JP2006274445A - Copper alloy and method for production thereof - Google Patents

Copper alloy and method for production thereof Download PDF

Info

Publication number
JP2006274445A
JP2006274445A JP2006056621A JP2006056621A JP2006274445A JP 2006274445 A JP2006274445 A JP 2006274445A JP 2006056621 A JP2006056621 A JP 2006056621A JP 2006056621 A JP2006056621 A JP 2006056621A JP 2006274445 A JP2006274445 A JP 2006274445A
Authority
JP
Japan
Prior art keywords
comparative example
precipitate
heat treatment
copper alloy
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006056621A
Other languages
Japanese (ja)
Other versions
JP5202812B2 (en
Inventor
Hiroshi Kaneko
洋 金子
Kuniteru Mihara
邦照 三原
Tatsuhiko Eguchi
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006056621A priority Critical patent/JP5202812B2/en
Publication of JP2006274445A publication Critical patent/JP2006274445A/en
Application granted granted Critical
Publication of JP5202812B2 publication Critical patent/JP5202812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy having excellent strength, bending workability, and stress relaxation resistance. <P>SOLUTION: The copper alloy comprises 3.0 to l3.0 mass% Sn, and the balance Cu and inevitable impurities, and has 1.0 to 2.0 μm diameter of crystal grains, and has precipitate X of 1 to 50 nm in diameter and 10<SP>6</SP>to 10<SP>10</SP>pieces/mm<SP>2</SP>in density and precipitate Y of 50 to 500 nm in diameter and 10<SP>4</SP>to 10<SP>8</SP>pieces/mm<SP>2</SP>in density. The method for production of the copper alloy comprises a step of performing heat treatment to obtain a recrystallized structure of 1 to 2 μm in crystal grain size after a step of cold working the recrystallized structure of 1 to 15 μm in average crystal grain size at a reduction ratio of 40 to 70%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子電気機器や自動車内配線に用いられるコネクタや端子に好適な強度および曲げ加工性に優れる電子電気機器用銅合金とその製造方法に関する。   The present invention relates to a copper alloy for electronic and electrical equipment that is excellent in strength and bending workability suitable for connectors and terminals used in electronic and electrical equipment and automobile wiring, and a method for producing the same.

近年、電子電気機器や自動車内配線の小型化、軽量化、および高密度実装化に対する要求が高まっている。小型化が進めば、コンタクト部分の接点面積が減少し、使用される板厚も薄くなり、従来と同等の信頼性を保つにはより高強度な材料が必要となっている。用いられるコネクタ或いは端子などの電子部品に用いられる材料には、高強度であることと曲げ加工性に優れることが強く求められている。金属材料の強度を増加させるため、加工硬化のみでなく、化合物を析出させたり再結晶させた銅および銅合金の結晶粒径を微細化することによる強化方法がこれまでにとられてきている。この方法は、加工硬化よりも靭性を損なわずに強度を向上させることができるため、強度と曲げ加工性を両立させることができる。   In recent years, there has been an increasing demand for miniaturization, weight reduction, and high-density mounting of electronic and electrical equipment and automobile wiring. As miniaturization progresses, the contact area of the contact portion decreases and the thickness of the plate used decreases, and a higher-strength material is required to maintain the same reliability as before. Materials used for electronic parts such as connectors or terminals used are strongly required to have high strength and excellent bending workability. In order to increase the strength of the metal material, not only work hardening but also a strengthening method has been taken so far by refining the crystal grain size of precipitated copper and copper alloy. Since this method can improve strength without losing toughness as compared with work hardening, both strength and bending workability can be achieved.

そこで、析出物または晶出物を主成分とする0.1μm以上の径の粒子により結晶粒を微細化して曲げ加工性を向上させた技術がある(例えば、特許文献1参照)。またマトリックス中にリン化物を形成し、応力緩和特性を改善した技術が提案されている(例えば、特許文献2参照)。   Therefore, there is a technology in which bending workability is improved by refining crystal grains with particles having a diameter of 0.1 μm or more mainly composed of precipitates or crystallized substances (see, for example, Patent Document 1). In addition, a technique has been proposed in which a phosphide is formed in a matrix to improve stress relaxation characteristics (see, for example, Patent Document 2).

国際公開第WO02/053790号パンフレットInternational Publication No. WO02 / 053790 Pamphlet 特開平10−140269号公報Japanese Patent Laid-Open No. 10-140269

しかしながら、コネクタ等の小型化の進展により高強度と曲げ加工性と耐応力緩和性に高い要求がされており、前記の技術ではこれらすべてを満たすには不充分であった。
そこで本発明の目的は、強度と曲げ加工性と耐応力緩和性ともに優れた新しい電子電気機器用途に最適な銅合金を提供することである。
However, with the progress of miniaturization of connectors and the like, high demands have been made on high strength, bending workability and stress relaxation resistance, and the above-described technique has been insufficient to satisfy all of these requirements.
Accordingly, an object of the present invention is to provide a new copper alloy that is excellent in strength, bending workability, and stress relaxation resistance and that is optimal for new electronic and electrical equipment applications.

本発明者等は、析出物Xと結晶粒を微細化する作用を有する析出物Yを規定することにより、上記の要求をほぼ満たすことのできる合金の構成とその製造方法を見出した。
すなわち本発明は、
[1]Snを3.0〜13.0mass%含み、残部がCuおよび不可避不純物からなり、結晶粒の直径が1.0〜2.0μmであり、直径が1〜50nmで密度が10〜1010個/mmの析出物Xと、直径が50〜500nmで密度が10〜10個/mmの析出物Yを有することを特徴とする銅合金、
[2]前記析出物XおよびYがMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alのうち少なくとも1元素とPとからなることを特徴とする[1]記載の銅合金、
[3]前記析出物XおよびYがMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alのうち少なくとも2つの元素からなることを特徴とする[1]記載の銅合金、
[4]前記析出物XおよびYがFe、Ni、Pからなることを特徴とする[1]記載の銅合金、
[5]前記[1]乃至[4]のいずれか1項に記載の銅合金からなる電子電気機器部品、および、
[6]前記[1]乃至[4]のいずれか1項に記載の銅合金の製造方法であって、平均結晶粒径が1〜15μmの再結晶組織を40〜70%の加工率で冷間加工した工程のあとに結晶粒径が1〜2μmの再結晶組織を得る熱処理を行うことを特徴とする銅合金の製造方法、
を提供するものである。
The inventors of the present invention have found a composition of an alloy that can substantially satisfy the above requirements and a manufacturing method thereof by defining the precipitate X having a function of refining the precipitate X and crystal grains.
That is, the present invention
[1] It contains 3.0 to 13.0 mass% of Sn, the balance is made of Cu and inevitable impurities, the diameter of crystal grains is 1.0 to 2.0 μm, the diameter is 1 to 50 nm, and the density is 10 6 to 10 and 10 / mm 2 precipitate X, the copper alloy and having a precipitate Y having a density of diameter 50~500nm is 10 4 to 10 8 / mm 2,
[2] The precipitates X and Y are made of Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, and Al and P. The copper alloy according to [1],
[3] The precipitates X and Y are composed of at least two elements of Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, and Al. [1] the copper alloy according to [1],
[4] The copper alloy according to [1], wherein the precipitates X and Y are composed of Fe, Ni, and P.
[5] Electronic and electrical equipment parts made of the copper alloy according to any one of [1] to [4], and
[6] The method for producing a copper alloy according to any one of [1] to [4], wherein a recrystallized structure having an average crystal grain size of 1 to 15 μm is cooled at a processing rate of 40 to 70%. A method for producing a copper alloy, characterized by performing a heat treatment to obtain a recrystallized structure having a crystal grain size of 1 to 2 μm after the inter-working step;
Is to provide.

本発明の銅合金は、強度、曲げ加工性、耐応力緩和性などに優れるため、電子電気機器部品の小型化および高性能化に対応できる。そして、本発明の銅合金は端子、コネクタ、スイッチなどに好適であるが、その他のリードフレーム、リレーなどの一般導電材料としても好適である。よって産業上顕著な効果を奏する。   Since the copper alloy of the present invention is excellent in strength, bending workability, stress relaxation resistance, etc., it can cope with downsizing and high performance of electronic and electrical equipment components. And although the copper alloy of this invention is suitable for a terminal, a connector, a switch, etc., it is suitable also as general electroconductive materials, such as another lead frame and a relay. Therefore, there is a significant industrial effect.

以下に、本発明の好ましい実施の形態を述べる。
本発明の銅合金は、Snと、Pとその他の添加元素と、残部がCuおよび不可避不純物を含むものである。
本発明の銅合金において、Snの含有量を3.0〜13.0mass%に規定する理由は、強度が向上するためである。3.0mass%未満では固溶強化によって得られる強度が不充分であり、13.0mass%を超えると脆性の強いCu−Sn金属間化合物が形成して加工性を悪化させるという問題が起きる。好ましくは5.0〜13.0mass%、より好ましくは7.0〜11.0mass%である。
The preferred embodiments of the present invention will be described below.
The copper alloy of the present invention contains Sn, P and other additive elements, and the balance contains Cu and inevitable impurities.
In the copper alloy of the present invention, the reason for defining the Sn content to be 3.0 to 13.0 mass% is to improve the strength. If it is less than 3.0 mass%, the strength obtained by solid solution strengthening is insufficient, and if it exceeds 13.0 mass%, a highly brittle Cu-Sn intermetallic compound is formed, resulting in a problem that workability is deteriorated. Preferably it is 5.0-13.0 mass%, More preferably, it is 7.0-11.0 mass%.

銅合金の結晶粒の直径を1.0〜2.0μmに規定する理由は、強度と曲げ加工性の両方が優れるからである。1μm未満であると強度の向上よりも延性の劣化が顕著であり結果として靭性に劣るため、加工性が劣化する。また工業的には安定して製造できないという問題がある。2μmを超えると結晶粒微細化によって得られる強度が不充分であるという問題が起きる。好ましくは1.0〜1.8μm、より好ましくは1.0〜1.5μmである。   The reason why the diameter of the crystal grain of the copper alloy is defined to be 1.0 to 2.0 μm is that both strength and bending workability are excellent. When the thickness is less than 1 μm, the ductility is significantly deteriorated rather than the strength is improved, and as a result, the toughness is inferior, and the workability is deteriorated. In addition, there is a problem that it cannot be manufactured stably industrially. If it exceeds 2 μm, there is a problem that the strength obtained by crystal grain refinement is insufficient. Preferably it is 1.0-1.8 micrometers, More preferably, it is 1.0-1.5 micrometers.

本発明では、銅合金中にMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Al等のうち少なくとも2つの元素からなる析出物、あるいはこれらの少なくとも1つの元素とPとからなる析出物を有する。
本明細書では、この析出物を極めて微細なナノメーターサイズの析出物Xとこれより大きいナノメーターサイズの析出物Yに分けて規定する。なお、析出物の直径と密度は、透過型電子顕微鏡で写真撮影して、その写真上で析出物の粒径と密度を測定したものである。
In the present invention, a copper alloy contains precipitates composed of at least two elements among Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, Al, or the like, or these It has a precipitate composed of at least one element and P.
In this specification, this precipitate is divided into a very fine nanometer size precipitate X and a larger nanometer size precipitate Y. The diameter and density of the precipitate are obtained by taking a photograph with a transmission electron microscope and measuring the particle size and density of the precipitate on the photograph.

銅合金中の析出物Xの直径を1〜50nmに規定する理由は、耐応力緩和性を向上させるためである。1nm未満の場合や50nmを超える場合は転位の運動を妨げることができず、この効果を得ることができない。好ましくは5〜45nm、より好ましくは10〜40nmである。   The reason why the diameter of the precipitate X in the copper alloy is specified to be 1 to 50 nm is to improve the stress relaxation resistance. If the thickness is less than 1 nm or exceeds 50 nm, dislocation movement cannot be prevented, and this effect cannot be obtained. Preferably it is 5-45 nm, More preferably, it is 10-40 nm.

そして、析出物Xの密度を10〜1010個/mmに規定したのは、耐応力緩和性を向上させるためである。10個/mm未満の場合はこの効果が充分に得られない。1010個/mmを超えるような高密な析出状態を得るには析出物を構成する添加元素量を増やす必要があるが、この場合は凝固時の粘性が下がり鋳塊品質を下げるために好ましくない。好ましくは10〜1010個/mm、より好ましくは10〜1010個/mmである。 The reason why the density of the precipitate X is defined as 10 6 to 10 10 pieces / mm 2 is to improve the stress relaxation resistance. In the case of less than 10 6 pieces / mm 2, this effect cannot be sufficiently obtained. In order to obtain a dense precipitate state exceeding 10 10 pieces / mm 2 , it is necessary to increase the amount of additive elements constituting the precipitate. In this case, it is preferable in order to reduce the viscosity at the time of solidification and lower the ingot quality. Absent. Preferably it is 10 < 7 > -10 < 10 > piece / mm < 2 >, More preferably, it is 10 < 8 > -10 < 10 > piece / mm < 2 >.

また、銅合金中の析出物Yの直径を50〜500nmに規定する理由は、前記結晶粒径を工業的に安定して製造するためである。50nm未満であると結晶粒の成長を抑制できなくなり粗大化してしまう。500nmを超えると加工時の応力集中を発生させクラックの起点となってしまい加工割れという問題が起きる。好ましくは50〜200nm、より好ましくは75〜150nmである。   Moreover, the reason which prescribes | regulates the diameter of the precipitate Y in a copper alloy to 50-500 nm is for manufacturing the said crystal grain diameter stably industrially. If it is less than 50 nm, the growth of crystal grains cannot be suppressed, resulting in coarsening. If the thickness exceeds 500 nm, stress concentration occurs during processing, which becomes a starting point of cracks, which causes a problem of processing cracks. Preferably it is 50-200 nm, More preferably, it is 75-150 nm.

析出物Yの密度を10〜10個/mmに規定したのは、上記の結晶粒を安定して製造できるからである。10個/mm未満であると結晶粒の成長を抑制できなくなり粗大化してしまう。10個/mmを超えると析出物の直径が小さくなって結晶粒の成長を抑制できなくなり粗大化してしまう。好ましくは10〜10個/mm、より好ましくは10〜10個/mmである。 The reason why the density of the precipitate Y is defined as 10 4 to 10 8 pieces / mm 2 is that the above crystal grains can be stably produced. If it is less than 10 4 pieces / mm 2 , the growth of crystal grains cannot be suppressed, resulting in coarsening. If it exceeds 10 8 pieces / mm 2 , the diameter of the precipitate becomes small and the growth of crystal grains cannot be suppressed, resulting in coarsening. Preferably it is 10 < 5 > -10 < 8 > piece / mm < 2 >, More preferably, it is 10 < 6 > -10 < 8 > piece / mm < 2 >.

前記析出物がMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alのうち少なくとも1元素とPとからなると、耐応力緩和性を向上させ、前記結晶粒を安定して製造できる。銅合金中に含有するMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alはそれぞれ0.01〜0.5mass%、合計0.01〜2.0mass%とし、Pを0.01〜1.0mass%とすると好ましい。   When the precipitate comprises Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, Al and at least one element and P, the stress relaxation resistance is improved, The crystal grains can be produced stably. Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, and Al contained in the copper alloy are each 0.01 to 0.5 mass%, 0.01 to 2 in total. 0.0 mass%, and P is preferably 0.01 to 1.0 mass%.

また、前記析出物がMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alのうち少なくとも2つの元素からなると、前記結晶粒を安定して製造できる。銅合金中に含有するMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alはそれぞれ0.01〜0.5mass%、合計0.01〜2.0mass%とすると好ましい。   In addition, when the precipitate is made of at least two elements of Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, and Al, the crystal grains are stably produced. it can. Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, and Al contained in the copper alloy are each 0.01 to 0.5 mass%, 0.01 to 2 in total. 0.0 mass% is preferable.

また、前記析出物がFe、Ni、Pからなる化合物である場合は、前記結晶粒をより安定して製造できるのでより好ましい。   Moreover, it is more preferable that the precipitate is a compound composed of Fe, Ni, and P because the crystal grains can be manufactured more stably.

本発明の銅合金の製造方法においては、平均結晶粒径が1〜15μmの再結晶組織を40〜70%の加工率で冷間加工した工程のあとに熱処理を行うと、結晶粒径が1〜2μmの再結晶組織を工業的により安定して製造することができ、また得られる再結晶組織における加工組織や粒径のバラツキを防止できる。上記加工率が40%未満では再結晶する際の駆動力が少なすぎて2μm以下の粒径がえられず、70%より大きい場合は、結晶粒成長を早めてしまい製造安定性を下げるため好ましくない。また、70%より大きい加工率での冷間加工は表面の加工割れを起こすことがあるため好ましくない。加工率は好ましくは50〜65%、さらに好ましくは55〜60%がよい。
また、この冷間圧延前の再結晶組織における結晶粒径は、1μm未満では延性に乏しく加工割れをおこし、15μmを超えると、次の冷間圧延において不均一な加工状態をつくってしまい、目標としている1〜2μmの再結晶組織を得る場合に、結晶粒径のばらつきや、加工組織の残存を引き起こし、曲げ加工性を悪化させる。好ましくは2〜10μm、さらに好ましくは4〜8μmである。
In the method for producing a copper alloy of the present invention, when a heat treatment is performed after a step of cold working a recrystallized structure having an average crystal grain size of 1 to 15 μm at a processing rate of 40 to 70%, the crystal grain size is 1 A recrystallized structure of ˜2 μm can be produced more stably industrially, and variations in the processed structure and particle size in the obtained recrystallized structure can be prevented. If the processing rate is less than 40%, the driving force at the time of recrystallization is too small to obtain a particle size of 2 μm or less, and if it is more than 70%, it is preferable because the crystal grain growth is accelerated and the production stability is lowered. Absent. Further, cold working at a working rate greater than 70% is not preferable because surface cracking may occur. The processing rate is preferably 50 to 65%, more preferably 55 to 60%.
Further, if the crystal grain size in the recrystallized structure before cold rolling is less than 1 μm, the ductility is poor and work cracking occurs, and if it exceeds 15 μm, a non-uniform working state is created in the next cold rolling, When the recrystallized structure of 1 to 2 μm is obtained, the crystal grain size varies and the processed structure remains, and the bending workability is deteriorated. Preferably it is 2-10 micrometers, More preferably, it is 4-8 micrometers.

本発明の銅合金の製造方法の好ましい実施態様の一例を挙げると、SnとPとその他の添加元素と残部がCuからなる合金を高周波溶解炉等により溶解して鋳塊を得る。この鋳塊に均質化熱処理を施し徐冷し、面削する。次いで冷間圧延を施し、不活性ガス雰囲気中で550〜750℃において1〜10時間の熱処理dを行い、徐冷する。さらに40%以上の圧延加工率で冷間圧延し、不活性ガス雰囲気中で350〜550℃において1〜10時間の熱処理cを行い、5〜20μmの平均結晶粒径からなる組織を得る。   As an example of a preferred embodiment of the method for producing a copper alloy of the present invention, an ingot is obtained by melting an alloy of Sn, P, other additive elements and the balance of Cu with a high frequency melting furnace or the like. The ingot is subjected to a homogenizing heat treatment, slowly cooled, and faced. Next, cold rolling is performed, and heat treatment d is performed at 550 to 750 ° C. for 1 to 10 hours in an inert gas atmosphere, and then gradually cooled. Further, cold rolling is performed at a rolling processing rate of 40% or more, and heat treatment c is performed at 350 to 550 ° C. for 1 to 10 hours in an inert gas atmosphere to obtain a structure having an average crystal grain size of 5 to 20 μm.

前記熱処理cとdにより、析出物Xと析出物Yは均一に分散するように析出する。粗大な析出物Yは熱処理dにおいて、微細な析出物Xは熱処理cにおいて主に析出する。析出物Xを微細に析出させるためには、350〜550℃の長時間熱処理が必要であり、またこの温度において、均一な再結晶組織を得るには熱処理dと熱処理cの間の冷間加工における加工率を40〜80%に、好ましくは50〜70%するのが好ましい。この加工率が高すぎる場合は加工割れをおこし、加工率が低すぎる場合は熱処理cにおいて再結晶が完了しないために熱処理c後の冷間加工で加工割れをおこす。   By the heat treatments c and d, the precipitate X and the precipitate Y are precipitated so as to be uniformly dispersed. Coarse precipitate Y is mainly precipitated in heat treatment d, and fine precipitate X is mainly precipitated in heat treatment c. In order to precipitate the precipitate X finely, a long heat treatment at 350 to 550 ° C. is necessary, and at this temperature, a cold working between the heat treatment d and the heat treatment c is required to obtain a uniform recrystallized structure. The processing rate is preferably 40 to 80%, more preferably 50 to 70%. When this processing rate is too high, processing cracks are caused. When the processing rate is too low, recrystallization is not completed in heat treatment c, and therefore, processing cracks are caused by cold working after heat treatment c.

この熱処理cを終えた材料に30〜80%の加工率で冷間圧延を行った後に、300〜550℃で10〜120秒の熱処理bを行い、1〜15μmの平均結晶粒径からなる組織を得る。これは元の組織の一部又は全部が再結晶することにより得られる。次いで40〜70%の加工率で冷間圧延aを行った後に、300〜550℃で5〜200秒の熱処理aを行う。熱処理aでは、昇温速度と冷却速度を40℃/秒が好ましい。冷間圧延aで熱処理aにおける再結晶のための駆動力を蓄え、熱処理aで結晶粒径が1〜2μmの組織を得る。
最終冷間圧延を施した後、その後150〜250℃で0.5時間の歪取り熱処理を施す。なお、熱処理aとbは短時間焼鈍である。また、熱処理cとdで析出させた析出物Xと析出物のYは、熱処理aとbによって分布状態をほとんど変化させない。
上記の合金製造条件の中で、本発明で規定する結晶粒径、ナノメーターサイズの大きさの析出物XとYの大きさ、生成密度を調節することができるのは、合金組成以外に、熱処理d、c、b、aや冷間圧延aなどの条件であり、これを上記のように規定することにより、目的の銅合金を得ることができる。
After the material having been subjected to the heat treatment c is cold-rolled at a processing rate of 30 to 80%, the heat treatment b is performed at 300 to 550 ° C. for 10 to 120 seconds, and the structure has an average crystal grain size of 1 to 15 μm. Get. This is obtained by recrystallizing part or all of the original structure. Next, after performing cold rolling a at a processing rate of 40 to 70%, heat treatment a is performed at 300 to 550 ° C. for 5 to 200 seconds. In the heat treatment a, the heating rate and the cooling rate are preferably 40 ° C./second. The driving force for recrystallization in the heat treatment a is stored by the cold rolling a, and a structure having a crystal grain size of 1 to 2 μm is obtained by the heat treatment a.
After the final cold rolling, a strain relief heat treatment is performed at 150 to 250 ° C. for 0.5 hour. Heat treatments a and b are short-time annealing. Further, the precipitate X and Y of the precipitate deposited by the heat treatments c and d hardly change the distribution state by the heat treatments a and b.
Among the above alloy production conditions, the crystal grain size defined in the present invention, the size of precipitates X and Y having a nanometer size, and the formation density can be adjusted in addition to the alloy composition. It is conditions, such as heat processing d, c, b, a, and cold rolling a, and the target copper alloy can be obtained by prescribing as above.

本発明の銅合金は、特に限定されるものではないが、例えば、コネクタ、端子、リレー、スイッチ、さらにはリードフレームなどの電子電気機器部品に好適に用いることができる。   Although the copper alloy of this invention is not specifically limited, For example, it can use suitably for electronic electrical equipment components, such as a connector, a terminal, a relay, a switch, and also a lead frame.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例に示す合金は以下のように作製した。
各実施例に記載する量のSnと0.07mass%のPとその他の添加元素と残部がCuからなる合金を高周波溶解炉により溶解し、これを10〜30℃/秒の冷却速度でDC鋳造して厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。
The alloys shown in the examples were produced as follows.
An alloy composed of Sn, 0.07 mass% of P, other additive elements, and the balance of Cu described in each example was melted in a high-frequency melting furnace, and this was DC cast at a cooling rate of 10 to 30 ° C./second. Thus, an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm was obtained.

次に、この鋳塊に800℃で1時間加熱する均質化熱処理を施し徐冷し、両面を面削して酸化皮膜を除去した。次いで冷間圧延を施し、不活性ガス雰囲気中で550〜750℃において1〜10時間の熱処理dを行い、徐冷した。さらに40〜80%の圧延加工率で冷間圧延して厚さ2mmの板材とし、不活性ガス雰囲気中で350〜550℃において1〜10時間の熱処理cを行い、5〜20μmの平均結晶粒径からなる組織を得た。   Next, this ingot was subjected to a homogenizing heat treatment heated at 800 ° C. for 1 hour and gradually cooled, and both surfaces were chamfered to remove the oxide film. Next, cold rolling was performed, and heat treatment d was performed at 550 to 750 ° C. for 1 to 10 hours in an inert gas atmosphere, followed by gradual cooling. Further, it is cold-rolled at a rolling processing rate of 40 to 80% to obtain a plate material having a thickness of 2 mm, heat-treated for 1 to 10 hours at 350 to 550 ° C. in an inert gas atmosphere, and an average crystal grain of 5 to 20 μm A structure consisting of diameter was obtained.

この熱処理cを終えた材料に30〜80%の加工率で冷間圧延を行った後に、300〜550℃で10〜120秒の熱処理bを行った。この熱処理bを施した1〜15μmの平均結晶粒径からなる組織を有する板材に40〜70%の加工率で冷間圧延aを行った後に、300〜550℃で5〜200秒の熱処理aを行った。熱処理aでは、昇温速度と冷却速度を40℃/秒で行った。その後に最終冷間圧延を施し、その後150〜250℃で0.5時間の歪取り熱処理を施した。   The material after the heat treatment c was cold-rolled at a processing rate of 30 to 80%, and then heat treatment b was performed at 300 to 550 ° C. for 10 to 120 seconds. After performing the cold rolling a at a processing rate of 40 to 70% on the plate material having a structure having an average crystal grain size of 1 to 15 μm subjected to the heat treatment b, the heat treatment a at 300 to 550 ° C. for 5 to 200 seconds. Went. In the heat treatment a, the heating rate and the cooling rate were 40 ° C./second. Thereafter, final cold rolling was performed, and then a heat treatment for strain relief at 150 to 250 ° C. for 0.5 hour was performed.

このようにして得られた各々の板材を供試材として下記の特性調査を行った。各評価項目の測定方法は以下の通りである。
a.機械的性質(引張強さ;TS、0.2%耐力;YS)
圧延方向と平行に切り出したJIS-13B号試験片をJIS−Z2241に準じて3本測定し、その平均値(MPa)で示した。
b.曲げ加工性
板材を幅10mm、長さ25mmに切出し、曲げ半径R=0でW(90度)曲げし、曲げ部における割れの有無を50倍の光学顕微鏡で目視観察および走査型電子顕微鏡によりその曲げ加工部位を観察し割れの有無を調査した。試験片採取方向はG.W.(曲げの軸が圧延方向に直角)、B.W(曲げの軸が圧延方向に平行)とし、割れが無いものを「○」、割れがあるものを「×」で示した。
c.平均結晶粒径
板材の厚さ方向に平行でかつ最終冷間圧延方向(最終塑性加工方向)と平行な断面において、最終冷間圧延方向と平行な方向と直角な方向の2方向で結晶粒径を測定し、測定値の大きい方を長径、小さい方を短径とし、それぞれの長径と短径の4値の平均値を0.005mmの整数倍に丸めて示した。測定はJIS−H0501の切断法に準じ、供試材の断面を鏡面研磨した後にエッチングを行い、走査電子顕微鏡で1000倍に拡大して写真に撮り、写真上に200mmの線分を引き、前記線分で切られる結晶粒数nを数え、(200mm/(n×1000))の式から求めた。前記線分で切られる結晶粒数が20に満たない場合は、500倍の写真に取り長さ200mmの線分で切られる結晶粒数nを数え、(200mm/(n×500))の式から求めた。
d.第2相析出物の大きさと密度
供試材を直径3mmへ打ち抜き、ツインジェット研磨法を用いて薄膜研磨を行った後、加速電圧300kVの透過型電子顕微鏡で5000〜500000倍の写真を任意で3ヶ所撮影して、その写真上で析出物の粒径と密度を測定した。析出物の粒径と密度を測定するとき、n=10(nは観察の視野数)で、その個数を測定することで、個数の局所的な偏りを排除するように測定した。その個数を単位面積当たり(個/mm)へ演算した。
e.耐応力緩和性
日本電子材料工業会標準規格EMAS−3003に準じて応力緩和率を求めて判定した。図1は応力緩和特性の試験方法の説明図である。図1(a)に示すように、試料台3に一端が固定された試験片1の他端に支持台2をあてがってδのたわみ量(0.2%耐力の80%に相当する応力)を付与し、この状態で150℃で1000時間加熱したのち、図1(b)に示すように支持台2を外し、試験片1に残留する永久たわみδt=Ht−Hを測定する(Hはたわみを生じさせない場合)。
応力緩和率(%)は、前記δとδtを(δt/δ)×100の式に代入して求めた。応力緩和率が小さい合金ほど良好と見なされる。
The following characteristic investigation was performed by using each plate material thus obtained as a test material. The measurement method for each evaluation item is as follows.
a. Mechanical properties (tensile strength; TS, 0.2% proof stress; YS)
Three JIS-13B test pieces cut out in parallel with the rolling direction were measured according to JIS-Z2241, and the average value (MPa) was shown.
b. Bending Workability A plate is cut into a width of 10 mm and a length of 25 mm, bent at a bending radius R = 0 (W) (90 degrees), and the presence or absence of cracks in the bent portion is visually observed with a 50 × optical microscope and scanned with an electron microscope. The bending part was observed and investigated for cracks. The specimen collection direction is G. W. (Bending axis is perpendicular to rolling direction), W (the axis of bending is parallel to the rolling direction), “◯” indicates that there is no crack, and “×” indicates that there is a crack.
c. Average crystal grain size In the direction parallel to the final cold rolling direction in the cross section parallel to the thickness direction of the plate and parallel to the final cold rolling direction (final plastic working direction), the crystal grain size is perpendicular to the direction parallel to the final cold rolling direction. The major axis of the measured value was the major axis, the minor axis was the minor axis, and the average of the four values of each major axis and minor axis was rounded to an integer multiple of 0.005 mm. The measurement is in accordance with the cutting method of JIS-H0501, and the cross section of the specimen is mirror-polished and then etched, magnified 1000 times with a scanning electron microscope to take a photograph, and a 200 mm line segment is drawn on the photograph. The number n of crystal grains cut by the line segment was counted and obtained from the formula (200 mm / (n × 1000)). When the number of crystal grains cut by the line segment is less than 20, the number n of crystal grains cut by a line segment of 200 mm in length is counted in a 500 times photograph, and the formula of (200 mm / (n × 500)) I asked for it.
d. Size and density of second phase precipitates After punching the specimen to a diameter of 3 mm and performing thin film polishing using a twin jet polishing method, a 5,000 to 500,000 times photograph can be arbitrarily selected with a transmission electron microscope with an acceleration voltage of 300 kV. Three places were photographed, and the particle size and density of the precipitate were measured on the photograph. When measuring the particle size and density of the precipitate, n = 10 (n is the number of fields of observation), and the number was measured so as to eliminate local deviation of the number. The number was calculated per unit area (pieces / mm 2 ).
e. Stress relaxation resistance The stress relaxation rate was determined and determined according to the Japan Electronic Materials Industry Association Standard EMAS-3003. FIG. 1 is an explanatory diagram of a stress relaxation characteristic test method. As shown in FIG. 1 (a), the support base 2 is applied to the other end of the test piece 1 whose one end is fixed to the sample base 3, and the deflection amount of δ 0 (stress corresponding to 80% of 0.2% proof stress). ) And heated in this state at 150 ° C. for 1000 hours, the support base 2 is removed as shown in FIG. 1B, and the permanent deflection δt = Ht−H 1 remaining on the test piece 1 is measured ( H 1 does not cause deflection).
The stress relaxation rate (%) was obtained by substituting δ 0 and δt into the equation (δt / δ 0 ) × 100. Alloys with lower stress relaxation rates are considered better.

(実施例1〜3、比較例1〜12)
Snを8.0mass%、FeとNiを合計で0.16mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金について前記条件にて板材を製造し、その特性を評価した。なお、比較例6のみはSnを8.0mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金とした。
なお比較例においては、上記実施例の製造工程のうち、比較例1は熱処理cを650℃で2時間に、比較例2は熱処理dを800℃で1時間に、比較例3は熱処理aを280℃で20秒に、比較例4は熱処理aを620℃で20秒に、比較例5は熱処理aを580℃で20秒に、比較例7は熱処理dを800℃で8時間に、比較例8は熱処理cを400℃で2時間に、比較例9は熱処理cを600℃で8時間に、比較例10は熱処理cを280℃で8時間に、比較例11は熱処理dを850℃で2時間に、比較例12は熱処理cを750℃で2時間に、変えた以外は、実施例と同様にして行った。
結果を表1に示す。
(Examples 1-3, Comparative Examples 1-12)
A plate material was manufactured under the above conditions for an alloy consisting of Sn: 8.0 mass%, Fe and Ni: 0.16 mass% in total, P: 0.07 mass%, the balance being Cu and inevitable impurities, and the characteristics were evaluated. Note that only Comparative Example 6 was an alloy consisting of Sn of 8.0 mass%, P of 0.07 mass%, the balance being Cu and inevitable impurities.
In the comparative example, among the manufacturing steps of the above examples, Comparative Example 1 performs heat treatment c at 650 ° C. for 2 hours, Comparative Example 2 performs heat treatment d at 800 ° C. for 1 hour, and Comparative Example 3 performs heat treatment a. Comparative Example 4 compares heat treatment a at 620 ° C. for 20 seconds, Comparative Example 5 compares heat treatment a at 580 ° C. for 20 seconds, and Comparative Example 7 compares heat treatment d at 800 ° C. for 8 hours. Example 8 is heat treatment c at 400 ° C. for 2 hours, Comparative Example 9 is heat treatment c at 600 ° C. for 8 hours, Comparative Example 10 is heat treatment c at 280 ° C. for 8 hours, and Comparative Example 11 is heat treatment d at 850 ° C. And Comparative Example 12 was carried out in the same manner as in Example except that the heat treatment c was changed to 750 ° C. for 2 hours.
The results are shown in Table 1.

Figure 2006274445
Figure 2006274445

表1から明らかなように、本発明の実施例1〜3は0.2%耐力、引張強度、曲げ加工性、耐応力緩和性のいずれにも優れたものであった。
しかし、比較例1は析出物Xの密度が低いため、耐応力緩和性が劣った。比較例2は析出物Yの密度が低いため結晶粒径が大きくなり、0.2%耐力、引張強度が劣った。比較例3は結晶粒径が小さいので、曲げ加工性が劣った。比較例4は結晶粒径が大きいので強度と曲げ加工性の両立ができず、0.2%耐力、引張強度が劣った。比較例5は結晶粒径が大きいので強度と曲げ加工性の両立ができず、曲げ加工性が劣った。比較例6は析出物が生成しなかったため、耐応力緩和性が劣った。比較例7は析出物Yが大きく密度が低いため結晶粒径が大きくなり0.2%耐力、引張強度が劣った。比較例8は析出物Yが小さく密度が高いため、結晶粒径が大きくなり0.2%耐力、引張強度が劣った。比較例9は析出物Xが大きく密度が低いため、耐応力緩和性が劣った。比較例10は析出物Xが小さく密度が高いため、耐応力緩和性が劣った。比較例11は析出物Yが無いため結晶粒径が大きくなり、0.2%耐力、引張強度が劣った。比較例12は析出物Xが無いため、耐応力緩和性が劣った。
As apparent from Table 1, Examples 1 to 3 of the present invention were excellent in all of 0.2% yield strength, tensile strength, bending workability, and stress relaxation resistance.
However, since the density of the precipitate X was low in Comparative Example 1, the stress relaxation resistance was inferior. In Comparative Example 2, since the density of the precipitate Y was low, the crystal grain size was large, and the 0.2% yield strength and tensile strength were inferior. Since Comparative Example 3 had a small crystal grain size, bending workability was inferior. In Comparative Example 4, since the crystal grain size was large, both strength and bending workability could not be achieved, and 0.2% proof stress and tensile strength were inferior. In Comparative Example 5, since the crystal grain size was large, both strength and bending workability could not be achieved, and bending workability was inferior. In Comparative Example 6, no precipitate was generated, so that the stress relaxation resistance was inferior. In Comparative Example 7, since the precipitate Y was large and the density was low, the crystal grain size was large and the 0.2% yield strength and tensile strength were inferior. In Comparative Example 8, since the precipitate Y was small and the density was high, the crystal grain size was large and the 0.2% yield strength and tensile strength were inferior. In Comparative Example 9, since the precipitate X was large and the density was low, the stress relaxation resistance was inferior. In Comparative Example 10, since the precipitate X was small and the density was high, the stress relaxation resistance was inferior. In Comparative Example 11, since there was no precipitate Y, the crystal grain size was large, and the 0.2% yield strength and tensile strength were inferior. Since Comparative Example 12 did not have the precipitate X, the stress relaxation resistance was inferior.

(実施例4〜6、比較例13〜24)
Snを10.0mass%、FeとNiを合計で0.16mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金について前記条件にて板材を製造し、その特性を評価した。なお、比較例18のみはSnを10.0mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金とした。
なお比較例においては、上記実施例の製造工程のうち、比較例13は熱処理cを650℃で2時間に、比較例14は熱処理dを800℃で1時間に、比較例15は熱処理aを280℃で20秒に、比較例16は熱処理aを620℃で20秒に、比較例17は熱処理aを580℃で20秒に、比較例19は熱処理dを800℃で8時間に、比較例20は熱処理cを400℃で2時間に、比較例21は熱処理cを600℃で8時間に、比較例22は熱処理cを280℃で8時間に、比較例23は熱処理dを850℃で2時間に、比較例24は熱処理cを750℃で2時間に、変えた以外は、実施例と同様にして行った。
結果を表2に示す。
(Examples 4-6, Comparative Examples 13-24)
A plate material was manufactured under the above conditions for an alloy consisting of 10.0 mass% of Sn, 0.16 mass% of Fe and Ni in total, 0.07 mass% of P, the balance being Cu and inevitable impurities, and the characteristics were evaluated. Note that only Comparative Example 18 was an alloy consisting of Sn of 10.0 mass%, P of 0.07 mass%, the balance being Cu and inevitable impurities.
In the comparative example, among the manufacturing steps of the above examples, the comparative example 13 has the heat treatment c at 650 ° C. for 2 hours, the comparative example 14 has the heat treatment d at 800 ° C. for 1 hour, and the comparative example 15 has the heat treatment a. Comparative Example 16 compares heat treatment a at 620 ° C. for 20 seconds, Comparative Example 17 compares heat treatment a at 580 ° C. for 20 seconds, and Comparative Example 19 compares heat treatment d at 800 ° C. for 8 hours. Example 20 was heat-treated c at 400 ° C. for 2 hours, Comparative Example 21 was heat-treated c at 600 ° C. for 8 hours, Comparative Example 22 was heat-treated c at 280 ° C. for 8 hours, and Comparative Example 23 was heat-treated d at 850 ° C. In Comparative Example 24, the same procedure as in Example was performed except that the heat treatment c was changed to 750 ° C. for 2 hours.
The results are shown in Table 2.

Figure 2006274445
Figure 2006274445

表2から明らかなように、本発明の実施例4〜6は優れた0.2%耐力、引張強度、曲げ加工性、耐応力緩和性を有する。
しかし、比較例13は析出物Xの密度が低いため、耐応力緩和性が劣った。比較例14は析出物Yの密度が低いため結晶粒径が大きくなり、0.2%耐力、引張強度が劣った。比較例15は結晶粒径が小さいので、曲げ加工性が劣った。比較例16は結晶粒径が大きいので強度と曲げ加工性の両立ができず、0.2%耐力、引張強度が劣った。比較例17は結晶粒径が大きいので強度と曲げ加工性の両立ができず、曲げ加工性が劣った。比較例18は析出物が生成しなかったため、耐応力緩和性が劣った。比較例19は析出物Yが大きく密度が低いため結晶粒径が大きくなり0.2%耐力、引張強度が劣った。比較例20は析出物Yが小さく密度が高いため、結晶粒径が大きくなり0.2%耐力、引張強度が劣った。比較例21は析出物Xが大きく密度が低いため、耐応力緩和性が劣った。比較例22は析出物Xが小さく密度が高いため、耐応力緩和性が劣った。比較例23は析出物Yが無いため結晶粒径が大きくなり、0.2%耐力、引張強度が劣った。比較例24は析出物Xが無いため、耐応力緩和性が劣った。
As is apparent from Table 2, Examples 4 to 6 of the present invention have excellent 0.2% yield strength, tensile strength, bending workability, and stress relaxation resistance.
However, since the density of the precipitate X was low in Comparative Example 13, the stress relaxation resistance was inferior. In Comparative Example 14, since the density of the precipitate Y was low, the crystal grain size was large, and the 0.2% yield strength and the tensile strength were inferior. Since Comparative Example 15 had a small crystal grain size, bending workability was inferior. Since Comparative Example 16 had a large crystal grain size, both strength and bending workability could not be achieved, and 0.2% yield strength and tensile strength were inferior. Since Comparative Example 17 had a large crystal grain size, it was not possible to achieve both strength and bending workability, and the bending workability was poor. In Comparative Example 18, no precipitate was generated, and therefore the stress relaxation resistance was inferior. In Comparative Example 19, since the precipitate Y was large and the density was low, the crystal grain size was large and the 0.2% yield strength and tensile strength were inferior. In Comparative Example 20, since the precipitate Y was small and the density was high, the crystal grain size was large and the 0.2% yield strength and tensile strength were inferior. Since Comparative Example 21 had a large precipitate X and a low density, the stress relaxation resistance was inferior. Since Comparative Example 22 had a small precipitate X and a high density, the stress relaxation resistance was inferior. In Comparative Example 23, since there was no precipitate Y, the crystal grain size was large, and the 0.2% yield strength and the tensile strength were inferior. In Comparative Example 24, since there was no precipitate X, the stress relaxation resistance was inferior.

(実施例7〜9、比較例25〜31)
Snを12.0mass%、FeとNiを合計で0.16mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金について前記条件にて板材を製造し、特性を評価した。なお、比較例29のみはSnを12.0mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金とした。
なお比較例においては、上記実施例の製造工程のうち、比較例25は熱処理cを650℃で2時間に、比較26は熱処理aを280℃で20秒に、比較例27は熱処理aを620℃で20秒に、比較例28は熱処理aを580℃で20秒に、比較例30は熱処理dを850℃で2時間に、比較例31は熱処理cを750℃で2時間に、変えた以外は、実施例と同様にして行った。
結果を表3に示す。
(Examples 7-9, Comparative Examples 25-31)
A plate material was manufactured under the above conditions for an alloy composed of Sn of 12.0 mass%, Fe and Ni in total of 0.16 mass%, P of 0.07 mass%, the balance of Cu and inevitable impurities, and the characteristics were evaluated. Only Comparative Example 29 was made of an alloy composed of Sn of 12.0 mass%, P of 0.07 mass%, and the balance of Cu and inevitable impurities.
In the comparative example, among the manufacturing steps of the above examples, the comparative example 25 is the heat treatment c at 650 ° C. for 2 hours, the comparative 26 is the heat treatment a at 280 ° C. for 20 seconds, and the comparative example 27 is the heat treatment a 620 20 ° C., Comparative Example 28 changed heat treatment a to 580 ° C. for 20 seconds, Comparative Example 30 changed heat treatment d to 850 ° C. for 2 hours, and Comparative Example 31 changed heat treatment c to 750 ° C. for 2 hours. Except for this, the same procedure as in Example was performed.
The results are shown in Table 3.

Figure 2006274445
Figure 2006274445

表3から明らかなように、本発明の実施例7〜9は優れた0.2%耐力、引張強度、曲げ加工性、耐応力緩和性を有する。
しかし、比較例25は析出物Xの密度が低いため、耐応力緩和性が劣った。比較例26は結晶粒径が小さいので、曲げ加工性が劣った。比較例27は結晶粒径が大きいので強度と曲げ加工性の両立ができず、0.2%耐力、引張強度が劣った。比較例28は結晶粒径が大きいので強度と曲げ加工性の両立ができず、曲げ加工性が劣った。比較例29は析出物が生成しなかったため、耐応力緩和性が劣った。比較例30は析出物Yが無いため結晶粒径が大きくなり、0.2%耐力、引張強度が劣った。比較例31は析出物Xが無いため、耐応力緩和性が劣った。
As apparent from Table 3, Examples 7 to 9 of the present invention have excellent 0.2% yield strength, tensile strength, bending workability, and stress relaxation resistance.
However, since the density of the precipitate X was low in Comparative Example 25, the stress relaxation resistance was inferior. Since Comparative Example 26 had a small crystal grain size, bending workability was inferior. In Comparative Example 27, since the crystal grain size was large, both strength and bending workability could not be achieved, and 0.2% yield strength and tensile strength were inferior. In Comparative Example 28, since the crystal grain size was large, both strength and bending workability could not be achieved, and bending workability was inferior. Comparative Example 29 was inferior in stress relaxation resistance because no precipitate was formed. In Comparative Example 30, since there was no precipitate Y, the crystal grain size was large, and the 0.2% yield strength and tensile strength were inferior. Since Comparative Example 31 had no precipitate X, the stress relaxation resistance was inferior.

(実施例10〜11、比較例32〜37)
Snを6.0mass%、FeとNiを合計で0.16mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金について前記条件にて板材を製造し、その特性を評価した。なお、比較例35のみはSnを6.0mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金とした。
なお比較例においては、上記実施例の製造工程のうち、比較例32は熱処理cを650℃で2時間に、比較例33は熱処理aを620℃で20秒に、比較例34は熱処理aを580℃で20秒に、比較例36は熱処理dを850℃で2時間に、比較例37は熱処理cを750℃で2時間に、変えた以外は、実施例と同様にして行った。
結果を表4に示す。
(Examples 10-11, Comparative Examples 32-37)
A plate material was manufactured under the above-described conditions for an alloy consisting of 6.0 mass% Sn, 0.16 mass% Fe and Ni in total, 0.07 mass% P, the balance being Cu and unavoidable impurities, and the characteristics were evaluated. Note that only Comparative Example 35 was an alloy composed of Sn of 6.0 mass%, P of 0.07 mass%, the balance being Cu and inevitable impurities.
In the comparative example, among the manufacturing steps of the above examples, the comparative example 32 has the heat treatment c at 650 ° C. for 2 hours, the comparative example 33 has the heat treatment a at 620 ° C. for 20 seconds, and the comparative example 34 has the heat treatment a. Comparative Example 36 was performed in the same manner as in Example except that the heat treatment d was changed to 850 ° C. for 2 hours, and Comparative Example 37 was changed to 750 ° C. for 2 hours.
The results are shown in Table 4.

Figure 2006274445
Figure 2006274445

表4から明らかなように、本発明の実施例10、11は優れた0.2%耐力、引張強度、曲げ加工性、耐応力緩和性のいずれにも優れたものであった。
しかし、比較例32は析出物Xの密度が低いため、耐応力緩和性が劣った。比較例33は結晶粒径が大きいので強度と曲げ加工性の両立ができず、0.2%耐力、引張強度が劣った。比較例34は結晶粒径が大きいので強度と曲げ加工性の両立ができず、曲げ加工性が劣った。比較例35は析出物が生成しなかったため、耐応力緩和性が劣った。比較例36は析出物Yが無いため結晶粒径が大きくなり、0.2%耐力、引張強度が劣った。比較例37は析出物Xが無いため、耐応力緩和性が劣った。
As is apparent from Table 4, Examples 10 and 11 of the present invention were excellent in all of excellent 0.2% yield strength, tensile strength, bending workability, and stress relaxation resistance.
However, since the density of the precipitate X was low in Comparative Example 32, the stress relaxation resistance was inferior. In Comparative Example 33, since the crystal grain size was large, both strength and bending workability could not be achieved, and 0.2% yield strength and tensile strength were inferior. Since Comparative Example 34 had a large crystal grain size, it was impossible to achieve both strength and bending workability, and bending workability was inferior. Comparative Example 35 was inferior in stress relaxation resistance because no precipitate was formed. In Comparative Example 36, since there was no precipitate Y, the crystal grain size was large, and the 0.2% yield strength and the tensile strength were inferior. Since Comparative Example 37 had no precipitate X, the stress relaxation resistance was inferior.

(実施例12〜32、比較例38)
Snを8.0mass%、Pを0.07mass%、さらに表5に示す元素を添加し、残部がCuおよび不可避不純物からなる合金について前記条件にて板材を製造し、その特性を評価した。なお、比較例38はSnを8.0mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金とし、製造工程は実施例と同様に行った。
結果を表5に示す。
(Examples 12 to 32, Comparative Example 38)
Sn was 8.0 mass%, P was 0.07 mass%, and the elements shown in Table 5 were added, and a plate material was produced under the above conditions for an alloy consisting of Cu and inevitable impurities, and the characteristics were evaluated. In Comparative Example 38, Sn was 8.0 mass%, P was 0.07 mass%, the balance was Cu and an inevitable impurity alloy, and the manufacturing process was the same as in the example.
The results are shown in Table 5.

Figure 2006274445
Figure 2006274445

表5から明らかなように、本発明の実施例12〜32は優れた0.2%耐力、引張強度、曲げ加工性、耐応力緩和性を有する。
しかし、比較例38は析出物Xおよび析出物Yが無いため結晶粒径が大きいので強度と曲げ加工性の両立ができず、曲げ加工性が劣った。また、耐応力緩和性が劣った。
As is apparent from Table 5, Examples 12 to 32 of the present invention have excellent 0.2% yield strength, tensile strength, bending workability, and stress relaxation resistance.
However, since Comparative Example 38 had no precipitate X and precipitate Y, the crystal grain size was large, so that both strength and bending workability could not be achieved, and bending workability was inferior. Moreover, the stress relaxation resistance was inferior.

(実施例33〜44、比較例39〜41)
Snを8.0mass%、FeとNiを合計で0.16mass%、Pを0.07mass%、残部がCuおよび不可避不純物からなる合金について、冷間加工aの加工率および熱処理aについては表6に記載する条件で、他は上述の製造条件にて板材を製造し、その特性を評価した。結果を表6に示す。
(Examples 33 to 44, Comparative Examples 39 to 41)
Table 6 shows the processing rate of the cold working a and the heat treatment a for the alloy composed of 8.0 mass% of Sn, 0.16 mass% of Fe and Ni in total, 0.07 mass% of P, the balance being Cu and inevitable impurities. In other conditions, the plate material was manufactured under the above-described manufacturing conditions, and the characteristics were evaluated. The results are shown in Table 6.

Figure 2006274445
Figure 2006274445

表6から明らかなように、本発明の実施例33〜44は優れた0.2%耐力、引張強度、曲げ加工性、耐応力緩和性を有する。
しかし、比較例39は冷間加工aの加工率が低いため、0.2%耐力、引張強度が劣った。比較例40は冷間加工aの加工率が高いため加工中に割れが生じてしまい、製造を中止した。比較例41は熱処理bを行う前の板材の結晶粒径が大きいので、曲げ加工性が劣った。
As is apparent from Table 6, Examples 33 to 44 of the present invention have excellent 0.2% yield strength, tensile strength, bending workability, and stress relaxation resistance.
However, Comparative Example 39 was inferior in 0.2% yield strength and tensile strength because of the low rate of cold working a. In Comparative Example 40, since the processing rate of the cold processing a was high, cracking occurred during processing, and production was stopped. In Comparative Example 41, since the crystal grain size of the plate material before the heat treatment b was large, the bending workability was inferior.

応力緩和特性の試験方法の模式的な説明図である。It is typical explanatory drawing of the test method of a stress relaxation characteristic.

符号の説明Explanation of symbols

1 試験片
2 支持台
3 試料台
1 Test piece 2 Support stand 3 Sample stand

Claims (6)

Snを3.0〜13.0mass%含み、残部がCuおよび不可避不純物からなり、結晶粒の直径が1.0〜2.0μmであり、直径が1〜50nmで密度が10〜1010個/mmの析出物Xと、直径が50〜500nmで密度が10〜10個/mmの析出物Yを有することを特徴とする銅合金。 Sn includes 3.0 to 13.0 mass%, the balance is made of Cu and inevitable impurities, the diameter of crystal grains is 1.0 to 2.0 μm, the diameter is 1 to 50 nm, and the density is 10 6 to 10 10 / mm and 2 precipitate X, the copper alloy and having a precipitate Y having a density of diameter 50~500nm is 10 4 to 10 8 / mm 2. 前記析出物XおよびYがMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alのうち少なくとも1元素とPとからなることを特徴とする請求項1記載の銅合金。   The precipitates X and Y are composed of at least one element and P among Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, and Al. Item 4. A copper alloy according to Item 1. 前記析出物XおよびYがMn、Mg、Cr、W、Co、B、Ni、Fe、Ca、Si、Cu、Ti、Zr、Alのうち少なくとも2つの元素からなることを特徴とする請求項1記載の銅合金。   The precipitates X and Y are made of at least two elements of Mn, Mg, Cr, W, Co, B, Ni, Fe, Ca, Si, Cu, Ti, Zr, and Al. The described copper alloy. 前記析出物XおよびYがFe、Ni、Pからなることを特徴とする請求項1記載の銅合金。   2. The copper alloy according to claim 1, wherein the precipitates X and Y are made of Fe, Ni, and P. 請求項1乃至4のいずれか1項に記載の銅合金からなる電子電気機器部品。   An electronic / electrical equipment component comprising the copper alloy according to claim 1. 請求項1乃至4のいずれか1項に記載の銅合金の製造方法であって、平均結晶粒径が1〜15μmの再結晶組織を40〜70%の加工率で冷間加工した工程のあとに結晶粒径が1〜2μmの再結晶組織を得る熱処理を行うことを特徴とする銅合金の製造方法。
It is a manufacturing method of the copper alloy of any one of Claims 1 thru | or 4, Comprising: After the process which cold-worked the recrystallized structure whose average crystal grain diameter is 1-15 micrometers with the processing rate of 40-70%. And a heat treatment for obtaining a recrystallized structure having a crystal grain size of 1 to 2 μm.
JP2006056621A 2005-03-02 2006-03-02 Copper alloy and its manufacturing method Expired - Fee Related JP5202812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056621A JP5202812B2 (en) 2005-03-02 2006-03-02 Copper alloy and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005056765 2005-03-02
JP2005056765 2005-03-02
JP2006056621A JP5202812B2 (en) 2005-03-02 2006-03-02 Copper alloy and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006274445A true JP2006274445A (en) 2006-10-12
JP5202812B2 JP5202812B2 (en) 2013-06-05

Family

ID=37209473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056621A Expired - Fee Related JP5202812B2 (en) 2005-03-02 2006-03-02 Copper alloy and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5202812B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123455A1 (en) * 2007-03-28 2008-10-16 The Furukawa Electric Co., Ltd. Copper alloy material, and method for production thereof
WO2010016429A1 (en) * 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
WO2010071220A1 (en) 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
KR20220090355A (en) * 2020-12-21 2022-06-29 한국재료연구원 Copper-Tin alloy for hot rolling and method for manufacturing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172896A (en) * 1992-12-04 1994-06-21 Nikko Kinzoku Kk High-strength and high-conductivity copper alloy
WO2002053790A1 (en) * 2000-12-28 2002-07-11 Nippon Mining & Metals Co., Ltd. High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same
JP2003105464A (en) * 2001-09-27 2003-04-09 Kiyomine Kinzoku Kogyo Kk Copper-base alloy sheet for connector, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172896A (en) * 1992-12-04 1994-06-21 Nikko Kinzoku Kk High-strength and high-conductivity copper alloy
WO2002053790A1 (en) * 2000-12-28 2002-07-11 Nippon Mining & Metals Co., Ltd. High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same
JP2003105464A (en) * 2001-09-27 2003-04-09 Kiyomine Kinzoku Kogyo Kk Copper-base alloy sheet for connector, and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123455A1 (en) * 2007-03-28 2008-10-16 The Furukawa Electric Co., Ltd. Copper alloy material, and method for production thereof
WO2010016429A1 (en) * 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
WO2010071220A1 (en) 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
JP4875772B2 (en) * 2008-12-19 2012-02-15 古河電気工業株式会社 Copper alloy sheet for electrical and electronic parts and method for producing the same
KR20220090355A (en) * 2020-12-21 2022-06-29 한국재료연구원 Copper-Tin alloy for hot rolling and method for manufacturing thereof
KR102468119B1 (en) 2020-12-21 2022-11-23 한국재료연구원 Copper-Tin alloy for hot rolling and method for manufacturing thereof

Also Published As

Publication number Publication date
JP5202812B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
WO2014126047A1 (en) HIGH-STRENGTH Cu-Ni-Co-Si BASE COPPER ALLOY SHEET, PROCESS FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT
US20080011396A1 (en) Copper alloy and method of producing the same
JP2006265731A (en) Copper alloy
JP2008056977A (en) Copper alloy and its production method
JP2008266787A (en) Copper alloy material and its manufacturing method
KR20140056003A (en) Cu-ni-co-si based copper alloy sheet materal and method for producing the same
JP2006342389A (en) Copper alloy sheet for electrical connection part
WO2006093140A1 (en) Copper alloy
JP3977376B2 (en) Copper alloy
CN107208191B (en) Copper alloy material and method for producing same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR20130109161A (en) Cu-ni-si-co copper alloy for electron material and method for producing same
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP6080823B2 (en) Titanium copper for electronic parts
JP5202812B2 (en) Copper alloy and its manufacturing method
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
JP2010121166A (en) Copper alloy having high strength and high electric conductivity
JP4875772B2 (en) Copper alloy sheet for electrical and electronic parts and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP3989161B2 (en) Copper alloy for electronic and electrical equipment with excellent bending workability and stress relaxation resistance
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R151 Written notification of patent or utility model registration

Ref document number: 5202812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees