JP6799933B2 - Manufacturing method of copper alloy plate and connector and copper alloy plate - Google Patents

Manufacturing method of copper alloy plate and connector and copper alloy plate Download PDF

Info

Publication number
JP6799933B2
JP6799933B2 JP2016064538A JP2016064538A JP6799933B2 JP 6799933 B2 JP6799933 B2 JP 6799933B2 JP 2016064538 A JP2016064538 A JP 2016064538A JP 2016064538 A JP2016064538 A JP 2016064538A JP 6799933 B2 JP6799933 B2 JP 6799933B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
alloy plate
dispersion
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016064538A
Other languages
Japanese (ja)
Other versions
JP2017179407A (en
Inventor
岳己 磯松
岳己 磯松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2016064538A priority Critical patent/JP6799933B2/en
Publication of JP2017179407A publication Critical patent/JP2017179407A/en
Application granted granted Critical
Publication of JP6799933B2 publication Critical patent/JP6799933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、銅合金板材およびコネクタならびに銅合金板材の製造方法に関し、特に車載部品や電気・電子機器用部品、例えばリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材の改良に関する。 The present invention relates to a copper alloy plate material and a connector, and a method for manufacturing the copper alloy plate material, and particularly applies to a copper alloy applied to in-vehicle parts and parts for electric / electronic devices such as lead frames, connectors, terminal materials, relays, switches, sockets, and the like. Regarding the improvement of plate materials.

車載部品や電気・電子機器用部品、例えばリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材に要求される特性項目は、引張強度、耐力(降伏応力)、曲げ加工性、導電率、耐疲労特性がある。近年、電気・電子機器用部品および車載部品の小型化、軽量化、高機能化、高密度実装化に伴って、この要求特性が高まっている。 The characteristic items required for copper alloy plate materials used in in-vehicle parts and parts for electrical and electronic equipment, such as lead frames, connectors, terminal materials, relays, switches, and sockets, are tensile strength and proof stress (yield stress). Has bending workability, conductivity, and fatigue resistance. In recent years, this required characteristic has been increasing with the miniaturization, weight reduction, high functionality, and high-density mounting of parts for electric / electronic devices and in-vehicle parts.

特に端子用の銅合金板材は、材料の薄板化や狭幅化によって軽量化や材料使用量の低減が検討されている。このとき、端子の板バネ部の接触圧力(接圧)を確保するためには、材料に対して高い強度が必要になる。また、電気・電子部品は、一般にプレス加工、曲げ加工により成形されることから、優れたプレス打ち抜き加工性や曲げ加工性が求められる。 In particular, copper alloy plate materials for terminals are being studied for weight reduction and material usage reduction by making the material thinner and narrower. At this time, in order to secure the contact pressure (contact pressure) of the leaf spring portion of the terminal, high strength is required for the material. Further, since electrical and electronic parts are generally formed by press working and bending, excellent press punching workability and bending workability are required.

また、大電流コネクタでは、電流が流れることにより発生するジュール熱によって、材料自体が発熱して応力緩和現象が生じるという問題がある。さらに、銅合金板材を端子として使用した場合、使用中のバネのへたりによって、初期の接圧を維持できずに導電率が低下したり接点不良が生じるなどの問題も挙げられる。よって、導電率ならびに耐応力緩和特性に優れることも求められている。 Further, in the large current connector, there is a problem that the material itself generates heat due to Joule heat generated by the flow of current, and a stress relaxation phenomenon occurs. Further, when a copper alloy plate material is used as a terminal, there is a problem that the initial contact pressure cannot be maintained due to the settling of the spring during use, the conductivity is lowered, and contact failure occurs. Therefore, it is also required to have excellent conductivity and stress relaxation resistance.

さらに、電子機器や自動車に使用される部品として用いられると、使用状況により、振動が加わり、部品を構成する材料に繰り返しの応力が付与される場合がある。また、材料に対し弾性変形域内で一定の負荷応力が作用し続けると、材料に亀裂が発生しやすくなり、場合によっては亀裂の伸展によって破断に至ることも想定される。 Further, when it is used as a part used in an electronic device or an automobile, vibration may be applied depending on the usage condition, and repeated stress may be applied to the material constituting the part. Further, if a constant load stress continues to act on the material within the elastic deformation region, cracks are likely to occur in the material, and in some cases, it is assumed that the material will break due to the extension of the cracks.

従来、電気・電子機器用部品や自動車車載用部品として使用される材料としては、鉄系材料の他、りん青銅、黄銅などの銅系材料が広く用いられている。これらの銅系材料としては、SnやZnの固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせによって強度を向上させた銅合金材料が知られている。しかしながら、かかる強化法で強度を向上させた銅合金材料は、導電率が不足しがちであり、加えて、高い冷間加工率で冷間圧延などの加工を施すことによって強度を得ているために、十分な曲げ加工性が得られない傾向がある。そこで、固溶強化や加工硬化に替わる強化法として、銅合金材料中に第二相を析出させる析出強化がある。この強化法は、強度を高めるだけではなく導電率も同時に高めることもできることから、多くの銅合金材料で行われている。 Conventionally, copper-based materials such as phosphor bronze and brass are widely used in addition to iron-based materials as materials used as parts for electric / electronic devices and parts for automobiles. As these copper-based materials, copper alloy materials whose strength is improved by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and drawing are known. However, the copper alloy material whose strength has been improved by such a strengthening method tends to have insufficient conductivity, and in addition, the strength is obtained by performing cold rolling or the like at a high cold working rate. In addition, there is a tendency that sufficient bending workability cannot be obtained. Therefore, as an alternative strengthening method to solid solution strengthening or work hardening, there is precipitation strengthening in which the second phase is precipitated in the copper alloy material. This strengthening method is used for many copper alloy materials because it can not only increase the strength but also the conductivity at the same time.

このような中で、電気・電子機器用部品や自動車車載用部品に使用される銅合金材料としては、例えばCu−Ni−Si系合金(コルソン系合金)が挙げられる。Cu−Ni−Si系合金は、主に析出強化や加工硬化によって強化される合金である。よって、電気・電子機器用部品や自動車車載用部品に使用されるCu−Ni−Si系合金には、十分な析出強化と高導電率化、優れた耐応力緩和特性、耐疲労特性を具備することが求められている。 Under these circumstances, examples of copper alloy materials used for parts for electric / electronic devices and parts for automobiles include Cu—Ni—Si based alloys (Corson alloys). Cu-Ni-Si alloys are alloys that are mainly strengthened by precipitation strengthening and work hardening. Therefore, Cu—Ni—Si alloys used for parts for electrical and electronic equipment and parts for automobiles have sufficient precipitation strengthening, high conductivity, excellent stress relaxation resistance, and fatigue resistance. Is required.

これら電気・電子機器用部品や自動車車載用部品(例えば端子)に使用される銅合金板材の要求特性を満足させる手段として、本出願人は、例えば特許文献1および2において、Cu−Ni−Si系合金中の第二相粒子の制御によって要求性能を満足させた銅合金板材を提案した。より具体的には、特許文献1では、Crを含有することで結晶粒径の制御と析出効果の向上を図り、また、Cu−Ni−Si系合金の結晶粒の結晶粒界上に存在する第二相粒子の密度を10〜10個/mmとするとともに、前記結晶粒の平均結晶粒径を10μm以下に制御することで、強度、曲げ加工性および耐応力緩和特性を改善している。また、特許文献2では、Coを含有することで析出物を微細にするとともに、Cu−Ni−Si、Cu−Co−Si合金の第2相の密度を10〜1012個/mmに制御することで、強度、曲げ加工性および応力緩和特性を改善している。 As a means for satisfying the required characteristics of the copper alloy plate material used for these parts for electric / electronic devices and parts for automobiles (for example, terminals), the applicant has, for example, in Patent Documents 1 and 2, Cu-Ni-Si. We proposed a copper alloy plate material that satisfied the required performance by controlling the second phase particles in the system alloy. More specifically, in Patent Document 1, Cr is contained to control the crystal grain size and improve the precipitation effect, and is present on the grain boundaries of the crystal grains of the Cu—Ni—Si alloy. By setting the density of the second phase particles to 10 4 to 10 8 grains / mm 2 and controlling the average crystal grain size of the crystal grains to 10 μm or less, the strength, bending workability and stress resistance relaxation characteristics are improved. ing. Further, in Patent Document 2, the precipitate is made finer by containing Co, and the density of the second phase of the Cu—Ni—Si and Cu—Co—Si alloys is reduced to 10 8 to 10 12 pieces / mm 2 . By controlling, strength, bending workability and stress relaxation characteristics are improved.

特許第4785092号明細書Japanese Patent No. 4785092 特開2007−169765号公報JP-A-2007-169765

これまで、Cu−Ni−Si系合金材料は、電気・電子機器用部品や自動車車載部品(例えば端子)として使用するのに必要な強度を得るための手段として、製造プロセス中に行う溶体化熱処理にて添加元素を十分に固溶させることで、次の工程の時効析出熱処理で微細かつ高密に析出させて析出強化を行う方法が採用されていた。しかしながら、このような方法では、添加元素を固溶させるために溶体化熱処理を高温で行なう必要があるため、Ni、Siおよびその他の元素の第二相(析出物、晶出物)の固溶が進行するだけではなく、結晶粒成長も同時に進行する傾向がある。また、析出硬化量を増加させるために溶体化温度を上昇させると、結晶粒の異常粒成長が生じやすくなって、強度、曲げ加工性および耐疲労特性の全てをバランスよく満足させることが難しいという問題があった。 So far, Cu—Ni—Si alloy materials have been solution heat treated during the manufacturing process as a means to obtain the strength required for use as parts for electrical and electronic equipment and automobile in-vehicle parts (for example, terminals). A method has been adopted in which the additive element is sufficiently solid-solved in the above step, and then the precipitation is strengthened by finely and densely precipitation by the aging precipitation heat treatment in the next step. However, in such a method, since it is necessary to carry out solution heat treatment at a high temperature in order to dissolve the added element, solid solution of the second phase (precipitate, crystallized product) of Ni, Si and other elements. Not only progresses, but also crystal grain growth tends to proceed at the same time. In addition, if the solution temperature is raised to increase the amount of precipitation hardening, abnormal grain growth of crystal grains is likely to occur, and it is difficult to satisfy all of the strength, bending workability, and fatigue resistance in a well-balanced manner. There was a problem.

特許文献1に記載された銅合金板材は、Cu−Ni−Si系合金の第二相粒子の一定面積当たりの個数を規定しているが、第2相粒子のサイズ(直径)や存在(分布)状態については規定しておらず、また、銅合金板材に弾性変形域内で一定の負荷応力が作用し続けたときの耐疲労特性についても着目していなかったことから、銅合金板材によっては、第二相粒子が銅合金板材中に存在しない箇所があるなどによって、特に耐疲労特性が劣っている場合があり、製品歩留りを向上させるなどの更なる改善の余地があった。また、特許文献2に記載された銅合金は、第2相の単位面積当たりの個数(10〜1012個/mm)を規定し、強度、導電率などを改善しているが、第2相の存在(分布)状態については規定しておらず、また、銅合金板材に弾性変形域内で一定の負荷応力が作用し続けたときの耐疲労特性についても着目していなかったことから、特許文献1の場合と同様に更なる改善の余地があった。 The copper alloy plate material described in Patent Document 1 defines the number of second-phase particles of a Cu—Ni—Si-based alloy per fixed area, but the size (diameter) and existence (distribution) of the second-phase particles ) The state is not specified, and the fatigue resistance characteristics when a constant load stress continues to act on the copper alloy plate material within the elastic deformation region were not paid attention to. Therefore, depending on the copper alloy plate material, The fatigue resistance may be particularly inferior due to the presence of the second phase particles in the copper alloy plate, and there is room for further improvement such as improving the product yield. Further, in the copper alloy described in Patent Document 2, the number of the second phase per unit area (10 8 to 10 12 pieces / mm 2 ) is specified, and the strength, conductivity and the like are improved. Since the existence (distribution) state of the two phases was not specified, and the fatigue resistance characteristics when a constant load stress continued to act in the elastic deformation region on the copper alloy plate material were not paid attention to. As in the case of Patent Document 1, there was room for further improvement.

そこで、本発明の目的は、高強度でかつ曲げ加工性および耐疲労特性に優れた銅合金板材、特に車載部品や電気・電子機器用部品、例えばリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびコネクタならびに銅合金板材の製造方法を提供することにある。 Therefore, an object of the present invention is a copper alloy plate material having high strength and excellent bending workability and fatigue resistance, particularly in-vehicle parts and parts for electric / electronic devices such as lead frames, connectors, terminal materials, relays, switches, and the like. It is an object of the present invention to provide a copper alloy plate material and a connector applied to a socket and the like, and a method for manufacturing the copper alloy plate material.

本発明者は、電気・電子機器用部品や車載用部品(例えば端子)に使用するのに適した銅合金板材に関して鋭意検討を進めた結果、Cu−Ni−Si系合金について、従来以上に強度、曲げ加工性および耐疲労特性を大きく改善させる、分散物(例えば晶出物)の大きさおよび分散状態の適正化を図ることが重要であることを見出した。また、析出強化に必要な溶質元素の固溶のために高温で溶体化熱処理を行うと、粒成長も同時に進行しやすくなるが、平均直径が0.1〜3.0μmと比較的大きなサイズの分散物を、銅合金板材中に等分散させることで、高温で保持しても粒成長が抑制されて、析出に必要な高い固溶度と微細(例えば30μm以下)な結晶粒とを両立が可能になる結果、著しく特性が改善することを見出した。また、これらの分布状態を実現するための製造方法も見出した。ここで、一般的な銅合金の結晶粒径は、電子機器コネクタ用銅合金の場合、通常0.05mm(50μm)程度である。 As a result of diligent studies on copper alloy plate materials suitable for use in parts for electrical and electronic equipment and parts for automobiles (for example, terminals), the present inventor has made Cu-Ni-Si alloys stronger than before. It was found that it is important to optimize the size and dispersion state of dispersions (for example, crystallization), which greatly improve bending workability and fatigue resistance characteristics. In addition, if solution heat treatment is performed at a high temperature for the solid solution of solute elements required for precipitation strengthening, grain growth tends to proceed at the same time, but the average diameter is 0.1 to 3.0 μm, which is a relatively large size. By evenly dispersing the dispersion in the copper alloy plate material, grain growth is suppressed even if it is held at a high temperature, and both high solid solubility required for precipitation and fine crystal grains (for example, 30 μm or less) can be achieved at the same time. As a result of being possible, it was found that the characteristics were significantly improved. We also found a manufacturing method to realize these distribution states. Here, the crystal grain size of a general copper alloy is usually about 0.05 mm (50 μm) in the case of a copper alloy for an electronic device connector.

すなわち、本発明の要旨構成は、以下のとおりである。
(1)2.5〜6.0質量%Niおよび0.5〜2.0質量%Siを含有し、ならびに0〜0.2質量%Mg、0〜0.01質量%P、0〜0.2質量%Cr、0〜0.2質量%Mn、0〜1.5質量%Co、0〜1.5質量%Zn、0〜0.01質量%Zr、0〜0.17質量%Agおよび0〜0.5質量%Snからなる群から選ばれる少なくとも1成分を合計で0〜2.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、該銅合金板材中に、複数の元素からなる分散物が存在し、該分散物は、平均直径が0.1〜3.0μmであり、300μm四方の測定視野内に10個以上10個以下存在し、かつ直径が0.1〜3.0μmの各分散物は、半径10.0μm以内の周囲領域内に存在する他の分散物の個数が1個以下であることを特徴とする銅合金板材。
That is, the gist structure of the present invention is as follows.
(1) Contains 2.5 to 6.0% by mass Ni and 0.5 to 2.0% by mass Si, and 0 to 0.2% by mass Mg, 0 to 0.01% by mass P, 0 to 0. .2 mass% Cr, 0-0.2 mass% Mn, 0-1.5 mass% Co, 0-1.5 mass% Zn, 0-0.01 mass% Zr, 0-0.17 mass% Ag A copper alloy plate material containing at least one component selected from the group consisting of 0 to 0.5% by mass Sn and 0 to 2.0% by mass in total, and having an alloy composition in which the balance is Cu and unavoidable impurities. the copper alloy sheet in, there is a dispersion comprising a plurality of elements, the dispersion has an average diameter of 0.1 to 3.0 m, 10 5 pieces 10 3 or more to 300μm square in the measurement field of view Each dispersion present below and having a diameter of 0.1 to 3.0 μm is characterized in that the number of other dispersions present in the surrounding region within a radius of 10.0 μm is one or less. Alloy plate material.

(2)0.01〜0.20質量%Mg、0〜0.01質量%P、0.01〜0.20質量%Cr、0.01〜0.20質量%Mn、0〜1.5質量%Co、0.5〜1.5質量%Zn、0〜0.01質量%Zr、0〜0.17質量%Agおよび0.01〜0.50質量%Snからなる群から選ばれる少なくとも1成分を合計で0.05〜2.00質量%含有する、上記(1)に記載の銅合金板材。 (2) 0.01 to 0.20 mass% Mg, 0 to 0.01 mass% P, 0.01 to 0.20 mass% Cr, 0.01 to 0.20 mass% Mn, 0 to 1.5 At least selected from the group consisting of mass% Co, 0.5 to 1.5 mass% Zn, 0 to 0.01 mass% Zr, 0 to 0.17 mass% Ag and 0.01 to 0.50 mass% Sn. The copper alloy plate material according to (1) above, which contains one component in a total amount of 0.05 to 2.00% by mass.

(3)前記銅合金板材の板バネ疲労試験において、負荷応力500MPaで破断に至るまで繰返したときの繰り返し回数が10回以上である、上記(1)または(2)に記載の銅合金板材。 (3) In the plate spring fatigue test of the copper alloy sheet, the number of repetitions of when repeated until rupture by applied stress 500MPa is more than 10 6 times, the copper alloy sheet according to (1) or (2) ..

(4)前記銅合金板材の90°W曲げ試験において、板厚0.1mm、幅1.0mmとした場合の圧延垂直方向の90°W曲げの曲げ半径Rと板厚tとの比(R/t)が2.0以下である、上記(1)〜(3)のいずれか1項に記載の銅合金板材。 (4) In the 90 ° W bending test of the copper alloy plate material, the ratio (R) of the bending radius R and the plate thickness t of the 90 ° W bending in the vertical direction of rolling when the plate thickness is 0.1 mm and the width is 1.0 mm. The copper alloy plate material according to any one of (1) to (3) above, wherein / t) is 2.0 or less.

(5)上記(1)〜(4)のいずれか1項に記載の銅合金板材からなるコネクタ。 (5) The connector made of the copper alloy plate material according to any one of (1) to (4) above.

(6)上記(1)〜(4)のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金成分組成からなる銅合金素材に、溶解[工程1]、鋳造[工程2]、均質化熱処理[工程3]、熱間圧延[工程4]、水冷[工程5]、面削[工程6]、冷間圧延1[工程7]、スリット[工程8]、焼鈍[工程9]、再結晶溶体化熱処理[工程10]、時効析出熱処理[工程11]、酸洗[工程12]、表面研磨[工程13]、冷間圧延2[工程14]および最終焼鈍[工程15]をこの順に施し、前記鋳造[工程2]は、鋳造時の冷却を、1〜100℃/secの一次冷却、50〜250℃/secの二次冷却、および100〜350℃/secの三次冷却の3段階冷却で行い、前記焼鈍[工程9]は、400〜800℃の加熱温度まで加熱し、この加熱温度で1秒間〜60分間保持することを特徴とする銅合金板材の製造方法。 (6) The method for producing a copper alloy plate according to any one of (1) to (4) above, which is dissolved in a copper alloy material having an alloy component composition that gives the copper alloy plate [step 1]. ], Casting [step 2], homogenizing heat treatment [step 3], hot rolling [step 4], water cooling [step 5], face milling [step 6], cold rolling 1 [step 7], slit [step 8] ], Annealing [Step 9], Recrystallized solution heat treatment [Step 10], Aging precipitation heat treatment [Step 11], Pickling [Step 12], Surface polishing [Step 13], Cold rolling 2 [Step 14] and final Annealing [step 15] is performed in this order, and in the casting [step 2], cooling during casting is performed by primary cooling at 1 to 100 ° C./sec, secondary cooling at 50 to 250 ° C./sec, and 100 to 350 ° C. The annealing [step 9] is performed by three-step cooling of tertiary cooling of / sec, and the annealing [step 9] is performed by heating to a heating temperature of 400 to 800 ° C. and holding at this heating temperature for 1 second to 60 minutes. Manufacturing method.

本発明によれば、2.5〜6.0質量%Niおよび0.5〜2.0質量%Siを含有し、ならびに0〜0.2質量%Mg、0〜0.01質量%P、0〜0.2質量%Cr、0〜0.2質量%Mn、0〜1.5質量%Co、0〜1.5質量%Zn、0〜0.01質量%Zr、0〜0.17質量%Agおよび0〜0.5質量%Snからなる群から選ばれる少なくとも1成分を合計で0〜2.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、該銅合金板材中に、複数の元素からなる分散物が存在し、該分散物は、平均直径が0.1〜3.0μmであり、300μm四方の測定視野内に10個以上10個以下存在し、かつ直径が0.1〜3.0μmの各分散物は、半径10.0μm以内の周囲領域内に存在する他の分散物の個数が1個以下であることによって、高強度、曲げ加工性および耐疲労特性に優れた銅合金板材およびこの銅合金板材からなるコネクタを提供することが可能になった。特に、この銅合金板材は、電気・電子機器用部品や自動車車載用部品、例えばコネクタ、リードフレーム、アクチュエータ、放熱部材、リレー、スイッチ、ソケットなどの部品に使用するのに適している。また、本発明に従う銅合金板材の製造方法によれば、上記銅合金板材を好適に製造することができる。
According to the present invention, it contains 2.5 to 6.0% by mass Ni and 0.5 to 2.0% by mass Si, and 0 to 0.2% by mass Mg, 0 to 0.01% by mass P, 0 to 0.2% by mass Cr, 0 to 0.2% by mass Mn, 0 to 1.5% by mass Co, 0 to 1.5% by mass Zn, 0 to 0.01% by mass Zr, 0 to 0.17 A copper alloy plate containing at least one component selected from the group consisting of mass% Ag and 0 to 0.5 mass% Sn in a total of 0 to 2.0 mass% and having an alloy composition in which the balance is Cu and unavoidable impurities. there, in the copper alloy sheet, there is a dispersion comprising a plurality of elements, the dispersion has an average diameter of 0.1 to 3.0 m, 10 3 or more to 300μm square in the measurement field of view 10 5 exists less and a diameter of each dispersion 0.1~3.0μm, by the number of other dispersion present in the surrounding area within a radius 10.0μm is 1 or less, It has become possible to provide a copper alloy plate material having high strength, bending workability and fatigue resistance, and a connector made of this copper alloy plate material. In particular, this copper alloy plate material is suitable for use in parts for electrical and electronic equipment and parts for automobiles, such as connectors, lead frames, actuators, heat radiating members, relays, switches, and sockets. Further, according to the method for producing a copper alloy plate material according to the present invention, the copper alloy plate material can be suitably produced.

図1は、銅合金板材の耐疲労特性を評価する疲労特性試験方法を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a fatigue characteristic test method for evaluating fatigue resistance characteristics of a copper alloy plate material. 図2は応力緩和特性の試験方法を説明するための概念図であって、(a)が試験片に、耐力の80%の初期応力を付与しているときの(熱処理前の)状態、(b)が(a)の状態の試験片に所定の熱処理を施した後の応力緩和が生じた状態を示す。FIG. 2 is a conceptual diagram for explaining a test method of stress relaxation characteristics, in which (a) is a state (before heat treatment) when an initial stress of 80% of the proof stress is applied to the test piece. b) shows a state in which stress relaxation occurs after the test piece in the state of (a) is subjected to a predetermined heat treatment.

以下、本発明の銅合金板材の好ましい実施形態について、詳細に説明する。
本発明に従う銅合金板材は、2.5〜6.0質量%Niおよび0.5〜2.0質量%Siを含有し、さらに任意の添加成分として、0〜0.2質量%Mg、0〜0.01質量%P、0〜0.2質量%Cr、0〜0.2質量%Mn、0〜1.5質量%Co、0〜1.5質量%Zn、0〜0.01質量%Zr、0〜0.17質量%Agおよび0〜0.5質量%Snからなる群から選ばれる少なくとも1成分を合計で0〜2.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、この銅合金板材中に、複数の元素からなる分散物が存在し、該分散物は、平均直径が0.1〜3.0μmであり、300μm四方の測定視野内に10個以上10個以下存在し、かつ直径が0.1〜3.0μmの各分散物は、半径10.0μm以内の周囲領域内に存在する他の分散物の個数が1個以下である。
Hereinafter, preferred embodiments of the copper alloy plate material of the present invention will be described in detail.
The copper alloy plate material according to the present invention contains 2.5 to 6.0% by mass Ni and 0.5 to 2.0% by mass Si, and further, as optional additive components, 0 to 0.2% by mass Mg, 0. ~ 0.01% by mass P, 0 to 0.2% by mass Cr, 0 to 0.2% by mass Mn, 0 to 1.5% by mass Co, 0 to 1.5% by mass Zn, 0 to 0.01 mass It contains a total of 0 to 2.0% by mass of at least one component selected from the group consisting of% Zr, 0 to 0.17% by mass Ag and 0 to 0.5% by mass Sn, and the balance consists of Cu and unavoidable impurities. It is a copper alloy plate material having an alloy composition, and a dispersion composed of a plurality of elements is present in the copper alloy plate material, and the dispersion has an average diameter of 0.1 to 3.0 μm and is 300 μm square. each dispersion present in the measurement field 10 3 or more 10 5 or less, and a diameter 0.1~3.0μm, it the number of other dispersion present in the surrounding area within a radius 10.0μm No more than one.

ここで、本発明でいう「銅合金板材」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものであって、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。本発明において、板材の厚さは、特に限定されるものではないが、好ましくは0.03〜1.0mm、さらに好ましくは0.05〜0.8mmである。 Here, the "copper alloy plate material" as used in the present invention means that a copper alloy material (before processing and having a predetermined alloy composition) has a predetermined shape (for example, a plate, a strip, a foil, a rod, a wire, etc.). It refers to a processed material that has a specific thickness, is stable in shape, and spreads in the plane direction, and in a broad sense, it means that it includes a strip material. In the present invention, the thickness of the plate material is not particularly limited, but is preferably 0.03 to 1.0 mm, more preferably 0.05 to 0.8 mm.

<成分組成>
本発明の銅合金板材の成分組成とその作用について示す。
<Ingredient composition>
The component composition of the copper alloy plate material of the present invention and its action are shown.

(必須添加成分)
本発明の銅合金板材は、2.5〜6.0質量%Niおよび0.5〜2.0質量%Siを含有している。
(Indispensable additive component)
The copper alloy plate material of the present invention contains 2.5 to 6.0% by mass Ni and 0.5 to 2.0% by mass Si.

[2.5〜6.0質量%Ni]
Niは、Siとの化合物を形成して、析出物となり、析出強化に有効な元素であり、Ni含有量を、2.5〜6.0質量%の範囲にすることによって、Ni−Si系化合物(NiSi相)がCuマトリックス中に析出して強度および導電性が向上する効果を奏することができる。一方、Ni含有量が2.5質量%未満だと、十分な引張強度が得られないという問題があり、また、6.0質量%超えだと、鋳造時や熱間加工時に強度向上に寄与しない化合物が生じ、添加量に見合う強度が得られないという問題がある。よって、Ni含有量は、2.5〜6.0質量%の範囲とし、好ましくは、2.6〜5.5質量%、より好ましくは2.7〜5.0質量%とした。
[2.5 to 6.0% by mass Ni]
Ni is an element that forms a compound with Si to form a precipitate, which is an effective element for strengthening precipitation. By setting the Ni content in the range of 2.5 to 6.0% by mass, a Ni-Si system is used. The compound (Ni 2 Si phase) can be precipitated in the Cu matrix to have the effect of improving the strength and conductivity. On the other hand, if the Ni content is less than 2.5% by mass, there is a problem that sufficient tensile strength cannot be obtained, and if it exceeds 6.0% by mass, it contributes to the improvement of strength during casting and hot working. There is a problem that a compound that does not exist is produced and the strength corresponding to the added amount cannot be obtained. Therefore, the Ni content was in the range of 2.5 to 6.0% by mass, preferably 2.6 to 5.5% by mass, and more preferably 2.7 to 5.0% by mass.

[0.5〜2.0質量%Si]
Siは、Niとともに含有されて、時効析出熱処理で析出したNiSi相を形成するために添加している元素であり、Si含有量を、0.5〜2.0質量%の範囲にすることによって、NiSi相を適度に形成することで銅合金板材の強度向上の効果を奏することができる。一方、Si含有量が0.5質量%未満だと、NiSi相の析出が不十分で、十分な強度が得られないという問題があり、また、2.0質量%超えだと、過剰なSiが銅のマトリックス中に固溶して、銅合金板材の導電率を低下させるという問題がある。よって、Si含有量は、0.5〜2.0質量%の範囲とし、好ましくは、0.55〜1.9質量%、より好ましくは0.6〜1.8質量%とした。
[0.5 to 2.0% by mass Si]
Si is an element contained together with Ni and added to form a Ni 2 Si phase precipitated by aging precipitation heat treatment, and the Si content is set in the range of 0.5 to 2.0% by mass. As a result, the strength of the copper alloy plate can be improved by appropriately forming the Ni 2 Si phase. On the other hand, if the Si content is less than 0.5% by mass, there is a problem that the precipitation of the Ni 2 Si phase is insufficient and sufficient strength cannot be obtained, and if it exceeds 2.0% by mass, it is excessive. There is a problem that the Si is dissolved in the copper matrix to reduce the conductivity of the copper alloy plate material. Therefore, the Si content was set in the range of 0.5 to 2.0% by mass, preferably 0.55 to 1.9% by mass, and more preferably 0.6 to 1.8% by mass.

(任意添加成分)
本発明の銅合金板材は、NiおよびSiの必須の添加成分に加えて、さらに、任意添加元素として、0.01〜0.20質量%Mg、0〜0.01質量%P、0.01〜0.2質量%Cr、0.01〜0.20質量%Mn、0〜1.5質量%Co、0.5〜1.5質量%Zn、0〜0.01質量%Zr、0〜0.17質量%Agおよび0.01〜0.50質量%Snからなる群から選ばれる少なくとも1成分を合計で0.05〜2.0質量%含有させることができる。
(Optional additive component)
In the copper alloy plate material of the present invention, in addition to the essential additive components of Ni and Si, as optional additive elements, 0.01 to 0.20 mass% Mg, 0 to 0.01 mass% P, 0.01. ~ 0.2% by mass Cr, 0.01 to 0.20% by mass Mn, 0 to 1.5% by mass Co, 0.5 to 1.5% by mass Zn, 0 to 0.01% by mass Zr, 0 to 0 At least one component selected from the group consisting of 0.17% by mass Ag and 0.01 to 0.50% by mass Sn can be contained in a total of 0.05 to 2.0% by mass.

[0.01〜0.20質量%Mg]
Mgは、SnやZnと同様、耐応力緩和特性を向上させるとともに半田の脆化を著しく改善する作用を有する元素である。しかしながら、Mg含有量が0.01質量%未満だと、かかる作用を十分に発揮することができない可能性があり、また、0.2質量%超えだと、Mgが銅合金の母材に固溶してしまい、導電率を著しく悪化させる問題が生じるおそれがある。このため、Mg含有量は、0.01〜0.20質量%とした。なお、Mgは、単独で添加するよりも、SnやZnとともに添加した方が相乗作用によって耐応力緩和特性を格段に向上させることができるので、SnやZnとともに添加することが好ましい。
[0.01 to 0.20% by mass Mg]
Like Sn and Zn, Mg is an element having an action of improving stress relaxation resistance and remarkably improving embrittlement of solder. However, if the Mg content is less than 0.01% by mass, such an action may not be sufficiently exerted, and if it exceeds 0.2% by mass, Mg is solidified in the base material of the copper alloy. It may melt and cause a problem of significantly deteriorating the conductivity. Therefore, the Mg content was set to 0.01 to 0.20% by mass. It is preferable to add Mg together with Sn or Zn because the stress relaxation resistance can be remarkably improved by synergistic action when it is added together with Sn or Zn rather than being added alone.

[0〜0.01質量%P]
Pは、熱間加工性を向上させるとともに、強度を向上する作用を有する元素である。しかしながら、P含有量が0.01質量%超えだと、導電率を著しく悪化させるおそれがある。このため、P含有量は、0〜0.01質量%とした。
[0 to 0.01 mass% P]
P is an element having an action of improving hot workability and strength. However, if the P content exceeds 0.01% by mass, the conductivity may be significantly deteriorated. Therefore, the P content was set to 0 to 0.01% by mass.

[0.01〜0.20質量%Cr]
Crは、化合物や単体で微細に析出し、析出硬化に寄与し、また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にするのに有効な元素である。しかしながら、Cr含有量が0.01質量%未満だと、かかる作用を十分に発揮することができず、また、0.20質量%超えだと、導電率の低下と共晶Crを形成するという問題が生じるおそれがある。このため、Cr含有量は、0.01〜0.20質量%とした。なお、Crが添加されていない状態でも、他の元素の調整により、結晶粒粗大化を抑制ができる。
[0.01 to 0.20% by mass Cr]
Cr finely precipitates as a compound or a simple substance and contributes to precipitation hardening, and also has the effect of precipitating as a compound in a size of 50 to 500 nm and suppressing grain growth to make the crystal grain size finer. It is an element effective for improving bending workability. However, if the Cr content is less than 0.01% by mass, such an effect cannot be sufficiently exerted, and if it exceeds 0.20% by mass, the conductivity is lowered and eutectic Cr is formed. Problems may occur. Therefore, the Cr content was set to 0.01 to 0.20% by mass. Even in a state where Cr is not added, coarsening of crystal grains can be suppressed by adjusting other elements.

[0.01〜0.20質量%Mn]
Mnは、熱間加工性を向上させるとともに、強度を向上する作用を有する元素である。しかしながら、Mn含有量が0.01質量%未満だと、かかる作用を十分に発揮することができず、また、0.20質量%超えだと、強度に寄与しないMn系の介在物を形成する問題が生じるおそれがある。このため、Mn含有量は、0.01〜0.20質量%とした。
[0.01 to 0.20% by mass Mn]
Mn is an element that has the effect of improving hot workability and strength. However, if the Mn content is less than 0.01% by mass, such an action cannot be sufficiently exerted, and if it exceeds 0.20% by mass, Mn-based inclusions that do not contribute to the strength are formed. Problems may occur. Therefore, the Mn content was set to 0.01 to 0.20% by mass.

[0〜1.5質量%Co]
Coは、Siと結合してCo−Si系の析出物を形成し、析出強化を向上させる作用を有する元素である。しかしながら、Co含有量が1.5質量%超えだと、溶体化熱処理でのCoの固溶が困難になり、十分な析出強度が得られないという問題が生じるおそれがある。このため、Co含有量は、0〜1.5質量%とした。なお、Coを添加しない場合は、NiSiの析出物で析出強化を担う。Coを添加し、Ni量を調整することで、析出強化量が増加する。
[0 to 1.5% by mass Co]
Co is an element that combines with Si to form Co—Si-based precipitates and has the effect of improving precipitation strengthening. However, if the Co content exceeds 1.5% by mass, it becomes difficult to dissolve Co in the solution heat treatment, which may cause a problem that sufficient precipitation strength cannot be obtained. Therefore, the Co content was set to 0 to 1.5% by mass. When Co is not added, NiSi precipitates are responsible for strengthening the precipitation. By adding Co and adjusting the amount of Ni, the amount of precipitation strengthening increases.

[0.5〜1.5質量%Zn]
Znは、MgやSnと同様、耐応力緩和特性を向上させるとともに半田の脆化を著しく改善する作用を有する元素である。しかしながら、Zn含有量が0.5質量%未満だと、かかる作用を十分に発揮することができず、また、1.5質量%超えだと、導電率が悪化するという問題が生じるおそれがある。このため、Zn含有量は、0.5〜1.5質量%とした。なお、Znは、単独で添加するよりも、MgやSnとともに添加した方が相乗作用によって耐応力緩和特性を格段に向上させることができるので、MgやSnとともに添加することが好ましい。
[0.5 to 1.5% by mass Zn]
Similar to Mg and Sn, Zn is an element having an action of improving stress relaxation resistance and remarkably improving embrittlement of solder. However, if the Zn content is less than 0.5% by mass, such an effect cannot be sufficiently exerted, and if it exceeds 1.5% by mass, there may be a problem that the conductivity deteriorates. .. Therefore, the Zn content was set to 0.5 to 1.5% by mass. It is preferable to add Zn together with Mg and Sn because the stress relaxation resistance can be remarkably improved by synergistic action when it is added together with Mg and Sn rather than added alone.

[0〜0.01質量%Zr]
Zrは、化合物や単体で微細に析出し、析出硬化に寄与し、また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にするのに有効な元素である。しかしながら、Zr含有量が0.01質量%超えだと、Zr系の粗大な化合物形成で欠陥が生じるおそれがある。このため、Zr含有量は、0〜0.01質量%とした。なお、Zrを添加しない場合でも、他の元素の制御にて析出硬化、結晶粒微細化の効果が得られる。
[0 to 0.01 mass% Zr]
Zr finely precipitates as a compound or a simple substance and contributes to precipitation hardening, and also has the effect of precipitating as a compound in a size of 50 to 500 nm and suppressing grain growth to make the crystal grain size finer. It is an element effective for improving bending workability. However, if the Zr content exceeds 0.01% by mass, defects may occur in the formation of coarse Zr-based compounds. Therefore, the Zr content was set to 0 to 0.01% by mass. Even when Zr is not added, the effects of precipitation hardening and grain refinement can be obtained by controlling other elements.

[0〜0.17質量%Ag]
Agは、熱間加工性を向上させるとともに、強度を向上する作用を有する元素である。しかしながら、Ag含有量が0.17質量%超えだと、冷間加工性悪化の問題が生じるおそれがある。このため、Ag含有量は、0〜0.17質量%とした。
[0 to 0.17% by mass Ag]
Ag is an element that has the effect of improving hot workability and strength. However, if the Ag content exceeds 0.17% by mass, the problem of deterioration of cold workability may occur. Therefore, the Ag content was set to 0 to 0.17% by mass.

[0.01〜0.50質量%Sn]
Snは、MgやZnと同様、耐応力緩和特性を向上させるとともに半田の脆化を著しく改善する作用を有する元素である。しかしながら、Sn含有量が0.01質量%未満だと、かかる作用を十分に発揮することができず、また、0.50質量%超えだと、熱間加工性および導電率が悪化するという問題が生じるおそれがある。このため、Sn含有量は、0.01〜0.50質量%とした。なお、Snは、単独で添加するよりも、MgやZnとともに添加した方が相乗作用によって耐応力緩和特性を格段に向上させることができるので、MgやZnとともに添加することが好ましい。
[0.01 to 0.50% by mass Sn]
Similar to Mg and Zn, Sn is an element having an action of improving stress relaxation resistance and remarkably improving embrittlement of solder. However, if the Sn content is less than 0.01% by mass, such an effect cannot be sufficiently exerted, and if it exceeds 0.50% by mass, the hot workability and the conductivity are deteriorated. May occur. Therefore, the Sn content was set to 0.01 to 0.50% by mass. It is preferable to add Sn together with Mg or Zn because the stress relaxation resistance can be remarkably improved by synergistic action when it is added together with Mg or Zn rather than added alone.

[Mg、P、Cr、Mn、Co、Zn、Zr、AgおよびSnからなる群から選ばれる少なくとも1成分を合計で0.05〜2.00質量%]
Mg、P、Cr、Mn、Co、Zn、Zr、AgおよびSnからなる群から選ばれる少なくとも1成分の含有量は、合計で0.05〜2.00質量%であることが好ましい。上記任意添加成分の少なくとも1成分の含有量が合計で0.05質量%以上とすることによって、上記任意添加成分を添加したときの効果を奏することができ、また、2.0質量%以下であれば、導電率が低下するという弊害が生じにくい。このため、上記任意添加成分の含有量は、合計で0.05〜2.00質量%とし、好ましくは0.10〜1.90質量%、より好ましくは0.12〜 1.80質量%とした。
[A total of 0.05 to 2.00% by mass of at least one component selected from the group consisting of Mg, P, Cr, Mn, Co, Zn, Zr, Ag and Sn]
The content of at least one component selected from the group consisting of Mg, P, Cr, Mn, Co, Zn, Zr, Ag and Sn is preferably 0.05 to 2.00% by mass in total. When the content of at least one component of the optional additive component is 0.05% by mass or more in total, the effect when the optional additive component is added can be exhibited, and when the content is 2.0% by mass or less. If so, the harmful effect of lowering the conductivity is unlikely to occur. Therefore, the total content of the optional additive components is 0.05 to 2.00% by mass, preferably 0.10 to 1.90% by mass, and more preferably 0.12 to 1.80% by mass. did.

<銅合金板材中の分散物>
本発明は、銅合金板材中に、複数の元素からなる分散物が存在し、該分散物は、平均直径が0.1〜3.0μmであり、300μm四方の測定視野内に10個以上10個以下存在し、かつ直径が0.1〜3.0μmの各分散物は、半径10.0μm以内の周囲領域内に存在する他の分散物の個数が1個以下である。ここでいう「分散物」は、例えば鋳造工程の液相から固相への凝固時に生じる晶出物、熱処理過程に金属間化合物を形成してできる析出物、その他、溶解および鋳造の工程で生じる介在物および第二相粒子を指す。
<Dispersion in copper alloy plate>
The present invention relates to a copper alloy sheet in, there is a dispersion comprising a plurality of elements, the dispersion has an average diameter of 0.1 to 3.0 m, 10 3 or more to 300μm square in the measurement field of view 10 5 exists less and a diameter of each dispersion 0.1~3.0μm, the number of other dispersion present in the surrounding area within a radius 10.0μm is 1 or less. The "dispersion" referred to here is, for example, a crystallized product generated during solidification from a liquid phase to a solid phase in a casting process, a precipitate formed by forming an intermetallic compound in a heat treatment process, and other substances generated in a melting and casting process. Refers to inclusions and second phase particles.

[分散物の直径および存在(分散)状態]
本発明の銅合金板材は、分散物を制御することが必要であり、より具体的には、分散物を、平均直径が0.1〜3.0μmであり、300μm四方の測定視野内に10個以上10個以下存在させ、かつ直径が0.1〜3.0μmの各分散物は、半径10.0μm以内の周囲領域内に存在する他の分散物の個数を1個以下とする。
[Diameter of dispersion and presence (dispersion) state]
In the copper alloy plate material of the present invention, it is necessary to control the dispersion, and more specifically, the dispersion has an average diameter of 0.1 to 3.0 μm and is within a measurement field of 300 μm square. 3 or more 10 5 is present below and the dispersion of the diameter 0.1~3.0μm has a number of other dispersion present in the surrounding area within a radius 10.0μm to 1 or less ..

本発明の銅合金板材に存在する上記制御した分散物の効果としては、主に再結晶溶体化熱処理時の結晶粒成長の抑制が挙げられる。上記制御した分散物が結晶粒成長を抑制するメカニズムとしては、定かではないが、例えばCu−Ni−Si系合金中に、Ni、Si、Mg、P、Cr、Mn、Co、Zn、Zr、AgおよびSnの元素からなる2元系もしくは3元系の化合物(分散物)を形成し、結晶粒の粒成長の時に結晶粒界が分散物(第二相粒子)を通過する際の分散物と結晶粒界において、エネルギーの差が生じ、このエネルギー差によって粒界移動が生じにくくなる結果として、結晶粒成長が抑制されるものと考えられる。 The effect of the controlled dispersion present in the copper alloy plate material of the present invention is mainly the suppression of grain growth during the recrystallization solution heat treatment. The mechanism by which the controlled dispersion suppresses grain growth is not clear, but for example, in a Cu—Ni—Si based alloy, Ni, Si, Mg, P, Cr, Mn, Co, Zn, Zr, A dispersion that forms a binary or ternary compound (dispersion) composed of Ag and Sn elements, and the grain boundaries pass through the dispersion (second phase particles) during grain growth of the crystal grains. It is considered that a difference in energy occurs between the grain boundaries and the grain boundaries, and as a result of this energy difference making it difficult for grain boundary movement to occur, grain growth is suppressed.

銅合金板材の平均結晶粒径としては、例えば30μm以下と微細であることが好ましく、より好ましくは20μm以下である。また、平均結晶粒径の下限値は特に制限はないが、例えば2.0μm以上とすることが好ましい。なお、結晶粒径はJIS H0501−1986に規定されている結晶粒度の測定方法(切断法)に基づいて測定し、平均結晶粒径は、板材の先後端、幅方向の複数点をサンプリングし、板厚の表層、内部の複数点を観察することによって行なう。サンプルは、銅合金板材から20mm×20mmサイズに切り出し、鏡面研磨した面(n≧5)から算出した結晶粒径の平均値である。 The average crystal grain size of the copper alloy plate material is preferably as fine as 30 μm or less, and more preferably 20 μm or less. The lower limit of the average crystal grain size is not particularly limited, but is preferably 2.0 μm or more, for example. The crystal grain size is measured based on the crystal grain size measurement method (cutting method) specified in JIS H0501-1986, and the average crystal grain size is obtained by sampling a plurality of points in the width direction at the front and rear ends of the plate material. This is done by observing multiple points on the surface and inside of the plate thickness. The sample is an average value of crystal grain size calculated from a mirror-polished surface (n ≧ 5) cut into a size of 20 mm × 20 mm from a copper alloy plate material.

また、本発明者は、銅合金板材の耐疲労特性を改善するために板バネの耐疲労特性に寄与する組織状態について調査した。まず、板材に対して弾性変形域内で一定の負荷応力作用下で繰返し所定の振動を与える疲労特性試験を行なった場合(疲労特性の測定中)、マクロ的には弾性範囲内の応力が作用していたとしても、ミクロ的には一部の原子が非弾性的な挙動を起こすことがあることが判明した。これにより、結晶粒界や結晶粒内に微小なすべり帯が発生し、すべり変形が生じた後、結晶粒界に沿うようにして微小き裂が生じ、これが上記振動の繰返しに伴って進展することで材料の破断に至る場合があることを見出した。 In addition, the present inventor investigated the tissue state that contributes to the fatigue resistance of the leaf spring in order to improve the fatigue resistance of the copper alloy plate material. First, when a fatigue characteristic test in which a predetermined vibration is repeatedly applied to a plate material under a constant load stress action within the elastic deformation region (during measurement of fatigue characteristics), stress within the elastic range acts on the plate material macroscopically. Even if it was, it was found that some atoms may behave inelastically microscopically. As a result, minute slip zones are generated at the grain boundaries and inside the crystal grains, and after slip deformation occurs, minute cracks are generated along the grain boundaries, which propagate with the repetition of the above vibration. It was found that this may lead to breakage of the material.

そのため、本発明の銅合金板材では、金属(銅合金)組織内に存在する分散物の平均直径を0.1〜3.0μmとし、該分散物を300μm四方の測定視野内に10個以上10個以下存在させ、かつ直径が0.1〜3.0μmの各分散物は、半径10.0μm以内の周囲領域内に存在する他の分散物の個数を1個以下とすることによって、疲労寿命が格段に向上する効果が得られる。なお、直径が0.1〜3.0μmの各分散物が、半径10.0μm以内の周囲領域内に存在する他の分散物の個数を1個以下とする理由については、このように構成することで金属(銅合金)組織内に前記分散物を等間隔で分布(等分散)させることができ、この結果、分散物周辺の転位の移動を抑制する効果があり、これにより個々の結晶粒でのすべり変形が生じにくく、多結晶におけるミクロ的な原子の非弾性的な挙動の発生頻度が減少し、亀裂の発生を抑制することができるためである。分散物の平均直径を0.1〜3.0μmに限定した理由は、平均直径が0.1μmよりも小さいと、銅合金板材中に等分散させたとしても、添加元素を固溶させるために高温で溶体化熱処理した際に結晶粒の成長を抑制することができず、強度、曲げ加工性および耐疲労特性の全てをバランスよく満足させることが難しく、また、3.0μmよりも大きいと、材料のプレス加工時に欠陥となり、プレス加工の精度が大幅に低下する問題があるからである。また、平均直径0.1〜3.0μmの分散物が、300μm四方の測定視野内に10個未満しか存在しない場合には、粒界をピン止めする効果が低減して、結晶粒径の制御が困難になるという問題があり、また、10個を超えて存在する場合には、プレス加工精度への悪影響、冷間加工時の欠陥の発生で板切れが発生するという問題がある。さらに直径0.1〜3.0μmの各分散物は、半径10.0μm以内の周囲領域内に存在する他の分散物の個数が1個よりも多い場合には、曲げ加工時にクラックの起点となってしまうという問題があるからである。
Therefore, in the copper alloy sheet of the present invention, the metal an average diameter of (copper alloy) dispersion present in the tissue and 0.1 to 3.0 m, 10 3 or more in the dispersion of 300μm square in the measurement field of view 10 5 is present below, and a diameter of each dispersion 0.1~3.0μm is by a one less number of other dispersion present in the surrounding area within a radius of 10.0 [mu] m, The effect of significantly improving the fatigue life can be obtained. The reason why each dispersion having a diameter of 0.1 to 3.0 μm has one or less other dispersions existing in the surrounding region within a radius of 10.0 μm is configured in this manner. As a result, the dispersion can be distributed (equally dispersed) in the metal (copper alloy) structure at equal intervals, and as a result, there is an effect of suppressing the movement of dislocations around the dispersion, whereby individual crystal grains are produced. This is because slip deformation is less likely to occur, the frequency of occurrence of microscopic inelastic behavior of atoms in polycrystals is reduced, and the occurrence of cracks can be suppressed. The reason for limiting the average diameter of the dispersion to 0.1 to 3.0 μm is that if the average diameter is smaller than 0.1 μm, the additive elements will be dissolved even if they are evenly dispersed in the copper alloy plate. When the solution heat treatment is performed at a high temperature, the growth of crystal grains cannot be suppressed, it is difficult to satisfy all of the strength, bending workability and fatigue resistance in a well-balanced manner, and if it is larger than 3.0 μm, This is because there is a problem that a defect occurs during the press processing of the material and the accuracy of the press processing is significantly lowered. Further, dispersions of an average diameter 0.1~3.0μm is when only 10 less than 3 do not exist in the 300μm square in the measurement field of view, to reduce the effect of pinning the grain boundaries, the grain size There is a problem that control becomes difficult and, when present at greater than 10 5, there is a problem that adverse effects on press processing accuracy, the plate breakage in the occurrence of defects during cold working occur. Further, each dispersion having a diameter of 0.1 to 3.0 μm is regarded as a crack starting point during bending when the number of other dispersions existing in the surrounding region within a radius of 10.0 μm is larger than one. This is because there is a problem that it becomes.

なお、分散物は、複数の元素からなり、分散物を構成する複数の元素としては、例えば、Ni、Si、Cr、Coなどが挙げられる。 The dispersion is composed of a plurality of elements, and examples of the plurality of elements constituting the dispersion include Ni, Si, Cr, and Co.

また、分散物の直径および存在(分散)状態の測定は、板材の先後端、幅方向の複数点をサンプリングし、板厚の表層、内部の複数点を観察することによって行なう。サンプルは、銅合金板材から20mm×20mmサイズに切り出し、表面を鏡面研磨および電解研磨した後、走査型電子顕微鏡(SEM)にて観察する。このとき、倍率は1000倍以上で観察し、場合によっては、300μm四方の視野となるよう、複数箇所の観察を行う。分散物のサイズは、SEM観察したときに測定した直径とする。また、直径0.1〜3.0μmの各分散物の半径10.0μm以内の周囲領域内に存在する他の分散物の個数の測定は、場合によっては、1000倍以上の高倍率での観察にて、分散物のサイズと個数を数える方法により行なった。 Further, the diameter and the existence (dispersion) state of the dispersion are measured by sampling a plurality of points in the front and rear ends of the plate material and in the width direction, and observing the surface layer of the plate thickness and a plurality of points inside. The sample is cut out from a copper alloy plate to a size of 20 mm × 20 mm, and the surface is mirror-polished and electrolytically polished, and then observed with a scanning electron microscope (SEM). At this time, the magnification is 1000 times or more, and in some cases, a plurality of points are observed so as to have a field of view of 300 μm square. The size of the dispersion shall be the diameter measured at the time of SEM observation. Further, in some cases, the measurement of the number of other dispersions existing in the surrounding region within a radius of 10.0 μm of each dispersion having a diameter of 0.1 to 3.0 μm is observed at a high magnification of 1000 times or more. The method was performed by counting the size and number of the dispersions.

[銅合金板材の製造方法]
次に、本発明の銅合金板材の好ましい製造方法について説明する。
まず、2.5〜6.0質量%Niおよび0.5〜2.0質量%Siを含有させ、さらに必要に応じて、任意添加成分であるMg、P、Cr、Mn、Co、Zn、Zr、AgおよびSnについては適宜含有させ、残部がCuと不可避不純物から成る合金組成を有する銅合金素材を用意し、この銅合金素材を高周波溶解炉で溶解[工程1]した後に、鋳造[工程2]を行う。
[Manufacturing method of copper alloy plate]
Next, a preferable manufacturing method of the copper alloy plate material of the present invention will be described.
First, 2.5 to 6.0% by mass Ni and 0.5 to 2.0% by mass Si are contained, and if necessary, optional additive components Mg, P, Cr, Mn, Co, Zn, A copper alloy material having an alloy composition in which Zr, Ag and Sn are appropriately contained and the balance is composed of Cu and unavoidable impurities is prepared, and this copper alloy material is melted in a high-frequency melting furnace [step 1] and then cast [step 1]. 2] is performed.

この鋳造[工程2]では、一次、二次、三次冷却を微調整して3段階冷却を行い、ズンプ形状を制御し、鋳塊の厚さを150mm以上とし、分散物のサイズ(直径)および存在(分散)状態等の制御を行う。例えば、3段階冷却における冷却速度は、一次冷却では1〜100℃/sec、二次冷却では50〜250℃/sec、そして三次冷却では100〜350℃/secとすることが好ましい。なお、二次冷却の冷却方法は、鋳型の水冷および鋳塊への水の直噴の2種類のいずれかを選択することが好ましい。 In this casting [step 2], the primary, secondary, and tertiary cooling are finely adjusted to perform three-stage cooling, the dumb shape is controlled, the ingot thickness is 150 mm or more, and the size (diameter) of the dispersion and the dispersion It controls the existence (dispersion) state and the like. For example, the cooling rate in the three-stage cooling is preferably 1 to 100 ° C./sec for the primary cooling, 50 to 250 ° C./sec for the secondary cooling, and 100 to 350 ° C./sec for the tertiary cooling. As the cooling method for secondary cooling, it is preferable to select one of two types: water cooling of the mold and direct injection of water into the ingot.

次に、800〜1050℃の加熱温度まで加熱し、この加熱温度で1〜30時間の保持する均質化熱処理[工程3]を行なう。この均質化熱処理によって、銅合金組織中に存在する分散物のうち、直径が0.1μmよりも小さい微細な分散物(第二相)を固溶させる。 Next, the homogenizing heat treatment [step 3] is performed by heating to a heating temperature of 800 to 1050 ° C. and holding at this heating temperature for 1 to 30 hours. By this homogenization heat treatment, among the dispersions existing in the copper alloy structure, fine dispersions (second phase) having a diameter smaller than 0.1 μm are dissolved.

その後、1000℃以下で合計加工率80%以上の熱間圧延[工程4]を行ない、熱間圧延終了後は、600℃以上の温度で水冷[工程5]を開始して急速に冷却(急冷)する。 After that, hot rolling [step 4] with a total processing rate of 80% or more is performed at 1000 ° C. or lower, and after the hot rolling is completed, water cooling [step 5] is started at a temperature of 600 ° C. or higher to rapidly cool (quenching). ).

次いで、熱間圧延した銅合金板材の表面に対し0.5mm以上の面削[工程6]を施し、表面の酸化膜を除去する。面削量が0.5mmより少ないと、表層に酸化膜が残存する可能性がある。 Next, the surface of the hot-rolled copper alloy plate is face-cut [step 6] of 0.5 mm or more to remove the oxide film on the surface. If the surface scraping amount is less than 0.5 mm, an oxide film may remain on the surface layer.

その後、圧延パス数が4パス以上で、合計の加工率が80%以上となるように冷間圧延1[工程7]を行い、次いで、冷間圧延1で生じた板材幅方向の端部のオフゲージ部分をカットするためのスリット[工程8]を行う。 After that, cold rolling 1 [step 7] is performed so that the number of rolling passes is 4 or more and the total processing rate is 80% or more, and then the end portion in the plate width direction generated by cold rolling 1 is performed. A slit [step 8] for cutting the off-gauge portion is performed.

次いで、400〜800℃の加熱温度まで加熱し、この加熱温度で1秒間〜60分間保持する焼鈍[工程9]を行う。この焼鈍[工程9]を行うことによって、焼鈍前までの工程で生じた0.1μmよりも小さい微細分散物を固溶させ、次工程の溶体化熱処理[工程10]での溶質元素の固溶度を高めることができる。なお、この焼鈍[工程9]によって、0.1〜3.0μmの分散物はわずかに拡散が生じるが、固溶までは至らない。 Next, annealing [step 9] is performed by heating to a heating temperature of 400 to 800 ° C. and holding at this heating temperature for 1 second to 60 minutes. By performing this annealing [step 9], fine dispersions smaller than 0.1 μm generated in the steps before annealing are solid-solved, and the solute element is solid-solved in the solution heat treatment [step 10] of the next step. The degree can be increased. By this annealing [step 9], the dispersion of 0.1 to 3.0 μm slightly diffuses, but does not reach a solid solution.

その後、高温域である750〜980℃の溶体化温度まで加熱し、この溶体化温度で5秒〜2時間保持した後に急速に冷却(急冷)する再結晶溶体化熱処理[工程10]を行う。この再結晶溶体化熱処理[工程10]によって、溶質元素を固溶させる。なお、再結晶溶体化熱処理[工程10]における結晶粒成長は、鋳造で制御した0.1〜3.0μmの分散物が担う。 Then, a recrystallization solution heat treatment [step 10] is performed in which the mixture is heated to a solution temperature of 750 to 980 ° C., which is a high temperature range, held at this solution temperature for 5 seconds to 2 hours, and then rapidly cooled (quenched). The solute element is dissolved by this recrystallization solution heat treatment [step 10]. The grain growth in the recrystallization solution heat treatment [step 10] is carried out by a dispersion of 0.1 to 3.0 μm controlled by casting.

次に、300〜600℃の到達温度まで加熱し、この加熱温度で5分間〜10時間保持した後に空冷する時効析出熱処理[工程11]を行う。この時効析出熱処理によって、再結晶溶体化熱処理において固溶させた溶質元素を金属間化合物として析出させる。 Next, aging precipitation heat treatment [step 11] is performed, in which the mixture is heated to a temperature reached at 300 to 600 ° C., held at this heating temperature for 5 minutes to 10 hours, and then air-cooled. By this aging precipitation heat treatment, the solute element dissolved in the recrystallization solution heat treatment is precipitated as an intermetallic compound.

その後、再結晶溶体化熱処理[工程10]および時効析出熱処理[工程11]で生じた酸化膜を除去するための酸洗[工程12]と、圧延加工で生じた微小なロール傷の転写や、微細な異物(コンタミ)の押し込み等を除去するため、1000〜3000番のバフにて表面研磨[工程13]を順次行う。これらにより、平滑な銅合金板材が得られる。 After that, pickling [step 12] for removing the oxide film generated in the recrystallization solution heat treatment [step 10] and the aging precipitation heat treatment [step 11], transfer of minute roll scratches generated in the rolling process, and transfer of minute roll scratches generated in the rolling process. In order to remove the indentation of fine foreign matter (contamination), the surface polishing [step 13] is sequentially performed with a buff of No. 1000 to 3000. As a result, a smooth copper alloy plate material can be obtained.

加えて、材料強度の微調整が必要な場合には、5〜50%の圧延加工率で2パス以上の冷間圧延2[工程14]をさらに行うことが好ましいが、前の工程までに一定の強度が得られていれば、省略してもよい。また、歪み取りが必要な場合には、300〜600℃の温度まで加熱した後に急速に冷却(急冷)する最終焼鈍[工程15]を行うことが好ましいが、冷間圧延2[工程14]を行っていない場合は、省略してもよい。 In addition, when fine adjustment of the material strength is required, it is preferable to further perform cold rolling 2 [step 14] of 2 passes or more at a rolling processing rate of 5 to 50%, but it is constant by the previous step. If the strength of is obtained, it may be omitted. When strain removal is required, it is preferable to perform final annealing [step 15] of heating to a temperature of 300 to 600 ° C. and then rapidly cooling (quenching), but cold rolling 2 [step 14] is performed. If not, it may be omitted.

<銅合金板材の特性>
本発明の銅合金板材は、電気・電子機器用部品や自動車車載用部品、特に端子として使用する場合に必要とされる特性を満足することができ、例示すると以下のとおりである。
(I)引張強度は、700〜1050MPaであり、好ましくは740〜960MPa、より好ましくは780〜940MPaである。
(II)曲げ加工性は、板厚0.1mm、幅1.0mm、圧延垂直方向の90°W曲げの曲げ半径Rと板厚tの比R/tが2.0以下であり、好ましくは1.75以下、より好ましくは1.5以下である。
(III)耐疲労特性は、図1に示す疲労特性試験方法により、負荷応力500MPaにて測定したときの繰り返し回数が10回以上であり、より好ましくは10回以上である。
(IV)導電率は、26%IACS以上であり、好ましくは28%IACS以上、より好ましくは30%IACS以上である。なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10−8Ωmを100%IACSとした場合の導電率を表したものである。
<Characteristics of copper alloy plate material>
The copper alloy plate material of the present invention can satisfy the characteristics required when used as a component for electric / electronic devices and a component for automobiles, particularly as a terminal, and examples thereof are as follows.
(I) The tensile strength is 700 to 1050 MPa, preferably 740 to 960 MPa, and more preferably 780 to 940 MPa.
(II) The bending workability is preferably such that the ratio R / t of the bending radius R and the plate thickness t of 90 ° W bending in the vertical direction of rolling is 2.0 or less, with a plate thickness of 0.1 mm and a width of 1.0 mm. It is 1.75 or less, more preferably 1.5 or less.
(III) fatigue resistance, due fatigue test method shown in FIG. 1, the number of repetitions of when measured at a load stress 500MPa is at least 10 6 times, more preferably not less than 10 7 times.
(IV) The conductivity is 26% IACS or higher, preferably 28% IACS or higher, and more preferably 30% IACS or higher. The above% IACS represents the conductivity when the resistivity of 1.7241 × 10-8 Ωm of International Annealed Copper Standard is 100% IACS.

また、上記(I)〜(III)の特性の測定条件は、いずれも特に断らない限り実施例に記載したとおりであり、また、上記(IV)の特性の測定条件は、20℃(±0.5℃)に保たれた恒温槽中で、四端子法(端子間距離:100mm)により比抵抗を計測して導電率(%IACS)を算出したものである。 Further, the measurement conditions for the characteristics of (I) to (III) above are all as described in Examples unless otherwise specified, and the measurement conditions for the characteristics of (IV) above are 20 ° C. (± 0). The conductivity (% IACS) was calculated by measuring the specific resistance by the four-terminal method (distance between terminals: 100 mm) in a constant temperature bath kept at (5.5 ° C.).

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(本発明例1〜16および比較例1〜9)
本発明例1〜16および比較例1〜9は、表1に示す組成となるように、それぞれNi、Siおよび必要な任意添加成分を含有し、残部がCuと不可避不純物からなる銅合金素材を高周波溶解炉により溶解[工程1]し、これを、表2に示す条件で冷却を行う鋳造[工程2]を行い、鋳塊を得た。このうち、2次冷却の冷却方法については、表2に示すように、鋳型の水冷と、鋳塊への水の直接噴射の2つの方法のいずれかで行なった。これにより、液相と固相の境界線の形状を調整し、各元素からなる分散物(第二相)の直径(μm)と、それらの存在(分散)状態を制御した。なお、比較例9については、鋳造[工程2]における冷却の制御は行なっていない。
(Examples 1 to 16 of the present invention and Comparative Examples 1 to 9)
Examples 1 to 16 of the present invention and Comparative Examples 1 to 9 contain a copper alloy material containing Ni, Si and necessary optional additive components, respectively, and the balance is Cu and unavoidable impurities so as to have the compositions shown in Table 1. It was melted in a high-frequency melting furnace [step 1], and this was cast by cooling under the conditions shown in Table 2 [step 2] to obtain an ingot. Of these, as shown in Table 2, the cooling method for the secondary cooling was one of two methods: water cooling of the mold and direct injection of water into the ingot. Thereby, the shape of the boundary line between the liquid phase and the solid phase was adjusted, and the diameter (μm) of the dispersion (second phase) composed of each element and the existence (dispersion) state of them were controlled. In Comparative Example 9, the cooling in the casting [step 2] is not controlled.

本発明例1〜16については、前記得られた鋳塊を、800〜1050℃で1分間から30時間の均質化熱処理[工程3]を行なった後、1000℃以下で、合計加工率が80%以上となるよう熱間加工[工程4]を行った。その後、水焼入れ(水冷[工程5]に相当)し、酸化スケール除去のために0.5mm以上の面削[工程6]を行った。その後、合計加工率が80%以上となるように冷間圧延1[工程7]を行った。次に、圧延で生じた幅方向のオフゲージを取り除くためにスリット[工程8]を行った後、溶体化熱処理での溶質元素の固溶度アップのために、この工程までに生じた0.1μm以下の分散物を固溶させるため、表2に示す到達温度および保持時間で焼鈍[工程9]を行う。ここで、0.1〜3.0μmの分散物はわずかに拡散が生じるが、固溶はしない。次に、溶質元素の固溶を目的に、到達温度750〜980℃にて再結晶溶体化熱処理[工程10]を行う。次に、再結晶溶体化熱処理[工程10]にて固溶させた溶質元素を析出させるために、時効析出熱処理[工程11]を行う。その後、酸化膜除去と表面傷等の除去のために、酸洗[工程12]、表面研磨[工程13]を行い、5〜50%で2パス以上の冷間圧延2[工程14]と最終焼鈍[工程15]を行う。以上の工程により、銅合金板材の供試材とした。ここで、供試材の最終板厚は0.1mmとした。各実施例での金属組織と評価特性を表3に示す。 In Examples 1 to 16 of the present invention, the obtained ingot was homogenized at 800 to 1050 ° C. for 1 minute to 30 hours [step 3], and then at 1000 ° C. or lower, the total processing rate was 80. Hot working [step 4] was performed so as to be% or more. Then, it was water-quenched (corresponding to water cooling [step 5]), and surface milling of 0.5 mm or more [step 6] was performed to remove the oxide scale. Then, cold rolling 1 [step 7] was performed so that the total processing rate was 80% or more. Next, after performing a slit [step 8] to remove the off-gauge in the width direction generated by rolling, 0.1 μm generated up to this step in order to increase the solid solubility of the solute element in the solution heat treatment. In order to dissolve the following dispersion as a solid solution, annealing [step 9] is performed at the reaching temperature and holding time shown in Table 2. Here, the dispersion of 0.1 to 3.0 μm slightly diffuses but does not dissolve in solid solution. Next, a recrystallization solution heat treatment [step 10] is performed at an ultimate temperature of 750 to 980 ° C. for the purpose of solid solution of the solute element. Next, in order to precipitate solute elements dissolved in the recrystallization solution heat treatment [step 10], an aging precipitation heat treatment [step 11] is performed. Then, in order to remove the oxide film and remove surface scratches, pickling [step 12] and surface polishing [step 13] are performed, and cold rolling 2 [step 14] of 2 passes or more at 5 to 50% and final. Annealing [step 15] is performed. Through the above steps, a copper alloy plate material was used as a test material. Here, the final plate thickness of the test material was 0.1 mm. Table 3 shows the metallographic structure and evaluation characteristics of each example.

一方、各比較例については、前記の製造条件を表2に示したように変更した以外は、各実施例と同様にして、供試材を製造した。各比較例の金属組織と評価特性を表3に示す。 On the other hand, for each Comparative Example, a test material was produced in the same manner as in each Example except that the above-mentioned production conditions were changed as shown in Table 2. Table 3 shows the metallographic structure and evaluation characteristics of each comparative example.

各供試材について下記の特性評価を行った。 The following characteristics were evaluated for each test material.

a.分散物の測定
分散物の直径および存在(分散)状態の測定は、板材の先後端、幅方向の複数点をサンプリングし、板厚の表層、内部の複数点を観察することによって行なう。サンプルは、銅合金板材から20mm×20mmサイズに切り出し、表面を鏡面研磨および電解研磨した後、走査型電子顕微鏡(SEM)にて観察する。このとき、倍率は1000倍以上で観察し、場合によっては、300μm四方の視野となるよう、複数箇所の観察を行う。分散物のサイズは、SEM観察したときに測定した直径とする。また、直径0.1〜3.0μmの各分散物の半径10.0μm以内の周囲領域内に存在する他の分散物の個数の測定は、場合によっては、1000倍以上の高倍率での観察にて、分散物のサイズと個数を数える方法により行なった。
a. Measurement of dispersion The diameter and presence (dispersion) state of the dispersion are measured by sampling multiple points in the width direction at the front and rear ends of the plate material and observing multiple points on the surface layer and inside of the plate thickness. The sample is cut out from a copper alloy plate to a size of 20 mm × 20 mm, and the surface is mirror-polished and electrolytically polished, and then observed with a scanning electron microscope (SEM). At this time, the magnification is 1000 times or more, and in some cases, a plurality of points are observed so as to have a field of view of 300 μm square. The size of the dispersion shall be the diameter measured at the time of SEM observation. Further, in some cases, the measurement of the number of other dispersions existing in the surrounding region within a radius of 10.0 μm of each dispersion having a diameter of 0.1 to 3.0 μm is observed at a high magnification of 1000 times or more. The method was performed by counting the size and number of the dispersions.

b.耐疲労特性
疲労特性は、JCBA T308:2001(銅および銅合金薄板条の疲労特性試験方法)に準拠し、圧延平行・垂直方向の測定を行った。図1に説明図を示した(板バネ疲労試験)。試験片1はその一端が固定部2に挟まれて固定され、他端が上下方向に振動するナイフエッジ2に挟まれて曲げられる。試験片1の幅は、10mm±0.2mm、試験片1の固定トルクは、固定部3の下部2N・m、上部3N・mである。試験片1の負荷応力値は、下記の式(a)にて求めた。
500MPaの負荷応力にて片振幅を2.0mmとした両振りの繰り返し試験を行い、材料が破断するまでの繰り返し回数(回)を求めた。破断までの繰り返し回数が、圧延平行方向(RD)および圧延垂直方向(TD)のいずれも10回以上を示したものを合格レベルとし、圧延平行方向(RD)および圧延垂直方向(TD)の少なくとも1方が10回未満のものを不合格とした。なお、疲労試験機には、アカシ製作所製の薄板疲労試験機(型式AST52B)を用いた。
b. Fatigue resistance The fatigue characteristics were measured in the parallel and vertical directions of rolling in accordance with JCBA T308: 2001 (Fatigue characteristics test method for copper and copper alloy thin sheet strips). An explanatory diagram is shown in FIG. 1 (leaf spring fatigue test). One end of the test piece 1 is sandwiched and fixed by the fixing portion 2, and the other end is sandwiched and bent by the knife edge 2 vibrating in the vertical direction. The width of the test piece 1 is 10 mm ± 0.2 mm, and the fixing torque of the test piece 1 is 2 N ・ m at the lower part and 3 N ・ m at the upper part of the fixed portion 3. The load stress value of the test piece 1 was calculated by the following formula (a).
A repeated test of double swing with a single amplitude of 2.0 mm was performed under a load stress of 500 MPa, and the number of repetitions (times) until the material broke was determined. Number of repetitions until fracture, a shows the above both 10 6 times parallel to the rolling direction (RD) and the rolling direction perpendicular (TD) to a acceptable level, parallel to the rolling direction (RD) and rolling vertical (TD) at least 1 hand has rejected those of less than 10 6 times. As the fatigue tester, a thin plate fatigue tester (model AST52B) manufactured by Akashi Seisakusho was used.

σ=(3×E×t×δ)/(2×l) ・・・ (a)
ここで式(a)中の符号は、「σ」が最大曲げ応力(N/mm)、「E」がたわみ係数(N/mm)、「t」が試験片厚さ(mm)、「δ」がたわみ量(試験片に与える片振幅)(mm)、そして「l」が試験片セット長さ(mm)である。
σ = (3 × E × t × δ) / (2 × l 2 ) ・ ・ ・ (a)
Here, in the reference numerals in the formula (a), "σ" is the maximum bending stress (N / mm 2 ), "E" is the deflection coefficient (N / mm 2 ), and "t" is the test piece thickness (mm). “Δ” is the amount of deflection (one piece amplitude given to the test piece) (mm), and “l” is the test piece set length (mm).

c.90°W曲げ試験
圧延方向に垂直に幅1.0mm、長さは25.0mmとなるようにプレスによる打ち抜きで加工した。これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、90°W曲げ加工後、圧縮試験機にて180°密着曲げ加工を行った。曲げ加工表面を走査電子顕微鏡(倍率:100倍)で観察し、クラックの有無を調査した。クラックの無いものを「○」、クラックのあるものを「×」と判定した。
c. 90 ° W bending test It was punched by a press so that the width was 1.0 mm and the length was 25.0 mm perpendicular to the rolling direction. W-bent so that the bending axis is perpendicular to the rolling direction is called GW (Good Way), and W-bent so that it is parallel to the rolling direction is called BW (Bad Way), and 90 ° W bending is performed. After that, 180 ° close contact bending was performed with a compression tester. The bent surface was observed with a scanning electron microscope (magnification: 100 times) to investigate the presence or absence of cracks. Those without cracks were judged as "○", and those with cracks were judged as "x".

d.引張強度
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。なお、今回の実施例では、引張強度TSが700MPa以上である場合を合格とした。
d. Tensile strength Three test pieces of JIS Z2201-13B cut out from the direction parallel to rolling were measured according to JIS Z2241, and the average value was shown. In this example, the case where the tensile strength TS was 700 MPa or more was regarded as acceptable.

e.導電率[EC]
20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。導電率は、26%IACS以上を合格とした。
e. Conductivity [EC]
The conductivity was calculated by measuring the specific resistance by the four-terminal method in a constant temperature bath kept at 20 ° C. (± 0.5 ° C.). The distance between the terminals was set to 100 mm. The conductivity was 26% IACS or higher.

f.耐応力緩和特性
日本伸銅協会 JCBA T309:2001(仮:旧日本電子材料工業会標準規格 EMAS−3003)に準じ、以下に示すように、150℃で1000時間保持後の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。耐応力緩和特性は、20%以下を合格とした。
f. Stress Relaxation Characteristics According to JCBA T309: 2001 (provisional: former Japan Electronic Materials Industry Association standard EMAS-3003), measurements were taken under the conditions after holding at 150 ° C for 1000 hours as shown below. An initial stress of 80% of the yield strength was applied by the cantilever method. The stress relaxation resistance was 20% or less.

図2は応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図2(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδ0の距離である。これを150℃の恒温槽に1000時間保持(前記試験片1の状態での熱処理)し、負荷を除いた後の試験片2の位置は、図2(b)に示すように基準からHtの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からH1の距離である。この関係から、応力緩和率(%)は{(Ht−H1)/δ0}×100と算出した。式中、δ0は、基準から試験片1までの距離であり、H1は、基準から試験片3までの距離であり、Htは、基準から試験片2までの距離である。 2A and 2B are explanatory views of a test method for stress relaxation characteristics, in which FIG. 2A shows a state before heat treatment and FIG. 2B shows a state after heat treatment. As shown in FIG. 2A, the position of the test piece 1 when the initial stress of 80% of the proof stress is applied to the test piece 1 held cantilevered on the test table 4 is a distance of δ0 from the reference. .. After holding this in a constant temperature bath at 150 ° C. for 1000 hours (heat treatment in the state of the test piece 1) and removing the load, the position of the test piece 2 is Ht from the reference as shown in FIG. 2 (b). The distance. Reference numeral 3 denotes a test piece when no stress is applied, and the position thereof is the distance of H1 from the reference. From this relationship, the stress relaxation rate (%) was calculated as {(Ht−H1) / δ0} × 100. In the formula, δ0 is the distance from the reference to the test piece 1, H1 is the distance from the reference to the test piece 3, and Ht is the distance from the reference to the test piece 2.

表3にそれらの評価結果を示す。 Table 3 shows the evaluation results.

表3に示す結果から、本発明例2、4、6〜9、11〜16はいずれも、合金組成範囲、分散物の平均直径、300μm四方の測定視野内に存在する分散物の個数、および直径が0.1〜3.0μmの各分散物の半径10.0μm以内の周囲領域内に存在する他の分散物の個数の全てが、本発明の適正範囲内にあるため、高強度で、耐疲労特性、曲げ加工性および耐応力緩和特性が優れており、導電率も合格レベルであった。
一方、比較例1〜4、7〜9は、合金組成範囲、分散物の平均直径、300μm四方の測定視野内に存在する分散物の個数、および直径が0.1〜3.0μmの各分散物の半径10.0μm以内の周囲領域内に存在する他の分散物の個数の少なくとも一つが本発明の適正範囲外であるため、曲げ加工性が劣っており、加えて、強度、耐疲労特性、耐応力緩和特性および導電率の少なくとも一つの特性も劣っているのがわかる。
From the results shown in Table 3, Examples 2, 4, 6 to 9, 11 to 16 of the present invention all have an alloy composition range, an average diameter of the dispersion, the number of dispersions present in the measurement field of 300 μm square, and Since all of the number of other dispersions present in the peripheral region within a radius of 10.0 μm of each dispersion having a diameter of 0.1 to 3.0 μm is within the appropriate range of the present invention, the strength is high. It had excellent fatigue resistance, bending workability, and stress relaxation resistance, and its conductivity was at the acceptable level.
On the other hand, in Comparative Examples 1 to 4, 7 to 9, the alloy composition range, the average diameter of the dispersions, the number of dispersions existing in the measurement field of 300 μm square, and the dispersions having a diameter of 0.1 to 3.0 μm are shown. Since at least one of the number of other dispersions existing in the peripheral region within a radius of 10.0 μm of the object is outside the appropriate range of the present invention, the bending workability is inferior, and in addition, the strength and fatigue resistance characteristics It can be seen that at least one property of stress relaxation resistance and conductivity is also inferior.

本発明によれば、高強度、曲げ加工性および耐疲労特性に優れた銅合金板材およびコネクタを提供することが可能になった。特に、この銅合金板材は、電気・電子機器用部品や自動車車載用部品、例えばコネクタ、リードフレーム、アクチュエータ、放熱部材、リレー、スイッチ、ソケットなどの部品に使用するのに適している。また、本発明に従う銅合金板材の製造方法によれば、上記銅合金板材を好適に製造することができる。 According to the present invention, it has become possible to provide a copper alloy plate material and a connector having high strength, excellent bending workability and fatigue resistance. In particular, this copper alloy plate material is suitable for use in parts for electrical and electronic equipment and parts for automobiles, such as connectors, lead frames, actuators, heat radiating members, relays, switches, and sockets. Further, according to the method for producing a copper alloy plate material according to the present invention, the copper alloy plate material can be suitably produced.

1 試験片
2 ナイフエッジ
3 固定部
10 応力負荷状態の試験片
20 応力を負荷してから熱処理した後の試験片
30 応力無負荷の試験片
40 試験台
1 Test piece 2 Knife edge 3 Fixed part 10 Test piece under stress load 20 Test piece after stress application and heat treatment 30 Test piece without stress load 40 Test stand

Claims (5)

2.5〜6.0質量%Niおよび0.5〜2.0質量%Siを含有し、ならびに0〜0.2質量%Mg、0〜0.01質量%P、0〜0.2質量%Cr、0〜0.2質量%Mn、0〜1.5質量%Co、0〜1.5質量%Zn、0〜0.01質量%Zr、0〜0.17質量%Agおよび0〜0.5質量%Snからなる群から選ばれる少なくとも1成分を合計で0〜2.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、
該銅合金板材中に、複数の元素からなる分散物が存在し、
該分散物は、平均直径が0.1〜3.0μmであり、300μm四方の測定視野内に10個以上10個以下存在し、かつ直径が0.1〜3.0μmの各分散物は、直径が0.1〜3.0μmの各分散物の半径10.0μm以内の周囲領域内に存在する他の分散物の個数が1個以下であり、
前記銅合金板材の平均結晶粒径が30μm以下であることを特徴とする銅合金板材。
Contains 2.5-6.0 mass% Ni and 0.5-2.0 mass% Si, and 0-0.2 mass% Mg, 0-0.01 mass% P, 0-0.2 mass % Cr, 0 to 0.2% by mass Mn, 0 to 1.5% by mass Co, 0 to 1.5% by mass Zn, 0 to 0.01% by mass Zr, 0 to 0.17% by mass Ag and 0 to 0 A copper alloy plate material containing at least one component selected from the group consisting of 0.5% by mass Sn in a total of 0 to 2.0% by mass and having an alloy composition in which the balance is Cu and unavoidable impurities.
In the copper alloy plate material, a dispersion composed of a plurality of elements is present.
The dispersion has an average diameter of 0.1 to 3.0 m, there 10 3 or more 10 5 or less to 300μm square in the measurement field of view, and a diameter of each dispersion 0.1 to 3.0 m the state, and are the number is not more than one other dispersion existing around the area within a radius 10.0μm in diameter each dispersion 0.1 to 3.0 m,
Copper alloy sheet having an average crystal grain size of the copper alloy sheet is characterized in der Rukoto below 30 [mu] m.
0.01〜0.2質量%Mg、0〜0.01質量%P、0.01〜0.2質量%Cr、0.01〜0.2質量%Mn、0〜1.5質量%Co、0.5〜1.5質量%Zn、0〜0.01質量%Zr、0〜0.17質量%Agおよび0.01〜0.5質量%Snからなる群から選ばれる少なくとも1成分を合計で0.05〜2.00質量%含有する、請求項1に記載の銅合金板材。 0.01 to 0.2 mass% Mg, 0 to 0.01 mass% P, 0.01 to 0.2 mass% Cr, 0.01 to 0.2 mass% Mn, 0 to 1.5 mass% Co , 0.5-1.5 mass% Zn, 0-0.01 mass% Zr, 0-0.17 mass% Ag and 0.01-0.5 mass% Sn at least one component selected from the group. The copper alloy plate material according to claim 1, which contains 0.05 to 2.00% by mass in total. 前記銅合金板材の板バネ疲労試験において、負荷応力500MPaで破断に至るまで繰返したときの繰り返し回数が10回以上である、請求項1または請求項2に記載の銅合金板材。 Wherein the leaf spring fatigue test of the copper alloy sheet, the number of repetitions is at least 10 6 times when repeated until rupture by applied stress 500 MPa, the copper alloy sheet according to claim 1 or claim 2. 前記銅合金板材の90°W曲げ試験において、板厚0.1mm、幅1.0mmとした場合の圧延垂直方向の90°W曲げの曲げ半径Rと板厚tとの比(R/t)が2.0以下である、請求項1〜3のいずれか1項に記載の銅合金板材。 In the 90 ° W bending test of the copper alloy plate material, the ratio (R / t) of the bending radius R of the 90 ° W bending in the vertical direction of rolling and the plate thickness t when the plate thickness is 0.1 mm and the width is 1.0 mm. The copper alloy plate material according to any one of claims 1 to 3, wherein the value is 2.0 or less. 請求項1〜4のいずれか1項に記載の銅合金板材からなるコネクタ。 The connector made of the copper alloy plate material according to any one of claims 1 to 4.
JP2016064538A 2016-03-28 2016-03-28 Manufacturing method of copper alloy plate and connector and copper alloy plate Active JP6799933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064538A JP6799933B2 (en) 2016-03-28 2016-03-28 Manufacturing method of copper alloy plate and connector and copper alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064538A JP6799933B2 (en) 2016-03-28 2016-03-28 Manufacturing method of copper alloy plate and connector and copper alloy plate

Publications (2)

Publication Number Publication Date
JP2017179407A JP2017179407A (en) 2017-10-05
JP6799933B2 true JP6799933B2 (en) 2020-12-16

Family

ID=60005502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064538A Active JP6799933B2 (en) 2016-03-28 2016-03-28 Manufacturing method of copper alloy plate and connector and copper alloy plate

Country Status (1)

Country Link
JP (1) JP6799933B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042979B2 (en) * 2020-03-31 2022-03-28 古河電気工業株式会社 Copper alloy plate material and its manufacturing method
KR102609594B1 (en) * 2021-11-26 2023-12-05 한국재료연구원 Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
JP7166476B1 (en) 2022-03-29 2022-11-07 Jx金属株式会社 A strip-shaped copper alloy material and a method for using the same, a semiconductor lead frame, a semiconductor integrated circuit and an electronic device using the strip-shaped copper alloy material, a method for manufacturing a lead frame, and a method for using the strip-shaped copper alloy material as a lead frame

Also Published As

Publication number Publication date
JP2017179407A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP3977376B2 (en) Copper alloy
JP2008266787A (en) Copper alloy material and its manufacturing method
WO2012004868A1 (en) Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
JP2014156623A (en) HIGH INTENSITY Cu-Ni-Co-Si BASED COPPER ALLOY SHEET MATERIAL AND PRODUCTION METHOD THEREOF, AND CONDUCTIVE COMPONENT
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP5619389B2 (en) Copper alloy material
JP2009242814A (en) Copper alloy material and producing method thereof
KR20110088595A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP2006265731A (en) Copper alloy
EP2221391B1 (en) Copper alloy sheet
EP2940166A1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
WO2012026488A1 (en) Copper-cobalt-silicon alloy for electrode material
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
JP2010215976A (en) Copper alloy sheet material
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP2011046970A (en) Copper alloy material and method for producing the same
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R151 Written notification of patent or utility model registration

Ref document number: 6799933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350