JP2009242814A - Copper alloy material and producing method thereof - Google Patents

Copper alloy material and producing method thereof Download PDF

Info

Publication number
JP2009242814A
JP2009242814A JP2008087183A JP2008087183A JP2009242814A JP 2009242814 A JP2009242814 A JP 2009242814A JP 2008087183 A JP2008087183 A JP 2008087183A JP 2008087183 A JP2008087183 A JP 2008087183A JP 2009242814 A JP2009242814 A JP 2009242814A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
heat treatment
stress
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008087183A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaneko
洋 金子
Seiji Hirose
清慈 廣瀬
Koji Sato
浩二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008087183A priority Critical patent/JP2009242814A/en
Publication of JP2009242814A publication Critical patent/JP2009242814A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a for electric or electronic equipment which has high electric conductivity of ≥50% IACS hardly achieved in a Cu-Ni-Si series and is excellent in strength, stress-relaxation resistance and bendability, and to provide a producing method by which the crystal grain diameter of the copper alloy material can be controlled. <P>SOLUTION: The copper alloy material contains, composed by mass%, 0.1-4% X elements (wherein, the X elements are one or two or more elements in transition elements of Ni, Fe, Co and Cr) and 0.01-3% Y elements (wherein, the Y elements are one or two or more elements of Ti, Si, Zr and Hf) and the balance copper with inevitable impurities. The alloy material has ≥50% IACS electric conductivity and ≥600 MPa proof strength and the stress-relaxation ratio at the time of holding 1,000 hours under state of giving the stress having 80% proof strength, is ≤20%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電気・電子機器用のリードフレーム、コネクタ、端子材、リレ−、スイッチ、ソケットなどに適用される銅合金材およびその製造方法に関する。   The present invention relates to a copper alloy material applied to lead frames, connectors, terminal materials, relays, switches, sockets, and the like for electric and electronic devices, and a method for manufacturing the same.

電気・電子機器用途に使用される銅合金材に要求される特性項目は、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性がある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、この要求特性が高まっている。   Characteristic items required for copper alloy materials used for electrical and electronic equipment include conductivity, yield strength (yield stress), tensile strength, bending workability, and stress relaxation resistance. In recent years, the required characteristics have been increased with the downsizing, weight reduction, high functionality, high density mounting, and high usage environment of electric / electronic devices.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、リン青銅、丹銅、黄銅等の銅系材料も広く用いられている。これらの合金はSnやZnの固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせにより強度を向上させている。この方法では、導電率が不十分であり、また、高い冷間加工率を加えることによって高強度を得ているために、曲げ加工性や耐応力緩和特性が不十分である。   Conventionally, as materials for electric and electronic devices, copper-based materials such as phosphor bronze, red brass, brass and the like are widely used in addition to iron-based materials. These alloys have improved strength by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and wire drawing. In this method, the electrical conductivity is insufficient, and high strength is obtained by adding a high cold work rate, so that bending workability and stress relaxation resistance are insufficient.

これに替わる強化法として材料中にナノメートルオーダーの微細な第二相を析出させる析出強化がある。この強化方法は強度が高くなることに加えて、導電率を同時に向上させるメリットがあるため、多くの合金系で行われている。その中で、Cu中にNiとSiの化合物を微細に析出させて強化させたCu−Ni−Si系合金(例えば、CDA[Copper Development Association]登録合金であるCDA70250)は、その強化する能力が高いメリットはあるものの、導電率が不十分であり、更なる高導電化の要求がある。   An alternative strengthening method is precipitation strengthening in which a fine second phase of nanometer order is precipitated in the material. This strengthening method has a merit of improving the conductivity at the same time in addition to increasing the strength, and is therefore performed in many alloy systems. Among them, a Cu—Ni—Si based alloy (for example, CDA 70250 which is a registered CDA [Copper Development Association] registered alloy) strengthened by fine precipitation of a compound of Ni and Si in Cu has the ability to strengthen. Although there is a high merit, the electrical conductivity is insufficient, and there is a demand for further higher conductivity.

また一般的に析出硬化型合金では微細な析出状態を得る時効析出熱処理の前に、溶質原子を固溶させるための溶体化熱処理が中間工程で導入される。この温度は合金系や溶質濃度によって異なるものの750℃から1000℃と高温である。充分な析出硬化量を得るためには溶質原子の濃度を増やし、溶体化処理温度をより高温にして析出密度を増やすことが好ましい。   Further, generally, in the precipitation hardening type alloy, a solution heat treatment for dissolving solute atoms is introduced in an intermediate step before the aging precipitation heat treatment for obtaining a fine precipitation state. Although this temperature varies depending on the alloy system and solute concentration, it is as high as 750 ° C. to 1000 ° C. In order to obtain a sufficient amount of precipitation hardening, it is preferable to increase the concentration of solute atoms and increase the precipitation density by increasing the solution treatment temperature.

また、高導電の実現には、銅母相への溶質原子の固溶限が小さい析出型銅合金系を選択する必要があり、この場合も必要な析出硬化量を得るためには、溶体化温度が高くなる。この溶体化処理温度が高温になるために、材料の結晶粒径が粗大になる問題がある。結晶粒径が粗大な場合、曲げ加工時の局所変形を助長してクラックが発生する不具合や、曲げ部表面のシワが大きくなるために、曲げ部を接点として使用する場合は電流の集中や、材料表面に施されたメッキが割れたりなどの不具合が発生する。この溶体化熱処理での高温下において結晶粒径を小さく制御する技術が求められている。   In order to achieve high conductivity, it is necessary to select a precipitation-type copper alloy system in which the solid solubility limit of the solute atoms in the copper matrix phase is small. The temperature rises. Since the solution treatment temperature becomes high, there is a problem that the crystal grain size of the material becomes coarse. If the crystal grain size is coarse, the problem of cracking by promoting local deformation during bending, and the wrinkle on the surface of the bent part will increase, so when using the bent part as a contact point, Problems such as cracking of the plating applied to the material surface occur. There is a need for a technique for controlling the crystal grain size to be small at a high temperature in the solution heat treatment.

この技術背景に対して、NiとTiの化合物を分散させた高強度銅合金の製造法の発明例がある(例えば、特許文献1参照)。また、TiとFeの化合物を分散させた銅合金の製造法の発明例がある(例えば、特許文献2参照)。   Against this technical background, there is an invention example of a method for producing a high-strength copper alloy in which a compound of Ni and Ti is dispersed (see, for example, Patent Document 1). Further, there is an invention example of a method for producing a copper alloy in which a compound of Ti and Fe is dispersed (for example, see Patent Document 2).

特公平04−053945号公報Japanese Patent Publication No. 04-053945 特開平07−258806号公報JP 07-258806 A

しかし、前述の各特許文献に記載された技術のみでは、強度、導電率、耐応力緩和特性、曲げ加工性を並立させることが難しく、これら全ての要求特性を満足するには至っていない。   However, with only the techniques described in the above-mentioned patent documents, it is difficult to align strength, electrical conductivity, stress relaxation resistance, and bending workability, and all these required characteristics have not been satisfied.

上記のような問題点に鑑み、本発明の目的は、導電率、強度、耐応力緩和特性、曲げ加工性に優れ、電気電子機器用途に適した銅合金材を提供することにある。特に、Cu−Ni−Si系では実現し難い50%IACS以上の高い導電率を安定して実現できる析出型銅合金材と、その製造において結晶粒径を制御するための技術を提供することにある。   In view of the above problems, an object of the present invention is to provide a copper alloy material that is excellent in electrical conductivity, strength, stress relaxation resistance, and bending workability, and is suitable for electrical and electronic equipment applications. In particular, to provide a precipitation-type copper alloy material that can stably realize a high conductivity of 50% IACS or higher, which is difficult to achieve with a Cu-Ni-Si system, and a technique for controlling the crystal grain size in the production thereof. is there.

本発明者等は、銅合金材の組成とその平均結晶粒径および導電性、耐力、応力緩和性、曲げ加工性について検討し、これを適正に規定することにより、これらの特性を改善しうることを知見し、本発明をなすに至った。
すなわち本発明は、
(1)X元素を0.1〜4質量%(ここで、X元素はNi、Fe、Co、Crの遷移元素の中の1種または2種以上である)およびY元素を0.01〜3質量%(ここでY元素はTi、Si、Zr、Hfの中の1種または2種以上である)含有し、残部が銅と不可避不純物からなる銅合金材であって、50%IACS以上の導電率と、500MPa以上の耐力を有し、耐力の80%の応力を付与した状態で1000時間保持したときの応力緩和率が30%以下であり、結晶粒界上に存在する第二相粒子が10〜10個/mmの密度で存在し、平均結晶粒径が10μm以下であることを特徴とする銅合金材、
(2)X元素を0.1〜4質量%(ここで、X元素はNi、Fe、Co、Crの遷移元素の中の1種または2種以上である)およびY元素を0.01〜3質量%(ここでY元素はTi、Si、Zr、Hfの中の1種または2種以上である)含有し、残部が銅と不可避不純物からなる銅合金材であって、50%IACS以上の導電率と、500MPa以上の耐力を有し、耐力の80%の応力を付与した状態で1000時間保持したときの応力緩和率が30%以下であり、第二相粒子の粒子径r(単位:μm)と、粒子の体積分率fの比、r/fの値が、1〜100であり、平均結晶粒径が10μm以下であることを特徴とする銅合金材、
(3)Z元素を0.01〜3質量%(ここで、Z元素はSn、Mg、Zn、Ag、Mn、B、Pの中の1種または2種以上である)更に含有することを特徴とする(1)または(2)記載の銅合金材、
(4)前記第二相が、Si、Co、Ni、Fe、Ti、ZrまたはCrを含む化合物であることを特徴とする(1)〜(3)のいずれかに記載の銅合金材、
(5)銅合金素材に、鋳造[1]、均質化熱処理[2]、熱間加工[3]、水冷[4]、面削[5]、冷間加工[7]、溶体化熱処理[8]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理をこの順に施し、その熱間加工[3]は500℃以上で行って水冷し、その溶体化熱処理は400℃〜700℃の温度帯を10℃〜400℃/秒の昇温速度で行い、その冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和を5〜65%とする請求項1〜4のいずれか1項記載の銅合金材を得ることを特徴とする銅合金材の製造方法、
(6)上記(5)に記載の銅合金材の製造方法において、面削[5]の後に400〜800℃で5秒〜20時間の時効析出熱処理[6]を行い、冷間加工[7]を行うことを特徴とする銅合金材の製造方法、
を提供するものである。
The inventors of the present invention can improve these characteristics by examining the composition of the copper alloy material and its average crystal grain size, conductivity, proof stress, stress relaxation, and bending workability, and appropriately defining these. This has been found and the present invention has been made.
That is, the present invention
(1) 0.1 to 4% by mass of X element (where X element is one or more of transition elements of Ni, Fe, Co and Cr) and Y element is 0.01 to 3% by mass (where Y element is one or more of Ti, Si, Zr, and Hf), the balance being a copper alloy material consisting of copper and inevitable impurities, 50% IACS or more And a stress relaxation rate of 30% or less when held for 1000 hours in a state where a stress of 80% of the proof stress is applied and a second phase existing on the grain boundary. A copper alloy material characterized in that particles exist at a density of 10 4 to 10 8 particles / mm 2 and an average crystal grain size is 10 μm or less;
(2) 0.1 to 4% by mass of X element (where X element is one or more of transition elements of Ni, Fe, Co and Cr) and 0.01 to 0.01% of Y element 3% by mass (where Y element is one or more of Ti, Si, Zr, and Hf), the balance being a copper alloy material consisting of copper and inevitable impurities, 50% IACS or more And a stress relaxation rate when held for 1000 hours in a state where a stress of 80% of the proof stress is applied and having a proof stress of 500 MPa or more, the particle diameter r (unit: second phase particle) : Μm), the ratio of the volume fraction f of the particles, the value of r / f is 1 to 100, and the average crystal grain size is 10 μm or less,
(3) 0.01 to 3% by mass of the Z element (wherein the Z element is one or more of Sn, Mg, Zn, Ag, Mn, B, and P) The copper alloy material according to (1) or (2),
(4) The copper alloy material according to any one of (1) to (3), wherein the second phase is a compound containing Si, Co, Ni, Fe, Ti, Zr or Cr,
(5) Casting [1], homogenization heat treatment [2], hot working [3], water cooling [4], surface cutting [5], cold working [7], solution heat treatment [8] ], Cold working [9], aging precipitation heat treatment [10], cold working [11] and temper annealing [12] in this order, and hot working [3] is 500 ° C. The solution heat treatment is performed as described above, and the solution heat treatment is performed in a temperature range of 400 ° C. to 700 ° C. at a temperature increase rate of 10 ° C. to 400 ° C./second, and the processing rate R1 (%) in the cold working [9]. The copper alloy material according to any one of claims 1 to 4, wherein the sum of the machining rate R2 (%) in cold working [11] is 5 to 65%. Production method,
(6) In the method for producing a copper alloy material according to the above (5), aging precipitation heat treatment [6] is performed at 400 to 800 ° C. for 5 seconds to 20 hours after chamfering [5], and cold working [7 A method for producing a copper alloy material,
Is to provide.

本発明によって、導電率、強度、耐応力緩和特性および曲げ加工性に優れた、電気電子機器の用途に最適な銅合金材とその製造方法を提供することができる。   According to the present invention, it is possible to provide a copper alloy material that is excellent in electrical conductivity, strength, stress relaxation resistance and bending workability, and is optimal for use in electrical and electronic equipment, and a method for producing the same.

本発明の銅合金材の好ましい実施の態様について、詳細に説明する。
まず、本発明の電気・電子機器用に好適な銅合金材を構成する成分元素の添加理由とその含有量について述べる。
A preferred embodiment of the copper alloy material of the present invention will be described in detail.
First, the reason for addition of the component elements constituting the copper alloy material suitable for the electric / electronic device of the present invention and the content thereof will be described.

本発明において、X元素とは、Ni、Fe、Co、Crの3d電子を外殻に持つ遷移元素のことを示し、Y元素とは、Ti、Si、Zr、Hfの価電子が2個または4個である元素のことを示す。X元素とY元素は、NiSiTi、NiSiZr、CoSiTi、CoSi、CuSiTi、CoHfSi、CuHfSi、FeSi、TiSi、NiTiSi、CoTiSi、CrTiSi、FeTi、NiZrSi、CoSiZr、CrTi、NiSi、NiSi、NiTiZr、NiTi、NiCoSiなどの化合物や、これらの化合物の構成元素が他の元素に置換された化合物が、銅中で主に50nm以下の微細な大きさで母相に対して整合に析出することによって、強度、導電率、耐応力緩和特性を向上するはたらきがある。 In the present invention, the X element indicates a transition element having 3d electrons of Ni, Fe, Co, and Cr in the outer shell, and the Y element indicates two valence electrons of Ti, Si, Zr, and Hf or It shows four elements. X element and Y element are NiSiTi, NiSiZr, CoSiTi, Co 2 Si, CuSiTi, CoHfSi, CuHfSi, Fe 5 Si 3 , Ti 5 Si 3 , Ni 3 Ti 2 Si, Co 3 Ti 2 Si, Cr 3 Ti 2 Si , Fe 2 Ti, Ni 3 Zr 2 Si, CoSiZr, Cr 2 Ti, Ni 2 Si, Ni 3 Si, Ni 9 Ti 2 Zr, Ni 3 Ti, NiCoSi, and other constituent elements of these compounds The compound substituted with the element precipitates in copper with a fine size of mainly 50 nm or less in conformity with the parent phase, thereby improving strength, conductivity, and stress relaxation resistance.

この効果は、X元素の含有量が0.1質量%未満、または、Y元素の含有量が0.01質量%未満の場合は、その析出硬化量が不十分であるため、好ましくない。また、X元素が4質量%、または、Y元素とも3質量%を上回る場合は、合金材組織中に粗大な晶出物が発生してメッキ性を悪化させたり、曲げ加工時のクラックの原因になったりするため、好ましくない。
したがって、X元素の範囲は、0.1〜4質量%、好ましくは0.3〜3.0質量%、更に好ましくは、0.3〜2.5質量%である。Y元素の含有範囲は、0.01〜3質量%、好ましくは0.03〜2.0質量%、更に好ましくは0.04〜1.5質量%である。
This effect is not preferable when the X element content is less than 0.1% by mass or the Y element content is less than 0.01% by mass because the precipitation hardening amount is insufficient. In addition, when the X element exceeds 4 mass% or the Y element exceeds 3 mass%, coarse crystallized matter is generated in the alloy material structure to deteriorate the plating property or cause cracks during bending. This is not preferable.
Therefore, the range of the X element is 0.1 to 4% by mass, preferably 0.3 to 3.0% by mass, and more preferably 0.3 to 2.5% by mass. The content range of Y element is 0.01-3 mass%, Preferably it is 0.03-2.0 mass%, More preferably, it is 0.04-1.5 mass%.

本発明では、Z元素とは、Sn、Mg、Zn、Ag、Mn、B、Pを示す。
Sn、Mg、Zn、Ag、MnはX、Y元素と化合物を形成して相乗効果によって、また一部は単独で銅中に固溶することで、強度や耐応力緩和特性を向上させる働きがある。B、PはXとY元素、またはXとYとZ元素からなる微細析出物の密度を向上させることによって強度と耐応力緩和特性を向上させる作用を発揮する。また、Z元素は後述する、結晶粒径の制御に効果のある第二相の構成元素となる場合もある。ここで、第二相とは主に析出物と一部の晶出物のことを指す。
Z元素が0.01質量%未満の場合ではこの作用効果が充分に得らない。また、3質量%を上回る場合では、導電率の低下や鋳造性の悪化を招くため好ましくない。したがって、Z元素の含有量範囲は、0.01〜3質量%、好ましくは0.03〜2質量%、更に好ましくは0.05〜1.0質量%である。
In the present invention, the Z element represents Sn, Mg, Zn, Ag, Mn, B, and P.
Sn, Mg, Zn, Ag, and Mn form a compound with X and Y elements and have a synergistic effect, and partly dissolve in copper alone, thereby improving strength and stress relaxation resistance. is there. B and P exhibit an effect of improving strength and stress relaxation resistance by improving the density of fine precipitates composed of X and Y elements or X, Y and Z elements. In addition, the Z element may be a constituent element of the second phase that is effective for controlling the crystal grain size, which will be described later. Here, the second phase mainly refers to precipitates and some crystallized substances.
When the element Z is less than 0.01% by mass, this effect cannot be obtained sufficiently. Moreover, when exceeding 3 mass%, since the fall of electroconductivity and the deterioration of castability are caused, it is unpreferable. Therefore, the content range of the Z element is 0.01 to 3% by mass, preferably 0.03 to 2% by mass, and more preferably 0.05 to 1.0% by mass.

また、高温の溶体化熱処理で結晶粒径を制御でき、結晶粒径の平均が10μm以下の場合に曲げ加工性を良好にすることができる。結晶粒を小さくすることによって、強度を向上する作用効果がある。好ましい平均結晶粒径は6μm以下、さらに好ましくは4μm以下とすることにより、良好な曲げ加工性と強度が得られる。
なお、平均結晶粒径は後述するJISH0501の切断法に基づき測定できる。
Further, the crystal grain size can be controlled by high-temperature solution heat treatment, and the bending workability can be improved when the average crystal grain size is 10 μm or less. There is an effect of improving the strength by reducing the crystal grains. By setting the preferable average crystal grain size to 6 μm or less, more preferably 4 μm or less, good bending workability and strength can be obtained.
The average crystal grain size can be measured based on the cutting method of JISH0501 described later.

また、結晶粒径を制御するにあたって、第二相を分散させることが有効であり、曲げ加工性を悪化させる、750℃以上などの高温での溶体化熱処理時の結晶粒径粗大化に対して、第二相を適切に分散させることが特に有効である。これは結晶粒の粒成長の時に、結晶粒界が分散している第二相粒子を通過する際の分散粒子と結晶粒界の界面においてエネルギーの利得が生まれ、粒界移動を遅延するためであると推察される。この一連の第二相粒子による結晶粒成長を抑制する効果の結果、結晶粒径を小さく保持することによって曲げ加工性を改善することができる。   Further, in controlling the crystal grain size, it is effective to disperse the second phase, which deteriorates the bending processability, and the coarsening of the crystal grain size during solution heat treatment at a high temperature such as 750 ° C. or higher. It is particularly effective to disperse the second phase appropriately. This is because, during grain growth, energy gain is generated at the interface between the dispersed grain and the grain boundary when passing through the second phase grain in which the grain boundary is dispersed, and the grain boundary movement is delayed. It is assumed that there is. As a result of the effect of suppressing the crystal grain growth by the series of second phase particles, bending workability can be improved by keeping the crystal grain size small.

本発明における、結晶粒径制御の効果を充分に得るための適切な第二相分散状態の規定は、以下の2種類に方法による。なお、第二相の粒径と分布密度は後述する方法に基づき測定できる。
第一は、結晶粒界上に存在する第二相粒子が、10〜10個/mmの密度で存在することである。この場合、更に好ましくは、5×10〜5×10個/mmである。10個/mmの密度よりも低い場合は、結晶粒成長を抑制する効果が不十分であり、10個/mmの密度を超える場合は、結晶粒界が脆弱になり、曲げ加工性を低下させるため、好ましくない。
第二は、結晶粒内と結晶粒界上を含めた全第二相粒子の粒子径r(単位はμm)と、粒子の体積分率fの比、r/fの値が1〜100であることである。ここで、体積分率fの表示は、f=0.005が0.5vol%を表すということである。更に好ましくは、r/fの値が5〜90である。r/fの値が1より小さい場合は、体積分率に対して粒子径が小さ過ぎるために、溶体化熱処理の高温において粒成長抑制効果が充分に得られず、また、r/fの値が100より大きい場合は、体積分率に対して粒子径が大き過ぎるために曲げ変形時の応力集中を引き起こして曲げ加工性を悪化させるため、好ましくない。
In the present invention, the appropriate second phase dispersion state for sufficiently obtaining the effect of controlling the crystal grain size is defined by the following two methods. The particle size and distribution density of the second phase can be measured based on the method described later.
The first is that the second phase particles present on the grain boundaries are present at a density of 10 4 to 10 8 particles / mm 2 . In this case, it is more preferably 5 × 10 5 to 5 × 10 7 pieces / mm 2 . When the density is lower than 10 4 pieces / mm 2, the effect of suppressing the growth of crystal grains is insufficient, and when the density exceeds 10 8 pieces / mm 2 , the grain boundaries become brittle and bending work is performed. This is not preferable because it lowers the properties.
Second, the ratio of the particle diameter r (unit: μm) of all second phase particles including the inside of the crystal grains and the crystal grain boundaries to the volume fraction f of the particles, and the value of r / f is 1-100. That is. Here, the display of the volume fraction f is that f = 0.005 represents 0.5 vol%. More preferably, the value of r / f is 5 to 90. When the value of r / f is smaller than 1, the particle diameter is too small with respect to the volume fraction, so that the effect of suppressing grain growth cannot be sufficiently obtained at the high temperature of the solution heat treatment, and the value of r / f Is larger than 100, the particle diameter is too large with respect to the volume fraction, which causes stress concentration at the time of bending deformation and deteriorates bending workability, which is not preferable.

この第二相は、Si、Co、Ni、Fe、Ti、Zr、Crといった融点が1400℃以上の元素から構成されることによって、より高温でも銅中で固溶せずに安定して存在するために、結晶粒径の粗大化を抑制する作用・効果を大きくできる。
この第二相の構成は、具体的には、(a)これらの元素が単体の場合、(b)これらの元素がSi、Co、Ni、Fe、Ti、Zr、Crを含む化合物の場合、(c)これらの元素がCu−Zr、Cu−Hfなどの銅と化合物を形成している場合が含まれる。
This second phase is composed of elements having a melting point of 1400 ° C. or higher, such as Si, Co, Ni, Fe, Ti, Zr, and Cr, and thus stably exists without being dissolved in copper even at higher temperatures. Therefore, the action and effect of suppressing the coarsening of the crystal grain size can be increased.
Specifically, the configuration of this second phase is (a) when these elements are simple substances, (b) when these elements are compounds containing Si, Co, Ni, Fe, Ti, Zr, Cr, (C) The case where these elements form a compound with copper such as Cu—Zr and Cu—Hf is included.

上記(b)の場合としては、例えば、Ni−Co−Cr−Si、Co−Si、Ni−Co−Si、Cr−Ni−Si、Co−Cr−Si、Ni−Zr、Mn−Zr、Ni−Mn−Zr、Fe−Zr、Mn−Zr、Fe−Mn−Zr、Ni−Ti、Co−Ti、Ni−Co−Ti、Fe−Ni−Si、Fe−Si、Mn−Si、Ni−Mn−P、Fe−P、Ni−P、Fe−Ni−P、Mn−B、Fe−B、Mn−Fe−B、Ni−B、Cr−B、Ni−Cr−B、Ni−Co−B、Ni−Co−Hf−Si、Ni−Co−Al、Ni−Ca、Ni−Co−Mn−Sn、Co−Ni−P、Al−Hf、Al−Zr、Al−Crなどの化合物を形成している場合である。
この第二相は、中でもCr−Ni−Si、Co−Cr−Si、Fe−Ni−Si、のような三元からなる化合物が好ましい。
In the case of (b), for example, Ni—Co—Cr—Si, Co—Si, Ni—Co—Si, Cr—Ni—Si, Co—Cr—Si, Ni—Zr, Mn—Zr, Ni -Mn-Zr, Fe-Zr, Mn-Zr, Fe-Mn-Zr, Ni-Ti, Co-Ti, Ni-Co-Ti, Fe-Ni-Si, Fe-Si, Mn-Si, Ni-Mn -P, Fe-P, Ni-P, Fe-Ni-P, Mn-B, Fe-B, Mn-Fe-B, Ni-B, Cr-B, Ni-Cr-B, Ni-Co-B , Ni-Co-Hf-Si, Ni-Co-Al, Ni-Ca, Ni-Co-Mn-Sn, Co-Ni-P, Al-Hf, Al-Zr, Al-Cr, etc. It is a case.
The second phase is preferably a ternary compound such as Cr—Ni—Si, Co—Cr—Si, or Fe—Ni—Si.

次に、本発明の合金系の特性を最も有効に引き出し、電気電子機器用として適切な銅合金材の製造方法について、その好ましい処理工程を例示する。ここで、「銅合金材」とは、特定の形状を有する銅合金(板、条、線、棒、箔など)を意味するが、以下の例では板材または条材に適用した例を示す。   Next, the preferable processing steps will be exemplified with respect to a method for producing a copper alloy material suitable for use in electrical and electronic equipment, which is most effective in extracting the characteristics of the alloy system of the present invention. Here, “copper alloy material” means a copper alloy (plate, strip, wire, bar, foil, etc.) having a specific shape, but in the following example, an example applied to a plate or strip is shown.

まず、本発明の銅合金材の製造方法の基本的な工程を説明する。この工程は、銅合金素材に、鋳造[1]、均質化熱処理[2]、熱間加工[3]、水冷[4]、面削[5]、冷間加工[7]、溶体化熱処理[8]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理をこの順に施す工程である。   First, the basic steps of the method for producing a copper alloy material of the present invention will be described. This step is performed on a copper alloy material by casting [1], homogenizing heat treatment [2], hot working [3], water cooling [4], face cutting [5], cold working [7], solution heat treatment [ 8], cold working [9], aging precipitation heat treatment [10], cold working [11], and temper annealing [12].

熱間加工[3]は、500℃〜1000℃において熱間加工を行い、鋳造組織に動的再結晶を起こさせて等軸組織を得るのが好ましい。500℃以下の場合は、粗大な析出物が発生し、本発明で見出した結晶粒の粗大化抑制に有効な第二相粒子の分散粒子を実現し難くなるため、好ましくない。より好ましくは、650〜950℃である。
溶体化熱処理[8]は400℃〜700℃の温度帯を10℃〜400℃/秒の昇温速度で行うのが好ましい。10℃/秒よりも遅い場合は昇温中に回復が起きてしまい、再結晶核生成頻度の低下によって結晶粒径が粗大化してしまうため、また、400℃/秒よりも速い昇温速度の場合は昇温中に析出する第二相粒子の分量が低下し、本発明で見出した結晶粒の粗大化抑制に有効な第二相粒子の分散粒子を実現し難くなるため、好ましくない。より好ましくは、20℃〜300℃/秒である。
冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和は5〜65%とするのが好ましい。冷間加工[9]は、時効析出熱処理[10]において高密で均一で微細な析出状態を得て、強度、導電、耐応力緩和特性を良好にする効果がある。特に、本発明において、溶体化時に第二相の分散粒子を積極的に残存させているため、溶体化された溶質原子がその粒子の成長ではなく、結晶粒内の微細析出物として働くために、重要である。また、冷間加工[11]は、加工硬化によって優れた強度を実現する。この冷間加工の加工率の合計が5%以下の場合は、上記の効果を充分に得られないため、また、65%以上の場合は曲げ加工性を著しく低下させるために、好ましくない。二つの加工率の合計を5〜65%にすることによって、全ての特性を良好にすることが出来る。好ましくは、加工率10〜60%、更に好ましくは15〜55%である。
In the hot working [3], it is preferable to perform hot working at 500 ° C. to 1000 ° C. to cause dynamic recrystallization in the cast structure to obtain an equiaxed structure. When the temperature is 500 ° C. or lower, coarse precipitates are generated, and it is difficult to realize dispersed particles of second phase particles effective in suppressing the coarsening of crystal grains found in the present invention, which is not preferable. More preferably, it is 650-950 degreeC.
The solution heat treatment [8] is preferably performed in a temperature range of 400 ° C. to 700 ° C. at a rate of temperature increase of 10 ° C. to 400 ° C./second. If it is slower than 10 ° C./second, recovery occurs during the temperature rise, and the crystal grain size becomes coarse due to a decrease in the frequency of recrystallization nucleation. Also, the temperature rise rate is faster than 400 ° C./second. In this case, the amount of the second phase particles precipitated during the temperature rise is decreased, and it is difficult to realize the dispersed particles of the second phase particles effective in suppressing the coarsening of the crystal grains found in the present invention, which is not preferable. More preferably, it is 20 degreeC-300 degreeC / second.
The sum of the processing rate R1 (%) in the cold processing [9] and the processing rate R2 (%) in the cold processing [11] is preferably 5 to 65%. Cold working [9] has the effect of obtaining a dense, uniform and fine precipitation state in the aging precipitation heat treatment [10] and improving strength, conductivity and stress relaxation resistance. In particular, in the present invention, since the dispersed particles of the second phase are actively left at the time of solution treatment, the solute atoms that are solutionized work not as the growth of the particles but as fine precipitates in the crystal grains. ,is important. Moreover, the cold work [11] realizes excellent strength by work hardening. When the total of the cold working ratios is 5% or less, the above effect cannot be obtained sufficiently, and when it is 65% or more, the bending workability is remarkably lowered. By setting the total of the two processing rates to 5 to 65%, all characteristics can be improved. Preferably, the processing rate is 10 to 60%, more preferably 15 to 55%.

さらに、結晶粒成長に有効な第二相の分散状態を実現する方法として、面削[4]の後に400〜800℃で5秒〜20時間の時効析出熱処理[5]を施すことが好ましい。
結晶粒径を制御するための第2相は、熱間加工[3]の冷却過程や溶体化熱処理[7]の昇温過程で析出し、結晶粒径を小さく制御することに寄与するが、時効析出熱処理[5]は、前記第2相の密度をさらに高密にする働きがある。この温度が400℃未満または800℃を上回る場合や処理時間が5秒未満の場合は、その効果が小さい。20時間を上回る場合は、第2相の密度が粗大になるためにその効果が小さい。時効析出熱処理[5]の温度は好ましくは、425〜675℃、更に好ましくは450〜650℃の温度範囲である。
Furthermore, as a method for realizing a dispersed state of the second phase effective for crystal grain growth, it is preferable to perform aging precipitation heat treatment [5] at 400 to 800 ° C. for 5 seconds to 20 hours after the chamfering [4].
The second phase for controlling the crystal grain size precipitates during the cooling process of hot working [3] and the temperature increasing process of solution heat treatment [7], and contributes to controlling the crystal grain size small. The aging precipitation heat treatment [5] has a function of further increasing the density of the second phase. When this temperature is less than 400 ° C. or over 800 ° C. or when the treatment time is less than 5 seconds, the effect is small. When it exceeds 20 hours, the density of the second phase becomes coarse, so the effect is small. The temperature of the aging precipitation heat treatment [5] is preferably in the temperature range of 425 to 675 ° C, more preferably 450 to 650 ° C.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。
なお、実施例で得られた銅合金材の供試材について、下記の特性調査を行った。
A.耐力[YS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を求めた。
B.導電率[EC]:
20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
C.応力緩和率[SR]:
日本電子材料工業会標準規格 EMAS−3003に準じて150℃×1000時間の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
図1は応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図1(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持し、負荷を除いた後の試験片2の位置は、図1(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。
この関係から、応力緩和率(%)は(H−H)/(δ−H)×100と算出した。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
In addition, about the test material of the copper alloy material obtained in the Example, the following characteristic investigation was conducted.
A. Yield strength [YS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was obtained.
B. Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.
C. Stress relaxation rate [SR]:
The measurement was performed under the conditions of 150 ° C. × 1000 hours in accordance with Japan Electronic Material Industries Association Standard EMAS-3003. An initial stress of 80% of the proof stress was applied by the cantilever method.
FIG. 1 is an explanatory diagram of a stress relaxation characteristic test method, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment. As shown in FIG. 1A, the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of δ 0 from the reference. is there. This was held for 1000 hours in a thermostat at 0.99 ° C., the position of the test piece 2 after removing the load, the distance from the reference H t as shown in FIG. 1 (b). 3 is a test piece when no stress is applied, and its position is a distance H 1 from the reference.
From this relationship, the stress relaxation rate (%) was calculated as (H t −H 1 ) / (δ 0 −H 1 ) × 100.

D.曲げ加工性[R/t]:
圧延方向に平行に幅10mm、長さ25mmに切出し、これに曲げの軸が圧延方向に直角と平行にW曲げし、曲げ部における割れの有無を光学顕微鏡および走査型電子顕微鏡(SEM)によりその曲げ加工部位の割れの有無を観察し、割れが発生しない限界の曲げ半径Rと板厚tの比を採用して、R/tを算出した。測定は供試材から各板厚の板巾w=10(mm)のサンプルを金属研磨粉で表面上を軽くこすり酸化膜を除去した後、曲げの内側の角度が90°になるようなw曲げを圧延方向に平行なサンプルについての曲げ(GOOD WAY:以下GW)、圧延方向に垂直なサンプルについての曲げ(BAD WAY:以下BW)の2種類において行った。
E.平均結晶粒径[GS]:
供試材の圧延方向に垂直な断面を湿式研磨、バフ研磨により鏡面に仕上げた後、クロム酸:水=1:1の液で数秒研磨面を腐食した後、走査型電子顕微鏡(SEM)の反射電子像を用いて400〜1000倍の倍率で写真をとり、断面粒径をJIS H0501のクロスカット法によって測定した。
F.第2相の粒子径[r]と体積分率[f]と粒界上の分布密度[ρ]:
供試材を直径3mmへ打ち抜き、ツインジェット研磨法を用いて薄膜研磨を行って観察試験片を作製した。加速電圧300kVの透過型電子顕微鏡(TEM)で5000倍の写真を任意で10視野ずつ撮影して、その写真上で第2相の粒子径と密度を測定した。等厚干渉縞から観察試験片の厚さを測定して、観察視野内の全体積のうちの第二相粒子の体積の割合を体積分率とした。
G.第二相の構成原子の同定[C]
上記TEM付属のエネルギー分散型X線元素分析装置(EDX)を使用した。
D. Bending workability [R / t]:
Cut to a width of 10 mm and a length of 25 mm parallel to the rolling direction, and the bending axis is W-bent parallel to the perpendicular to the rolling direction, and the presence or absence of cracks in the bent portion is checked with an optical microscope and a scanning electron microscope (SEM). R / t was calculated by observing the presence or absence of cracks in the bent part and adopting the ratio of the bending radius R and the plate thickness t, at which no cracks were generated. The measurement is performed such that a sample with a plate width w = 10 (mm) of each plate thickness is lightly rubbed on the surface with a metal polishing powder to remove the oxide film, and then the inner angle of bending becomes 90 °. Bending was performed in two types: bending for a sample parallel to the rolling direction (GOOD WAY: hereinafter GW) and bending for a sample perpendicular to the rolling direction (BAD WAY: hereinafter BW).
E. Average crystal grain size [GS]:
After the cross section perpendicular to the rolling direction of the test material is mirror-polished by wet polishing and buffing, the polished surface is corroded for several seconds with a solution of chromic acid: water = 1: 1, and then subjected to scanning electron microscope (SEM). A photograph was taken at a magnification of 400 to 1000 times using the backscattered electron image, and the cross-sectional particle size was measured by the cross cut method of JIS H0501.
F. Particle size [r], volume fraction [f] and distribution density [ρ] on the grain boundary of the second phase:
The specimen was punched into a diameter of 3 mm, and thin film polishing was performed using a twin jet polishing method to produce an observation test piece. Photographic images with a magnification of 300 kV were arbitrarily taken at 10 fields of view with a transmission electron microscope (TEM) at an acceleration voltage of 300 kV, and the particle diameter and density of the second phase were measured on the photographs. The thickness of the observation specimen was measured from the equal thickness interference fringes, and the volume fraction of the second phase particles in the total volume in the observation field was taken as the volume fraction.
G. Identification of constituent atoms of the second phase [C]
The energy dispersive X-ray elemental analyzer (EDX) attached to the TEM was used.

(実施例1)
下記の表1−1、表1−2に示す成分・組成(質量%)になるようにX元素およびY元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化熱処理後、断面減少率が50%以上で処理温度が500℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。
この後の工程は、次に記載する工程A〜Dのいずれかの(表示する)処理を施すことによって銅合金材を製造した。
Example 1
The X element and the Y element are blended so as to have the components and composition (mass%) shown in Table 1-1 and Table 1-2 below, and an alloy consisting of Cu and inevitable impurities is melted in a high frequency melting furnace, This was cast at a cooling rate of 0.1 to 100 ° C./second to obtain an ingot. This is subjected to homogenization heat treatment at 900 to 1050 ° C. for 0.5 to 10 hours, and after hot working with a cross-section reduction rate of 50% or more and a processing temperature of 500 ° C. or more, water quenching is performed to remove oxide scale. Carved for.
In the subsequent process, a copper alloy material was manufactured by performing (displaying) any one of the processes A to D described below.

工程A:断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行った。
工程B:断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、400〜650℃の時効析出熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行った。
工程C:400〜650℃の時効析出熱処理を施し、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行った。
工程D:400〜650℃の時効析出熱処理を施し、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、400〜550℃の時効析出熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行った。
Step A: Cold work with a cross-section reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C., cold work with a cross-section reduction rate of 5 to 50%, and aging at 400 to 650 ° C. Precipitation heat treatment was performed, finish cold working of 5 to 50% was performed, and temper annealing was performed at 200 to 550 ° C. for 5 seconds to 10 hours.
Step B: Cold work with a cross-section reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C, aging precipitation heat treatment at 400 to 650 ° C, and cold reduction with a cross-section reduction rate of 5 to 50% An aging precipitation heat treatment at 400 to 650 ° C. was performed, a finish cold work at 5 to 50% was performed, and temper annealing was performed at 200 to 550 ° C. for 5 seconds to 10 hours.
Step C: Aging precipitation heat treatment at 400 to 650 ° C., cold working with a cross-section reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C., and a cross-section reduction rate of 5 to 50% An aging precipitation heat treatment at 400 to 650 ° C. was performed, a finish cold work at 5 to 50% was performed, and temper annealing was performed at 200 to 550 ° C. for 5 seconds to 10 hours.
Step D: Aging precipitation heat treatment at 400 to 650 ° C., cold working with a cross-sectional reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C., and aging precipitation heat treatment at 400 to 550 ° C. In addition, a cold working with a cross-sectional reduction rate of 5 to 50% is performed, an aging precipitation heat treatment at 400 to 650 ° C. is performed, a finish cold working at 5 to 50% is performed, and a temperature of 200 to 550 ° C. is applied for 5 seconds to 10 hours. Temper annealing was performed.

得られた銅合金材の各一部を供試材とし、その各供試材について、耐力[YS]、導電率[EC]、応力緩和率[SR]、曲げ加工性[R/t]、平均結晶粒径[GS]、結晶粒界上の第二相粒子の密度[ρ]、第二相の構成原子[C]の調査を行い、得られた結果を表1−1、表1−2に示した。なお、表中「10^nは10を表す」(以後の表中でも、同様である)。 Each part of the obtained copper alloy material was used as a test material. For each test material, yield strength [YS], conductivity [EC], stress relaxation rate [SR], bending workability [R / t], The average crystal grain size [GS], the density [ρ] of the second phase particles on the grain boundary, and the constituent atoms [C] of the second phase were investigated, and the obtained results are shown in Table 1-1 and Table 1- It was shown in 2. In the table, “10 ^ n represents 10 n ” (the same applies to the following tables).

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

表1で明らかなように、本発明例1−1〜本発明例1−32は、耐力、導電性、耐応力緩和特性に優れた。しかし、表1−2に示すように、本発明の規定を満たさない場合は、特性が劣っていた。すなわち、比較例1−1はX元素の量が少ないために、強度と導電率と耐応力緩和特性が劣った。比較例1−2はX元素の量が多いために固溶原子量が増え、導電率が劣った。比較例1−3はY元素の量が少ないために、強度と導電率と耐応力緩和特性が劣った。比較例1−4はY元素の量が多いために、固溶原子量が増え、導電率が劣った。比較例1−5は粒界上の第二相の密度が低いために、結晶粒径が粗大化し曲げ加工性が劣った。比較例1−6は粒界上の第二相の密度が多いために、粒界割れを引き起こし、結晶粒径が粗大化し曲げ加工性が劣った。   As is clear from Table 1, Invention Example 1-1 to Invention Example 1-32 were excellent in yield strength, conductivity, and stress relaxation resistance. However, as shown in Table 1-2, the characteristics were inferior when the provisions of the present invention were not satisfied. That is, since Comparative Example 1-1 had a small amount of X element, the strength, conductivity, and stress relaxation resistance were inferior. In Comparative Example 1-2, since the amount of X element was large, the amount of solid solution atoms was increased and the conductivity was inferior. Since Comparative Example 1-3 had a small amount of Y element, the strength, conductivity, and stress relaxation resistance were inferior. Since Comparative Example 1-4 had a large amount of Y element, the amount of solid solution atoms increased and the conductivity was inferior. In Comparative Example 1-5, since the density of the second phase on the grain boundary was low, the crystal grain size was coarse and bending workability was poor. In Comparative Example 1-6, since the density of the second phase on the grain boundary was large, grain boundary cracking was caused, the crystal grain size was coarsened, and bending workability was inferior.

(実施例2)
下記の表2−1、表2−2に示す成分・組成になるようにX元素、Y元素を配合し、残部がCuと不可避不純物からなる銅合金を上記実施例1に記載したと同様の製造方法に従って作製し、その各一部を供試材とした。
この各供試材について、耐力[YS]、導電率[EC]、応力緩和率[SR]、曲げ加工性[R/t]、平均結晶粒径[GS]、第二相粒子の粒子径と体積分率との比[r/f]、第二相の構成原子[C]の調査を行い、得られた結果を表2−1、表2−2に示した。
(Example 2)
The X element and Y element are blended so as to have the components and compositions shown in Table 2-1 and Table 2-2 below, and the copper alloy consisting of Cu and inevitable impurities is the same as described in Example 1 above. It produced according to the manufacturing method, and each one part was made into the test material.
For each of the test materials, the yield strength [YS], the electrical conductivity [EC], the stress relaxation rate [SR], the bending workability [R / t], the average crystal grain size [GS], the particle size of the second phase particles and The ratio [r / f] to the volume fraction and the constituent atoms [C] of the second phase were investigated, and the obtained results are shown in Tables 2-1 and 2-2.

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

表2−1で明らかなように、本発明例2−1〜本発明例2−32は耐力、導電性、耐応力緩和特性に優れた。しかし、表2−2に示すように、本発明の成分量の規定値を満たさない場合は、特性が劣っていた。すなわち、比較例2−1はX元素の量が少ないために、強度と導電率と耐応力緩和特性が劣った。比較例2−2はX元素の量が多いために固溶原子量が増え、導電率が劣った。比較例2−3はY元素の量が少ないために、強度と導電率と耐応力緩和特性が劣った。比較例2−4はY元素の量が多いために、固溶原子量が増え、導電率が劣った。比較例2−5はr/fの値が小さく結晶粒が粗大化したために、また、比較例2−6はr/fの値が大きく粗大な第二相で曲げ変形時にクラックが発生し、曲げ加工性が劣化した。   As is apparent from Table 2-1, Invention Example 2-1 to Invention Example 2-32 were excellent in yield strength, conductivity, and stress relaxation resistance. However, as shown in Table 2-2, the characteristics were inferior when the prescribed values of the component amounts of the present invention were not satisfied. That is, Comparative Example 2-1 was inferior in strength, electrical conductivity, and stress relaxation resistance due to the small amount of X element. In Comparative Example 2-2, since the amount of X element was large, the amount of solid solution atoms increased and the conductivity was inferior. Since Comparative Example 2-3 had a small amount of Y element, the strength, conductivity, and stress relaxation resistance were inferior. In Comparative Example 2-4, since the amount of the Y element was large, the amount of solid solution atoms increased and the conductivity was inferior. Since Comparative Example 2-5 has a small r / f value and crystal grains are coarse, Comparative Example 2-6 has a large r / f value and a coarse second phase, and cracks are generated during bending deformation. Bending workability deteriorated.

(実施例3)
下記の表3−1、表3−2に示す成分・組成になるようにX元素、Y元素およびZ元素を配合し、残部がCuと不可避不純物からなる銅合金を上記実施例1に記載したと同様の製造方法に従って合金材を作製し、その各一部を供試材とした。この各供試材について、耐力[YS]、導電率[EC]、応力緩和率[SR]、曲げ加工性[R/t]、平均結晶粒径[GS]、結晶粒界上の第二相粒子の密度[ρ]、第二相の構成原子[C]の調査を行い、得られた結果を表3−1、表3−2に示した。
(Example 3)
The copper alloy which mix | blended X element, Y element, and Z element so that it might become a component and composition shown in the following Table 3-1 and Table 3-2, and the remainder consists of Cu and an unavoidable impurity was described in the said Example 1. An alloy material was prepared according to the same manufacturing method as above, and a part of each was used as a test material. For each of these test materials, yield strength [YS], conductivity [EC], stress relaxation rate [SR], bending workability [R / t], average crystal grain size [GS], second phase on grain boundaries The density [ρ] of the particles and the constituent atoms [C] of the second phase were investigated, and the obtained results are shown in Tables 3-1 and 3-2.

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

表3−1で明らかなように、本発明例3−1〜本発明例3−32は耐力、導電性、耐応力緩和特性、曲げ加工性に優れた。しかし、表3−2に示すように、本発明の規定を満たさない場合は、特性が劣っていた。すなわち、比較例3−1〜3−3はZ元素の量が多いために固溶原子量が増え、導電率が劣った。比較例3−4は粒界上の第二相の密度が低い為に、結晶粒径が粗大化し曲げ加工性が劣った。比較例3−5は粒界上の第二相の密度が多い為に、粒界割れを引き起こし、結晶粒径が粗大化し曲げ加工性が劣った。   As is apparent from Table 3-1, Invention Example 3-1 to Invention Example 3-32 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Table 3-2, the characteristics were inferior when the provisions of the present invention were not satisfied. That is, in Comparative Examples 3-1 to 3-3, since the amount of the Z element was large, the amount of dissolved atoms was increased and the conductivity was inferior. In Comparative Example 3-4, since the density of the second phase on the grain boundary was low, the crystal grain size was coarse and bending workability was poor. In Comparative Example 3-5, since the density of the second phase on the grain boundary was large, grain boundary cracking was caused, the crystal grain size was coarsened, and bending workability was inferior.

(実施例4)
下記の表4−1、表4−2に示す成分・組成になるようにX元素、Y元素およびZ元素を配合し、残部がCuと不可避不純物からなる銅合金を上記実施例1に記載したと同様の製造方法に従って合金材を作製し、その各一部を供試材とした。この各供試材について、耐力[YS]、導電率[EC]、応力緩和率[SR]、曲げ加工性[R/t]、平均結晶粒径[GS]、第二相粒子の粒子径と体積分率との比[r/f]、第二相の構成原子[C]の調査を行い、得られた結果を表4−1、表4−2に示した。
Example 4
The copper alloy which mix | blends X element, Y element, and Z element so that it may become a component and composition shown in the following Table 4-1 and Table 4-2, and the remainder consists of Cu and an unavoidable impurity was described in the said Example 1. An alloy material was prepared according to the same manufacturing method as above, and a part of each was used as a test material. For each of the test materials, the yield strength [YS], the electrical conductivity [EC], the stress relaxation rate [SR], the bending workability [R / t], the average crystal grain size [GS], the particle size of the second phase particles and The ratio [r / f] to the volume fraction and the constituent atom [C] of the second phase were investigated, and the obtained results are shown in Tables 4-1 and 4-2.

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

表4−1で明らかなように、本発明例4−1〜本発明例4−32は耐力、導電性、耐応力緩和特性、曲げ加工性に優れた。しかし、表4−2に示すように、本発明の規定を満たさない場合は、特性が劣っていた。すなわち、比較例4−1〜4−3はZ元素の量が多いために固溶原子量が増え、導電率が劣った。比較例4−4はr/fの値が小さく結晶粒が粗大化したために、また、比較例4−5はr/fの値が大きく粗大な第二相で曲げ変形時にクラックが発生し、曲げ加工性が劣化した。   As is clear from Table 4-1, Invention Example 4-1 to Invention Example 4-32 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Table 4-2, the characteristics were inferior when the provisions of the present invention were not satisfied. That is, in Comparative Examples 4-1 to 4-3, since the amount of the Z element was large, the amount of solid solution atoms was increased and the conductivity was inferior. Since Comparative Example 4-4 had a small r / f value and crystal grains were coarse, Comparative Example 4-5 had a large r / f value and a coarse second phase, and cracks occurred during bending deformation. Bending workability deteriorated.

(実施例5)
下記の表5−1に示す成分・組成になるように元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化処理後、断面減少率が50%以上で、処理温度の下限が表中TL[℃]の熱間圧延を行った後に水焼き入れを行い、酸化スケール除去のために面削した。その後に、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が2〜40%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、断面減少率が2〜30%の仕上げ冷間加工を施し、200〜450℃で5秒〜10時間の調質焼鈍を行い、銅合金を製造し、その各一部を供試材とした。
この各供試材について、同様に耐力[YS]、導電率[EC]、応力緩和率[SR]、平均結晶粒径[GS]、曲げ加工性[R/t]および第二相の構成元素と密度等の特性調査を行い、得られた結果を表5−2および表5−3に示した。
(Example 5)
The elements are blended so as to have the components and compositions shown in Table 5-1 below, and an alloy composed of Cu and inevitable impurities is melted in a high-frequency melting furnace, and this is cooled at a rate of 0.1 to 100 ° C./second. The ingot was obtained by casting. This was subjected to a homogenization treatment at 900 to 1050 ° C. for 0.5 to 10 hours, and then subjected to hot quenching after hot rolling at a cross-section reduction rate of 50% or more and a lower limit of the treatment temperature of TL [° C.] in the table. And chamfered to remove oxide scale. Thereafter, cold working with a cross-sectional reduction rate of 50 to 98% is performed, solution heat treatment at 800 to 1000 ° C. is performed, cold working with a cross-section reduction rate of 2 to 40% is performed, and aging at 400 to 650 ° C. Precipitation heat treatment is performed, finish cold working with a cross-section reduction rate of 2 to 30% is performed, temper annealing is performed at 200 to 450 ° C. for 5 seconds to 10 hours, a copper alloy is manufactured, and each part thereof is provided. Samples were used.
For each specimen, the yield strength [YS], conductivity [EC], stress relaxation rate [SR], average grain size [GS], bending workability [R / t], and constituent elements of the second phase The characteristics such as density were investigated, and the obtained results are shown in Tables 5-2 and 5-3.

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

表5−2で明らかなように、本発明例5−1〜本発明例5−3は耐力、導電性、耐応力緩和特性、曲げ加工性に優れた。しかし、表5−3に示すように、比較例5−1、5−2は、熱間加工温度が500℃を下回り、粗大な析出が多く発生してしまったために、第二相の分散状態が悪化し、結晶粒径が粗大化した結果、曲げ加工性が劣化した。   As apparent from Table 5-2, Invention Example 5-1 to Invention Example 5-3 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Table 5-3, in Comparative Examples 5-1 and 5-2, the hot working temperature was less than 500 ° C., and a large amount of coarse precipitation occurred. As a result of deterioration of the crystal grain size, bending workability deteriorated.

(実施例6)
実施例5と同様に、表5−1に示す成分・組成になるように元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化処理後、断面減少率が50%以上で処理温度が650℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。その後に、400℃〜700℃の温度帯の昇温速度が表6中で示すS(℃/秒)で保持温度が800〜1000℃で、保持時間が5秒〜2時間の溶体化熱処理を施し、断面減少率が2〜40%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、断面減少率が2〜30%の仕上げ冷間加工を施し、200〜450℃で5秒〜10時間の調質焼鈍を行い、銅合金を製造し、その各一部を供試材とした。
この各供試材について、同様に耐力[YS]、導電率[EC]、応力緩和率[SR]、平均結晶粒径[GS]、曲げ加工性[R/t]および第二相の構成元素と密度等の特性調査を行い、得られた結果を表6−1および表6−2に示した。
(Example 6)
In the same manner as in Example 5, the elements were blended so as to have the components and compositions shown in Table 5-1, and an alloy composed of Cu and unavoidable impurities in the remainder was melted in a high-frequency melting furnace. An ingot was obtained by casting at a cooling rate of / sec. This was homogenized at 900 to 1050 ° C for 0.5 to 10 hours, then hot-worked with a cross-section reduction rate of 50% or more and a processing temperature of 650 ° C or more, and then water quenching to remove oxide scale. Carved for. Thereafter, a solution heat treatment was performed at S (° C./sec) shown in Table 6 at a temperature increase rate in the temperature range of 400 ° C. to 700 ° C., a holding temperature of 800 to 1000 ° C., and a holding time of 5 seconds to 2 hours. And cold work with a cross-section reduction rate of 2 to 40%, aging precipitation heat treatment at 400 to 650 ° C., finish cold work with a cross-section reduction rate of 2 to 30%, and 5 to 200 to 450 ° C. A temper annealing for 2 to 10 hours was performed to produce a copper alloy, and a part of each was used as a test material.
For each specimen, the yield strength [YS], conductivity [EC], stress relaxation rate [SR], average grain size [GS], bending workability [R / t], and constituent elements of the second phase And the characteristics such as density were investigated, and the obtained results are shown in Table 6-1 and Table 6-2.

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

表6−1で明らかなように、本発明例6−1〜本発明例6−3は耐力、導電性、耐応力緩和特性、曲げ加工性に優れていた。しかし、表6−2の比較例6−1に示すように、昇温速度が速すぎる場合は、昇温中に析出する第二相が不足し、結晶粒が粗大化して曲げ加工性が劣化した。また、比較例6−2に示すように、昇温速度が遅すぎる場合は昇温中に回復が起きてしまい、再結晶核生成の頻度が低下して結晶粒が粗大化し、曲げ加工性が劣化した。   As apparent from Table 6-1, Invention Example 6-1 to Invention Example 6-3 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Comparative Example 6-1 in Table 6-2, when the rate of temperature rise is too fast, the second phase that precipitates during the temperature rise is insufficient, the crystal grains become coarse, and the bending workability deteriorates. did. Further, as shown in Comparative Example 6-2, when the rate of temperature increase is too slow, recovery occurs during the temperature increase, the frequency of recrystallization nucleation decreases, the crystal grains become coarse, and the bending workability increases. Deteriorated.

(実施例7)
実施例5と同様に、表5−1に示す成分・組成になるように元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化処理後、断面減少率が50%以上で処理温度が650℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。その後に、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が表中R1[%]の冷間加工を施し、400〜650℃の時効析出熱処理を施し、断面減少率が表中R2[%]の仕上げ冷間加工を施し、200〜450℃で5秒〜10時間の調質焼鈍を行い、銅合金を製造し、その各一部を供試材とした。
この各供試材について、同様に耐力[YS]、導電率[EC]、応力緩和率[SR]、平均結晶粒径[GS]、曲げ加工性[R/t]および第二相の構成元素と密度等の特性調査を行い、得られた結果を表7−1および表7−2に示した。
(Example 7)
In the same manner as in Example 5, the elements were blended so as to have the components and compositions shown in Table 5-1, and an alloy composed of Cu and unavoidable impurities in the remainder was melted in a high-frequency melting furnace. An ingot was obtained by casting at a cooling rate of / sec. This was homogenized at 900 to 1050 ° C for 0.5 to 10 hours, then hot-worked with a cross-section reduction rate of 50% or more and a processing temperature of 650 ° C or more, and then water quenching to remove oxide scale. Carved for. Thereafter, cold working with a cross-sectional reduction rate of 50 to 98% is performed, solution heat treatment at 800 to 1000 ° C. is performed, and cold working with a cross-sectional reduction rate of R1 [%] in the table is performed, and 400 to 650 ° C. Aging precipitation heat treatment, finish cold working with a cross-sectional reduction rate of R2 [%] in the table, temper annealing at 200 to 450 ° C. for 5 seconds to 10 hours to produce a copper alloy, A part was used as a test material.
For each specimen, the yield strength [YS], conductivity [EC], stress relaxation rate [SR], average grain size [GS], bending workability [R / t], and constituent elements of the second phase And the characteristics such as density were investigated, and the obtained results are shown in Tables 7-1 and 7-2.

Figure 2009242814
Figure 2009242814

Figure 2009242814
Figure 2009242814

表7−1で明らかなように、本発明例7−1〜本発明例7−3は耐力、導電性、耐応力緩和特性、曲げ加工性に優れた。しかし、比較例7−1に示すように、R1とR2の和が5%以下の場合は強度が低いために好ましくない。比較例7−2に示すように、R1とR2の和が65%以上の場合は、耐応力緩和特性と曲げ加工性が劣り、好ましくない。   As is apparent from Table 7-1, Invention Example 7-1 to Invention Example 7-3 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Comparative Example 7-1, when the sum of R1 and R2 is 5% or less, the strength is low, which is not preferable. As shown in Comparative Example 7-2, when the sum of R1 and R2 is 65% or more, the stress relaxation resistance and bending workability are inferior, which is not preferable.

(実施例8)
実施例5と同様に、表5−1に示す成分・組成になるように元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化処理後、断面減少率が50%以上で処理温度が650℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。その後に、表8中にTA[℃]で示す温度で4時間の時効析出熱処理を施し、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行い、銅合金を製造し、その各一部を供試材とした。
この各供試材について、同様に耐力[YS]、導電率[EC]、応力緩和率[SR]、平均結晶粒径[GS]、曲げ加工性[R/t]および第二相の構成元素と密度等の特性調査を行い、得られた結果を表8に示した。
(Example 8)
In the same manner as in Example 5, the elements were blended so as to have the components and compositions shown in Table 5-1, and an alloy composed of Cu and unavoidable impurities in the remainder was melted in a high-frequency melting furnace. An ingot was obtained by casting at a cooling rate of / sec. This was homogenized at 900 to 1050 ° C for 0.5 to 10 hours, then hot-worked with a cross-section reduction rate of 50% or more and a processing temperature of 650 ° C or more, and then water quenching to remove oxide scale. Carved for. Thereafter, an aging precipitation heat treatment at a temperature indicated by TA [° C.] in Table 8 is performed for 4 hours, a cold working with a cross-sectional reduction rate of 50 to 98% is performed, and a solution heat treatment at 800 to 1000 ° C. is performed. Perform cold working with a cross-section reduction rate of 5 to 50%, perform aging precipitation heat treatment at 400 to 650 ° C, perform finish cold working at 5 to 50%, and adjust for 5 seconds to 10 hours at 200 to 550 ° C. Quality annealing was performed to produce a copper alloy, and a part of each was used as a test material.
For each specimen, the yield strength [YS], conductivity [EC], stress relaxation rate [SR], average grain size [GS], bending workability [R / t], and constituent elements of the second phase Table 8 shows the obtained results.

Figure 2009242814
Figure 2009242814

表8に示すように、時効析出熱処理[5]を400〜800℃で行うことにより、第二相の分散状態を良好に制御することができ、結晶粒径を小さくすることができたため、曲げ加工性が良好となった。   As shown in Table 8, since the aging precipitation heat treatment [5] was performed at 400 to 800 ° C., the dispersion state of the second phase could be controlled well and the crystal grain size could be reduced. Workability was good.

応力緩和試験方法の概略説明図である。It is a schematic explanatory drawing of a stress relaxation test method.

符号の説明Explanation of symbols

1 耐力の80%の初期応力を付与した試験片
2 1の状態で熱処理し、除荷した試験片
3 負荷しなかった場合の試験片
4 試験台
δ たわませた時の試験片の基準位置からの距離
H1 たわませなかった時の試験片の基準位置からの距離
Ht たわませて熱処理し、除荷したあとの試験片の基準位置からの距離
1 Test piece to which 80% of the proof stress was given 2 Test piece heat-treated and unloaded in the state of 1 3 Test piece when not loaded 4 Test stand δ 0 Standard of test piece when deflected Distance from position
H 1 Distance from the reference position of the specimen when not bent
H t Distance from the reference position of the specimen after bending, heat treatment and unloading

Claims (6)

X元素を0.1〜4質量%(ここで、X元素はNi、Fe、Co、Crの遷移元素の中の1種または2種以上である)およびY元素を0.01〜3質量%(ここでY元素はTi、Si、Zr、Hfの中の1種または2種以上である)含有し、残部が銅と不可避不純物からなる銅合金材であって、
50%IACS以上の導電率と、500MPa以上の耐力を有し、耐力の80%の応力を付与した状態で1000時間保持したときの応力緩和率が30%以下であり、
結晶粒界上に存在する第二相粒子が10〜10個/mmの密度で存在し、平均結晶粒径が10μm以下であることを特徴とする銅合金材。
0.1 to 4% by mass of X element (where X element is one or more of transition elements of Ni, Fe, Co and Cr) and 0.01 to 3% by mass of Y element (Wherein the Y element is one or more of Ti, Si, Zr, and Hf), and the balance is a copper alloy material consisting of copper and inevitable impurities,
It has a conductivity of 50% IACS or higher, a proof stress of 500 MPa or higher, and a stress relaxation rate of 30% or lower when held for 1000 hours in a state where a stress of 80% of the proof stress is applied.
A copper alloy material, wherein the second phase particles present on the grain boundaries are present at a density of 10 4 to 10 8 particles / mm 2 , and the average crystal grain size is 10 μm or less.
X元素を0.1〜4質量%(ここで、X元素はNi、Fe、Co、Crの遷移元素の中の1種または2種以上である)およびY元素を0.01〜3質量%(ここでY元素はTi、Si、Zr、Hfの中の1種または2種以上である)含有し、残部が銅と不可避不純物からなる銅合金材であって、
50%IACS以上の導電率と、500MPa以上の耐力を有し、耐力の80%の応力を付与した状態で1000時間保持したときの応力緩和率が30%以下であり、
第二相粒子の粒子径r(単位:μm)と、粒子の体積分率fの比、r/fの値が、1〜100であり、平均結晶粒径が10μm以下であることを特徴とする銅合金材。
0.1 to 4% by mass of X element (where X element is one or more of transition elements of Ni, Fe, Co and Cr) and 0.01 to 3% by mass of Y element (Wherein the Y element is one or more of Ti, Si, Zr, and Hf), and the balance is a copper alloy material consisting of copper and inevitable impurities,
It has a conductivity of 50% IACS or higher, a proof stress of 500 MPa or higher, and a stress relaxation rate of 30% or lower when held for 1000 hours in a state where a stress of 80% of the proof stress is applied.
The ratio of the particle size r (unit: μm) of the second phase particles to the volume fraction f of the particles, the value of r / f is 1 to 100, and the average crystal particle size is 10 μm or less. Copper alloy material to be used.
Z元素を0.01〜3質量%(ここで、Z元素はSn、Mg、Zn、Ag、Mn、B、Pの中の1種または2種以上である)更に含有することを特徴とする請求項1または請求項2記載の銅合金材。   Further, it is characterized by further containing 0.01 to 3% by mass of Z element (wherein Z element is one or more of Sn, Mg, Zn, Ag, Mn, B, and P). The copper alloy material according to claim 1 or 2. 前記第二相が、Si、Co、Ni、Fe、Ti、ZrまたはCrを含む化合物であることを特徴とする請求項1〜請求項3のいずれかに記載の銅合金材。   The copper alloy material according to claim 1, wherein the second phase is a compound containing Si, Co, Ni, Fe, Ti, Zr, or Cr. 銅合金素材に、鋳造[1]、均質化熱処理[2]、熱間加工[3]、水冷[4]、面削[5]、冷間加工[7]、溶体化熱処理[8]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理をこの順に施し、その熱間加工[3]は500℃以上で行って水冷し、その溶体化熱処理は400℃〜700℃の温度帯を10℃〜400℃/秒の昇温速度で行い、その冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和を5〜65%とする請求項1〜4のいずれか1項記載の銅合金材を得ることを特徴とする銅合金材の製造方法。   For copper alloy material, casting [1], homogenization heat treatment [2], hot working [3], water cooling [4], face cutting [5], cold working [7], solution heat treatment [8], cold working A process composed of hot working [9], aging precipitation heat treatment [10], cold working [11] and temper annealing [12] is performed in this order, and hot working [3] is performed at 500 ° C. or higher. The solution heat treatment is performed in a temperature range of 400 ° C. to 700 ° C. at a rate of temperature increase of 10 ° C. to 400 ° C./second, and the processing rate R1 (%) in the cold processing [9] and cold The method for producing a copper alloy material according to any one of claims 1 to 4, wherein the sum of the processing rates R2 (%) in the processing [11] is 5 to 65%. 請求項5に記載の銅合金材の製造方法において、面削[5]の後に400〜800℃で5秒〜20時間の時効析出熱処理[6]を行い、冷間加工[7]を行うことを特徴とする銅合金材の製造方法。   6. The method for producing a copper alloy material according to claim 5, wherein after the chamfering [5], an aging precipitation heat treatment [6] is performed at 400 to 800 ° C. for 5 seconds to 20 hours, and a cold working [7] is performed. A method for producing a copper alloy material.
JP2008087183A 2008-03-28 2008-03-28 Copper alloy material and producing method thereof Pending JP2009242814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087183A JP2009242814A (en) 2008-03-28 2008-03-28 Copper alloy material and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087183A JP2009242814A (en) 2008-03-28 2008-03-28 Copper alloy material and producing method thereof

Publications (1)

Publication Number Publication Date
JP2009242814A true JP2009242814A (en) 2009-10-22

Family

ID=41305054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087183A Pending JP2009242814A (en) 2008-03-28 2008-03-28 Copper alloy material and producing method thereof

Country Status (1)

Country Link
JP (1) JP2009242814A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122490A1 (en) 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 Cu-co-si alloy material
WO2011152124A1 (en) 2010-05-31 2011-12-08 Jx日鉱日石金属株式会社 Cu-co-si-based copper alloy for electronic material, and process for production thereof
WO2012026488A1 (en) 2010-08-24 2012-03-01 Jx日鉱日石金属株式会社 Copper-cobalt-silicon alloy for electrode material
JP2012041562A (en) * 2010-08-12 2012-03-01 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED COPPER ALLOY EXCELLENT IN STRENGTH, ELECTRIC CONDUCTIVITY AND BENDING WORKABILITY AND METHOD FOR MANUFACTURING THE SAME
WO2012043170A1 (en) 2010-09-29 2012-04-05 Jx日鉱日石金属株式会社 Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
WO2012096351A1 (en) 2011-01-13 2012-07-19 Jx日鉱日石金属株式会社 Cu-co-si-zr alloy material and method for producing same
WO2012133651A1 (en) 2011-03-31 2012-10-04 国立大学法人東北大学 Copper alloy and method for producing copper alloy
US20120294754A1 (en) * 2010-01-26 2012-11-22 Mitsubishi Materials Corporation Copper alloy with high strength and high electrical conductivity
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
US20140096877A1 (en) * 2011-06-06 2014-04-10 Mitsubishi Materials Corporation Copper alloy for electronic devices, method for producing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US9499885B2 (en) 2010-04-14 2016-11-22 Jx Nippon Mining & Metals Corporation Cu—Si—Co alloy for electronic materials, and method for producing same
KR101810925B1 (en) 2017-10-18 2017-12-20 주식회사 풍산 Copper alloy strips having high heat resistance and thermal dissipation properties
CN109930026A (en) * 2017-12-18 2019-06-25 北京有色金属研究总院 A kind of high-strength high conductivity, proof stress relaxation Copper Alloys for Lead Frame and preparation method thereof
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material
CN112322926A (en) * 2020-11-16 2021-02-05 福州大学 Cu-Ti-Si-Co-La copper alloy material and preparation method thereof
CN112359247A (en) * 2020-11-16 2021-02-12 福州大学 Cu-Hf-Si-Ni-Ce copper alloy material and preparation method thereof
CN113817932A (en) * 2021-07-27 2021-12-21 中国兵器科学研究院宁波分院 High-strength heat-resistant stress relaxation-resistant copper alloy material and preparation method thereof
JP2022521606A (en) * 2019-06-11 2022-04-11 キスワイヤ リミテッド KINIZ alloy with homogeneous microstructure
CN114959355A (en) * 2017-01-10 2022-08-30 古河电气工业株式会社 Copper alloy material for resistor material, method for producing same, and resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233314A (en) * 2005-02-28 2006-09-07 Dowa Mining Co Ltd High-strength copper alloy
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2008024999A (en) * 2006-07-24 2008-02-07 Dowa Holdings Co Ltd Cu-Ni-Si TYPE COPPER ALLOY SHEET WITH EXCELLENT PROOF STRESS AND BENDABILITY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233314A (en) * 2005-02-28 2006-09-07 Dowa Mining Co Ltd High-strength copper alloy
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2008024999A (en) * 2006-07-24 2008-02-07 Dowa Holdings Co Ltd Cu-Ni-Si TYPE COPPER ALLOY SHEET WITH EXCELLENT PROOF STRESS AND BENDABILITY

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294754A1 (en) * 2010-01-26 2012-11-22 Mitsubishi Materials Corporation Copper alloy with high strength and high electrical conductivity
KR101641842B1 (en) 2010-01-26 2016-07-21 미쓰비시 마테리알 가부시키가이샤 Copper alloy with high strength and high electrical conductivity
KR20150013944A (en) * 2010-01-26 2015-02-05 미쓰비시 마테리알 가부시키가이샤 Copper alloy with high strength and high electrical conductivity
US9076569B2 (en) 2010-03-30 2015-07-07 Jx Nippon Mining & Metals Corporation Cu—Co—Si alloy material and manufacturing method thereof
EP2554692A1 (en) * 2010-03-30 2013-02-06 JX Nippon Mining & Metals Corp. Cu-co-si alloy material
WO2011122490A1 (en) 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 Cu-co-si alloy material
EP2554692A4 (en) * 2010-03-30 2014-04-09 Jx Nippon Mining & Metals Corp Cu-co-si alloy material
US9499885B2 (en) 2010-04-14 2016-11-22 Jx Nippon Mining & Metals Corporation Cu—Si—Co alloy for electronic materials, and method for producing same
US9460825B2 (en) 2010-05-31 2016-10-04 Jx Nippon Mining & Metals Corporation Cu-Co-Si-based copper alloy for electronic materials, and method of manufacturing same
WO2011152124A1 (en) 2010-05-31 2011-12-08 Jx日鉱日石金属株式会社 Cu-co-si-based copper alloy for electronic material, and process for production thereof
JP2012041562A (en) * 2010-08-12 2012-03-01 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED COPPER ALLOY EXCELLENT IN STRENGTH, ELECTRIC CONDUCTIVITY AND BENDING WORKABILITY AND METHOD FOR MANUFACTURING THE SAME
EP2607508A1 (en) * 2010-08-24 2013-06-26 JX Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material
EP2607508A4 (en) * 2010-08-24 2014-04-09 Jx Nippon Mining & Metals Corp Copper-cobalt-silicon alloy for electrode material
US10056166B2 (en) 2010-08-24 2018-08-21 Jx Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material
WO2012026488A1 (en) 2010-08-24 2012-03-01 Jx日鉱日石金属株式会社 Copper-cobalt-silicon alloy for electrode material
WO2012043170A1 (en) 2010-09-29 2012-04-05 Jx日鉱日石金属株式会社 Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
WO2012096351A1 (en) 2011-01-13 2012-07-19 Jx日鉱日石金属株式会社 Cu-co-si-zr alloy material and method for producing same
CN103502485A (en) * 2011-03-31 2014-01-08 国立大学法人东北大学 Copper alloy and method for producing copper alloy
US9666325B2 (en) 2011-03-31 2017-05-30 Tohoku University Copper alloy and method of manufacturing copper alloy
WO2012133651A1 (en) 2011-03-31 2012-10-04 国立大学法人東北大学 Copper alloy and method for producing copper alloy
CN103502485B (en) * 2011-03-31 2015-11-25 国立大学法人东北大学 The preparation method of copper alloy and copper alloy
US20140096877A1 (en) * 2011-06-06 2014-04-10 Mitsubishi Materials Corporation Copper alloy for electronic devices, method for producing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
US10458003B2 (en) 2011-11-14 2019-10-29 Mitsubishi Materials Corporation Copper alloy and copper alloy forming material
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
CN114959355A (en) * 2017-01-10 2022-08-30 古河电气工业株式会社 Copper alloy material for resistor material, method for producing same, and resistor
KR101810925B1 (en) 2017-10-18 2017-12-20 주식회사 풍산 Copper alloy strips having high heat resistance and thermal dissipation properties
US11697864B2 (en) 2017-10-18 2023-07-11 Poongsan Corporation Copper alloy strip having high heat resistance and thermal dissipation properties
CN109930026A (en) * 2017-12-18 2019-06-25 北京有色金属研究总院 A kind of high-strength high conductivity, proof stress relaxation Copper Alloys for Lead Frame and preparation method thereof
JP2022521606A (en) * 2019-06-11 2022-04-11 キスワイヤ リミテッド KINIZ alloy with homogeneous microstructure
CN112359247B (en) * 2020-11-16 2021-11-09 福州大学 Cu-Hf-Si-Ni-Ce copper alloy material and preparation method thereof
CN112359247A (en) * 2020-11-16 2021-02-12 福州大学 Cu-Hf-Si-Ni-Ce copper alloy material and preparation method thereof
CN112322926A (en) * 2020-11-16 2021-02-05 福州大学 Cu-Ti-Si-Co-La copper alloy material and preparation method thereof
CN113817932A (en) * 2021-07-27 2021-12-21 中国兵器科学研究院宁波分院 High-strength heat-resistant stress relaxation-resistant copper alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009242814A (en) Copper alloy material and producing method thereof
JP2008266787A (en) Copper alloy material and its manufacturing method
JP4615628B2 (en) Copper alloy material, electrical and electronic component, and method for producing copper alloy material
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP4615616B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
KR101570555B1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP4959141B2 (en) High strength copper alloy
JP2007169765A (en) Copper alloy and its production method
JP4785092B2 (en) Copper alloy sheet
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP5619389B2 (en) Copper alloy material
WO2009123140A1 (en) Cu-ni-si alloy to be used in electrically conductive spring material
JP2009242895A (en) High-strength copper alloy of excellent bending processability
JP2006265731A (en) Copper alloy
JP3977376B2 (en) Copper alloy
JPWO2009057788A1 (en) Copper alloy material excellent in strength, bending workability and stress relaxation resistance and method for producing the same
WO2012026488A1 (en) Copper-cobalt-silicon alloy for electrode material
JP5468798B2 (en) Copper alloy sheet
WO2009116649A1 (en) Copper alloy material for electric and electronic components
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
JP4728704B2 (en) Copper alloy for electrical and electronic equipment
JP2013213236A (en) Cu-Zn-Sn-Ni-P-BASED ALLOY
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120829

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120911

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130208

Free format text: JAPANESE INTERMEDIATE CODE: A02