和に対する、上記a及びa/bの好ましい範囲にある析出物の面積総和の割合を面積率Cとすると、本発明の面積率Cは好ましくは80%以上である。
面積率Cが80%未満の場合とは、長径aが50nmを超え、且つ短径bが25nmを超える析出物又は長径aが20nm未満、或いは短径bが10nm未満の析出物が多く存在する場合である。例えば、長径aが50nmを超え、且つ短径bが25nmを超える析出物や溶解鋳造時に生じた晶出物が熱間圧延や溶体化処理で固溶せずに残存した1000nm以上のNi−P系の粒子(晶出物)が多く存在する時には、強度向上に寄与する本発明で規定した範囲の微細な析出物の数が少なく、析出物間の分散間隔が大きいため、圧延加工での加工硬化によっての所望の強度は得られない。一方、長径aが20nm未満或いは短径bが10nm未満の析出物は、圧延加工での加工によって再固溶してしまうため、所望の導電率は得られない。
However, since it is difficult to make all the precipitates within the preferable ranges of a and a / b, the ratio of the precipitates within the ranges of a and a / b to the total precipitates is important. Therefore, when the ratio of the total area of precipitates in the preferable range of a and a / b to the total area of all precipitates in the alloy is defined as area ratio C, the area ratio C of the present invention is preferably 80% or more. It is.
When the area ratio C is less than 80%, there are many precipitates having a major axis a exceeding 50 nm and a minor axis b exceeding 25 nm, or a major axis a being less than 20 nm, or a minor axis b being less than 10 nm. Is the case. For example, a Ni-P of 1000 nm or more in which precipitates having a major axis a exceeding 50 nm and a minor axis b exceeding 25 nm or crystallized substances generated during melt casting remained without being dissolved by hot rolling or solution treatment. When there are a lot of system particles (crystallized products), the number of fine precipitates in the range defined in the present invention that contributes to strength improvement is small, and the dispersion interval between the precipitates is large. The desired strength is not obtained. On the other hand, a precipitate having a major axis “a” of less than 20 nm or a minor axis “b” of less than 10 nm is re-dissolved by the rolling process, and thus the desired conductivity cannot be obtained.

[B量]
Bは、Cu−Ni−P−Mg系合金の凝固時や凝固後の冷却過程及び熱間加工の加熱時にNi−P−Mg系化合物の結晶粒界への晶出又は析出を抑制し、合金の熱間加工性を向上させる。しかし、その含有量が0.005%未満であると熱間加工性の改善効果が得られず、一方、0.070%を超えてBを含有させるとNi−P−Mg−B系、B−P系等の化合物が介在物として溶解中又は凝固中に生じてしまう。これらのBを含む化合物は、通常結晶粒界に集約化、粗大化を伴って晶出又は析出して溶体化処理でCu母相中に固溶しないため、時効処理で析出するNi−P−Mg系化合物が減少し、合金の強度低下を招く。更にNi−P−Mg−B系、B−P系等の化合物は、製品では長径5μm以上の介在物となって製品に残存し、製品の表面欠陥、曲げ加工時の割れの起点、めっき処理時の欠陥の起点になるため、好ましくない。従って、本発明の合金のB含有量は、0.005%〜0.070%以下、好ましくは0.007%〜0.060%である。
[B amount]
B suppresses crystallization or precipitation of the Ni-P-Mg-based compound at the grain boundary during the solidification of the Cu-Ni-P-Mg-based alloy, during the cooling process after the solidification, and during heating during hot working. Improves hot workability. However, if the content is less than 0.005%, the effect of improving the hot workability cannot be obtained. On the other hand, if B is contained in excess of 0.070%, the Ni-P-Mg-B system, B A compound such as a -P compound is generated as an inclusion during dissolution or coagulation. Since these B-containing compounds usually crystallize or precipitate with agglomeration and coarsening at the grain boundaries and do not form a solid solution in the Cu matrix by solution treatment, Ni-P- precipitated by aging treatment. Mg-based compounds are reduced, and the strength of the alloy is reduced. Furthermore, Ni-P-Mg-B, BP, and other compounds remain in the product as inclusions having a major axis of 5 μm or more, surface defects of the product, starting points of cracks during bending, plating treatment This is not preferable because it becomes a starting point of defects at the time. Therefore, the B content of the alloy of the present invention is 0.005% to 0.070% or less, preferably 0.007% to 0.060%.

[介在物]
本発明の「介在物」とは、Cu−Ni−P−Mg系合金中の結晶粒界及び/又は結晶粒内に晶出若しくは析出した、Ni−P−Mg−B系化合物、B−P系化合物等を主成分とする晶出物を意味し、結晶粒内に晶出又は析出する微細Ni−P−Mg系化合物を含むものではない。介在物の長径とは、圧延平行断面での大きさ5μm以上の介在物の平均長径を言う。
長径50μmを超える介在物が存在すると曲げ加工時の割れの起点となり製品の曲げ加工性を劣化させる。従って本発明の銅合金は、好ましくは長径50μmを超える介在物の個数が1mm当たり0個である。又、長径5〜50μmの介在物が存在すると介在物中に含まれるB量が増大し、Bの添加目的であるNi−P系化合物の結晶粒界への晶出を抑制する効果が得られなくなる。従って本発明の銅合金は、好ましくは長径5〜50μmの介在物の個数が1mm当たり100個以下、更に好ましくは50個以下である。
[Inclusion]
The “inclusion” of the present invention refers to a Ni—P—Mg—B compound, BP crystallized or precipitated in a grain boundary and / or crystal grain in a Cu—Ni—P—Mg alloy. It means a crystallized product mainly composed of a system compound or the like, and does not include a fine Ni—P—Mg compound that crystallizes or precipitates in crystal grains. The major axis of inclusions means the average major axis of inclusions having a size of 5 μm or more in the rolling parallel section.
If inclusions with a major axis of more than 50 μm are present, they become the starting point of cracking during bending and deteriorate the bending workability of the product. Therefore, in the copper alloy of the present invention, the number of inclusions having a major axis of more than 50 μm is preferably 0 per 1 mm 2 . Further, when inclusions having a major axis of 5 to 50 μm are present, the amount of B contained in the inclusions increases, and the effect of suppressing crystallization of Ni—P compounds, which is the purpose of addition of B, to the crystal grain boundaries can be obtained. Disappear. Therefore, in the copper alloy of the present invention, the number of inclusions having a major axis of 5 to 50 μm is preferably 100 or less, more preferably 50 or less per 1 mm 2 .

[Sn、In量]
Sn及びIn量は、いずれも合金の導電性を大きく低下させずに主として固溶強化により強度を向上させる作用を有している。従って必要に応じてこれらの金属を1種類以上添加するが、その含有量が総量で0.01%未満であると固溶強化による強度向上の効果が得られず、一方、総量で1.0%以上を添加すると合金の導電率及び曲げ加工性低下が顕著になる。このため、単独添加又は2種類以上の複合添加されるSn及びIn量は、0.01%〜1.0%、好ましくは総量で0.05%〜0.8%である。なお、これらの元素は本発明においては、意図的に添加される元素であり、不可避的不純物とはみなさない。
[O量]
Oは、Bと合金中で反応しやすく、Oが合金中に酸化物の状態で存在するとB添加効果が得られない。従って、本発明の合金のO含有量は、0.0050%以下、好ましくは0.0030%以下である。
[Sn, In amount]
Both the Sn and In contents have the effect of improving the strength mainly by solid solution strengthening without greatly reducing the conductivity of the alloy. Accordingly, if necessary, one or more of these metals are added. If the total content is less than 0.01%, the effect of improving the strength by solid solution strengthening cannot be obtained, while the total amount is 1.0. When adding more than%, the electrical conductivity and bending workability of the alloy are significantly reduced. For this reason, the amount of Sn and In added individually or in combination of two or more types is 0.01% to 1.0%, preferably 0.05% to 0.8% in total. In the present invention, these elements are intentionally added elements and are not regarded as inevitable impurities.
[O amount]
O easily reacts with B in the alloy, and if O exists in an oxide state in the alloy, the B addition effect cannot be obtained. Therefore, the O content of the alloy of the present invention is 0.0050% or less, preferably 0.0030% or less.

[引張強さ及び導電率]
本発明の銅合金は熱間加工性に優れ、更に優れた導電性、引張強さ、曲げ加工性を兼備する。本発明の銅合金の引張強さは、好ましくは700MPa以上、更に好ましくは750MPa以上であり、その上限は通常950MPa程度である。又、導電率は好ましくは40%IACS以上、更に好ましくは40%IACS以上であり、その上限は通常65%IACS程度である。
[Tensile strength and conductivity]
The copper alloy of the present invention is excellent in hot workability and further has excellent conductivity, tensile strength and bending workability. The tensile strength of the copper alloy of the present invention is preferably 700 MPa or more, more preferably 750 MPa or more, and the upper limit is usually about 950 MPa. Further, the conductivity is preferably 40% IACS or more, more preferably 40% IACS or more, and the upper limit is usually about 65% IACS.

[凝固時の冷却速度と介在物の大きさ]
上記本発明の要件を満たすCu−Ni−P−Mg系合金は、通常当業者が製造において採用する、インゴット鋳造、熱間圧延、溶体化処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍等において、適宜加熱温度、時間、冷却速度、圧延加工度等を選択することにより製造することが出来る。通常行われる連続又は半連続鋳造における凝固速度は、凝固段階で採用する装置、方式により異なり、かつ冷却均一化手段を採用しない置き注ぎ式などの場合、鋳塊の外側と内側とで差異が生じる。例えば、鉄製の鋳型内(φ700×h1500mm)に溶銅を注いで凝固する置き注ぎ式の場合、1100〜950℃冷却速度は1℃/分程度である。
本発明の銅合金の鋳造時における凝固温度範囲は好ましくは1100℃から950℃であり、この冷却温度範囲での冷却速度が遅いとNi−P−Mg−B系及び/又はP−B系化合物が凝固段階で粗大に生成しやすく、B添加による熱間延性の向上が認められないおそれがある。
[Cooling rate during solidification and size of inclusions]
The Cu—Ni—P—Mg based alloy that satisfies the above-mentioned requirements of the present invention is generally used by those skilled in the art for ingot casting, hot rolling, solution treatment, intermediate cold rolling, aging treatment, and final cold rolling. In the strain relief annealing and the like, it can be produced by appropriately selecting the heating temperature, time, cooling rate, rolling degree, and the like. The solidification speed in continuous or semi-continuous casting that is usually performed differs depending on the equipment and method used in the solidification stage, and in the case of a pouring type that does not employ cooling uniformization means, there is a difference between the outside and inside of the ingot. . For example, in the case of a pouring type in which molten copper is poured into an iron mold (φ700 × h1500 mm) and solidified, the cooling rate of 1100 to 950 ° C. is about 1 ° C./min.
The solidification temperature range at the time of casting of the copper alloy of the present invention is preferably 1100 ° C. to 950 ° C. If the cooling rate in this cooling temperature range is slow, the Ni—P—Mg—B system and / or the PB system compound Is likely to be coarsely formed in the solidification stage, and there is a possibility that the improvement of hot ductility due to the addition of B is not recognized.

上記Ni−P−Mg−B系及び/又はP−B系化合物を主成分とする介在物個数と熱間延性には、次に示す相関が認められた。鋳造、凝固段階での1100℃から950℃の冷却速度が30℃/分未満の鋳塊を850℃に1時間加熱後、水冷して得られた試料の介在物の計測結果では、長径5〜50μmの介在物の個数が1mm当たり100個以上であるか、又は長径50μmを超える介在物の個数が1mm当たり1個以上の場合、Bを所定量添加した合金でも850℃の熱間圧延で割れが発生した。従って、鋳造、凝固段階での1100℃から950℃の冷却速度は30℃/分以上が好ましい。更に、合金の曲げ加工性を劣化させないためにはNi−P−B系化合物、P−B系化合物の粗大析出化を抑制するため、鋳造、凝固段階での1100℃から950℃の冷却速度は85℃/分以上が好ましい。尚、1500℃/分を超える冷却速度は凝固収縮部への溶銅供給が間に合わず引け巣による欠陥が増大するため好ましくない。 The following correlation was recognized between the number of inclusions mainly composed of the Ni-P-Mg-B and / or PB compounds and the hot ductility. In the measurement results of the inclusions in the sample obtained by heating an ingot at 1100 ° C. to 950 ° C. at a cooling rate of less than 30 ° C./min in the casting and solidification stage to 850 ° C. for 1 hour and then cooling with water, When the number of inclusions of 50 μm is 100 or more per 1 mm 2 , or when the number of inclusions exceeding 50 μm in the major axis is 1 or more per 1 mm 2 , hot rolling at 850 ° C. even for an alloy added with a predetermined amount of B Cracking occurred. Accordingly, the cooling rate from 1100 ° C. to 950 ° C. in the casting and solidification stage is preferably 30 ° C./min or more. Furthermore, in order not to deteriorate the bending workability of the alloy, the cooling rate from 1100 ° C. to 950 ° C. in the casting and solidification stage is set to suppress coarse precipitation of Ni—P—B compounds and P—B compounds. 85 ° C./min or more is preferable. Note that a cooling rate exceeding 1500 ° C./min is not preferable because the supply of molten copper to the solidification shrinkage portion is not in time and defects due to shrinkage increase.

発明例1〜6及び比較例7〜20
試料の製造(a):
電気銅或いは無酸素銅を主原料とし、ニッケル(Ni)、15%P−Cu母合金(P)、10%Mg−Cu母合金(Mg)、2%B−Cu母合金(B)、錫(Sn)、インジウム(In)を副原料とし、高周波溶解炉にて真空中又はアルゴン雰囲気中で溶解し、材質鋳鉄製の鋳型を使用して45×45×90mmのインゴットに鋳造した。インゴットの熱間圧延試験を行い、熱間圧延で割れが発生しなかったインゴットは、熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.15mmの平板とした。得られた板材各種の試験片を採取して試験を行い、「強度」及び「導電率」の評価を行った。
Invention Examples 1-6 and Comparative Examples 7-20
Sample preparation (a):
Mainly made of electrolytic copper or oxygen-free copper, nickel (Ni), 15% P—Cu master alloy (P), 10% Mg—Cu master alloy (Mg), 2% B—Cu master alloy (B), tin (Sn) and indium (In) were used as auxiliary materials, melted in a high-frequency melting furnace in a vacuum or in an argon atmosphere, and cast into a 45 × 45 × 90 mm ingot using a cast iron mold. Ingots were subjected to a hot rolling test, and ingots that were not cracked by hot rolling were subjected to hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing. It implemented in order and was set as the flat plate of thickness 0.15mm. Various test pieces of the obtained plate material were collected and tested, and “strength” and “conductivity” were evaluated.

インゴットの熱間加工性評価(a):
「熱間加工性」は、熱間圧延によって評価した。即ち、インゴットを45×45×25mmに切断し、850℃に1時間加熱後、厚さ25mmから5mmまで3パスで熱間圧延試験を行った。熱間圧延後の試料の表面及びエッジについて目視により割れが認められた場合を、“割れ有り”、表面及びエッジに割れが無く、平滑な場合を、“割れなし”とした。
Ingot hot workability evaluation (a):
“Hot workability” was evaluated by hot rolling. That is, the ingot was cut into 45 × 45 × 25 mm, heated to 850 ° C. for 1 hour, and then subjected to a hot rolling test in three passes from a thickness of 25 mm to 5 mm. The case where cracks were visually observed on the surface and edge of the sample after hot rolling was defined as “cracked”, and the case where the surface and edge were not cracked and smooth was defined as “no crack”.

試験片の物性評価(a):
「強度」については、JIS Z 2241に規定された引張試験により13号B試験片を用いて行い、引張強さを測定した。
「導電率」は4端子法を用いて試験片の電気抵抗を測定し、%IACSで表示した。
Physical property evaluation of test piece (a):
About "strength", it carried out using the No. 13 B test piece by the tension test prescribed | regulated to JISZ2241, and measured the tensile strength.
“Conductivity” was measured by measuring the electrical resistance of a test piece using a four-terminal method and expressed in% IACS.

Ni−P−Mg系析出物の評価(a);
最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、走査型電子顕微鏡及び透過型電子顕微鏡を使用して、断面の析出物を10視野観察した。析出物の大きさが5〜50nmの場合は50万倍〜70万倍の視野(約1.4×1010〜2.0×1010nm)、100〜2000nmの場合は5万倍〜10万倍の視野(約1.0×1013〜2.0×1013nm)で撮影を行った。撮影した写真の画像を画像解析装置(株式会社ニレコ製、商品名ルーゼックス)を用いて長径aが5nm以上の析出物のすべてについて個々に長径a、短径b,及び面積を測定した。これら析出物からランダムに100個取り出し、長径aが5nm以上の全析出物の面積総和に対して、アスペクト比a/bが2〜50で且つ短径bが10〜30nmの析出物の面積とアスペクト比が2未満でかつ長径aが20〜50nmの析出物の面積の総和の割合を面積率C(%)して算出した。
尚、最終冷間圧延(通常は加工歪η=2以上)により、冷間圧延前の析出物の短径bが10nmより小さいNi−P−Mg系析出物は固溶して観察されないが、短径bが10nm以上の析出物は最終冷間圧延後もその長径、短径及びアスペクト比を保つことを確認した。また、析出物の面積率Cも同様に最終冷間圧延後も殆ど変化しない。
Evaluation of Ni—P—Mg based precipitate (a);
The alloy strips before the final cold rolling were cut parallel to the rolling direction at a right angle to the thickness, and using a scanning electron microscope and a transmission electron microscope, 10 precipitates of the cross section were observed. When the size of the precipitate is 5 to 50 nm, the field of view is about 500,000 to 700,000 times (about 1.4 × 10 10 to 2.0 × 10 10 nm 2 ), and when it is 100 to 2000 nm, the field is 50,000 times to Images were taken with a field of view of 100,000 times (approximately 1.0 × 10 13 to 2.0 × 10 13 nm 2 ). Using the image of the photographed photograph, the major axis a, the minor axis b, and the area were individually measured for all the precipitates having a major axis a of 5 nm or more using an image analyzer (trade name Luzex, manufactured by Nireco Corporation). 100 of these precipitates are taken out at random, and the area of the precipitates having an aspect ratio a / b of 2 to 50 and a minor axis b of 10 to 30 nm with respect to the total area of all precipitates having a major axis a of 5 nm or more. The ratio of the total area of the precipitates having an aspect ratio of less than 2 and a major axis a of 20 to 50 nm was calculated as an area ratio C (%).
In addition, by the final cold rolling (usually processing strain η = 2 or more), Ni—P—Mg-based precipitates having a minor axis b of less than 10 nm in solid precipitates before cold rolling are not observed as solid solutions, It was confirmed that the precipitate having a minor axis b of 10 nm or more maintains its major axis, minor axis and aspect ratio even after the final cold rolling. Similarly, the area ratio C of the precipitate hardly changes after the final cold rolling.

Figure 0004937628
Figure 0004937628

本発明に係る熱間加工性に優れた高強度高導電性銅合金の実施例を、表1に示す成分組成の銅合金について、比較例とともに説明する。
本発明の合金実施例1〜6は、熱間圧延時に割れが発生することなく、優れた強度及び導電率を具備していた。
一方、比較例7〜20については、本発明の合金組成の範囲又はNi/P比率及び析出物の大きさが外れた合金である。比較例7〜8、Bの添加がない又は規定量未満となっているために、熱間圧延で割れが生じた。比較例9は、Niの添加量が2.0%を超えるため、比較例10は、Pの添加量が0.50%を超えNi/P比率が外れるため、比較例11は、Snの添加量が1.0%を超えるため、比較例12は、SnとInの添加量の合計が1.0%を超えるため、それぞれ熱間圧延時に割れが発生した。比較例13は、Mgの添加量が0.20%を超えるため、熱間圧延時に割れが発生した。比較例14は析出物の長径が12nmと小さく面積率Cがゼロのため、冷間圧延で析出物が固溶し、導電率が低く、曲げ加工性も劣る。比較例15は析出物が大きすぎ面積率Cがゼロのため、引張強さが低い。比較例16はMgの添加がないため、引張強さが低めである。比較例17は、B添加量が0.070%を超えるため、Ni−P−Mg−B、B−P等の化合物が凝固時に晶出又は析出したことにより、Ni−P−Mg系の析出物量が減少し、強度も導電率も低く、曲げ加工性が劣る。比較例18は、Ni/P比が適切な組成比から低く外れるために、Pの固溶する量が増大して導電率の低下が生じた。比較例19は、Ni/P比が適切な組成比から高く外れるために、Niの固溶する量が増大して導電率の低下が生じた。比較例20はNi及びPの添加量が本発明の規定する範囲から低く外れるため、強度が低い。
Examples of the high-strength, high-conductivity copper alloy excellent in hot workability according to the present invention will be described with reference to the copper alloys having the component compositions shown in Table 1 together with comparative examples.
Alloy Examples 1 to 6 of the present invention had excellent strength and conductivity without cracking during hot rolling.
On the other hand, Comparative Examples 7 to 20 are alloys in which the range of the alloy composition of the present invention or the Ni / P ratio and the size of precipitates are out of the range. Since Comparative Examples 7 to 8 and B were not added or were less than the specified amount, cracking occurred during hot rolling. In Comparative Example 9, the amount of Ni added exceeds 2.0%, and in Comparative Example 10, the amount of P added exceeds 0.50%, and the Ni / P ratio deviates. Since the amount exceeds 1.0%, in Comparative Example 12, the total amount of Sn and In added exceeds 1.0%, and thus cracks occurred during hot rolling. In Comparative Example 13, since the added amount of Mg exceeded 0.20%, cracks occurred during hot rolling. In Comparative Example 14, since the major axis of the precipitate is as small as 12 nm and the area ratio C is zero, the precipitate is dissolved in cold rolling, the conductivity is low, and the bending workability is also poor. In Comparative Example 15, since the precipitate is too large and the area ratio C is zero, the tensile strength is low. In Comparative Example 16, since no Mg was added, the tensile strength was low. In Comparative Example 17, since the amount of B added exceeds 0.070%, a compound such as Ni—P—Mg—B or BP crystallizes or precipitates during solidification, so that precipitation of Ni—P—Mg system occurs. The amount is reduced, the strength and conductivity are low, and the bending workability is poor. In Comparative Example 18, since the Ni / P ratio deviated from an appropriate composition ratio, the amount of dissolved P increased and the conductivity decreased. In Comparative Example 19, since the Ni / P ratio deviated from an appropriate composition ratio, the amount of Ni dissolved increased and the conductivity decreased. Comparative Example 20 has low strength because the addition amounts of Ni and P deviate from the range defined by the present invention.

発明例21〜26及び比較例27〜38
試料の製造(b):
電気銅或いは無酸素銅を主原料とし、ニッケル(Ni)、15%P−Cu母合金(P)、10%Mg−Cu母合金(Mg)、2%B−Cu母合金(B)、錫(Sn)、インジウム(In)を副原料とし、高周波溶解炉にて真空中又はアルゴン雰囲気中で溶解し、45×45×90mmまたはφ50×90mmのインゴットに鋳造した。鋳造、凝固時の冷却速度を変化させるため、鋳型の材質を鋳鉄、アルミナ、シリカ製とした。鋳型の中心部に熱電対を挿入して鋳造、凝固時の1100から950℃の冷却速度を測定した結果、鋳鉄鋳型は340℃/分、アルミナ鋳型は85℃/分、シリカ鋳型は33℃/分であった。冷却速度20℃/分以下のインゴットを作製するため、一方向凝固装置で20℃/分、15及び10℃/分の冷却速度のインゴットを得た。インゴットの熱間圧延試験を行い、熱間圧延で割れが発生しなかったインゴットは、熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.10mmの平板とした。得られた板材各種の試験片を採取して試験を行い、「強度」、「導電率」及び「曲げ加工性」の評価を行った。
Invention Examples 21 to 26 and Comparative Examples 27 to 38
Sample preparation (b):
Mainly made of electrolytic copper or oxygen-free copper, nickel (Ni), 15% P—Cu master alloy (P), 10% Mg—Cu master alloy (Mg), 2% B—Cu master alloy (B), tin (Sn) and indium (In) were used as auxiliary materials, melted in a high-frequency melting furnace in a vacuum or in an argon atmosphere, and cast into an ingot of 45 × 45 × 90 mm or φ50 × 90 mm. In order to change the cooling rate during casting and solidification, the mold material was made of cast iron, alumina, or silica. As a result of measuring the cooling rate from 1100 to 950 ° C. during casting and solidification by inserting a thermocouple into the center of the mold, the cast iron mold was 340 ° C./min, the alumina mold was 85 ° C./min, and the silica mold was 33 ° C./min. Minutes. In order to produce ingots with a cooling rate of 20 ° C./min or less, ingots with cooling rates of 20 ° C./min, 15 and 10 ° C./min were obtained with a unidirectional solidification apparatus. Ingots were subjected to a hot rolling test, and ingots that were not cracked by hot rolling were subjected to hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing. It implemented in order and was set as the flat plate of thickness 0.10mm. Various test pieces of the obtained plate material were collected and tested, and “strength”, “conductivity” and “bending workability” were evaluated.

インゴットの熱間加工性評価(b):
インゴットを45×45×45mmまたはφ50×45mmに切断し、850℃に1時間加熱後、厚さ45mmから12mmまで4パスで熱間圧延試験を行った以外は上記インゴットの熱間加工性評価Aと同様に行った。
Ingot hot workability evaluation (b):
The ingot was evaluated for hot workability A, except that the ingot was cut to 45 × 45 × 45 mm or φ50 × 45 mm, heated to 850 ° C. for 1 hour, and then subjected to a hot rolling test in 4 passes from a thickness of 45 mm to 12 mm. As well as.

試験片の介在物評価(b):
試料中の介在物の評価はインゴットを熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.10mmの平板試料の圧延平行断面を鏡面研磨して、電子顕微鏡SEM像の500倍で大きさ5μm以上の介在物を5視野(約0.35mm)観察し、1mm当たりの介在物個数を算出した。一方、インゴットの熱間加工性評価で割れが生じたものについてはインゴットを850℃に1時間加熱後、水冷した試料で介在物の評価を行った。試料を鏡面研磨して、前述の平板試料と同様に電子顕微鏡で介在物を観察し、1mm当たりの介在物個数を算出した。熱間加工性が良好であった合金について、平板試料とインゴットを850℃1時間加熱後、水冷した試料で介在物個数を比較したところ、ほぼ同等の結果が得られた。
Inclusion evaluation of test piece (b):
The inclusions in the sample were evaluated in the order of hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing, and a flat plate sample having a thickness of 0.10 mm. The rolled parallel cross section was mirror-polished, and 5 views (about 0.35 mm 2 ) of inclusions having a size of 5 μm or more at 500 times the electron microscope SEM image were observed, and the number of inclusions per 1 mm 2 was calculated. On the other hand, with respect to those in which cracking occurred in the hot workability evaluation of the ingot, the inclusion was evaluated using a water-cooled sample after heating the ingot to 850 ° C. for 1 hour. The sample was mirror-polished, and the inclusions were observed with an electron microscope in the same manner as the flat plate sample described above, and the number of inclusions per 1 mm 2 was calculated. When the number of inclusions was compared between the flat sample and the ingot heated at 850 ° C. for 1 hour and the water-cooled sample for the alloy having good hot workability, almost the same results were obtained.

試験片の物性評価(b):
「強度」については、JIS Z 2241に規定された引張試験により13号B試験片を用いて行い、引張強さを測定した。「導電率」はダブルブリッジ法を用いて試験片の電気抵抗を測定し、%IACSで表示した。「曲げ加工性」は90度W曲げ試験で評価した。試験はCES−M0002−6に準拠し、R−0.1mmの治具を使用して50kNの荷重で90度曲げ加工を行った。曲げ部の評価は、中央部山表面の状況を光学顕微鏡で観察して割れが発生したものを×、シワが発生したものを△、良好なものを○とした。曲げ軸は圧延方向に対して直角(Good way)とした。
Physical property evaluation of test piece (b):
About "strength", it carried out using the No. 13 B test piece by the tension test prescribed | regulated to JISZ2241, and measured the tensile strength. “Conductivity” was measured in% IACS by measuring the electrical resistance of the test piece using the double bridge method. “Bending workability” was evaluated by a 90 ° W bending test. The test was performed in accordance with CES-M0002-6, and bending was performed 90 degrees with a load of 50 kN using an R-0.1 mm jig. In the evaluation of the bent portion, the state of the surface of the central mountain was observed with an optical microscope. The bending axis was set at a right angle to the rolling direction (Good way).

Figure 0004937628
Figure 0004937628

本発明に係る熱間加工性に優れた高強度高導電性銅合金の実施例を、表2に示す成分組成の銅合金について、比較例とともに説明する。
本発明例21〜26は、熱間圧延時に割れが発生することなく、優れた強度及び導電率を具備していた。発明例23及び26は鋳造時の冷却速度が33℃/分と遅いため、他の本発明例に比較して介在物個数が多く、曲げ加工性が若干劣る。
Examples of the high-strength and high-conductivity copper alloy excellent in hot workability according to the present invention will be described with respect to the copper alloys having the component compositions shown in Table 2 together with comparative examples.
Invention Examples 21 to 26 had excellent strength and electrical conductivity without cracking during hot rolling. Inventive Examples 23 and 26 have a cooling rate as low as 33 ° C./min during casting, so that the number of inclusions is large and bending workability is slightly inferior as compared with other inventive examples.

一方、比較例27〜38までの結果を検討すると、比較例27〜29は1100から950℃の冷却速度が遅いため、介在物個数が多く、熱間圧延時に割れが発生した。比較例31〜38については、本発明の合金組成の範囲又はNi/P比率から外れた成分での合金である。比較例31〜32は、Bの添加がない又は規定量未満となっているために、熱間圧延で割れが生じた。比較例33は、Niの添加量が2.0%を超えるため、比較例34は、Pの添加量が0.50%を超えるため、比較例35は、Mgの添加量が0.20%を超えるため、比較例36〜37は、SnとInの添加量の合計が1.0%を超えるため、それぞれ熱間圧延時に割れが発生した。   On the other hand, when the results of Comparative Examples 27 to 38 were examined, Comparative Examples 27 to 29 had a slow cooling rate of 1100 to 950 ° C., so the number of inclusions was large, and cracks occurred during hot rolling. About Comparative Examples 31-38, it is an alloy with the component remove | deviated from the range of the alloy composition of this invention, or Ni / P ratio. In Comparative Examples 31 to 32, since B was not added or was less than the specified amount, cracking occurred during hot rolling. In Comparative Example 33, the addition amount of Ni exceeds 2.0%, and in Comparative Example 34, the addition amount of P exceeds 0.50%. Therefore, in Comparative Example 35, the addition amount of Mg is 0.20%. In Comparative Examples 36 to 37, since the total amount of Sn and In exceeds 1.0%, cracks occurred during hot rolling.

比較例38は、Ni/P比が適切な組成比から低く外れるために、Pの固溶する量が増大して導電率の低下が生じた。比較例39は、B添加量が0.070%を超えるため、Ni−P−Mg−B系、B−P系等の化合物が凝固時に晶出又は析出したことにより、Ni−P−Mg系の析出物量が減少し、引張強さと導電率が低く、曲げ加工性が劣る。比較例40はNi添加量が低いため、引張強さが低い。

In Comparative Example 38, since the Ni / P ratio deviated from an appropriate composition ratio, the amount of dissolved P increased and the conductivity decreased. In Comparative Example 39, since the amount of addition of B exceeds 0.070%, Ni-P-Mg-based compounds such as Ni-P-Mg-B-based and BP-based crystals crystallize or precipitate during solidification. The amount of precipitates is reduced, the tensile strength and conductivity are low, and the bending workability is poor. Since the comparative example 40 has low Ni addition amount, its tensile strength is low.

Claims (4)

質量割合にて、Ni:1.0%〜2.0%、P:0.10%〜0.50%、Mg:0.01%〜0.20%を含有し、NiとPの含有量比率Ni/P:4.0〜6.5で且つ、B:0.010%〜0.070%であり、残部がCu及び不可避的不純物から成り、
最終冷間圧延前のNi−P−Mg系析出物の大きさと形状について、長径:a、短径:bとした時、少なくともアスペクト比a/bが2〜50で且つ短径bが10〜25nmとなる析出物を有し、左記析出物とアスペクト比a/bが2未満で且つ長径aが20〜50nmとなる析出物の面積の総和が銅合金中の全析出物の面積の総和に対して80%以上を占めることを特徴とする熱間加工性に優れた銅合金。
Ni: 1.0% to 2.0%, P: 0.10% to 0.50%, Mg: 0.01% to 0.20% in terms of mass ratio, content of Ni and P the ratio Ni / P: 4.0 to 6.5 and at, B: 0.010% to 0.070%, the balance Ri consists Cu and unavoidable impurities,
About the magnitude | size and shape of the Ni-P-Mg type | system | group precipitate before final cold rolling, when a major axis: a and a minor axis: b, at least the aspect ratio a / b is 2-50 and the minor axis b is 10-10. The sum of the areas of the precipitates having a precipitate of 25 nm, the left deposit and the aspect ratio a / b of less than 2 and the major axis a of 20 to 50 nm is the sum of the areas of all the precipitates in the copper alloy. Copper alloy excellent in hot workability characterized by occupying 80% or more .
質量割合にて、Ni:1.0%〜2.0%、P:0.10%〜0.50%、Mg:0.01%〜0.20%を含有し、NiとPの含有量比率Ni/P:4.0〜6.5で且つ、B:0.005%〜0.070%であり、更にSn及びInのうち1種以上を合計で0.01%以上1.0%以下含み、残部がCu及び不可避的不純物から成り、
最終冷間圧延前のNi−P−Mg系析出物の大きさと形状について、長径:a、短径:bとした時、少なくともアスペクト比a/bが2〜50で且つ短径bが10〜25nmとなる析出物を有し、左記析出物とアスペクト比a/bが2未満で且つ長径aが20〜50nmとなる析出物の面積の総和が銅合金中の全析出物の面積の総和に対して80%以上を占めることを特徴とする熱間加工性に優れた銅合金。
Ni: 1.0% to 2.0%, P: 0.10% to 0.50%, Mg: 0.01% to 0.20% in terms of mass ratio, content of Ni and P The ratio Ni / P is 4.0 to 6.5 and B is 0.005% to 0.070%, and at least one of Sn and In is 0.01% to 1.0% in total. hereinafter wherein the balance Ri consists Cu and unavoidable impurities,
About the magnitude | size and shape of the Ni-P-Mg type | system | group precipitate before final cold rolling, when a major axis: a and a minor axis: b, at least the aspect ratio a / b is 2-50 and the minor axis b is 10-10. The sum of the areas of the precipitates having a precipitate of 25 nm, the left deposit and the aspect ratio a / b of less than 2 and the major axis a of 20 to 50 nm is the sum of the areas of all the precipitates in the copper alloy. Copper alloy excellent in hot workability characterized by occupying 80% or more .
長径5〜50μmの介在物の個数が1mm2当たり100個以下であり、且つ長径50μmを超える介在物の個数が1mm2当たり0個である請求項1又は2に記載の熱間加工性に優れた銅合金。 The number of inclusions having a major axis of 5 to 50 µm is 100 or less per 1 mm 2 , and the number of inclusions having a major axis exceeding 50 µm is 0 per 1 mm 2. Copper alloy. 引張強さ:700MPa以上で且つ、導電率:40%IACS以上である請求項1〜いずれか1項記載の熱間加工性に優れた銅合金。 The copper alloy excellent in hot workability according to any one of claims 1 to 3, wherein the tensile strength is 700 MPa or more and the electrical conductivity is 40% IACS or more.
JP2006100338A 2006-03-31 2006-03-31 Copper alloy with excellent hot workability Expired - Fee Related JP4937628B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006100338A JP4937628B2 (en) 2006-03-31 2006-03-31 Copper alloy with excellent hot workability
TW096108678A TW200741019A (en) 2006-03-31 2007-03-14 Copper alloy having excellent hot workability and its production method
KR1020070030786A KR100885825B1 (en) 2006-03-31 2007-03-29 Copper alloy having superior hot workability and method for producing same
CN2007100921783A CN101045969B (en) 2006-03-31 2007-03-30 Copper alloy with excellent hot working property and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100338A JP4937628B2 (en) 2006-03-31 2006-03-31 Copper alloy with excellent hot workability

Publications (2)

Publication Number Publication Date
JP2007270314A JP2007270314A (en) 2007-10-18
JP4937628B2 true JP4937628B2 (en) 2012-05-23

Family

ID=38673411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100338A Expired - Fee Related JP4937628B2 (en) 2006-03-31 2006-03-31 Copper alloy with excellent hot workability

Country Status (2)

Country Link
JP (1) JP4937628B2 (en)
CN (1) CN101045969B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533183B2 (en) * 2010-04-20 2014-06-25 日亜化学工業株式会社 LED light source device and manufacturing method thereof
CN105603253B (en) * 2016-01-15 2017-10-17 宁波博威合金材料股份有限公司 A kind of nickeliferous phosphorus, the Cu alloy material of nickel boron phase and its manufacture method
JP6172368B1 (en) * 2016-11-07 2017-08-02 住友電気工業株式会社 Covered wire, wire with terminal, copper alloy wire, and copper alloy twisted wire
CN113981265A (en) * 2021-09-07 2022-01-28 铜陵有色金属集团股份有限公司金威铜业分公司 Copper alloy having excellent hot rolling properties and method for producing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219433A (en) * 1988-07-05 1990-01-23 Mitsubishi Electric Corp Copper alloy for electronic equipment
JP2682100B2 (en) * 1989-01-20 1997-11-26 三菱マテリアル株式会社 Plastic mold
JPH04231445A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Production of electrifying material
JPH04231433A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Electrifying material
JPH04311544A (en) * 1991-04-08 1992-11-04 Nikko Kyodo Co Ltd Electrically conductive material
JPH11264038A (en) * 1998-03-18 1999-09-28 Nippon Mining & Metals Co Ltd Copper alloy foil
JP3465108B2 (en) * 2000-05-25 2003-11-10 株式会社神戸製鋼所 Copper alloy for electric and electronic parts

Also Published As

Publication number Publication date
CN101045969B (en) 2012-04-25
CN101045969A (en) 2007-10-03
JP2007270314A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP4950734B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5654571B2 (en) Cu-Ni-Si alloy for electronic materials
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4937628B2 (en) Copper alloy with excellent hot workability
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
TWI527914B (en) Strength, heat resistance and bending workability of the Fe-P copper alloy plate
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP4750601B2 (en) Copper alloy excellent in hot workability and manufacturing method thereof
JP5101149B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4175920B2 (en) High strength copper alloy
JP5079574B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP2008056974A (en) Copper alloy superior in hot workability
JP4750602B2 (en) Copper alloy with excellent hot workability
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
KR100885824B1 (en) Copper alloy having superior hot workability and method for producing same
TWI384083B (en) High-strength, high-conductivity copper alloy with excellent hot workability
JP2008081817A (en) Cu-Cr-Si-BASED ALLOY FOIL
KR100885825B1 (en) Copper alloy having superior hot workability and method for producing same
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees