JP5101149B2 - High strength and high conductivity copper alloy with excellent hot workability - Google Patents

High strength and high conductivity copper alloy with excellent hot workability Download PDF

Info

Publication number
JP5101149B2
JP5101149B2 JP2007093530A JP2007093530A JP5101149B2 JP 5101149 B2 JP5101149 B2 JP 5101149B2 JP 2007093530 A JP2007093530 A JP 2007093530A JP 2007093530 A JP2007093530 A JP 2007093530A JP 5101149 B2 JP5101149 B2 JP 5101149B2
Authority
JP
Japan
Prior art keywords
phase particles
alloy
strength
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007093530A
Other languages
Japanese (ja)
Other versions
JP2008248352A (en
Inventor
雅俊 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2007093530A priority Critical patent/JP5101149B2/en
Priority to TW097110952A priority patent/TWI384083B/en
Priority to KR1020080029257A priority patent/KR100994651B1/en
Priority to CN2008100951815A priority patent/CN101275191B/en
Publication of JP2008248352A publication Critical patent/JP2008248352A/en
Application granted granted Critical
Publication of JP5101149B2 publication Critical patent/JP5101149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、高強度、高導電性の電子機器部品用銅合金に関するものであり、特に小型、高集積化された半導体機器リード用及び端子コネクタ用銅合金において、熱間加工性に優れ、曲げ加工性を損なうことなく特に強度、導電性、熱伝導性に優れた電子部品用銅合金に関する。   The present invention relates to a high-strength, high-conductivity copper alloy for electronic device parts, and particularly excellent in hot workability and bending in a small and highly integrated copper alloy for semiconductor device leads and terminal connectors. The present invention relates to a copper alloy for electronic parts that is particularly excellent in strength, conductivity and thermal conductivity without impairing workability.

銅及び銅合金は、コネクタ、リード端子等の電子部品及びフレキシブル回路基板用として多用途に渡って幅広く利用されている材料であり、急速に展開するIT化による情報機器の高機能化及び小型化・薄肉化に対応して更なる特性(強度、曲げ加工性、導電性)の向上を要求されている。
又、ICの高集積化に伴い、消費電力の高い半導体素子が多く使用されるようになり、半導体機器のリードフレーム材には、放熱性(導電性)の良いCu−Ni−Si系やCu−Fe−P、Cu−Cr−Sn、Cu−Ni−P等の析出型合金が使用されるようになった。
そこで、特許文献1では、Cu−Ni−P系合金中のNi、P、Mg成分量を調整し、強度及び導電性、耐応力緩和性を備えた合金が報告されている。
特開2000−273562号公報
Copper and copper alloys are materials widely used for electronic parts such as connectors and lead terminals and flexible circuit boards. High-functionality and miniaturization of information equipment due to the rapid development of IT.・ Further improvements in properties (strength, bending workability, conductivity) are required in response to thinning.
In addition, with the high integration of ICs, many semiconductor elements with high power consumption are used, and the lead frame material of semiconductor devices has a good heat dissipation (conductivity) such as Cu-Ni-Si or Cu. Precipitation alloys such as -Fe-P, Cu-Cr-Sn, and Cu-Ni-P have come to be used.
Therefore, Patent Document 1 reports an alloy having strength, conductivity, and stress relaxation resistance by adjusting the amounts of Ni, P, and Mg components in a Cu—Ni—P-based alloy.
JP 2000-273562 A

一般に、銅合金の鋳造、例えば連続或いは半連続鋳造において、モールドにより急激に抜熱され、塊の表層の数mmを除いて内部は時間をかけて凝固する。このため、凝固時及び凝固後の冷却過程において、室温におけるCu母相への固溶限の限界を超えて含有された合金元素が、結晶粒界及び結晶粒内に晶出又は析出する。特にCu−Ni−P系合金の結晶粒界に晶出又は析出したNi−P化合物は母相のCuより融点が低いため、凝固中の不均一な歪等で発生する応力や外力により、Ni−P化合物の部分で破壊が生じる。また、熱間圧延の加熱時においても、Ni−P化合物が軟化又は液相化すると熱間圧延時に割れが生じる。このように、Cu−Ni−P系合金には鋳造時の割れや熱間加工時の割れが発生する問題があったが、特許文献1にはそのような問題は意識されていない。
本発明の目的は、上記Cu−Ni−P系合金の問題である、鋳造工程中や、熱間加工工程における加熱中又は熱間加工中に発生する割れを防止し、熱間加工性が良好で曲げ加工性を損なうことなく高強度、高導電性及び高熱伝導性を発揮するCu−Ni−P−Mg系合金からなる電子部品用銅合金を提供しようとするものである。
Generally, in the casting of a copper alloy, for example, continuous or semi-continuous casting, heat is rapidly removed by a mold, and the inside solidifies over time except for a few mm of the surface layer of the lump. For this reason, in the cooling process during solidification and after solidification, alloy elements contained exceeding the limit of the solid solubility in the Cu matrix at room temperature are crystallized or precipitated in the crystal grain boundaries and crystal grains. In particular, since the Ni-P compound crystallized or precipitated at the crystal grain boundary of the Cu-Ni-P alloy has a lower melting point than that of the parent phase Cu, the Ni-P compound is caused by stress or external force generated due to uneven strain during solidification. Destruction occurs at the portion of the -P compound. Even during hot rolling, cracking occurs during hot rolling when the Ni-P compound is softened or liquidified. As described above, the Cu—Ni—P-based alloy has a problem that a crack at the time of casting or a crack at the time of hot working occurs, but Patent Document 1 is not aware of such a problem.
The object of the present invention is to prevent cracks that occur during the casting process and during the heating or hot working in the hot working process, which is a problem of the Cu-Ni-P alloy, and has good hot workability. Thus, an object of the present invention is to provide a copper alloy for electronic parts made of a Cu-Ni-P-Mg alloy that exhibits high strength, high conductivity, and high thermal conductivity without impairing bending workability.

本発明者らは上記の目的を達成すべく、研究を重ねた結果、下記構成を採用することにより曲げ加工性を損なうことなく優れた熱間加工性、優れた強度及び導電性を具備するCu−Ni−P−Mg系合金が得られることを見出した。
本発明は銅合金においてNi:0.50%〜1.00%(以降、成分割合を表す%は質量%とする)、P:0.10%〜0.25%、Mg:0.01〜0.20%を含有し、NiとPの含有量比率Ni/P:4.0〜5.5で且つ、B:0.005%〜0.070%であり、Fe、Co、Mn、Ti、Zrのうち1種類以上の含有量が合計で0.05%以下、好ましくは0.03%以下で残部がCu及び不可避的不純物から成る銅合金において、第2相粒子の大きさについて、長径:a、短径:bとした時、アスペクト比a/bが2〜50で且つ短径bが10〜25nmなる第2相粒子(A)を有し、上記第2相粒子(A)とアスペクト比が2未満で且つ長径aが20〜50nmとなる第2相粒子(B)の総和が銅合金中の全第2相粒子の面積の総和に対して80%以上を占めることを特徴とする熱間加工性に優れた高強度高導電性銅合金である。
本発明の銅合金は、更にSn及びInのうち1種以上を合計で0.01%〜1.0%含むことができる。
The present inventors have conducted research to achieve the above object, and as a result, by adopting the following configuration, Cu having excellent hot workability, excellent strength and conductivity without impairing bending workability. It has been found that a -Ni-P-Mg alloy can be obtained.
In the copper alloy according to the present invention, Ni: 0.50% to 1.00% (hereinafter,% representing the component ratio is mass%), P: 0.10% to 0.25%, Mg: 0.01 to Containing 0.20%, Ni / P content ratio Ni / P: 4.0-5.5 and B: 0.005% -0.070%, Fe, Co, Mn, Ti In the copper alloy in which the content of one or more of Zr is 0.05% or less in total, preferably 0.03% or less, and the balance is made of Cu and inevitable impurities, : A, short diameter: b, the second phase particles (A) having an aspect ratio a / b of 2 to 50 and a short diameter b of 10 to 25 nm, and the second phase particles (A) The sum of the second phase particles (B) having an aspect ratio of less than 2 and a major axis a of 20 to 50 nm is the surface of all second phase particles in the copper alloy. Is a high strength and high conductivity copper alloy having excellent hot workability, characterized in that the relative total 80% or more.
The copper alloy of the present invention may further contain one or more of Sn and In in a total of 0.01% to 1.0%.

本発明では、Cu−Ni−P−Mg系合金へBを特定量添加することによって、Ni−P化合物の結晶粒界への晶出又は析出を抑制し、これによって粒界の高温脆性を改善して熱間加工性の向上を図ることができる。   In the present invention, by adding a specific amount of B to the Cu—Ni—P—Mg alloy, crystallization or precipitation at the crystal grain boundary of the Ni—P compound is suppressed, thereby improving the high temperature brittleness of the grain boundary. Thus, the hot workability can be improved.

次に、本発明において銅合金の成分組成の数値範囲を限定した理由をその作用と共に説明する。
[Ni量]
Niは合金中に固溶して強度、耐応力緩和特性及び耐熱性(高温での高強度維持)を確保する作用があると共に後述するPとの化合物を析出させ、合金の強度上昇に寄与する。しかし、その含有量が0.50%未満であると所望の強度が得られず、一方、1.00%を超えてNiを含有させると導電率が低下が顕著となり、引張強さ750MPa以上で且つ導電率45%IACS以上の高強度高導電性が得られなくなる。従って本発明の合金のNi含有量は0.50%〜1.00%である。
[P量]
Pは、Niとの化合物を析出して合金の強度及び耐熱性を向上させる。P含有量が0.10%未満であると化合物の析出が不充分であるため、所望の強度が得られない。一方、P含有量が0.25%を超えて含有させるとNiとPの含有バランスが崩れて合金中のPが過剰になり、固溶P量が増大して導電率の低下が顕著となる。従って本発明の合金のP含有量は0.10%〜0.25%である。
Next, the reason for limiting the numerical range of the component composition of the copper alloy in the present invention will be described together with its action.
[Ni content]
Ni dissolves in the alloy and has the effect of ensuring strength, stress relaxation resistance and heat resistance (maintaining high strength at high temperatures), and precipitates a compound with P described later, thereby contributing to an increase in strength of the alloy. . However, if the content is less than 0.50%, the desired strength cannot be obtained. On the other hand, if Ni is contained in excess of 1.00%, the electrical conductivity decreases significantly, and the tensile strength is 750 MPa or more. In addition, high strength and high conductivity with a conductivity of 45% IACS or higher cannot be obtained. Therefore, the Ni content of the alloy of the present invention is 0.50% to 1.00%.
[P amount]
P precipitates a compound with Ni to improve the strength and heat resistance of the alloy. If the P content is less than 0.10%, precipitation of the compound is insufficient, so that the desired strength cannot be obtained. On the other hand, if the P content exceeds 0.25%, the balance of Ni and P content is lost, P in the alloy becomes excessive, the amount of solute P increases, and the decrease in conductivity becomes significant. . Therefore, the P content of the alloy of the present invention is 0.10% to 0.25%.

[Mg量]
Mgは、Ni及びPとの化合物を析出して合金の強度及び耐熱性を向上させる。また、Cu−Ni−P系合金を後述する方法においてMgを添加しないで製造すると、アスペクト比a/bが1〜5の粒状に近い第2相粒子が得られるに対して、Mgを添加するとアスペクト比a/bが2〜50の繊維状の第2相粒子が得られる。この場合、Ni、Pが同量のCu−Ni−P系合金に比べより高強度が達成できる。さらに、その効果は、Mgが固溶して得られる強度の上昇より大きい。
ただし、Mg含有量が0.01%未満であると所望の強度及び耐熱性が得られない。一方、Mg含有量が0.20%を超えて含有させると熱間圧延時の加工性が著しく低下すると共に導電率の低下が顕著となる。また、第2相粒子が粗大化しやすくなり、大きさが本発明の範囲、即ち(A)長径:a、短径:bとした時、アスペクト比a/bが2〜50で且つ短径bが10〜25nm、又は(B)アスペクト比が2未満で且つ長径aが20〜50nm、から外れる第2相粒子が多くなり、(A)及び(B)合計の面積率を低下させることとなり好ましくない。従って本発明の合金のMg含有量は0.01%〜0.20%、好ましくは0.02〜0.15%である。
[Mg amount]
Mg precipitates a compound with Ni and P to improve the strength and heat resistance of the alloy. Further, when a Cu—Ni—P-based alloy is manufactured without adding Mg in the method described later, second-phase particles having an aspect ratio a / b of 1 to 5 close to a granular shape are obtained, whereas when Mg is added. Fibrous second phase particles having an aspect ratio a / b of 2 to 50 are obtained. In this case, higher strength can be achieved compared to a Cu—Ni—P alloy having the same amount of Ni and P. Furthermore, the effect is greater than the increase in strength obtained when Mg is dissolved.
However, when the Mg content is less than 0.01%, desired strength and heat resistance cannot be obtained. On the other hand, if the Mg content exceeds 0.20%, the workability during hot rolling is remarkably lowered and the conductivity is significantly lowered. Further, when the second phase particles are easily coarsened and the size is in the range of the present invention, that is, (A) major axis: a and minor axis: b, the aspect ratio a / b is 2 to 50 and the minor axis b. Is preferably 10 to 25 nm, or (B) the second phase particles deviate from the aspect ratio of less than 2 and the major axis a is 20 to 50 nm, and the total area ratio of (A) and (B) is reduced. Absent. Accordingly, the Mg content of the alloy of the present invention is 0.01% to 0.20%, preferably 0.02 to 0.15%.

[Ni/P比]
NiとPの含有量が上記の限定範囲内にあってもNiとPの含有比率Ni/Pが第2相粒子の適切な化学量論的組成比から外れると、すなわち、4.0未満の場合にはPの固溶する量が増大し、5.5を超えた場合にはNiの固溶する量が増大してしまい、導電率の低下が顕著となり好ましくない。従って本発明の合金のNi/P比は4.0以上5.5以下、好ましくは4.5〜5.0である。
[Ni / P ratio]
Even if the content of Ni and P is within the above-mentioned limited range, if the content ratio Ni / P of Ni and P deviates from the appropriate stoichiometric composition ratio of the second phase particles, that is, less than 4.0 In this case, the amount of solid solution of P is increased, and when the amount exceeds 5.5, the amount of solid solution of Ni is increased. Therefore, the Ni / P ratio of the alloy of the present invention is 4.0 or more and 5.5 or less, preferably 4.5 to 5.0.

[B量]
Bは、Cu−Ni−P−Mg系合金の凝固時や凝固後の冷却過程及び熱間加工の加熱時にNi−P化合物の結晶粒界への晶出又は析出を抑制し、合金の熱間加工性を向上させる。しかし、その含有量が0.005%未満であると熱間加工性の改善効果が得られず、一方、0.070%を超えてBを含有させるとNi−P−B、B−P等の化合物が溶解中又は凝固中に生じてしまう。これらのBを含む化合物は、溶体化処理でCu母相中に固溶せず、そのため時効処理で析出するNi−P化合物が減少し、合金の強度低下を招く。更にNi−P−B、B−P等の化合物は、製品では大きさ5μmから50μmの介在物となって製品に残存し、製品の表面欠陥、曲げ加工時の割れの起点、めっき処理時の欠陥の起点になるため、好ましくない。従って、本発明の合金のB含有量は、0.005%〜0.070%以下、好ましくは0.007%〜0.060%である。
[B amount]
B suppresses the crystallization or precipitation of the Ni-P compound at the grain boundary during the solidification of the Cu-Ni-P-Mg based alloy, during the cooling process after solidification, and during the heating during hot working. Improve processability. However, if the content is less than 0.005%, the effect of improving hot workability cannot be obtained. On the other hand, if the content of B exceeds 0.070%, Ni-P-B, BP, etc. This compound occurs during dissolution or coagulation. These B-containing compounds are not solid-dissolved in the Cu matrix by the solution treatment, and therefore the Ni-P compounds precipitated by the aging treatment are reduced, leading to a reduction in the strength of the alloy. Further, compounds such as Ni-P-B and BP remain in the product as inclusions having a size of 5 μm to 50 μm in the product, surface defects of the product, starting points of cracks during bending, Since it becomes a starting point of a defect, it is not preferable. Therefore, the B content of the alloy of the present invention is 0.005% to 0.070% or less, preferably 0.007% to 0.060%.

[Fe、Co、Mn、Ti及びZr量]
Fe、Co、Mn、Ti及びZrは、いずれもPと化合物を生成しやすく、溶解や凝固中にFe−P、Co−P、Mn−P、Ti−P、Zr−P等の化合物が生じ、また、時効処理でこれらの化合物が析出するとNi−P−Mg系の第2相粒子が減少し、合金の強度低下を招く。このため、Fe、Co、Mn、Ti及びZrの単独または2種類以上の含有量は0.05%以下、好ましくは総量で0.03%以下である。
[Fe, Co, Mn, Ti and Zr amounts]
Fe, Co, Mn, Ti and Zr all easily form compounds with P, and compounds such as Fe-P, Co-P, Mn-P, Ti-P, Zr-P are formed during dissolution and solidification. Further, when these compounds are precipitated by the aging treatment, the Ni—P—Mg-based second phase particles are decreased, and the strength of the alloy is decreased. Therefore, the content of Fe, Co, Mn, Ti and Zr alone or in combination of two or more is 0.05% or less, preferably 0.03% or less in total.

[O量]
OはP及びCuと合金中で反応しやすく、合金中に酸化物の状態(Cu−P−O)で存在するとNiとPの化合物の析出を阻害し、強度向上が低下すると共に曲げ加工性が劣化する。従って、本発明の合金のO含有量は、0.0050%以下、好ましくは0.0030%以下である。
[O amount]
O easily reacts with P and Cu in the alloy, and when present in the alloy in an oxide state (Cu—P—O), the precipitation of Ni and P compounds is hindered, the strength improvement is lowered, and bending workability is reduced. Deteriorates. Therefore, the O content of the alloy of the present invention is 0.0050% or less, preferably 0.0030% or less.

[Zn、Sn、In量]
Zn、Sn及びInは、いずれも合金の導電性を大きく低下させずに主として固溶強化により強度を向上させる作用を有している。従って必要に応じてこれらの金属を1種類以上添加するが、その含有量が総量で0.01%未満であると固溶強化による強度向上の効果が得られず、一方、総量で1.0%以上を添加すると合金の導電率及び曲げ加工性低下が顕著になる。このため、単独添加又は2種類以上の複合添加されるZn、Sn及びIn量は、0.01%〜1.0%、好ましくは総量で0.05%〜0.8%である。なお、これらの元素は本発明においては、意図的に添加される元素であり、不可避的不純物とはみなさない。
[Zn, Sn, In amount]
Zn, Sn and In all have the effect of improving the strength mainly by solid solution strengthening without greatly reducing the conductivity of the alloy. Accordingly, if necessary, one or more of these metals are added. If the total content is less than 0.01%, the effect of improving the strength by solid solution strengthening cannot be obtained, while the total amount is 1.0. When adding more than%, the electrical conductivity and bending workability of the alloy are significantly reduced. For this reason, the amount of Zn, Sn and In added individually or in combination of two or more types is 0.01% to 1.0%, preferably 0.05% to 0.8% in total. In the present invention, these elements are intentionally added elements and are not regarded as inevitable impurities.

[第2相粒子の大きさと面積率]
本発明の第2相粒子には、析出物、晶出物、介在物等が含まれる。本発明の組成範囲内では通常、Ni−P−Mg系析出物以外の析出物は析出せず、Ni−P−Mg系析出物は、溶体化処理、時効処理で特定の大きさに制御できる。その他の第2相粒子として、本発明では溶解及び鋳造中に生じる「晶出物」(Ni−P、Ni−P−Mg、Ni−P−B、Ni−P−B−Mgなど)や「介在物」(Cu−O、Cu−O−Mg、Cu−Ni−P−O、Cu−Ni−P−O−Mg、Cu−Ni−P−O−B、Cu−Ni−P−O−B−Mg、Cu−S、Cu−S−Mgなどの酸化物や硫化物)が存在し得るが、これらが存在する場合、その大きさは100nmから1μmを超え、溶体化処理及び時効処理によっても本発明の範囲内の大きさに制御できない。そのため、晶出物や介在物を合金中に残存させないよう溶体化処理を充分に行い、介在物の生成を抑制するためP、Bなどの添加量を規定し、酸化物(介在物)の生成を抑制するため、O含有量を低く規定する。晶出物や介在物を充分に低減できなかった試料中の全第2相粒子の面積率Cは80%未満になり、本発明の範囲外となる。
[Size and area ratio of second phase particles]
The second phase particles of the present invention include precipitates, crystallization products, inclusions and the like. Within the composition range of the present invention, no precipitate other than the Ni—P—Mg based precipitate is usually deposited, and the Ni—P—Mg based precipitate can be controlled to a specific size by solution treatment and aging treatment. . As other second phase particles, in the present invention, “crystallized substances” (Ni—P, Ni—P—Mg, Ni—P—B, Ni—P—B—Mg, etc.) generated during melting and casting, Inclusions "(Cu-O, Cu-O-Mg, Cu-Ni-PO, Cu-Ni-PO-Mg, Cu-Ni-PO-B, Cu-Ni-PO- Oxides and sulfides such as B-Mg, Cu-S, and Cu-S-Mg) may be present, but when these are present, the size thereof exceeds 100 nm to 1 μm, and is obtained by solution treatment and aging treatment. Cannot be controlled within the range of the present invention. Therefore, solution treatment is sufficiently performed so that crystallized substances and inclusions do not remain in the alloy, and the addition amount of P, B, etc. is specified to suppress the formation of inclusions, and oxide (inclusion) is generated. In order to suppress this, the O content is specified low. The area ratio C of all second phase particles in the sample in which the crystallized substances and inclusions could not be sufficiently reduced is less than 80%, which is outside the scope of the present invention.

本発明の合金中の第2相粒子の長径をa(nm)、短径をb(nm)としてアスペクト比a/bによって分類すると、当該合金では最終冷間圧延前にa/b=2〜50程度の大きなアスペクト比を有する、針状及び/又は繊維状の第2相粒子(A)とa/bが2未満の粒状の第2相粒子(B)の2種を生成させることが可能である。時効処理前の圧延加工歪ηを0.4未満、好ましくは0.1未満にすることで針状及び繊維状の第2相粒子(A)、時効処理前の加工歪ηを0.4以上にすることで粒状の第2相粒子(B)を生成する。時効処理前の圧延加工度η=0.4付近では第2相粒子(A)と第2相粒子(B)がある程度、混在するが、加工度が0.4未満では大部分が第2相粒子(A)となり、加工度が0.4以上では大部分が第2相粒子(B)となる。上記加工歪ηは、圧延前の板厚をt0、圧延後の板厚をtとした場合、η=ln(t0/t)で表される。 When the major axis of the second phase particles in the alloy of the present invention is classified according to the aspect ratio a / b where a (nm) is the major axis and b (nm) is the minor axis, the alloy has a / b = 2 to 2 before the final cold rolling. It is possible to generate two kinds of needle-like and / or fibrous second-phase particles (A) having a large aspect ratio of about 50 and granular second-phase particles (B) having an a / b of less than 2. It is. By making rolling deformation strain η before aging treatment less than 0.4, preferably less than 0.1, needle-like and fibrous second phase particles (A), working strain η before aging treatment is 0.4 or more. In this way, granular second phase particles (B) are produced. In the vicinity of the rolling processing degree η = 0.4 before the aging treatment, the second phase particles (A) and the second phase particles (B) are mixed to some extent. However, when the processing degree is less than 0.4, the second phase particles (A) are mostly in the second phase. When the degree of processing is 0.4 or more, most of the particles become the second phase particles (B). It is the working strain eta, the plate thickness before rolling t 0, when the plate thickness after rolling was t, is expressed by η = ln (t 0 / t ).

第2相粒子の大きさを規定する理由は次の通りである。最終冷間圧延前の短径bが10nm未満の第2相粒子は、加工歪η=2以上の最終冷間圧延加工を行うと、第2相粒子が破壊、分解して銅中に再固溶してしまい、導電率を低下させて好ましくない。一方、最終冷間圧延前の短径が10nm以上の第2相粒子は、加工歪η=2以上の圧延加工でも再固溶しにくく、10nm以上の第2相粒子として存在する。特に短径bが20nm以上の第2相粒子は圧延前後で大きさの変化が少なく、冷間圧延によって第2相粒子が破壊、固溶しづらくなる。一方、圧延前の長径aが50nmを超え、且つ短径が25nmを超える第2相粒子は圧延後もその大きさを保つが、個々の第2相粒子の体積が大きいため、銅合金中の第2相粒子の分散間隔が大きくなり過ぎるため析出強化及び加工強化が得られなくなる。
尚、上記長径a及び短径bは最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、断面画像を画像解析装置を用いて長径aが5nm以上の第2相粒子全てについて測定した全第2相粒子の長径及び短径それぞれの平均値である。
上記より、本発明の合金の最終冷間圧延前の第2相粒子とは、アスペクト比a/bが2〜50で且つ短径bが10〜25nmの第2相粒子(A)に加えて、アスペクト比a/bが2未満で且つ長径aが20〜50nmである第2相粒子(B)を含むものである。
The reason for defining the size of the second phase particles is as follows. The second phase particles having a minor axis b of less than 10 nm before the final cold rolling are subjected to final cold rolling with a processing strain η = 2 or more, and the second phase particles are broken and decomposed to resolidify in copper. It melts and lowers the conductivity, which is not preferable. On the other hand, the second phase particles having a minor axis of 10 nm or more before the final cold rolling are not easily re-dissolved even in a rolling process having a working strain η = 2 or more, and are present as second phase particles having a diameter of 10 nm or more. In particular, the second phase particles having a minor axis b of 20 nm or more have little change in size before and after rolling, and the second phase particles are difficult to break and dissolve by cold rolling. On the other hand, the second phase particles whose major axis a before rolling exceeds 50 nm and whose minor axis exceeds 25 nm maintain their size after rolling, but because the volume of each second phase particle is large, Since the dispersion interval of the second phase particles becomes too large, precipitation strengthening and work strengthening cannot be obtained.
The major axis a and the minor axis b are all the second phase particles whose major axis a is 5 nm or more using an image analysis device by cutting the alloy strip before the final cold rolling in parallel to the rolling direction and at a right angle to the thickness. It is the average value of each major axis and minor axis of all second phase particles measured for.
From the above, the second phase particles before the final cold rolling of the alloy of the present invention are added to the second phase particles (A) having an aspect ratio a / b of 2 to 50 and a minor axis b of 10 to 25 nm. The second phase particles (B) having an aspect ratio a / b of less than 2 and a major axis a of 20 to 50 nm are included.

本発明の銅合金の最終冷間圧延前の第2相粒子を、アスペクト比a/bが2〜50で且つ短径bが10〜25nmとするには、時効処理前の圧延加工歪ηを0.4未満、好ましくは0.1未満として、時効処理の際の温度及び時間等を適宜調整する。また、アスペクト比a/bが2未満で且つ長径aが20〜50nmとするには、時効処理前の加工歪ηを0.4以上、好ましくは1.5程度として、時効処理の際の温度及び時間を適宜調整する。   In order to make the second phase particles before the final cold rolling of the copper alloy of the present invention have an aspect ratio a / b of 2 to 50 and a minor axis b of 10 to 25 nm, the rolling strain η before aging treatment is set to The temperature, time, and the like during the aging treatment are appropriately adjusted to be less than 0.4, preferably less than 0.1. In order to set the aspect ratio a / b to less than 2 and the major axis a to 20 to 50 nm, the processing strain η before the aging treatment is set to 0.4 or more, preferably about 1.5, and the temperature during the aging treatment is set. And adjust the time accordingly.

しかしながら、全ての第2相粒子を上記a及びa/bの好ましい範囲内にすることは困難であるため、上記a、b及びa/bの範囲となる第2相粒子(A)及び(B)の合計の、長径aが5nm以上の全第2相粒子に対する割合が重要になる。そこで、合金中の全第2相粒子の面積総和に対する、上記a、b及びa/bが好ましい範囲にある第2相粒子(A)及び(B)の面積総和の割合を面積率Cとすると、本発明の面積率Cは80%以上である。
面積率Cが80%未満の場合とは、aが50nmを超え且つ短径bが25nmを超える第2相粒子、長径aが20nm未満の第2相粒子、短径bが10nm未満の第2相粒子及びアスペクト比a/bが50を超える第2相粒子のいずれかが多く存在する場合である。例えば、aが50nmを超え、且つ短径bが25nmを超える第2相粒子や溶解鋳造時に生じた晶出物が熱間圧延や溶体化処理で固溶せずに残存した1000nm以上のNi−P−Mg系粒子(晶出物)が多く存在する時には、強度向上に寄与する本発明で規定した範囲の微細な第2相粒子の数が少なく、第2相粒子の分散間隔が大きくなるため、圧延加工の加工硬化によって所望の強度は得られない。一方、長径aが20nm未満或いは短径bが10nm未満の第2相粒子は、圧延加工によって再固溶してしまうため、所望の導電率は得られない。
However, since it is difficult to make all the second phase particles within the preferable ranges of a and a / b, the second phase particles (A) and (B ) To the total second phase particles having a major axis a of 5 nm or more. Therefore, when the ratio of the total area of the second phase particles (A) and (B) in which a, b, and a / b are in a preferable range with respect to the total area of all the second phase particles in the alloy is an area ratio C. The area ratio C of the present invention is 80% or more.
The case where the area ratio C is less than 80% is a second phase particle in which a is greater than 50 nm and the minor axis b is greater than 25 nm, a second phase particle having a major axis a of less than 20 nm, and a second phase particle having a minor axis b of less than 10 nm. This is a case where there are many phase particles and any of the second phase particles having an aspect ratio a / b exceeding 50. For example, the second-phase particles in which a exceeds 50 nm and the minor axis b exceeds 25 nm and the crystallized product generated during melt casting remain in a form of Ni—over 1000 nm that remains without being dissolved by hot rolling or solution treatment. When many P-Mg-based particles (crystallized substances) are present, the number of fine second-phase particles in the range defined by the present invention that contributes to strength improvement is small, and the dispersion interval of the second-phase particles is large. The desired strength cannot be obtained by work hardening of the rolling process. On the other hand, the second phase particles having a major axis “a” of less than 20 nm or a minor axis “b” of less than 10 nm are re-dissolved by rolling, so that a desired conductivity cannot be obtained.

本発明の銅合金は、時効処理前かつ最終冷間圧延前において、アスペクト比a/bが2〜50で且つ短径bが10〜25nmの第2相粒子(A)、及びアスペクト比a/bが2未満で且つ長径aが20〜50nmとなる第2相粒子(B)の総和が銅合金中の全第2相粒子の面積の総和に対して80%以上を占めるためには、時効処理前の圧延加工歪ηを0〜1.5程度として、時効処理の際の温度及び時間を適宜調整すると良い。
上記本発明の要件を満たすCu−Ni−P−Mg系合金は、通常当業者が製造において採用する、インゴット鋳造、熱間圧延、溶体化処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍等において、適宜加熱温度、時間、冷却速度、圧延率等を選択することにより製造することが出来る。例えば、(1)溶解・鋳造、(2)熱間圧延、(3)酸化スケール除去、(4)冷間圧延(厚さ調整)、(5)溶体化処理、(6)冷間圧延、(7)時効処理、(8)表面清浄処理(研磨や酸洗)、(9)冷間圧延(最終)、(10)歪み取り焼鈍の順で一部の工程を繰り返したり省略したりして製造する。上記時効処理前の圧延加工は、上記(6)に相当する。尚、時効処理前の加工歪η=0の場合は(6)は省略される。本発明の第2相粒子の評価は(7)時効処理が終わった材料を試料として使用する。
The copper alloy of the present invention comprises the second phase particles (A) having an aspect ratio a / b of 2 to 50 and a minor axis b of 10 to 25 nm before the aging treatment and before the final cold rolling, and the aspect ratio a / In order that the sum total of the second phase particles (B) in which b is less than 2 and the major axis a is 20 to 50 nm accounts for 80% or more with respect to the total area of all the second phase particles in the copper alloy, It is preferable to adjust the temperature and time during the aging treatment as appropriate by setting the rolling strain η before treatment to about 0 to 1.5.
The Cu—Ni—P—Mg based alloy that satisfies the above-mentioned requirements of the present invention is generally used by those skilled in the art for ingot casting, hot rolling, solution treatment, intermediate cold rolling, aging treatment, and final cold rolling. In the strain relief annealing and the like, it can be produced by appropriately selecting the heating temperature, time, cooling rate, rolling rate and the like. For example, (1) melting and casting, (2) hot rolling, (3) oxide scale removal, (4) cold rolling (thickness adjustment), (5) solution treatment, (6) cold rolling, ( 7) Manufactured by repeating or omitting some steps in the order of aging treatment, (8) surface cleaning treatment (polishing and pickling), (9) cold rolling (final), and (10) strain relief annealing. To do. The rolling process before the aging treatment corresponds to the above (6). Note that (6) is omitted when the processing strain η = 0 before the aging treatment. In the evaluation of the second phase particles of the present invention, (7) the material after the aging treatment is used as a sample.

試料の製造
電気銅或いは無酸素銅を主原料とし、ニッケル(Ni)、15%P−Cu母合金、10%Mg−Cu母合金(Mg)、2%B−Cu母合金(B)、錫(Sn)、インジウム(In)、10%Fe−Cu母合金(Fe)、10%Co−Cu母合金(Co)、25%Mn−Cu母合金(Mn)、スポンジチタン(Ti)及びスポンジジルコニウム(Zr)を副原料とし、高周波溶解炉にて真空中又はアルゴン雰囲気中で溶解し、45×45×90mmのインゴットに鋳造した。インゴットの熱間圧延試験を行い、熱間圧延で割れが発生しなかったインゴットは、熱間圧延及び溶体化処理、時効処理、中間冷間圧延、時効処理、最終冷間圧延、歪取り焼鈍の順に実施し、厚さ0.15mmの平板とした。得られた板材各種の試験片を採取して試験を行い、「強度」及び「導電率」の評価を行った。
Manufacture of samples Mainly made of electrolytic copper or oxygen-free copper, nickel (Ni), 15% P—Cu master alloy, 10% Mg—Cu master alloy (Mg), 2% B—Cu master alloy (B), tin (Sn), indium (In), 10% Fe—Cu master alloy (Fe), 10% Co—Cu master alloy (Co), 25% Mn—Cu master alloy (Mn), sponge titanium (Ti) and sponge zirconium (Zr) was used as an auxiliary material, melted in a vacuum or argon atmosphere in a high-frequency melting furnace, and cast into a 45 × 45 × 90 mm ingot. Ingots were subjected to a hot rolling test, and ingots that were not cracked by hot rolling were subjected to hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling, and strain relief annealing. It implemented in order and was set as the flat plate of thickness 0.15mm. Various test pieces of the obtained plate material were collected and tested, and “strength” and “conductivity” were evaluated.

インゴットの熱間加工性評価
「熱間加工性」は、熱間圧延によって評価した。即ち、インゴットを45×45×25mmに切断し、850℃に1時間加熱後、厚さ25mmから5mmまで3パスで熱間圧延試験を行った。熱間圧延後の試料の表面及びエッジについて目視により割れが認められた場合を、“割れ有り”、表面及びエッジに割れが無く、平滑な場合を、“割れなし”とした。
本発明では、熱間加工性に優れたとは、上記評価で“割れなし”であることをいう。
Evaluation of hot workability of the ingot “hot workability” was evaluated by hot rolling. That is, the ingot was cut into 45 × 45 × 25 mm, heated to 850 ° C. for 1 hour, and then subjected to a hot rolling test in three passes from a thickness of 25 mm to 5 mm. The case where cracks were visually observed on the surface and edge of the sample after hot rolling was defined as “cracked”, and the case where the surface and edge were not cracked and smooth was defined as “no crack”.
In the present invention, “excellent in hot workability” means “no crack” in the above evaluation.

試験片の物性評価
「強度」については、JIS Z 2241に規定された引張試験により13号B試験片を用いて行い、引張強さを測定した。
本発明では、高強度とは上記評価で引張強さ750MPa以上であることをいう。
「導電率」は4端子法を用いて試験片の電気抵抗を測定し、%IACSで表示した。
本発明では、高導電性とは上記評価で導電率45%IACS以上であることをいう。
「曲げ加工性」は90度W曲げ試験で評価した。試験はCES−M0002−6に準拠し、R−0.1mmの治具を使用して50kNの荷重で90度曲げ加工を行った。曲げ部の評価は、中央部山表面の状況を光学顕微鏡で観察して割れが発生したものを×、シワが発生したものを△、良好なものを○とした。曲げ軸は圧延方向に対して直角(Good way)とした。
About physical property evaluation "strength" of a test piece, it carried out using the No. 13 B test piece by the tensile test prescribed | regulated to JISZ2241, and measured the tensile strength.
In the present invention, high strength means that the tensile strength is 750 MPa or more in the above evaluation.
“Conductivity” was measured by measuring the electrical resistance of a test piece using a four-terminal method and expressed in% IACS.
In the present invention, high conductivity means that the conductivity is 45% IACS or more in the above evaluation.
“Bending workability” was evaluated by a 90 ° W bending test. The test was performed in accordance with CES-M0002-6, and bending was performed 90 degrees with a load of 50 kN using an R-0.1 mm jig. In the evaluation of the bent portion, the state of the surface of the central mountain was observed with an optical microscope. The bending axis was set at a right angle to the rolling direction (Good way).

第2相粒子の評価
最終冷間圧延前の合金条を圧延方向に平行に厚み直角に切断し、走査型電子顕微鏡及び透過型電子顕微鏡を使用して、断面の第2相粒子を10視野観察した。第2相粒子の大きさが5〜50nmの場合は50万倍〜70万倍の視野(約1.4×1010〜2.0×1010nm2)、100〜2000nmの場合は5万倍〜10万倍の視野(約1.0×1013〜2.0×1013nm2)で撮影を行った。撮影した写真の画像を画像解析装置(株式会社ニレコ製、商品名ルーゼックス)を用いて長径aが5nm以上の第2相粒子のすべてについて個々に長径a、短径b、及び面積を測定した。これら長径aが5nm以上の第2相粒子からランダムに100個選び、選ばれた全100個の面積総和に対して、アスペクト比a/bが2〜50で且つ短径bが10〜25nmの第2相粒子(A)の面積とアスペクト比a/bが2未満で且つ長径aが20〜50nmの第2相粒子(B)の面積の総和の割合を面積率C(%)として算出した。
尚、最終冷間圧延(通常は加工歪η=2以上)により、冷間圧延前の第2相粒子の短径bが10nmより小さいNi−P−Mg系第2相粒子は固溶して観察されないが、短径bが10nm以上の第2相粒子は最終冷間圧延後もその長径、短径及びアスペクト比を保つことを確認した。また、第2相粒子の面積率Cも同様に最終冷間圧延後も殆ど変化しない。
Evaluation of Second Phase Particles The alloy strip before the final cold rolling is cut at a right angle to the thickness parallel to the rolling direction, and the second phase particles in the cross section are observed in 10 fields using a scanning electron microscope and a transmission electron microscope. did. When the size of the second phase particles is 5 to 50 nm, the field of view is about 500,000 to 700,000 times (approximately 1.4 × 10 10 to 2.0 × 10 10 nm 2 ), and when the size is 100 to 2000 nm, 50,000 Images were taken with a field of view of about 100,000 to 100,000 times (approximately 1.0 × 10 13 to 2.0 × 10 13 nm 2 ). Using the image of the photographed photograph, the major axis a, the minor axis b, and the area of each of the second phase particles having a major axis a of 5 nm or more were measured using an image analyzer (trade name Luzex, manufactured by Nireco Corporation). 100 of the second phase particles having a major axis a of 5 nm or more are selected at random, and the aspect ratio a / b is 2 to 50 and the minor axis b is 10 to 25 nm with respect to the total area of 100 selected. The ratio of the total area of the second phase particles (B) having the area of the second phase particles (A) and the aspect ratio a / b of less than 2 and the major axis a of 20 to 50 nm was calculated as the area ratio C (%). .
In addition, by the final cold rolling (usually processing strain η = 2 or more), the Ni—P—Mg second phase particles in which the minor axis b of the second phase particles before cold rolling is smaller than 10 nm are dissolved. Although not observed, it was confirmed that the second phase particles having a minor axis b of 10 nm or more maintain their major axis, minor axis and aspect ratio even after the final cold rolling. Similarly, the area ratio C of the second phase particles hardly changes even after the final cold rolling.

本発明に係る熱間加工性に優れた高強度高導電性銅合金の実施例を、表1に示す成分組成の銅合金について、それぞれの熱間圧延加工性、第2相粒子及び特性の評価結果を比較例とともに示す。a=20〜1250かつb=10〜25かつa/b=2〜50の範囲内であれば第2相粒子(A)に該当し、a=20〜50かつb=10〜50かつa/b=1〜2の範囲内であれば第2相粒子(B)に該当する。
本発明の合金実施例1〜11は、熱間圧延時に割れが発生することなく、優れた強度及び導電率を具備していた。一方、比較例12〜35までの結果を検討すると、比較例12〜16については、Bの添加がない又は規定量未満となっているために、熱間圧延で割れが生じた。比較例17は、SnとInの添加量の合計が1.0%を超えるため、比較例18は、Snの添加量の合計が1.0%を超えるため、導電率の低下が生じ、曲げ加工性が劣った。比較例19は、Mgの添加量が本発明の規定する範囲から高く外れるため、熱間圧延で割れが生じた。比較例20は、Mgの添加量が本発明の規定する範囲から低く外れるため、Mgを除いて同じレベルの化学組成の本発明例2に比較して強度が低い。比較例21は、Ni/P比が低く外れるために、Pの固溶する量が増大して導電率が低い。比較例22は、Ni及びPの添加量が本発明の規定する範囲から低く外れるため、強度が低い。比較例23は、Ni量とNi/P比が本発明の規定する範囲から外れるために導電率の低下が生じた。比較例24はP量が本発明の規定する範囲から高く外れ、Ni/P比が本発明の規定する範囲から外れるために熱間圧延で割れが生じた。
Examples of high-strength, high-conductivity copper alloys excellent in hot workability according to the present invention are evaluated for each hot-rolling workability, second phase particles, and properties of copper alloys having the composition shown in Table 1. A result is shown with a comparative example. If it is in the range of a = 20-1250, b = 10-25, and a / b = 2-50, it corresponds to a 2nd phase particle (A), a = 20-50, b = 10-50, and a / If it is in the range of b = 1-2, it corresponds to a 2nd phase particle (B).
Alloy Examples 1 to 11 of the present invention had excellent strength and conductivity without cracking during hot rolling. On the other hand, when the results of Comparative Examples 12 to 35 were examined, in Comparative Examples 12 to 16, there was no addition of B or less than the specified amount, and therefore cracking occurred during hot rolling. In Comparative Example 17, the total addition amount of Sn and In exceeds 1.0%, and in Comparative Example 18, the total addition amount of Sn exceeds 1.0%. Workability was inferior. In Comparative Example 19, cracks occurred during hot rolling because the added amount of Mg deviated from the range defined by the present invention. Comparative Example 20 has a lower strength than that of Inventive Example 2 having the same chemical composition except Mg, because the added amount of Mg deviates from the range defined by the present invention. In Comparative Example 21, since the Ni / P ratio is low, the amount of dissolved P increases and the conductivity is low. Comparative Example 22 has low strength because the amounts of Ni and P added deviate from the range defined by the present invention. In Comparative Example 23, the Ni content and the Ni / P ratio deviated from the range defined by the present invention, so that the conductivity decreased. In Comparative Example 24, the amount of P deviated from the range defined by the present invention, and the Ni / P ratio deviated from the range defined by the present invention.

比較例25は、Oの含有量が0.050%を超えるため、Cu−P−Oの酸化物が溶解時に生成し、第2相粒子量が減少し、強度と導電率が低く、曲げ加工性も劣る。
比較例26は、Bの含有量が本発明の規定する範囲から高く外れるため、Ni−P−BやB−P等が溶解・鋳造時に生成、晶出したことにより、第2相粒子量が減少し、強度と導電率が低く、曲げ加工性も劣る。
比較例27から30はFe、Co、Mn、Ti、Zrの1種類以上の含有量が合計で本発明の規定する範囲から高く外れるため、第2相粒子が減少し、また、Fe、Co、Mn、Ti、ZrとPの晶出物や第2相粒子が粗大に生成し、第2相粒子の評価結果が本発明の規定する範囲から外れたため強度が低下した。
比較例31は、第2相粒子の短径bが本発明の規定する範囲から低く外れたため、導電率が低い。比較例32は、第2相粒子の短径bが本発明の規定する範囲から高く外れたため、強度が低い。比較例33は、第2相粒子の長径a及び短径bが本発明の規定する範囲から低く外れたため、強度と導電率が低い。比較例34及び35は、第2相粒子の長径a及び短径bが本発明の規定する範囲から高く外れたため、冷間圧延による強度の上昇が少なく、強度が低い。
In Comparative Example 25, since the content of O exceeds 0.050%, an oxide of Cu—P—O is generated when dissolved, the amount of second phase particles is reduced, the strength and conductivity are low, and bending processing is performed. Also inferior.
In Comparative Example 26, since the content of B deviates from the range defined by the present invention, Ni-P-B, BP, and the like are generated and crystallized at the time of melting and casting, so that the amount of second phase particles is increased. Decrease, strength and conductivity are low, and bending workability is also poor.
In Comparative Examples 27 to 30, since the content of one or more of Fe, Co, Mn, Ti, and Zr deviates from the range defined by the present invention in total, the second phase particles are reduced, and Fe, Co, Crystallized substances of Mn, Ti, Zr and P and second phase particles were coarsely formed, and the evaluation results of the second phase particles were out of the range defined by the present invention, so the strength was lowered.
In Comparative Example 31, the short diameter b of the second phase particles deviated from the range defined by the present invention, so the conductivity was low. In Comparative Example 32, since the minor axis b of the second phase particles deviates from the range defined by the present invention, the strength is low. In Comparative Example 33, the major axis “a” and the minor axis “b” of the second phase particles deviate from the range defined by the present invention, so the strength and conductivity are low. In Comparative Examples 34 and 35, the major axis “a” and minor axis “b” of the second phase particles deviated from the range defined by the present invention.

Figure 0005101149
Figure 0005101149

Claims (2)

質量割合にて、Ni:0.55%〜0.95%、P:0.12%〜0.21%、Mg:0.02%0.14%を含有し、NiとPの含有量比率Ni/P:4.0〜5.5で且つ、B:0.025%〜0.061%、O:0.0015%〜0.0032%であり、Fe、Co、Mn、Ti、Zrのうち1種類以上の含有量が合計で0.05%以下で残部がCu及び不可避的不純物から成る銅合金において、第2相粒子の大きさについて、長径:a、短径:bとした時、アスペクト比a/bが2〜50で且つ短径bが10〜25nmなる第2相粒子を有し、上記第2相粒子とアスペクト比が2未満で且つ長径aが20〜50nmとなる第2相粒子の総和が銅合金中の全第2相粒子の面積の総和に対して80%以上を占めることを特徴とする熱間加工性に優れた高強度高導電性銅合金。 Ni: 0.55 % to 0.95 % in mass ratio, P: 0.12 % to 0.21 %, Mg: 0.02% to 0.14 %, Ni and P content the ratio Ni / P: 4.0 to 5.5 and at, B: 0.025% ~ 0.061% , O: a 0.0015% ~0.0032%, Fe, Co , Mn, Ti, Zr In the copper alloy in which the content of one or more of the total is 0.05% or less and the balance is made of Cu and inevitable impurities, the size of the second phase particles is set to a major axis: a and a minor axis: b. The second phase particles have an aspect ratio a / b of 2 to 50 and a short diameter b of 10 to 25 nm, and the second phase particles have an aspect ratio of less than 2 and a long diameter a of 20 to 50 nm. The sum of the two-phase particles accounts for 80% or more of the total area of all the second-phase particles in the copper alloy. Hot workability excellent high strength and high conductivity copper alloy to. Sn及びInのうち1種以上を合計で0.42%〜0.73%含むことを特徴とする請求項1に記載された熱間加工性に優れた高強度高導電性銅合金。 The high-strength, high-conductivity copper alloy excellent in hot workability according to claim 1, wherein one or more of Sn and In are contained in a total amount of 0.42 % to 0.73 %.
JP2007093530A 2007-03-30 2007-03-30 High strength and high conductivity copper alloy with excellent hot workability Expired - Fee Related JP5101149B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007093530A JP5101149B2 (en) 2007-03-30 2007-03-30 High strength and high conductivity copper alloy with excellent hot workability
TW097110952A TWI384083B (en) 2007-03-30 2008-03-27 High-strength, high-conductivity copper alloy with excellent hot workability
KR1020080029257A KR100994651B1 (en) 2007-03-30 2008-03-28 High strength and electric conductivity copper alloy excellent in hot workability
CN2008100951815A CN101275191B (en) 2007-03-30 2008-03-28 High-strength high-conductive copper alloy having superior hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093530A JP5101149B2 (en) 2007-03-30 2007-03-30 High strength and high conductivity copper alloy with excellent hot workability

Publications (2)

Publication Number Publication Date
JP2008248352A JP2008248352A (en) 2008-10-16
JP5101149B2 true JP5101149B2 (en) 2012-12-19

Family

ID=39973639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093530A Expired - Fee Related JP5101149B2 (en) 2007-03-30 2007-03-30 High strength and high conductivity copper alloy with excellent hot workability

Country Status (1)

Country Link
JP (1) JP5101149B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041194A1 (en) * 2007-09-27 2009-04-02 Nippon Mining & Metals Co., Ltd. High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP5079574B2 (en) * 2008-03-31 2012-11-21 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability
CN103757463B (en) * 2013-12-31 2017-01-11 镇江市锶达合金材料有限公司 copper-phosphorus alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499838A (en) * 1990-08-14 1992-03-31 Nikko Kyodo Co Ltd Conductive material
JPH04311544A (en) * 1991-04-08 1992-11-04 Nikko Kyodo Co Ltd Electrically conductive material
JP3744810B2 (en) * 2001-03-30 2006-02-15 株式会社神戸製鋼所 Copper alloy for terminal / connector and manufacturing method thereof
JP4493083B2 (en) * 2004-12-01 2010-06-30 日鉱金属株式会社 High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
JP3871064B2 (en) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 Copper alloy plate for electrical connection parts
JP3935492B2 (en) * 2005-07-07 2007-06-20 株式会社神戸製鋼所 Copper alloy having high strength and excellent bendability and method for producing copper alloy sheet

Also Published As

Publication number Publication date
JP2008248352A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4950734B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP2009242926A (en) Copper-nickel-silicon based alloy for electronic material
JP2009242895A (en) High-strength copper alloy of excellent bending processability
CN107208191B (en) Copper alloy material and method for producing same
JP2011252188A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2009242921A (en) Cu-Ni-Si-Co-Cr-BASED ALLOY FOR ELECTRONIC MATERIAL
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2005307223A (en) High-strength and high-conductivity copper alloy
JP5101149B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4937628B2 (en) Copper alloy with excellent hot workability
JP4750601B2 (en) Copper alloy excellent in hot workability and manufacturing method thereof
JP5079574B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4175920B2 (en) High strength copper alloy
JP4750602B2 (en) Copper alloy with excellent hot workability
JP2008056974A (en) Copper alloy superior in hot workability
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
TWI384083B (en) High-strength, high-conductivity copper alloy with excellent hot workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees