JP3871064B2 - Copper alloy plate for electrical connection parts - Google Patents

Copper alloy plate for electrical connection parts Download PDF

Info

Publication number
JP3871064B2
JP3871064B2 JP2005168591A JP2005168591A JP3871064B2 JP 3871064 B2 JP3871064 B2 JP 3871064B2 JP 2005168591 A JP2005168591 A JP 2005168591A JP 2005168591 A JP2005168591 A JP 2005168591A JP 3871064 B2 JP3871064 B2 JP 3871064B2
Authority
JP
Japan
Prior art keywords
copper alloy
less
precipitates
alloy plate
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005168591A
Other languages
Japanese (ja)
Other versions
JP2006342389A (en
Inventor
幸矢 野村
浩 坂本
幸男 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005168591A priority Critical patent/JP3871064B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP11002839.6A priority patent/EP2366807B1/en
Priority to AT06766490T priority patent/ATE534755T1/en
Priority to KR1020077028509A priority patent/KR100968997B1/en
Priority to EP06766490A priority patent/EP1889934B1/en
Priority to US11/916,730 priority patent/US20090116996A1/en
Priority to CN2009101732858A priority patent/CN101693960B/en
Priority to KR1020097027233A priority patent/KR100992281B1/en
Priority to PCT/JP2006/311517 priority patent/WO2006132317A1/en
Priority to CN200680015290A priority patent/CN100577833C/en
Publication of JP2006342389A publication Critical patent/JP2006342389A/en
Application granted granted Critical
Publication of JP3871064B2 publication Critical patent/JP3871064B2/en
Priority to US13/078,404 priority patent/US20110182767A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、曲げ加工性及びせん断打ち抜き性に優れ、特に自動車用端子・コネクタなどの電気接続部品用として適する銅合金板に関する。   The present invention relates to a copper alloy plate that is excellent in bending workability and shear punchability, and is particularly suitable for use in electrical connection parts such as automobile terminals and connectors.

近年の自動車用端子・コネクタなどの接続部品には、エンジンルームのような高温環境下で信頼性を確保できる性能が低コストで求められるようになっている。この高温環境下での信頼性において最も重要な特性のひとつは、接点嵌合力の維持特性、いわゆる耐応力緩和特性である。すなわち銅合金からなるばね形状部品に定常の変位を与えた場合、例えばオス端子のタブをメス端子のばね形状をした接点で嵌合しているような場合、これらの接続部品がエンジンルームのような高温環境下に保持されていると、経時とともにその接点嵌合力を失っていくが、それに対する抵抗特性である。
応力緩和特性に優れる合金系としてはCu−Ni−Si系合金、Cu−Ti系合金、Cu−Be系合金などが知られているが、これらはいずれも強酸化性元素(Si,Ti,Beなど)を含有するため、大気中への開口部が広く開いた大規模溶解炉では溶解できず、生産性の面から高コストは避けられなかった。これに対し、添加分が希薄なCu−Ni−Sn−P系合金は、いわゆるシャフト炉造塊が可能で、その高生産性ゆえに大幅な低コスト化が可能である。しかも製造方法および添加元素量に応じてCu−Be系合金同等レベルまでの応力緩和特性を発揮しうる非常に有望な合金系である。
In recent years, connection parts such as automobile terminals and connectors have been required to have low cost performance capable of ensuring reliability in a high temperature environment such as an engine room. One of the most important characteristics in reliability under this high temperature environment is a contact fitting force maintaining characteristic, so-called stress relaxation resistance characteristic. That is, when a steady displacement is applied to a spring-shaped component made of a copper alloy, for example, when a tab of a male terminal is fitted with a spring-shaped contact of a female terminal, these connecting components are like an engine room. If the contact fitting force is maintained in a high temperature environment, the contact fitting force will be lost with time, but this is a resistance characteristic.
Cu-Ni-Si-based alloys, Cu-Ti-based alloys, Cu-Be-based alloys, and the like are known as alloy systems having excellent stress relaxation characteristics, all of which are strong oxidizing elements (Si, Ti, Be). Etc.) cannot be melted in a large-scale melting furnace with a wide opening to the atmosphere, and high cost is inevitable from the viewpoint of productivity. On the other hand, Cu-Ni-Sn-P-based alloys with a small amount of addition can be so-called shaft furnace ingot, and can be greatly reduced in cost because of its high productivity. In addition, it is a very promising alloy system that can exhibit stress relaxation properties up to a Cu-Be-based alloy equivalent level depending on the production method and the amount of added elements.

下記特許文献1には、耐応力緩和特性に優れたコネクタ用銅基合金の製造方法が開示されている。この製造方法は、Cu−Ni−Sn−P合金について、マトリックス中にNi−P金属間化合物を均一微細に分散させ、電気伝導度を向上させると同時に耐応力緩和特性等を向上させたものであり、同文献によれば、所望の特性を得るためには、熱間圧延の冷却開始、終了温度、その冷却速度、さらにはその後の冷間圧延工程途中で施す5〜720分の熱処理の温度と時間とを厳密に制御する必要がある。
また、下記特許文献2,3は、同じく耐応力緩和特性に優れたCu−Ni−Sn系合金及びその製造方法を開示するものであるが、なるべくP含有量を下げて、Ni−P化合物の析出を抑えた固溶型銅合金に関するものであり、高度な熱処理技術を必要とせず、きわめて短時間の焼鈍熱処理で製造可能であるという利点がある。
Patent Document 1 below discloses a method for producing a copper-based alloy for connectors having excellent stress relaxation resistance. This manufacturing method is a Cu-Ni-Sn-P alloy in which Ni-P intermetallic compounds are uniformly and finely dispersed in a matrix to improve electrical conductivity and at the same time improve stress relaxation resistance. Yes, according to the document, in order to obtain desired characteristics, the cooling start and end temperatures of the hot rolling, the cooling rate, and the temperature of the heat treatment for 5 to 720 minutes applied during the subsequent cold rolling process. And time must be strictly controlled.
Patent Documents 2 and 3 below disclose Cu-Ni-Sn alloys having excellent stress relaxation resistance and a method for producing the same, but the P content is reduced as much as possible to reduce the Ni-P compound. The present invention relates to a solid solution type copper alloy that suppresses precipitation, and does not require an advanced heat treatment technique, and has an advantage that it can be manufactured by an extremely short annealing heat treatment.

特許第2844120号公報Japanese Patent No. 2844120 特開平11−293367号公報JP-A-11-293367 特開2002−294368号公報JP 2002-294368 A

しかしながら、Ni−P金属間化合物の生成エネルギーはきわめて低く、銅合金製造工程中の熱処理で容易に粗大化し、現在の自動車技術で求められるレベルの応力緩和特性を発揮しながらも端子形状の正確さを裏付ける曲げ加工性の劣化や、端子打ち抜き金型を摩耗させる打ち抜きバリを拡大化させるなどの弊害も生じていた。
ここで、代表的な箱形コネクタ(メス端子3)の断面構造をみると、図2に示すように、上側ホルダー部4に押圧片5が片持ち支持され、オス端子6が挿入されると押圧片5が弾性変形し、その反力によりオス端子6が固定される。なお、図2において、7はワイヤバレル部、8は固定用舌片である。銅合金素材板からこのようなコネクタを製造する際、曲げ加工及びせん断打ち抜き加工が多用される。小型で精密なコネクタを製造するには、圧延方向に対し平行方向及び直角方向に双方に優れた曲げ加工性が必要である。また、せん断打ち抜き加工において大きいバリが発生すると、バリが曲げ加工部位に挟まって精密な曲げ加工が阻害され、バリがワイヤバレル部に発生すると曲げ加工時にワイヤの切断が生じ、さらにバリの発生は打ち抜き金型の摩耗を促進させる。従って、この種の銅合金板には、優れた曲げ加工性及びせん断打ち抜き性が求められている。
これに対し、従来のCu−Ni−Sn系の固溶型銅合金の曲げ加工性及びせん断打ち抜き性は未だ十分とはいえない。
However, the formation energy of Ni-P intermetallic compound is extremely low, and it is easily coarsened by heat treatment during the copper alloy manufacturing process, and the accuracy of terminal shape is achieved while exhibiting the stress relaxation characteristics required by the current automobile technology. There have also been problems such as deterioration of the bending workability that backs up and enlargement of the punching burr that wears the terminal punching die.
Here, looking at the cross-sectional structure of a typical box-shaped connector (female terminal 3), as shown in FIG. 2, when the pressing piece 5 is cantilevered and supported by the upper holder part 4 and the male terminal 6 is inserted. The pressing piece 5 is elastically deformed, and the male terminal 6 is fixed by the reaction force. In FIG. 2, 7 is a wire barrel portion, and 8 is a fixing tongue piece. When manufacturing such a connector from a copper alloy material board, bending and shear punching are frequently used. In order to manufacture a small and precise connector, it is necessary to have excellent bending workability in both the direction parallel to and perpendicular to the rolling direction. In addition, if large burrs are generated in the shear punching process, the burrs are sandwiched between the bent parts and the precise bending process is hindered. If the burrs are generated in the wire barrel part, the wire is cut during the bending process. Promotes wear of punching dies. Therefore, this type of copper alloy sheet is required to have excellent bending workability and shear punchability.
On the other hand, the bending workability and the shear punchability of the conventional Cu—Ni—Sn solid solution type copper alloy are still not sufficient.

従って、本発明は、Cu−Ni−Sn系の固溶型銅合金において、圧延方向に対して直角及び垂直方向に優れた曲げ加工性を有し、同時に優れたせん断打ち抜き性を有する電気接続部品用銅合金板を得ることを目的とする。   Therefore, the present invention provides an electrical connection component having excellent bending workability in the perpendicular and perpendicular directions to the rolling direction and simultaneously having excellent shear punching properties in a Cu-Ni-Sn solid solution type copper alloy. An object is to obtain a copper alloy sheet.

本発明に係る電気接続部品用銅合金板は、Ni:0.4〜1.6%、Sn:0.4〜1.6%、P:0.027〜0.15%、Fe:0.0005〜0.15%を含み、Ni含有量とP含有量の比Ni/Pが15未満であり、残部がCu及び不純物からなる組成、及び銅合金母相中にNi−P析出物が分散した組織を有し、前記析出物は直径60nm以下であり、500nm×500nmの視野内に直径5nm以上60nm以下のものが20個以上観察されることを特徴とする。
上記銅合金板の組成は、必要に応じて、Zn:1%以下、Mn:0.1%以下、Si:0.1%以下、Mg:0.3%以下のいずれか1種以上、又は/及びCr、Co、Ag、In、Be、Al、Ti、V、Zr、Mo、Hf、Ta、Bが総量で0.1%以下含むことができる。
The copper alloy plate for electrical connection parts according to the present invention has Ni: 0.4 to 1.6%, Sn: 0.4 to 1.6%, P: 0.027 to 0.15%, Fe: 0.0. Including 0005 to 0.15%, Ni / P ratio Ni / P is less than 15, the balance is composed of Cu and impurities, and Ni-P precipitates are dispersed in the copper alloy matrix The precipitate has a diameter of 60 nm or less, and 20 or more particles having a diameter of 5 nm to 60 nm are observed in a field of view of 500 nm × 500 nm.
The composition of the copper alloy plate is, as required, any one or more of Zn: 1% or less, Mn: 0.1% or less, Si: 0.1% or less, Mg: 0.3% or less, or / And Cr, Co, Ag, In, Be, Al, Ti, V, Zr, Mo, Hf, Ta, and B may be included in a total amount of 0.1% or less.

本発明によれば、Cu−Ni−Sn系の固溶型銅合金において、圧延方向に対して直角及び垂直方向に優れた曲げ加工性を有し、同時に優れたせん断打ち抜き性を有する電気接続部品用銅合金板を得ることができる。   According to the present invention, a Cu-Ni-Sn solid solution type copper alloy has an excellent bending workability in the direction perpendicular to and perpendicular to the rolling direction, and at the same time has an excellent shear punching property. Copper alloy sheets can be obtained.

以下、本発明に係る銅合金板について説明する。まず、本発明に係る銅合金の組成について説明する。
Niは銅合金中に固溶して耐応力緩和特性を強化し、強度を向上させる元素である。しかし、0.4%以下ではその効果がなく、1.6%を越えると同時添加しているPと容易に金属間化合物を析出し、固溶Niが低減して耐応力緩和特性が低下する。従って、含有量は0.4〜1.6%とする。0.7〜0.9%の範囲がより望ましい。
Hereinafter, the copper alloy plate according to the present invention will be described. First, the composition of the copper alloy according to the present invention will be described.
Ni is an element that dissolves in a copper alloy to strengthen the stress relaxation resistance and improve the strength. However, if it is 0.4% or less, there is no effect, and if it exceeds 1.6%, an intermetallic compound is easily precipitated with P added at the same time, so that solid solution Ni is reduced and stress relaxation resistance is lowered. . Therefore, the content is set to 0.4 to 1.6%. A range of 0.7 to 0.9% is more desirable.

Snは銅合金中に固溶し加工硬化による強度向上をもたらす元素である。さらに本合金系では耐熱性にも寄与する元素である。本発明に係る銅合金板において、曲げ加工性及びせん断打ち抜き性を向上させるには、高い温度で仕上げ焼鈍を行う必要があるが、Sn含有量が0.4%未満では耐熱性が低下し、仕上げ焼鈍において再結晶軟化が進むため、仕上げ焼鈍の温度を十分に上げることができない。一方、1.6%を超えると導電率が低下して、銅合金板最終製品において30%IACSを達成できない。従って、Sn含有量は0.4〜1.6%とする。0.6〜1.3%の範囲がより望ましい。なお、仕上げ焼鈍を高い温度で行うことにより、耐応力緩和特性向上に必要な固溶Niが十分に得られる利点もある。   Sn is an element that dissolves in a copper alloy and improves strength by work hardening. Furthermore, in this alloy system, it is an element contributing to heat resistance. In the copper alloy plate according to the present invention, in order to improve the bending workability and the shear punchability, it is necessary to perform finish annealing at a high temperature, but if the Sn content is less than 0.4%, the heat resistance decreases, Since recrystallization softening proceeds in finish annealing, the temperature of finish annealing cannot be raised sufficiently. On the other hand, if it exceeds 1.6%, the electrical conductivity is lowered, and 30% IACS cannot be achieved in the final copper alloy sheet product. Therefore, the Sn content is set to 0.4 to 1.6%. A range of 0.6 to 1.3% is more desirable. In addition, there is also an advantage that solid solution Ni necessary for improving the stress relaxation resistance can be sufficiently obtained by performing the finish annealing at a high temperature.

Pは製造工程途中でNi−P析出物を発現し、仕上げ焼鈍時の耐熱性を向上させる元素である。これにより、高い温度での仕上げ焼鈍が可能となり、曲げ加工性及びせん断打ち抜き性が向上する。しかし、0.027%未満では、P添加量に比べて相対的に添加量の多いNiと化合しやすくなり、強固なNi−P金属間化合物が形成され、一方、Pが0.15%を超えて添加されるとさらにNi−P金属間化合物析出量が増加し、いずれにしても仕上げ焼鈍においてNi−P金属間化合物の再固溶が起きず、曲げ加工性及びせん断打ち抜き加工性が低下すると共に、耐応力緩和特性を向上させるための固溶Niが十分に得られない。従って、P含有量は0.027〜0.15%とする。0.05〜0.08%がより好ましい。   P is an element that expresses Ni-P precipitates during the manufacturing process and improves heat resistance during finish annealing. As a result, finish annealing at a high temperature is possible, and bending workability and shear punchability are improved. However, if it is less than 0.027%, it becomes easy to combine with Ni having a relatively large addition amount compared to the P addition amount, and a strong Ni-P intermetallic compound is formed, while P is 0.15%. If added in excess, the precipitation amount of Ni-P intermetallic compound further increases, and in any case, Ni-P intermetallic compound does not re-dissolve in finish annealing, and bending workability and shear punching workability decrease. In addition, solid solution Ni for improving the stress relaxation resistance cannot be obtained sufficiently. Therefore, the P content is 0.027 to 0.15%. 0.05 to 0.08% is more preferable.

また、Ni/P比率を15未満にする理由は、高い仕上げ焼鈍温度でNiの再固溶及び転位固着を行うためのNi−P析出物による耐熱性向上と、仕上げ焼鈍による再結晶軟化時のNi−P析出物の分解、再固溶を両立させるためである。Ni/P比率が15以上では耐熱性向上が不十分で、比較的低い温度で仕上げ焼鈍せざるを得ず、曲げ加工性及びせん断打ち抜き性が向上せず、かつ十分な耐応力緩和特性が得られない。
Feは、仕上げ焼鈍において再結晶粒の粗大化を抑制する元素である。銅合金中に0.0005%以上添加することにより、仕上げ焼鈍において銅合金を高温に加熱して添加元素を十分固溶させ、同時に再結晶粒の粗大化を抑制することができる。しかし、0.15%を超えると導電率が低下して約30%IACSを達成できない。
Moreover, the reason why the Ni / P ratio is less than 15 is that the Ni-P precipitates are improved in heat resistance due to Ni re-solution and dislocation fixation at a high finish annealing temperature, and during recrystallization softening by finish annealing. This is for achieving both decomposition and re-solution of the Ni-P precipitate. When the Ni / P ratio is 15 or more, the heat resistance is not improved sufficiently, and finish annealing at a relatively low temperature is unavoidable, the bending workability and the shear punchability are not improved, and sufficient stress relaxation resistance is obtained. I can't.
Fe is an element that suppresses the coarsening of recrystallized grains in finish annealing. By adding 0.0005% or more to the copper alloy, the copper alloy is heated to a high temperature in the final annealing to sufficiently dissolve the added element, and at the same time, coarsening of recrystallized grains can be suppressed. However, if it exceeds 0.15%, the conductivity decreases and about 30% IACS cannot be achieved.

本発明の銅合金は、副成分として、さらにZn、Mn、Mg、Si、その他を添加してもよい。
Znは錫めっきの剥離を防止するため、1%以下添加することができる。しかしながら、自動車用端子として使用する温度領域(約150〜180℃)であれば、0.05%以下も添加してあれば十分である。さらにシャフト炉で造塊する場合は0.05%以下が望ましい。
Mn、Siは脱酸剤としてそれぞれ0.01%以下添加することができる、しかし、それぞれ0.001%以下、0.002%以下が望ましい。
Mgは耐応力緩和特性を向上させる作用があり、0.3%以下添加することができる。しかし、シャフト炉で造塊する場合、0.001%以下が望ましい。
Cr、Co、Ag、In、Be、Al、Ti、V、Zr、Mo、Hf、Ta、B等は、結晶粒の粗大化を防止する作用があり、総量で0.1%以下添加することができる。
Pbは不純物として0.001%以下に制限することが望ましい。
The copper alloy of the present invention may further contain Zn, Mn, Mg, Si and others as subcomponents.
Zn can be added in an amount of 1% or less to prevent peeling of the tin plating. However, if it is the temperature range (about 150-180 degreeC) used as a terminal for motor vehicles, it is enough if 0.05% or less is added. Furthermore, when ingot-making in a shaft furnace, 0.05% or less is desirable.
Mn and Si can be added in amounts of 0.01% or less as deoxidizers, respectively, but 0.001% or less and 0.002% or less are desirable, respectively.
Mg has the effect of improving the stress relaxation resistance and can be added in an amount of 0.3% or less. However, when ingot forming in a shaft furnace, 0.001% or less is desirable.
Cr, Co, Ag, In, Be, Al, Ti, V, Zr, Mo, Hf, Ta, B, etc. have the effect of preventing coarsening of crystal grains, and should be added in a total amount of 0.1% or less. Can do.
Pb is preferably limited to 0.001% or less as an impurity.

次に、本発明に係る銅合金板の組織について説明する。
本発明に係る銅合金板は、銅合金母相中にNi−P金属間化合物の析出物が分散した組織を有する。析出物のうち直径が60nmを越える粒子は、R/t(R:曲げ半径、t:板厚)が小さい曲げ加工において割れ発生の原因となり、これが存在すると曲げ加工性が低下する。なお、析出物粒子が球形から外れる場合、該析出物粒子の外接円の直径(長径)を本発明でいう析出物の直径とする。
一方、析出物はせん断打ち抜き時の割れの起点となり、これが高い密度で分布している方がせん断打ち抜き性に優れる。直径5nmを下回るような微細析出物は、せん断応力場では転位と相互して局所的な加工硬化特性を引き起こし、せん断打ち抜きの伝搬・進行には寄与するが、直径5nm以上の析出物が微細分散していると、その存在している場所を伝ってせん断打ち抜きの破面が進行していくために、さらに打ち抜き性が向上し、ばりの低減に役立つ。従って、曲げ加工性を低下させない直径60nm以下の粒子については、5nm以上のものが、500nm×500nmの視野内に平均で20個以上存在することが望ましく、さらに30個以上が望ましい。
Next, the structure of the copper alloy plate according to the present invention will be described.
The copper alloy sheet according to the present invention has a structure in which precipitates of Ni-P intermetallic compounds are dispersed in a copper alloy matrix. Among the precipitates, particles having a diameter exceeding 60 nm cause cracking in bending with a small R / t (R: bending radius, t: plate thickness), and if this exists, bending workability deteriorates. In addition, when a deposit particle remove | deviates from a spherical form, let the diameter (major axis) of the circumscribed circle of this deposit particle be the diameter of the deposit referred to in the present invention.
On the other hand, the precipitate becomes a starting point of cracking at the time of shear punching, and if this is distributed at a high density, the shear punching property is excellent. Fine precipitates with a diameter of less than 5 nm cause local work hardening characteristics with dislocations in the shear stress field and contribute to the propagation and progression of shear punching, but precipitates with a diameter of 5 nm or more are finely dispersed. In this case, since the fracture surface of the shear punching proceeds along the existing location, the punching property is further improved, which helps to reduce the flash. Accordingly, with respect to particles having a diameter of 60 nm or less that do not deteriorate the bending workability, it is desirable that 20 or more particles having a diameter of 5 nm or more exist on average within a field of view of 500 nm × 500 nm, and more preferably 30 or more.

次に、本発明に係る銅合金板の製造方法について説明する。
本発明に係る銅合金板は、銅合金鋳塊を均質化処理後、熱間圧延及び冷間粗圧延を行い、続いて冷間粗圧延後の銅合金板に仕上げ連続焼鈍を行い、さらに冷間圧延及び安定化焼鈍を行うことにより製造することができる。
本発明の銅合金は析出型銅合金ではないため、均質化処理、熱間圧延及び冷間粗圧延において、条件面で特別に厳密な管理は必要ない。例えば均質化処理は800〜1000℃×0.5〜4時間、熱間圧延は800〜950℃で行い、熱間圧延後は水冷又は放冷する。冷間粗圧延は最終仕上げ圧延において30〜80%程度の加工率が得られるように、加工率を選択する。冷間粗圧延の途中に適宜中間の再結晶焼鈍を挟むことができる。
Next, the manufacturing method of the copper alloy plate which concerns on this invention is demonstrated.
The copper alloy plate according to the present invention is obtained by homogenizing the copper alloy ingot, performing hot rolling and cold rough rolling, and subsequently subjecting the copper alloy plate after cold rough rolling to finish continuous annealing, and further cooling. It can be manufactured by hot rolling and stabilizing annealing.
Since the copper alloy of the present invention is not a precipitation-type copper alloy, specially strict management in terms of conditions is not required in homogenization, hot rolling, and cold rough rolling. For example, the homogenization treatment is performed at 800 to 1000 ° C. for 0.5 to 4 hours, the hot rolling is performed at 800 to 950 ° C., and after the hot rolling, it is cooled with water or allowed to cool. In the cold rough rolling, the processing rate is selected so that a processing rate of about 30 to 80% is obtained in the final finish rolling. An intermediate recrystallization annealing can be appropriately interposed during the cold rough rolling.

一方、粗冷間圧延後の銅合金板に対する仕上げ連続焼鈍については厳密な管理を行い、適正な保持温度及び保持時間を設定する必要がある。
本発明規定内の合金系の大きな特徴の一つは保持時間数十秒の650℃越えの焼鈍で析出相が転移することである。前述のように保持温度が低いと粗大析出物が比較的多数観察される。熱力学的にはさらに保持温度を上げると、析出物はさらに凝集・粗大化するのがふつうである。しかしながら、本合金系では600から650℃を境に析出相が転移する、すなわち、600℃から650℃付近の温度を境として低温領域で発生した粗大析出物が分解・再固溶し、微細なNi−P化合物を析出させる新相が発現する。この析出物が曲げ加工性向上及び打ち抜きバリ低減に寄与する。
保持温度が低いとき、直径60nmを越える析出物粒子が観察されやすくなり、またNi及びPの含有量がごく少ない組成領域では、直径60nm以下の粒子が不足する。一方、650℃を越える焼鈍温度であっても、保持時間が短いと、粗大析出物の分解・再固溶が不十分であり、微細析出物が発現しにくくなり、直径60nmを越える析出物が残留する。逆に長過ぎると、再結晶粒が粗大化して曲げ加工性の低下を招く可能性がある。
本発明の銅合金組成の場合、実体温度で650℃を越える温度に保持し、保持時間は15〜30秒間とする高温短時間焼鈍とすることで、銅合金母相中にNi−P金属間化合物の析出物が適正に分散した組織を得ることができる。焼鈍後は10℃/秒以上の冷却速度で急冷することが望ましい。
なお、仕上げ焼鈍温度を上記の通り高温短時間の条件で行うことにより、昇温過程で析出したNi−P金属間化合物の析出物が再固溶し、耐応力緩和特性向上に必要な固溶Niが十分に得られる利点もある。
On the other hand, it is necessary to strictly manage the continuous annealing of the copper alloy sheet after the rough cold rolling, and to set an appropriate holding temperature and holding time.
One of the major characteristics of the alloy system within the provisions of the present invention is that the precipitation phase is transformed by annealing at a holding time of several tens of seconds and exceeding 650 ° C. As described above, when the holding temperature is low, a relatively large number of coarse precipitates are observed. In terms of thermodynamics, when the holding temperature is further increased, the precipitates are usually further aggregated and coarsened. However, in this alloy system, the precipitation phase transitions from 600 to 650 ° C., that is, the coarse precipitates generated in the low temperature region from the temperature of 600 to 650 ° C. are decomposed and re-dissolved as fine particles. A new phase that precipitates the Ni-P compound appears. This precipitate contributes to improvement of bending workability and reduction of punching burrs.
When the holding temperature is low, precipitate particles having a diameter of more than 60 nm are easily observed, and in a composition region where the contents of Ni and P are very small, particles having a diameter of 60 nm or less are insufficient. On the other hand, even if the annealing temperature exceeds 650 ° C., if the holding time is short, the coarse precipitates are not sufficiently decomposed and re-dissolved, and the fine precipitates are difficult to be expressed. Remains. On the other hand, if the length is too long, the recrystallized grains may be coarsened to cause a decrease in bending workability.
In the case of the copper alloy composition of the present invention, it is maintained at a temperature exceeding 650 ° C. as a substantial temperature, and the holding time is 15 to 30 seconds. A structure in which compound precipitates are appropriately dispersed can be obtained. After annealing, it is desirable to rapidly cool at a cooling rate of 10 ° C./second or more.
In addition, by performing the final annealing temperature under the conditions of high temperature and short time as described above, the precipitate of Ni-P intermetallic compound precipitated in the temperature rising process is re-dissolved, and the solid solution necessary for improving the stress relaxation resistance is obtained. There is also an advantage that Ni can be sufficiently obtained.

最終仕上げ圧延後の安定化焼鈍は、250〜450℃×20〜40秒で行うのが望ましい。これにより最終仕上げ圧延で導入された歪みが除去され、かつ材料の軟化がなく強度の低下が少ないからである。   The stabilizing annealing after the final finish rolling is desirably performed at 250 to 450 ° C. for 20 to 40 seconds. This is because the distortion introduced in the final finish rolling is removed, the material is not softened, and the strength is hardly lowered.

次に、本発明に係る銅合金板の実施例を説明する。
銅合金をクリプトル炉において大気中で木炭被覆下で溶解し、表1に示す組成を有する45mm厚の鋳塊(No.1〜9)を得た。続いて、965℃で3時間又は850℃で30分の均熱化処理を行った後、熱間圧延して15mm厚とし、830℃以上で焼入れ(水冷)、両面を1mmずつ面削して13mm厚とした後、冷間粗圧延を行って表1に示す厚さとした。
続いて、No.1〜8については仕上げ連続焼鈍を行い、No.9についてはバッチ式の中間及び仕上げ焼鈍を冷間圧延を挟んで行い、さらに、仕上げ冷間圧延を行った後、低温焼鈍(安定化焼鈍)を行った。各工程の条件は表1に記載した。なお、最終製品板厚は0.25mmである。
Next, examples of the copper alloy plate according to the present invention will be described.
The copper alloy was melted under a charcoal coating in the atmosphere in a kryptor furnace to obtain 45 mm-thick ingots (Nos. 1 to 9) having the compositions shown in Table 1. Subsequently, after soaking at 965 ° C. for 3 hours or 850 ° C. for 30 minutes, it is hot-rolled to a thickness of 15 mm, quenched at 830 ° C. or higher (water-cooled), and both sides are faced by 1 mm each. After the thickness of 13 mm, cold rough rolling was performed to obtain the thicknesses shown in Table 1.
Subsequently, no. For Nos. 1-8, finish continuous annealing was performed. For No. 9, batch-type intermediate and finish annealing were performed with cold rolling in between, and after finishing cold rolling, low temperature annealing (stabilized annealing) was performed. The conditions for each step are shown in Table 1. The final product plate thickness is 0.25 mm.

Figure 0003871064
Figure 0003871064

得られた最終製品状態の各供試材について、導電率、硬さ、機械的特性(引張強さ、耐力、伸び)、ばね限界値、耐応力緩和特性、曲げ加工性及びせん断打ち抜き性を、下記要領にて測定し、さらに析出物の分布状態を走査型電子顕微鏡(TEM)で観察した。その結果を表2に示す。   For each test material in the final product state obtained, conductivity, hardness, mechanical properties (tensile strength, proof stress, elongation), spring limit value, stress relaxation resistance, bending workability and shear punchability, The measurement was performed as follows, and the distribution of precipitates was observed with a scanning electron microscope (TEM). The results are shown in Table 2.

導電率;導電率測定はJIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジを用いた四端子法で行なった。
硬さ;硬さの測定はJIS−Z2251に規定されている微少硬さ試験方法に準拠し、試験加重100g(0.9807N)でビッカース硬さを測定した。
機械的特性;JIS5号引張り試験片を、長手方向が板材の圧延方向に対し平行方向(LD)及び垂直方向(TD)となるように機械加工にて作製し、JIS−Z2241に準拠して引張り試験を実施して測定した。耐力は永久伸び0.2%に相当する引張り強さである。
ばね限界値;アカシ製ばね限界値試験機(MODEL:APT)を用いてモーメント式試験により求めた。材料の試験方向は板材の圧延方向に対し平行方向(LD)及び垂直方向(TD)とした。
Conductivity: Conductivity was measured by a four-terminal method using a double bridge in accordance with a nonferrous metal material conductivity measuring method defined in JIS-H0505.
Hardness: The hardness was measured in accordance with the microhardness test method defined in JIS-Z2251, and the Vickers hardness was measured at a test load of 100 g (0.9807 N).
Mechanical properties: JIS No. 5 tensile test specimen was prepared by machining so that the longitudinal direction was parallel (LD) and perpendicular (TD) to the rolling direction of the plate, and was pulled according to JIS-Z2241 Tests were performed and measured. The yield strength is a tensile strength corresponding to a permanent elongation of 0.2%.
Spring limit value: It was determined by a moment type test using a spring limit value tester manufactured by Akashi (MODEL: APT). The test direction of the material was a parallel direction (LD) and a vertical direction (TD) with respect to the rolling direction of the plate material.

耐応力緩和特性;図1に示す片持ち梁方式を用いて応力緩和率を測定した。長さ方向が板材の圧延方向に対し平行方向(LD)及び直角方向(TD)になるように、幅10mmの短冊状試験片1を切り出し、その一端を剛体試験台2に固定し、試験片1のスパン長Lの部分にd(=10mm)の大きさのたわみ量を与える。このとき、材料耐力の80%に相当する表面応力が材料に負荷されるようにLを決める。これを180℃のオーブン中に30時間保持した後に取り出し、たわみ量dを取り去ったときの永久歪みδを測定し、RS=(δ/d)×100で応力緩和率(RS)を計算する。なお、180℃×30時間の保持は、ラーソン・ミラーパラメーターで計算すると、ほぼ150℃×1000時間の保持に相当する。   Stress relaxation resistance: Stress relaxation rate was measured using the cantilever method shown in FIG. A strip-shaped test piece 1 having a width of 10 mm is cut out so that the length direction is parallel to the rolling direction of the plate (LD) and the direction perpendicular to the plate direction (TD), and one end thereof is fixed to the rigid body test stand 2. A deflection amount having a size of d (= 10 mm) is given to a portion having a span length L of 1. At this time, L is determined so that a surface stress corresponding to 80% of the material yield strength is applied to the material. This is held in an oven at 180 ° C. for 30 hours and then taken out. The permanent distortion δ when the deflection d is removed is measured, and the stress relaxation rate (RS) is calculated by RS = (δ / d) × 100. In addition, holding | maintenance of 180 degreeC x 30 hours is equivalent to holding | maintenance of about 150 degreeC x 1000 hours, when it calculates with a Larson Miller parameter.

曲げ加工性;長さ方向が板材の圧延方向に対し平行方向(LD)及び直角方向(TD)になるように幅10mm、長さ35mmの供試材を切り出し、曲げ線が長さ方向に垂直になるように、CESM0002金属材料W曲げ試験に規定されているB型曲げ治具を用いてはさみ、島津製作所製万能試験機RH−30を使用して1tの荷重でR/t=2(R:曲げ半径、t:板厚)にて90°W曲げ加工を行った後、曲げ部の割れの有無を評価し、割れのないものを○、割れが発生したものを×とした。   Bending workability: A specimen having a width of 10 mm and a length of 35 mm was cut out so that the length direction was parallel (LD) and perpendicular to the rolling direction of the plate (TD), and the bending line was perpendicular to the length direction. Scissors using a B-type bending jig specified in the CESM0002 metal material W bending test, and R / t = 2 (R with a load of 1 t using a Shimadzu universal testing machine RH-30 : Bending radius, t: plate thickness), 90 ° W bending was performed, and then the presence or absence of cracks in the bent portion was evaluated.

せん断打ち抜き性;日本伸銅協会標準JCBAT310(銅及び銅合金薄板条のせん断試験方法)に準拠した円形打ち抜き試験を実施し、せん断バリ高さを測定した。具体的には、日石三菱ユニプレスPA−5潤滑油を予め刷毛で塗布した供試材を、パンチ径10.000mmφ、ダイ径10.040mmφの打ち抜きプレスで円形に打ち抜く。この打ち抜きプレスのクリアランスは、(片側間隔(ダイ切り刃とパンチ外周の間隔)/供試材の板厚)×100(%))=8%であり、せん断速度は50mm/minである。打ち抜かれた円形穴周囲に発生したバリを、円周90度毎に4箇所測定し、平均値をとってバリ高さとした。   Shear punchability: A circular punching test in accordance with Japan Copper and Brass Association standard JCBAT310 (a shear test method for copper and copper alloy sheet strips) was performed, and the shear burr height was measured. Specifically, a test material to which Nisseki Mitsubishi Unipres PA-5 lubricating oil is applied in advance with a brush is punched into a circle with a punching press having a punch diameter of 10.000 mmφ and a die diameter of 10.040 mmφ. The clearance of this punching press is (interval on one side (distance between die cutting blade and outer periphery of punch) / plate thickness of test material) × 100 (%)) = 8%, and shear rate is 50 mm / min. The burrs generated around the punched circular holes were measured at four locations every 90 degrees in circumference, and the average value was taken as the burr height.

析出物の分布状態の観察;供試材を電解薄膜法(ツインジェット法)でTEM観察用薄膜に仕上げる。これを日立製作所製TEM H−800(加速電圧200kV)を用い、撮影倍率40000倍及び100000倍で撮影し、印画紙にさらに1.5倍に拡大して焼き付ける。この60000倍撮影印画紙上で1000nm×1000nm相当の正方形の視野中の直径60nmを越える析出物の個数、及び150000倍撮影印画紙上で500nm×500nm相当の正方形視野中の直径5nm〜60nmの析出物の個数をカウントする。これを複数視野観察して、平均値を算出する。なお、視野中に観察された上記析出物粒子は全て球形であった。   Observation of the distribution of precipitates: The specimen is finished into a thin film for TEM observation by the electrolytic thin film method (twin jet method). This is photographed with TEM H-800 (acceleration voltage 200 kV) manufactured by Hitachi, Ltd. at photographing magnifications of 40000 times and 100000 times, and further magnified by 1.5 times and printed on photographic paper. The number of precipitates having a diameter exceeding 60 nm in a square field equivalent to 1000 nm × 1000 nm on the photographic paper having a magnification of 60000 times, and the precipitate having a diameter of 5 nm to 60 nm in a square field having a size equivalent to 500 nm × 500 nm on the photographic paper having a magnification of 150,000 times. Count the number. A plurality of visual fields are observed, and an average value is calculated. The precipitate particles observed in the visual field were all spherical.

Figure 0003871064
Figure 0003871064

表2に示すように、直径60nmを越える析出物が観察されなかったNo.1〜7は、LD、TD方向とも、曲げ加工性に優れている。また、500nm×500nmの視野内に直径5nm以上60nm以下の析出物が20個以上観察されたNo.1〜4及びNo.8は、平均バリ高さが小さく、特にNo.1〜4のバリ高さは小さい。さらに、No.1〜4は応力緩和率がLD、TD方向とも15%以下であった。   As shown in Table 2, no precipitate with a diameter exceeding 60 nm was observed. Nos. 1 to 7 are excellent in bending workability in both the LD and TD directions. In addition, 20 or more precipitates having a diameter of 5 nm or more and 60 nm or less were observed in a 500 nm × 500 nm visual field. 1-4 and No.1. No. 8 has a small average burr height. The burr height of 1-4 is small. Furthermore, no. In 1-4, the stress relaxation rate was 15% or less in both the LD and TD directions.

これに対し、No.5〜7は、Ni添加量が少なく60nmを越える粗大析出物は発生しにくいが、仕上げ焼鈍温度が低いため、650℃付近を境にして起こる微細析出新相に転移せず微細Ni−P化合物も析出個数が規定に到達していない。せん断性を向上させる60nm以下の微細析出物が不足しているため、バリ高さが10μmを越え、せん断打ち抜き性が劣る。添加Ni量が少なく、さらに、析出物にマトリクス中の固溶Niが奪われているために、Ni固溶量が応力緩和特性を維持できる量に達しておらず、応力緩和率が高く(特にTD方向)なっている。
No.8は、仕上げ焼鈍温度が600℃と650℃越えに到達していないため、60nmを越える粗大な析出物が十分に分解、再固溶されず一部残留しており、曲げ加工性が劣る。650℃付近を境にして起こる微細析出新相に完全に転移していないもののNi添加量が多いため微細析出物は一部発生しており、バリ高さは低く押さえられている。また、Ni−P析出物総量が多くNi再固溶量が不足しているために、耐応力緩和特性向上に必要な固溶Niが十分に得られず、TD方向の応力緩和率が高い。
No.9は、650℃を下回るバッチ焼鈍により析出物は60nm以上に凝集したままである。二回のバッチ焼鈍を行って再結晶を完全なものとしているが、凝集析出物を分解し微細析出物を発現させる温度には到達していないので、曲げ加工性は低下し、同時にバリ高さも高くなっている。
In contrast, no. Nos. 5 to 7 have a small Ni addition amount, and coarse precipitates exceeding 60 nm are less likely to be generated. However, since the finish annealing temperature is low, the fine Ni-P compound does not transition to the fine precipitation new phase that occurs around 650 ° C. However, the number of precipitates does not reach the specified value. Since the fine precipitates of 60 nm or less that improve the shearing property are insufficient, the burr height exceeds 10 μm and the shear punching property is inferior. Since the amount of added Ni is small and the solid solution Ni in the matrix is taken away by the precipitate, the amount of Ni solid solution does not reach the amount capable of maintaining the stress relaxation characteristics, and the stress relaxation rate is high (particularly TD direction).
No. In No. 8, since the final annealing temperatures did not reach 600 ° C. and 650 ° C., coarse precipitates exceeding 60 nm were not sufficiently decomposed and re-dissolved, and partly remained, resulting in poor bending workability. Although it is not completely transferred to the new fine precipitation phase that occurs around 650 ° C., a small amount of fine precipitates are generated due to the large amount of Ni added, and the burr height is kept low. Further, since the total amount of Ni-P precipitates is large and the amount of Ni re-solution is insufficient, sufficient solid solution Ni necessary for improving the stress relaxation resistance is not obtained, and the stress relaxation rate in the TD direction is high.
No. In No. 9, precipitates remain aggregated to 60 nm or more by batch annealing below 650 ° C. Although recrystallization is completed by performing batch annealing twice, it does not reach the temperature at which the aggregated precipitates are decomposed and fine precipitates are expressed, so the bending workability is lowered and the burr height is also reduced. It is high.

耐応力緩和試験を説明する断面図である。It is sectional drawing explaining a stress relaxation test. メス端子の構造を示す正面図(a)及び断面図(b)である。It is the front view (a) and sectional view (b) which show the structure of a female terminal.

符号の説明Explanation of symbols

1 試験片
3 メス端子
1 Test piece 3 Female terminal

Claims (3)

Ni:0.62〜1.02%(質量%、以下同じ)、Sn:0.52〜1.3%、P:0.046〜0.092%、Fe:0.0005〜0.15%を含み、Ni含有量とP含有量の比Ni/Pが15未満であり、残部がCu及び不純物からなる組成、及び銅合金母相中にNi−P析出物が分散した組織を有し、前記析出物は直径60nm以下であり、500nm×500nmの視野内に直径5nm以上60nm以下のものが20個以上観察されることを特徴とする電気接続部品用銅合金板。 Ni: 0.62 to 1.02% (mass%, the same applies hereinafter), Sn: 0.52 to 1.3% , P: 0.046 to 0.092 %, Fe: 0.0005 to 0.15 % The ratio Ni / P of Ni content and P content is less than 15, the balance is a composition consisting of Cu and impurities, and a structure in which Ni-P precipitates are dispersed in the copper alloy matrix, The said deposit is 60 nm or less in diameter, and 20 or more things of diameter 5 nm or more and 60 nm or less are observed within a 500 nm x 500 nm visual field, The copper alloy plate for electrical-connection components characterized by the above-mentioned. 銅合金の組成に、Zn:1%以下、Mn:0.1%以下、Si:0.1%以下、Mg:0.3%以下のいずれか1種以上が含まれることを特徴とする請求項1に記載された電気接続部品用銅合金板。 The composition of the copper alloy includes any one or more of Zn: 1% or less, Mn: 0.1% or less, Si: 0.1% or less, and Mg: 0.3% or less. Item 4. A copper alloy plate for electrical connection parts according to item 1. 銅合金の組成に、Cr、Co、Ag、In、Be、Al、Ti、V、Zr、Mo、Hf、Ta、Bが総量で0.1%以下含まれることを特徴とする請求項1又は2に記載された電気接続部品用銅合金板。 The composition of the copper alloy includes Cr, Co, Ag, In, Be, Al, Ti, V, Zr, Mo, Hf, Ta, and B in a total amount of 0.1% or less. The copper alloy plate for electrical connection parts described in 2.
JP2005168591A 2005-06-08 2005-06-08 Copper alloy plate for electrical connection parts Active JP3871064B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2005168591A JP3871064B2 (en) 2005-06-08 2005-06-08 Copper alloy plate for electrical connection parts
PCT/JP2006/311517 WO2006132317A1 (en) 2005-06-08 2006-06-08 Copper alloy, copper alloy plate, and process for producing the same
KR1020077028509A KR100968997B1 (en) 2005-06-08 2006-06-08 Copper alloy, copper alloy plate, and process for producing the same
EP06766490A EP1889934B1 (en) 2005-06-08 2006-06-08 Copper alloy plate and process for producing the same
US11/916,730 US20090116996A1 (en) 2005-06-08 2006-06-08 Copper alloy, copper alloy plate, and process for producing the same
CN2009101732858A CN101693960B (en) 2005-06-08 2006-06-08 Copper alloy, copper alloy plate, and process for producing the same
EP11002839.6A EP2366807B1 (en) 2005-06-08 2006-06-08 Copper alloy and copper alloy plate
AT06766490T ATE534755T1 (en) 2005-06-08 2006-06-08 COPPER ALLOY PLATE AND PRODUCTION METHOD THEREOF
CN200680015290A CN100577833C (en) 2005-06-08 2006-06-08 Copper alloy, copper alloy plate, and process for producing the same
KR1020097027233A KR100992281B1 (en) 2005-06-08 2006-06-08 Copper alloy, copper alloy plate, and process for producing the same
US13/078,404 US20110182767A1 (en) 2005-06-08 2011-04-01 Copper alloy, copper alloy plate, and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168591A JP3871064B2 (en) 2005-06-08 2005-06-08 Copper alloy plate for electrical connection parts

Publications (2)

Publication Number Publication Date
JP2006342389A JP2006342389A (en) 2006-12-21
JP3871064B2 true JP3871064B2 (en) 2007-01-24

Family

ID=37639563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168591A Active JP3871064B2 (en) 2005-06-08 2005-06-08 Copper alloy plate for electrical connection parts

Country Status (2)

Country Link
JP (1) JP3871064B2 (en)
CN (1) CN100577833C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019990A1 (en) 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
WO2009096314A1 (en) 2008-01-31 2009-08-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate having excellent anti-stress relaxation properties

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075438B2 (en) * 2007-03-20 2012-11-21 Dowaメタルテック株式会社 Cu-Ni-Sn-P copper alloy sheet and method for producing the same
JP2008266787A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy material and its manufacturing method
JP4950734B2 (en) * 2007-03-30 2012-06-13 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability
JP5101149B2 (en) * 2007-03-30 2012-12-19 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability
JP5232794B2 (en) * 2007-09-27 2013-07-10 Jx日鉱日石金属株式会社 High strength and high conductivity copper alloy with excellent hot workability
EP2340318B1 (en) * 2008-10-31 2017-02-15 Sundwiger Messingwerk GmbH & Co. KG Copper-tin alloy, composite material and use thereof
JP5207927B2 (en) * 2008-11-19 2013-06-12 株式会社神戸製鋼所 Copper alloy with high strength and high conductivity
CN106435250A (en) * 2009-04-08 2017-02-22 瑞士金属-Ums瑞士金属加工有限公司 Machinable copper base alloy and production method thereof
JP5468423B2 (en) * 2010-03-10 2014-04-09 株式会社神戸製鋼所 High strength and high heat resistance copper alloy material
CN102346001A (en) * 2011-06-27 2012-02-08 苏州方暨圆节能科技有限公司 Antibacterial corrosion resistant radiator cooling fin
JP6304863B2 (en) * 2012-12-28 2018-04-04 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
CN103276238B (en) * 2013-07-01 2015-09-02 襄阳展升科技有限公司 A kind of preparation method of copper base alloy sliding surface bearing
CN103526070A (en) * 2013-09-29 2014-01-22 苏州市凯业金属制品有限公司 Silicon bronze alloy metal tube
CN104831117B (en) * 2013-11-04 2016-11-30 吴丽清 A kind of method preparing Copper Alloy Valve
JP6113674B2 (en) * 2014-02-13 2017-04-12 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
US20170283910A1 (en) * 2014-08-25 2017-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Conductive material for connection parts which has excellent minute slide wear resistance
CN104232984B (en) * 2014-09-25 2016-06-22 江苏鑫成铜业有限公司 A kind of method preparing high Vulcan metal
JP6085633B2 (en) * 2015-03-30 2017-02-22 Jx金属株式会社 Copper alloy plate and press-molded product including the same
CN104928528A (en) * 2015-07-06 2015-09-23 苏州科茂电子材料科技有限公司 Conductive copper alloy material and preparing method thereof
CN104928526A (en) * 2015-07-06 2015-09-23 苏州科茂电子材料科技有限公司 Copper alloy material for cable and preparation method thereof
CN105112714A (en) * 2015-09-08 2015-12-02 周欢 High-conductivity copper alloy material
CN105316520B (en) * 2015-11-26 2017-11-14 山西春雷铜材有限责任公司 A kind of preparation method of Cu Ni Sn copper alloy plate strips
CN105936982A (en) * 2016-06-13 2016-09-14 芜湖卓越线束系统有限公司 High-conductivity alloy material for wire harness terminal and preparation method thereof
DE102016008753B4 (en) * 2016-07-18 2020-03-12 Wieland-Werke Ag Copper-nickel-tin alloy, process for their production and their use
DE102016008754B4 (en) * 2016-07-18 2020-03-26 Wieland-Werke Ag Copper-nickel-tin alloy, process for their production and their use
CN108149062B (en) * 2018-02-10 2019-09-20 中南大学 A kind of strong high conductive copper alloy of superelevation and preparation method thereof
CN110042274A (en) * 2019-05-05 2019-07-23 陶大海 A kind of high elastic modulus, copper alloy of stress relaxation-resistant and preparation method thereof
JP7218270B2 (en) * 2019-10-18 2023-02-06 株式会社神戸製鋼所 Copper alloy rolled sheet and quality judgment method thereof
CN110885937B (en) * 2019-12-19 2021-04-13 福州大学 Cu-Ti-Ge-Ni-X copper alloy material and preparation method thereof
CN111809079B (en) * 2020-07-23 2021-12-17 郑州恒天铜业有限公司 High-strength high-conductivity copper alloy wire material and preparation method thereof
CN112143932A (en) * 2020-09-10 2020-12-29 深圳金斯达应用材料有限公司 Copper-based palladium coating bonding lead and manufacturing method thereof
CN115404376B (en) * 2021-05-26 2023-05-05 叶均蔚 High-strength abrasion-resistant multi-element copper alloy and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019990A1 (en) 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2695956A2 (en) 2007-08-07 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2695957A2 (en) 2007-08-07 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2695958A2 (en) 2007-08-07 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
WO2009096314A1 (en) 2008-01-31 2009-08-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate having excellent anti-stress relaxation properties

Also Published As

Publication number Publication date
JP2006342389A (en) 2006-12-21
CN101171349A (en) 2008-04-30
CN100577833C (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP3871064B2 (en) Copper alloy plate for electrical connection parts
KR100992281B1 (en) Copper alloy, copper alloy plate, and process for producing the same
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
US11203806B2 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
JP5075447B2 (en) Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
KR102545312B1 (en) Copper alloy sheet and its manufacturing method
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP6378819B1 (en) Cu-Co-Si-based copper alloy sheet, manufacturing method, and parts using the sheet
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2006265731A (en) Copper alloy
JP6187629B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP5910004B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP4350049B2 (en) Method for producing copper alloy sheet with excellent stress relaxation resistance
JP2006274445A (en) Copper alloy and method for production thereof
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP2011046970A (en) Copper alloy material and method for producing the same
JP6248386B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP4210705B1 (en) Copper alloy sheet with excellent stress relaxation resistance and press punchability
JP2009185375A (en) Precipitation hardening type copper alloy strip strengthened utilizing recovery phenomenon
JP2019210538A (en) Copper alloy for electronic material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Ref document number: 3871064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7