WO2009116649A1 - Copper alloy material for electric and electronic components - Google Patents

Copper alloy material for electric and electronic components Download PDF

Info

Publication number
WO2009116649A1
WO2009116649A1 PCT/JP2009/055531 JP2009055531W WO2009116649A1 WO 2009116649 A1 WO2009116649 A1 WO 2009116649A1 JP 2009055531 W JP2009055531 W JP 2009055531W WO 2009116649 A1 WO2009116649 A1 WO 2009116649A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
alloy material
mass
less
temperature
Prior art date
Application number
PCT/JP2009/055531
Other languages
French (fr)
Japanese (ja)
Inventor
亮佑 松尾
立彦 江口
邦照 三原
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP09722228A priority Critical patent/EP2267172A1/en
Priority to JP2010503942A priority patent/JP5065478B2/en
Priority to CN200980110059.3A priority patent/CN101978081B/en
Publication of WO2009116649A1 publication Critical patent/WO2009116649A1/en
Priority to US12/886,268 priority patent/US20110005644A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a copper alloy material applied to electric and electronic parts.
  • conductivity and strength are contradictory properties, and there are various strengthening methods such as solid solution strengthening, work strengthening, and precipitation strengthening as methods for increasing strength. It is known that it is promising as a method for increasing strength without deteriorating.
  • This precipitation strengthening is performed by high-temperature heat treatment of an alloy added with an element that causes precipitation, so that these elements are dissolved in the copper matrix phase, and then heat-treated at a temperature lower than that temperature to precipitate the dissolved element. It is a technique. For example, beryllium copper, Corson alloy, etc. employ the strengthening method.
  • alloys containing an intermetallic compound of cobalt (Co) and silicon (Si) in copper are also known.
  • Co and Si that can produce a high-strength, high-conductivity material at a low cost, with a concentration lower than the conventional high-concentration CoSi copper alloy (Co content is 2 to 4 mass%, Si content is 1/4 of the Co content).
  • a copper alloy containing Mg, Sn, and Zn see, for example, Patent Document 1).
  • a solution temperature is set high (for example, 950 ° C.
  • An object of the present invention is to provide a copper alloy material for electrical and electronic parts, which can be suitably used for a product such as a connector that requires severe bending, and has excellent strength, electrical conductivity, and bending workability.
  • the material was solution-treated at a temperature Ts (° C.) lower than ⁇ 122.77X 2 + 409.99X + 615.74 when the Co content (mass%) is X when the temperature is 800 ° C. or higher and 960 ° C. or lower.
  • Copper alloy material for parts (3) The yield stress is 500 MPa or more and less than 650 MPa, the conductivity is 60% IACS or more, and the value (R / t) indicating the bending workability is less than 0.5 (1) or (2 ) Copper alloy material for electrical and electronic parts, and (4) yield stress is 650 MPa or more, conductivity is 50% IACS or more, and the value (R / t) indicating bending workability is less than 1.5
  • the copper alloy material for electrical and electronic parts according to (1) or (2), wherein the copper alloy material is 1.2 or less, (6)
  • the yield stress is 650 MPa or more
  • the conductivity is 50% IACS or more
  • the value (R / t) indicating the bending workability is 1. for both the sample parallel to the rolling direction and the sample perpendicular to the rolling direction.
  • W-bending is performed so that the angle inside the bend is 90 °, [1] bending (GW) for a sample parallel to the rolling direction, and [2] bending for a sample perpendicular to the rolling direction.
  • BW means a value R / t obtained by dividing the smallest bending radius R (mm) at which fine cracks do not occur by the sample plate thickness t (mm). In the present invention, the bending workability is evaluated by this value R / t.
  • the copper alloy material for electrical and electronic parts of the present invention is a copper alloy material excellent in strength, conductivity, and bending workability.
  • the copper alloy material for electrical and electronic parts of the present invention can be suitably used for products with severe bending work such as connectors.
  • the copper alloy material of the present invention is a copper alloy material having a specific shape, for example, a plate material, a strip material, a wire material, a rod material, a foil, and the like, and can be used for any electric / electronic component. Is not particularly limited, for example, suitable for connectors, terminal materials, etc., particularly high frequency relays and switches for which high conductivity is desired, or connectors, terminal materials and lead frames for automobiles Used.
  • Co and Si are essential components.
  • Co and Si in the copper alloy mainly form precipitates of Co 2 Si intermetallic compounds to improve strength and conductivity.
  • Co is 0.2 to 2.5 mass%, preferably 0.3 to 2.0 mass%, more preferably 0.5 to 1.6 mass%
  • Si is 0.1 to 1.0 mass%, preferably 0.1 It is -0.7 mass%, More preferably, it is 0.1-0.5 mass%.
  • the reason for such definition is that, as described above, these mainly form precipitates of intermetallic compounds of Co 2 Si and contribute to precipitation strengthening. If the Co content is less than 0.5 mass%, the precipitation strengthening amount is small, and if it exceeds 2.5 mass%, the effect is saturated.
  • the optimum addition ratio from the stoichiometric ratio of this compound was Co / Si ⁇ 4.2, and the addition amount of Si was determined so as to be within this range. It is preferable to adjust so as to be in the range of 0.0 to 5.0, more preferably 3.2 to 4.5.
  • Si and Co may be referred to as “additive element I”.
  • the solution treatment temperature Ts (° C.) is 800 ° C. or more and 960 ° C. or less, and when the Co content (mass%) is X, ⁇ 122.77X 2 + 409.99X + 615 The temperature is lower than 74 (° C.).
  • additive element II Cr, Mg, Mn, Sn, V, Al, Fe, Ni, Ti, and Zr
  • additive element II this Cr, Mg, Mn, Sn, V, Al, Fe, Ni, Ti, and Zr may be referred to as “additive element II”. If the additive amount of additive element II is less than 0.01% mass, the effect of addition is small, and if it exceeds 1.0 mass%, ⁇ 1> the conductivity is significantly reduced in solid solution elements such as Mg, Mn, and Sn.
  • the solution temperature of the solution decreases due to the decrease in strength due to precipitation other than aging or the increase in the solid solution temperature. This is because of the rise, and ⁇ 3> Cr, Mg, Al, Ti, and Zr are difficult to cast due to significant oxidation.
  • Mg, Mn, and Sn have a function of strengthening the copper alloy by dissolving in the copper matrix. Mg and Mn also have an effect of improving hot workability.
  • V, Al, Ni, Ti, and Zr form a compound together with Co and Si to strengthen and suppress the coarsening of crystal grains.
  • a preferred method for producing a copper alloy material according to the present invention comprises the following steps. That is, melt casting ⁇ reheat treatment ⁇ hot rolling ⁇ cold rolling ⁇ solution treatment ⁇ aging heat treatment ⁇ final cold rolling ⁇ strain relief annealing. Aging heat treatment and final cold rolling may be performed in reverse order. Further, the final strain relief (low temperature) annealing may be omitted.
  • the solution treatment before the final rolling is performed at 800 ° C. or higher and 960 ° C. or lower.
  • the solution treatment temperature Ts (° C.) is lower than ⁇ 122.77X 2 + 409.99X + 615.74 when the Co content (mass%) is X when the additive element II is not included. Temperature (° C.).
  • the solution treatment temperature Ts (° C.) is -94.643X 2 + 329.99X + 677 when the Co content (mass%) is X when the additive element II is included in the above content.
  • the temperature (° C.) is lower than 0.09.
  • the crystal grain size in the copper alloy material is determined by the heat treatment at this temperature.
  • the cooling rate during this cooling is too low, the elements dissolved at the high temperature may cause precipitation.
  • particles (compounds) that precipitate during cooling at a cooling rate that is too low are non-coherent precipitates that do not contribute to strength.
  • this inconsistent precipitate contributes as a nucleation site when a matched precipitate (Coherent Precipitate) is formed in the next aging heat treatment step, and promotes the precipitation of that portion, which may adversely affect the characteristics. is there.
  • the cooling rate is preferably 50 ° C./second or more, more preferably 80 ° C./second or more, further preferably 100 ° C./second or more, and the fastest possible cooling rate within the practical upper limit. Is desirable.
  • this cooling rate means the average cooling rate from high temperature solution heat treatment temperature to 300 degreeC. Since a large tissue change does not occur at a temperature lower than 300 ° C., the cooling rate to this temperature may be appropriately controlled.
  • the crystal grain size is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. The reason is that when the crystal grain size exceeds 20 ⁇ m, the grain boundary density is low due to the coarse grain size, and it is assumed that the workability deteriorates because the bending stress cannot be sufficiently absorbed.
  • limiting in particular in the minimum of a crystal grain diameter Usually, it is 3 micrometers or more.
  • the “crystal grain size” is a value measured based on JIS-H0501 (cutting method) described later.
  • the yield stress is 500 MPa or more and less than 650 MPa
  • the conductivity is 60% IACS or more
  • the bending workability (R / t) is less than 0.5. It has characteristics.
  • the bending workability (R / t) of less than 0.5 means that the R / t value is less than 0.5 by bending at least a sample parallel to the rolling direction, and is parallel to the rolling direction. It is preferred that the R / t value be less than 0.5 for both the bending of a simple sample and the bending of a sample perpendicular to the rolling direction.
  • the yield stress is 650 MPa or more
  • the conductivity is 50% IACS or more
  • the bending workability (R / t) is 1.5. It has the characteristics of less than.
  • the bending workability (R / t) of less than 1.5 means that the R / t value is less than 1.5 by bending at least a sample parallel to the rolling direction, and is parallel to the rolling direction. It is preferred that the R / t value is less than 1.5 for both the bending of a simple sample and the bending of a sample perpendicular to the rolling direction.
  • the yield stress is 500 MPa or more and less than 650 MPa
  • the conductivity is 60% IACS or more
  • a value indicating bending workability (R / t) has a characteristic of 1.2 or less (more preferably 1.0 or less, more preferably 0.6 or less) in both the bending for the sample parallel to the rolling direction and the bending for the sample perpendicular to the rolling direction. It is what you have.
  • the yield stress is 650 MPa or more
  • the conductivity is 50% IACS or more
  • the value (R / t) indicates bending workability.
  • the copper alloy material of the present invention having high conductivity, high strength, and excellent bending workability can be suitably used for electrical and electronic parts such as connectors that involve severe bending work.
  • heat treatment was performed while maintaining the temperature at 950 ° C. for 30 seconds, and quenching was quickly performed with water cooling.
  • the rate of temperature increase from room temperature to the maximum temperature was in the range of 10 to 50 ° C./second, and the cooling rate was in the range of 30 to 200 ° C./second.
  • the surface oxide film was removed, and cold rolling was performed as necessary. This also serves as acceleration of work hardening and precipitation hardening in the heat treatment of the next step.
  • a heat treatment was performed at 525 ° C. for 120 minutes for the purpose of aging precipitation.
  • the rate of temperature rise from room temperature to the maximum temperature is in the range of 3 to 25 ° C./min.
  • the temperature is 300 ° C., which is sufficiently lower than the temperature range considered to affect precipitation.
  • cooling was performed within the range of 1 ° C./min to 2 ° C./min in the furnace.
  • cold rolling was performed so that the plate thickness was reduced by 20%. Thicknesses of 0.10 mm, 0.15 mm, 0.20 mm, and 0.25 mm were prepared for each alloy.
  • heat treatment was performed at 350 ° C. for 30 minutes. In this case, the rate of temperature rise from room temperature to the maximum temperature is in the range of 3 to 25 ° C./min.
  • the temperature is 300 ° C., which is sufficiently lower than the temperature range considered to affect precipitation.
  • cooling was performed within the range of 1 ° C./min to 2 ° C./min in the furnace.
  • F A relationship diagram between the force and the amount of elongation was obtained using an extensometer, and the elongation axis corresponding to the specified permanent elongation ( ⁇ %) A parallel line is drawn from the upper point to the straight line portion in the initial stage of the test, and the force indicated by the point where the line intersects the diagram is obtained.
  • Conductivity measurement method Specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. ( ⁇ 0.5 ° C.) to calculate conductivity (% IACS). The distance between terminals was 100 mm.
  • Example 1 The same as in Reference Example 1 except that an alloy containing the components shown in Table 4 and the balance consisting of Cu and inevitable impurities was used and the solution treatment temperature was changed to the temperatures of Steps A to H shown in Table 2. Thus, alloy materials of Invention Examples 1 to 3, 10 to 16, and Comparative Examples 1 to 3, and 18 to 22 were obtained.
  • alloy no. 1-3 are alloy Nos. Shown in Table 1. It has the same composition as 1-3.
  • Alloy No. 10 to 12 are alloy Nos. Shown in Table 1 and Table 4, respectively. 1 to 3 with Cr added within the specified range.
  • Nos. 13 to 16 are alloy Nos. Shown in Tables 1 and 4. 3, Mg (No. 13), Sn (No. 14), Cr and Mg (No.
  • Comparative Example Alloy Nos. 18 to 22 are alloy Nos. Shown in Tables 1 and 4. 3, Cr (No. 18), Ti (No. 19), Mg (No. 20), Sn (No. 21), Zr (No. 22) are added beyond the prescribed ranges. .
  • Such W-bending was performed in two types: bending for a sample parallel to the rolling direction (GOOD WAY: hereinafter GW) and bending for a sample perpendicular to the rolling direction (BAD WAY: hereinafter BW).
  • GW bending for a sample parallel to the rolling direction
  • BAD WAY bending for a sample perpendicular to the rolling direction
  • R / t is a value obtained by dividing the smallest bending radius R at which no fine cracks occur by the sample plate thickness t.
  • the value (R / t) indicating bending workability is 0.6 or less for both GW and BW, and even less than 0.5, and the balance of strength, conductivity, and bendability is excellent. It was found that a copper alloy material was obtained. On the other hand, even with the same composition, when the heat treatment at the temperature shown in Comparative Examples 1 to 3 is performed, the strength is equal to or higher than that of Examples 1 to 3, but the grain size becomes coarse, and Bending workability was inferior to Invention Examples 1 to 3. Moreover, the value (R / t) which shows bending workability showed the tendency to be inferior in BW rather than GW.
  • the value (R / t) indicating bending workability is 1.2 or less for both GW and BW.
  • the value (R / t) indicating the bending workability was 1.0 or less, further 0.6 or less, and further less than 0.5 for both GW and BW.
  • the value (R / t) indicating the bending workability is 1.5 or less for both GW and BW, and further 1.2. It became the following.
  • Comparative Example 21 in which the addition amount of the additive element II exceeds 1%, when the solid solution element is added, the conductivity is greatly lowered and the yield stress is less than 650 MPa, but the value of R / t is 1 in BW. .2 and was inferior in bending workability. Moreover, the value (R / t) which shows bending workability showed the tendency which is inferior in BW rather than GW.
  • the copper alloy material for electrical and electronic parts of the present invention includes connectors and terminal materials for electrical and electronic equipment, particularly high frequency relays and switches for which high conductivity is desired, or connectors and terminal materials for automobiles, etc. It is suitably used for electrical and electronic parts such as lead frames.

Abstract

Disclosed is a copper alloy material for electric and electronic components, which is a copper alloy material comprising 0.5-2.5 mass% Co and 0.1-1.0 mass% Si, wherein Co/Si = 3-5 (mass ratio), and the remainder of which is Cu and unavoidable impurities, and which is solution heat-treated at 800-960ºC, and at a temperature (ºC) lower than -122.77X2 + 409.99X + 615.74 when the Co content (mass%) is X.

Description

電気電子部品用銅合金材Copper alloy material for electrical and electronic parts
 本発明は電気電子部品に適用される銅合金材に関する。 The present invention relates to a copper alloy material applied to electric and electronic parts.
 これまで、電子・電気機器用のコネクタ、端子、リレー、スイッチなどには黄銅(C2600)やリン青銅(C5191,C5212,C5210)ならびにベリリウム銅(C17200,C17530)やコルソン合金(C7025)などが使用されてきた。
 近年、これらが使用される電子・電気機器で使用される電流の周波数が高くなり、表皮効果により実質的な導電率が低下するため、材料にも高導電性が要求されるようになっている。そこで、元々、黄銅やリン青銅は導電性が低く、コルソン銅合金はコネクタ材として、中導電性(EC≒40~50%IACS)を示すが、さらに高導電性が求められている。また、ベリリウム銅は中導電性を有するが高価であり、さらにはベリリウムが環境負荷物質であるために他の銅合金等への置き換えが検討されていることも周知である。一方、高導電性である純銅(C1100)やSn入銅(C14410)などは強度が低い欠点がある。そこで、従来のコルソン銅を越える導電性と、同等の引張強度、曲げ加工性を備えた銅合金が所望されている。
 上記Cxxxxとは、JISで規定された銅合金の種類であり、%IACSとはinternational annealed copper standardの略で、材料の導電性を示す単位である。
To date, brass (C2600), phosphor bronze (C5191, C5212, C5210), beryllium copper (C17200, C17530), and Corson alloy (C7025) have been used for connectors, terminals, relays, switches, etc. for electronic and electrical equipment. It has been.
In recent years, the frequency of currents used in electronic and electrical equipment in which these are used has increased, and the substantial electrical conductivity has been lowered due to the skin effect. Therefore, high conductivity is also required for materials. . Therefore, originally, brass and phosphor bronze have low conductivity, and the Corson copper alloy shows medium conductivity (EC≈40 to 50% IACS) as a connector material, but higher conductivity is required. Also, it is well known that beryllium copper has medium conductivity but is expensive, and beryllium is an environmentally hazardous substance, so that replacement with another copper alloy or the like is being studied. On the other hand, pure copper (C1100) and Sn-filled copper (C14410), which are highly conductive, have a drawback of low strength. Therefore, a copper alloy having electrical conductivity exceeding that of conventional Corson copper and equivalent tensile strength and bending workability is desired.
The above-mentioned Cxxxx is a type of copper alloy specified by JIS, and% IACS is an abbreviation for international annealed copper standard, and is a unit indicating the conductivity of a material.
 一般的に導電性と強度は相反する特性であり、強度を高める方法として固溶強化、加工強化、析出強化などの様々な強化方法があるが、この中で銅合金では析出強化が導電性を劣化させずに、強度を高める方法として有望であることが知られている。この析出強化とは析出を起こす元素を添加した合金を高温熱処理して、銅母相へそれらの元素を固溶させた後、その温度より低温で熱処理して、固溶させた元素を析出させる手法である。例えば、ベリリウム銅、コルソン合金などはその強化方法を採用している。 Generally, conductivity and strength are contradictory properties, and there are various strengthening methods such as solid solution strengthening, work strengthening, and precipitation strengthening as methods for increasing strength. It is known that it is promising as a method for increasing strength without deteriorating. This precipitation strengthening is performed by high-temperature heat treatment of an alloy added with an element that causes precipitation, so that these elements are dissolved in the copper matrix phase, and then heat-treated at a temperature lower than that temperature to precipitate the dissolved element. It is a technique. For example, beryllium copper, Corson alloy, etc. employ the strengthening method.
 ところで、上記ベリリウム銅、コルソン合金などのほか、銅中にコバルト(Co)とシリコン(Si)の金属間化合物を含む合金も知られている。また、それまでの高濃度CoSi銅合金(Co量が2~4mass%、Si量がCo量の1/4)よりも濃度を減らした、安価に高強度高導電材を作製し得るCoとSiと、Mg、Sn,Znを含む銅合金(例えば、特許文献1参照)がある。
 この特許文献1記載の銅合金の製造にあたっては溶体化温度を高くとり(例えば、特許文献1の実施例では950℃)、十分に固溶させ後の熱処理で析出硬化する方法をとっている。
 しかしながら、この方法では結晶粒が粗大化してしまう。合金組織において、結晶粒径が粗大であると曲げ加工性が悪いことが知られており、従来の溶体化処理された銅合金では、良好な曲げ加工性を得ることはできなかった。
特開昭63-307232号公報
Incidentally, in addition to the beryllium copper and the Corson alloy, alloys containing an intermetallic compound of cobalt (Co) and silicon (Si) in copper are also known. In addition, Co and Si that can produce a high-strength, high-conductivity material at a low cost, with a concentration lower than the conventional high-concentration CoSi copper alloy (Co content is 2 to 4 mass%, Si content is 1/4 of the Co content). And a copper alloy containing Mg, Sn, and Zn (see, for example, Patent Document 1).
In the production of the copper alloy described in Patent Document 1, a solution temperature is set high (for example, 950 ° C. in the embodiment of Patent Document 1), and a solid solution is sufficiently dissolved and precipitation hardening is performed by a heat treatment after that.
However, this method results in coarse crystal grains. In the alloy structure, it is known that if the crystal grain size is coarse, the bending workability is poor, and a conventional solution-treated copper alloy cannot obtain good bending workability.
JP-A 63-307232
 本発明は、コネクタなど厳しい曲げ加工を伴う製品に好適に用いることができる、強度、導電率、および曲げ加工性に優れた電気電子部品用銅合金材を提供することを課題とする。 An object of the present invention is to provide a copper alloy material for electrical and electronic parts, which can be suitably used for a product such as a connector that requires severe bending, and has excellent strength, electrical conductivity, and bending workability.
 本発明によれば、以下の手段が提供される:
(1)Coを0.5~2.5mass%、Siを0.1~1.0mass%、かつCo/Si=3~5(質量比)で含み、残部がCuおよび不可避不純物からなる銅合金材であって、800℃以上960℃以下、かつCo含有量(mass%)をXとした場合に-122.77X+409.99X+615.74より低い温度Ts(℃)で溶体化処理されたことを特徴とする電気電子部品用銅合金材、
(2)Coを0.5~2.5mass%、Siを0.1~1.0mass%、かつCo/Si=3~5(質量比)で含み、更にCr、Mg、Mn、Sn、V、Al、Fe、Ni、Ti、およびZrからなる群から選ばれる1種または2種以上を0.01~1.0mass%含み、残部がCuおよび不可避不純物からなる銅合金材であって、800℃以上960℃以下、かつCo含有量(mass%)をXとした場合に-94.643X+329.99X+677.09より低い温度Ts(℃)で溶体化処理されたことを特徴とする電気電子部品用銅合金材、
(3)降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上、かつ、曲げ加工性を示す値(R/t)が0.5未満であることを特徴とする(1)または(2)項記載の電気電子部品用銅合金材、および
(4)降伏応力が650MPa以上、導電率が50%IACS以上、かつ、曲げ加工性を示す値(R/t)が1.5未満であることを特徴とする(1)または(2)項記載の電気電子部品用銅合金材、
(5)降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上、かつ、曲げ加工性を示す値(R/t)が、圧延方向に平行なサンプルおよび圧延方向に垂直なサンプルの両方で1.2以下であることを特徴とする(1)または(2)項記載の電気電子部品用銅合金材、
(6)降伏応力が650MPa以上、導電率が50%IACS以上、かつ、曲げ加工性を示す値(R/t)が、圧延方向に平行なサンプルおよび圧延方向に垂直なサンプルの両方で1.5以下であることを特徴とする(1)または(2)項記載の電気電子部品用銅合金材。
 ここで、曲げ加工性を示す値(R/t)とは、供試材から各板厚の板巾w=10(mm)のサンプルを取り出し、金属研磨粉でその表面上を軽くこすり酸化膜を除去した後、曲げの内側の角度が90°になるようなW曲げを、[1]圧延方向に平行なサンプルについての曲げ(GW)と、[2]圧延方向に垂直なサンプルについての曲げ(BW)との2種類において行い、微細クラックが入らない最も小さな曲げ半径R(mm)をサンプル板厚t(mm)で割って得られる値R/tを意味する。本発明においては、曲げ加工性をこの値R/tで評価する。
According to the present invention, the following means are provided:
(1) A copper alloy containing 0.5 to 2.5 mass% of Co, 0.1 to 1.0 mass% of Si, and Co / Si = 3 to 5 (mass ratio), with the balance being Cu and inevitable impurities The material was solution-treated at a temperature Ts (° C.) lower than −122.77X 2 + 409.99X + 615.74 when the Co content (mass%) is X when the temperature is 800 ° C. or higher and 960 ° C. or lower. Copper alloy material for electrical and electronic parts,
(2) Co is contained at 0.5 to 2.5 mass%, Si at 0.1 to 1.0 mass%, and Co / Si = 3 to 5 (mass ratio), and further Cr, Mg, Mn, Sn, V A copper alloy material containing 0.01 to 1.0 mass% of one or more selected from the group consisting of Al, Fe, Ni, Ti, and Zr, with the balance being Cu and inevitable impurities, Electrical and electronically characterized by being solution-treated at a temperature Ts (° C.) lower than −94.643X 2 + 329.999X + 67.0.09 when the Co content (mass%) is X when the temperature is not less than 960 ° C. and not more than 960 ° C. Copper alloy material for parts,
(3) The yield stress is 500 MPa or more and less than 650 MPa, the conductivity is 60% IACS or more, and the value (R / t) indicating the bending workability is less than 0.5 (1) or (2 ) Copper alloy material for electrical and electronic parts, and (4) yield stress is 650 MPa or more, conductivity is 50% IACS or more, and the value (R / t) indicating bending workability is less than 1.5 The copper alloy material for electrical and electronic parts according to item (1) or (2),
(5) Yield stress is 500 MPa or more and less than 650 MPa, conductivity is 60% IACS or more, and the value (R / t) indicating bending workability is both in the sample parallel to the rolling direction and the sample perpendicular to the rolling direction. The copper alloy material for electrical and electronic parts according to (1) or (2), wherein the copper alloy material is 1.2 or less,
(6) The yield stress is 650 MPa or more, the conductivity is 50% IACS or more, and the value (R / t) indicating the bending workability is 1. for both the sample parallel to the rolling direction and the sample perpendicular to the rolling direction. The copper alloy material for electrical and electronic parts as set forth in (1) or (2), which is 5 or less.
Here, the value (R / t) indicating the bending workability means that a sample with a plate width w = 10 (mm) of each plate thickness is taken out from the test material, and the surface is lightly rubbed with a metal polishing powder. After removing the wire, W-bending is performed so that the angle inside the bend is 90 °, [1] bending (GW) for a sample parallel to the rolling direction, and [2] bending for a sample perpendicular to the rolling direction. (BW) means a value R / t obtained by dividing the smallest bending radius R (mm) at which fine cracks do not occur by the sample plate thickness t (mm). In the present invention, the bending workability is evaluated by this value R / t.
 本発明の電気電子部品用銅合金材は、強度、導電率、曲げ加工性がいずれも優れた銅合金材である。本発明の電気電子部品用銅合金材はコネクタなど厳しい曲げ加工を伴う製品にも好適に用いることができる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
The copper alloy material for electrical and electronic parts of the present invention is a copper alloy material excellent in strength, conductivity, and bending workability. The copper alloy material for electrical and electronic parts of the present invention can be suitably used for products with severe bending work such as connectors.
These and other features and advantages of the present invention will become more apparent from the following description.
 本発明の銅合金材の合金組成について好ましい実施の態様を、以下に詳細に説明する。なお、本発明の銅合金材は、特定の形状を有する銅合金材、例えば板材、条材、線材、棒材、箔などであり、どのような電気電子部品にも用いることができ、その部品は特に限定されるものではないが、例えば、コネクタ、端子材等、特に、高導電性が所望される高周波リレーやスイッチ、あるいは、自動車車載用などのコネクタや端子材およびリードフレーム等に好適に用いられる。 A preferred embodiment of the alloy composition of the copper alloy material of the present invention will be described in detail below. The copper alloy material of the present invention is a copper alloy material having a specific shape, for example, a plate material, a strip material, a wire material, a rod material, a foil, and the like, and can be used for any electric / electronic component. Is not particularly limited, for example, suitable for connectors, terminal materials, etc., particularly high frequency relays and switches for which high conductivity is desired, or connectors, terminal materials and lead frames for automobiles Used.
 本発明の銅合金組成では、CoとSiが必須成分である。銅合金中のCoとSiは、主としてCoSi金属間化合物の析出物を形成して強度および導電率を向上する。
 Coを0.2~2.5mass%、好ましくは0.3~2.0mass%、さらに好ましくは0.5~1.6mass%、Siを0.1~1.0mass%、好ましくは0.1~0.7mass%、さらに好ましくは0.1~0.5mass%である。このように規定する理由は、前記したようにこれらは主としてCoSiの金属間化合物の析出物を形成し、析出強化に寄与する。Co量が0.5mass%未満では析出強化量が小さく、2.5mass%を越えるとその効果が飽和してしまう。また、この化合物の化学量論比から最適な添加比は、Co/Si≒4.2でありこの範囲になるようにSiの添加量を定めたが、この値を中心にCo/Siを3.0~5.0、より好ましくは3.2~4.5の範囲内になるように調整することが好ましい。以下、SiおよびCoを「添加元素I」という場合がある。
 上記組成の銅合金の場合、溶体化処理を行う温度Ts(℃)は、800℃以上960℃以下であり、Co含有量(mass%)をXとした場合に-122.77X+409.99X+615.74より低い温度(℃)で行うものである。
In the copper alloy composition of the present invention, Co and Si are essential components. Co and Si in the copper alloy mainly form precipitates of Co 2 Si intermetallic compounds to improve strength and conductivity.
Co is 0.2 to 2.5 mass%, preferably 0.3 to 2.0 mass%, more preferably 0.5 to 1.6 mass%, and Si is 0.1 to 1.0 mass%, preferably 0.1 It is -0.7 mass%, More preferably, it is 0.1-0.5 mass%. The reason for such definition is that, as described above, these mainly form precipitates of intermetallic compounds of Co 2 Si and contribute to precipitation strengthening. If the Co content is less than 0.5 mass%, the precipitation strengthening amount is small, and if it exceeds 2.5 mass%, the effect is saturated. Further, the optimum addition ratio from the stoichiometric ratio of this compound was Co / Si≈4.2, and the addition amount of Si was determined so as to be within this range. It is preferable to adjust so as to be in the range of 0.0 to 5.0, more preferably 3.2 to 4.5. Hereinafter, Si and Co may be referred to as “additive element I”.
In the case of the copper alloy having the above composition, the solution treatment temperature Ts (° C.) is 800 ° C. or more and 960 ° C. or less, and when the Co content (mass%) is X, −122.77X 2 + 409.99X + 615 The temperature is lower than 74 (° C.).
 本発明の銅合金にはCr、Mg、Mn、Sn、V、Al、Fe、Ni、Ti、およびZrのいずれか1種または2種以上を添加するのが好ましく、その量は0.01~1.0mass%である。以下、このCr、Mg、Mn、Sn、V、Al、Fe、Ni、Ti、およびZrを「添加元素II」という場合がある。
 添加元素IIの添加量は0.01%mass未満では添加の効果が少なく、1.0mass%を超えると、<1>Mg、Mn、Snのような固溶する元素においては導電率が著しく低下するためであり、<2>Cr、V、Al、Fe、Ni、Ti、Zrのような析出を促す元素においては時効時以外の析出による強度の低下もしくは固溶温度の上昇による溶体化温度の上昇が起こるためであり、<3>Cr、Mg、Al、Ti、Zrは著しい酸化により鋳造が困難となるためである。
It is preferable to add one or more of Cr, Mg, Mn, Sn, V, Al, Fe, Ni, Ti, and Zr to the copper alloy of the present invention, and the amount thereof is 0.01 to 1.0 mass%. Hereinafter, this Cr, Mg, Mn, Sn, V, Al, Fe, Ni, Ti, and Zr may be referred to as “additive element II”.
If the additive amount of additive element II is less than 0.01% mass, the effect of addition is small, and if it exceeds 1.0 mass%, <1> the conductivity is significantly reduced in solid solution elements such as Mg, Mn, and Sn. <2> For elements that promote precipitation, such as Cr, V, Al, Fe, Ni, Ti, and Zr, the solution temperature of the solution decreases due to the decrease in strength due to precipitation other than aging or the increase in the solid solution temperature. This is because of the rise, and <3> Cr, Mg, Al, Ti, and Zr are difficult to cast due to significant oxidation.
 これらの添加元素IIのうち、Cr、Ni、Feは、主析出相のCoの一部と置換して、Co-χ-Si化合物(χ=Cr、Ni、Fe)を形成して強度を向上させる働きがある。
 Mg、Mn、およびSnは、銅母相に固溶して銅合金を強化する作用がある。Mg、Mnは熱間加工性を改善する効果もある。
 V、Al、Ni、Ti、およびZrはCo,Siと共に化合物を形成し強化、結晶粒の粗大化を抑制する作用がある。
Of these additive elements II, Cr, Ni, and Fe replace a part of Co in the main precipitation phase to form a Co—χ—Si compound (χ = Cr, Ni, Fe) to improve strength. There is a work to make.
Mg, Mn, and Sn have a function of strengthening the copper alloy by dissolving in the copper matrix. Mg and Mn also have an effect of improving hot workability.
V, Al, Ni, Ti, and Zr form a compound together with Co and Si to strengthen and suppress the coarsening of crystal grains.
 本発明に係る銅合金材の好ましい製造方法は、次のような工程からなるものである。すなわち、溶解鋳造→再熱処理→熱間圧延→冷間圧延→溶体化処理→時効熱処理→最終冷間圧延→歪取焼鈍である。時効熱処理と最終冷間圧延は逆の順序でも良い。また、最終の歪取(低温)焼鈍は省略してもよい。 A preferred method for producing a copper alloy material according to the present invention comprises the following steps. That is, melt casting → reheat treatment → hot rolling → cold rolling → solution treatment → aging heat treatment → final cold rolling → strain relief annealing. Aging heat treatment and final cold rolling may be performed in reverse order. Further, the final strain relief (low temperature) annealing may be omitted.
 本発明においては、最終圧延前の上記の溶体化処理を800℃以上960℃以下とするものである。
 さらに、溶体化処理温度Ts(℃)は、上記の添加元素IIを含まない場合には、Co含有量(mass%)をXとした場合に、-122.77X+409.99X+615.74より低い温度(℃)とするものである。
 一方、溶体化処理温度Ts(℃)は、上記の添加元素IIを上記の含有量で含む場合には、Co含有量(mass%)をXとした場合に、-94.643X+329.99X+677.09より低い温度(℃)とするものである。
 この温度の熱処理によって銅合金材中の結晶粒径が決定される。
In the present invention, the solution treatment before the final rolling is performed at 800 ° C. or higher and 960 ° C. or lower.
Further, the solution treatment temperature Ts (° C.) is lower than −122.77X 2 + 409.99X + 615.74 when the Co content (mass%) is X when the additive element II is not included. Temperature (° C.).
On the other hand, the solution treatment temperature Ts (° C.) is -94.643X 2 + 329.99X + 677 when the Co content (mass%) is X when the additive element II is included in the above content. The temperature (° C.) is lower than 0.09.
The crystal grain size in the copper alloy material is determined by the heat treatment at this temperature.
 また本発明では、この溶体化熱処理温度Tsからの冷却速度が50℃/秒以上の急速冷却(焼入れ)を行うことが好ましい。この冷却時の冷却速度が低すぎると、前記の高温で溶体化された元素が析出を起こすことがある。
 このように低すぎる冷却速度で(例えば50℃/秒より低い冷却速度で)冷却中に析出を起こした粒子(化合物)は強度に寄与しない非整合析出物(Noncoherent Precipitate)である。また、この非整合析出物は、次の時効熱処理工程で整合析出物(Coherent Precipitate)が形成される時に核生成サイトとして寄与し、その部分の析出を促進させて、特性に悪影響を与えることがある。
 よって、前記冷却速度は、50℃/秒以上が好ましく、より好ましくは80℃/秒以上であり、さらに好ましくは100℃/秒以上であり、実用上の上限の範囲内でできる限り速い冷却速度が望ましい。
 なお、この冷却速度は高温の溶体化熱処理温度から300℃までの平均冷却速度を意味する。300℃より低い温度では大きな組織変化は起きないため、この温度までの冷却速度を適切に制御すればよい。
In the present invention, it is preferable to perform rapid cooling (quenching) at a cooling rate of 50 ° C./second or more from the solution heat treatment temperature Ts. If the cooling rate during this cooling is too low, the elements dissolved at the high temperature may cause precipitation.
Thus, particles (compounds) that precipitate during cooling at a cooling rate that is too low (for example, at a cooling rate lower than 50 ° C./second) are non-coherent precipitates that do not contribute to strength. In addition, this inconsistent precipitate contributes as a nucleation site when a matched precipitate (Coherent Precipitate) is formed in the next aging heat treatment step, and promotes the precipitation of that portion, which may adversely affect the characteristics. is there.
Therefore, the cooling rate is preferably 50 ° C./second or more, more preferably 80 ° C./second or more, further preferably 100 ° C./second or more, and the fastest possible cooling rate within the practical upper limit. Is desirable.
In addition, this cooling rate means the average cooling rate from high temperature solution heat treatment temperature to 300 degreeC. Since a large tissue change does not occur at a temperature lower than 300 ° C., the cooling rate to this temperature may be appropriately controlled.
 本発明では、前記組成の銅合金材の特性を好適に実現するために、溶体化温度を規定する。
 本発明において、結晶粒径は好ましくは20μm以下、さらに好ましくは10μm以下である。その理由は、結晶粒径が20μmを超えると粗大な粒径のため粒界密度が低く、曲げ応力を十分に吸収することができないため加工性が劣化すると推察されるためである。結晶粒径の下限に特に制限はないが、通常3μm以上である。なお、「結晶粒径」は、後述するJIS-H0501(切断法)に基づいて測定した値とする。
 ここでいう「析出物のサイズ」は、後述する方法で求めた析出物の平均サイズである。
In this invention, in order to implement | achieve the characteristic of the copper alloy material of the said composition suitably, solution temperature is prescribed | regulated.
In the present invention, the crystal grain size is preferably 20 μm or less, more preferably 10 μm or less. The reason is that when the crystal grain size exceeds 20 μm, the grain boundary density is low due to the coarse grain size, and it is assumed that the workability deteriorates because the bending stress cannot be sufficiently absorbed. Although there is no restriction | limiting in particular in the minimum of a crystal grain diameter, Usually, it is 3 micrometers or more. The “crystal grain size” is a value measured based on JIS-H0501 (cutting method) described later.
The “size of the precipitate” here is an average size of the precipitate determined by the method described later.
 本発明の電気電子部品用銅合金材の一つの好ましい実施態様では、降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上、かつ、曲げ加工性(R/t)が0.5未満の特性を有するものである。ここで、曲げ加工性(R/t)が0.5未満とは、少なくとも圧延方向に平行なサンプルについての曲げでR/t値が0.5未満であることを意味し、圧延方向に平行なサンプルについての曲げ及び圧延方向に垂直なサンプルについての曲げの両方でR/t値が0.5未満であることが好ましい。
 また、本発明の電気電子部品用銅合金材の別の一つの好ましい実施態様では、降伏応力が650MPa以上、導電率が50%IACS以上、かつ、曲げ加工性(R/t)が1.5未満の特性を有するものである。ここで、曲げ加工性(R/t)が1.5未満とは、少なくとも圧延方向に平行なサンプルについての曲げでR/t値が1.5未満であることを意味し、圧延方向に平行なサンプルについての曲げ及び圧延方向に垂直なサンプルについての曲げの両方でR/t値が1.5未満であることが好ましい。
 また、本発明の電気電子部品用銅合金材のさらに別の一つの好ましい実施態様では、降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上、かつ、曲げ加工性を示す値(R/t)が、圧延方向に平行なサンプルについての曲げおよび圧延方向に垂直なサンプルについての曲げの両方で1.2以下(より好ましくは1.0以下、さらに好ましくは0.6以下)の特性を有するものである。
 また、本発明の電気電子部品用銅合金材のさらに別の一つの好ましい実施態様では、降伏応力が650MPa以上、導電率が50%IACS以上、かつ、曲げ加工性を示す値(R/t)が、圧延方向に平行なサンプルについての曲げおよび圧延方向に垂直なサンプルについての曲げの両方で1.5以下(より好ましくは1.2以下)の特性を有するものである。
 このように、高導電性で強度が高く、さらに曲げ加工性が優れている本発明の銅合金材は、厳しい曲げ加工を伴うコネクタなどの電気電子部品に好適に用いることができる。
In one preferred embodiment of the copper alloy material for electric and electronic parts of the present invention, the yield stress is 500 MPa or more and less than 650 MPa, the conductivity is 60% IACS or more, and the bending workability (R / t) is less than 0.5. It has characteristics. Here, the bending workability (R / t) of less than 0.5 means that the R / t value is less than 0.5 by bending at least a sample parallel to the rolling direction, and is parallel to the rolling direction. It is preferred that the R / t value be less than 0.5 for both the bending of a simple sample and the bending of a sample perpendicular to the rolling direction.
In another preferred embodiment of the copper alloy material for electric and electronic parts of the present invention, the yield stress is 650 MPa or more, the conductivity is 50% IACS or more, and the bending workability (R / t) is 1.5. It has the characteristics of less than. Here, the bending workability (R / t) of less than 1.5 means that the R / t value is less than 1.5 by bending at least a sample parallel to the rolling direction, and is parallel to the rolling direction. It is preferred that the R / t value is less than 1.5 for both the bending of a simple sample and the bending of a sample perpendicular to the rolling direction.
In another preferred embodiment of the copper alloy material for electrical and electronic parts of the present invention, the yield stress is 500 MPa or more and less than 650 MPa, the conductivity is 60% IACS or more, and a value indicating bending workability (R / t) has a characteristic of 1.2 or less (more preferably 1.0 or less, more preferably 0.6 or less) in both the bending for the sample parallel to the rolling direction and the bending for the sample perpendicular to the rolling direction. It is what you have.
In another preferred embodiment of the copper alloy material for electric and electronic parts according to the present invention, the yield stress is 650 MPa or more, the conductivity is 50% IACS or more, and the value (R / t) indicates bending workability. However, it has a characteristic of 1.5 or less (more preferably 1.2 or less) in both the bending of the sample parallel to the rolling direction and the bending of the sample perpendicular to the rolling direction.
As described above, the copper alloy material of the present invention having high conductivity, high strength, and excellent bending workability can be suitably used for electrical and electronic parts such as connectors that involve severe bending work.
 次に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
(参考例1)
 表1に示した成分を含有し、残部がCuと不可避不純物から成る合金(No.1~9)を高周波溶解炉により溶解し、これらを10~30℃/秒の冷却速度で鋳造して、長さ180mm、幅30mm、高さ110mmの鋳塊を得た。
 得られた鋳塊を1000℃で30分間保持した後、熱間圧延によって厚さ12mmまで加工した。熱間圧延後、速やかに水冷却にて焼入れを施し、表面上の酸化皮膜除去のため厚さ10mm前後に面削後、冷間圧延にて加工した。この後、溶体化、再結晶させる目的で、950℃で30秒間温度を維持しながら熱処理を行い、速やかに水冷却で焼き入れを行った。
 その際の室温から最高温度に到達するまでの昇温速度は10~50℃/秒の範囲内にあり、冷却速度は30~200℃/秒の範囲内で行った。
 その後、表面酸化膜を除去し、必要に応じて冷間圧延を施した。これは加工硬化、次の工程の熱処理での析出硬化の促進を兼ねている。
 次いで、時効析出させる目的で、525℃で120分間の熱処理を施した。その際の室温から最高温度に到達するまでの昇温速度は3~25℃/分の範囲内にあり、降温に際しては、析出に影響を与えると考えられる温度帯より十分低い温度である300℃までは炉内で1℃/分~2℃/分の範囲内で冷却を行った。
 時効熱処理後、冷間圧延を板厚が20%減少するように施した。板厚は各合金について0.10mm,0.15mm,0.20mm,0.25mm材を作製した。
 次いで、350℃で30分間の熱処理を施した。その際の室温から最高温度に到達するまでの昇温速度は3~25℃/分の範囲内にあり、降温に際しては、析出に影響を与えると考えられる温度帯より十分低い温度である300℃までは炉内で1℃/分~2℃/分の範囲内で冷却を行った。
(Reference Example 1)
Alloys (Nos. 1 to 9) containing the components shown in Table 1 and the balance being Cu and inevitable impurities were melted in a high-frequency melting furnace, and these were cast at a cooling rate of 10 to 30 ° C./second, An ingot having a length of 180 mm, a width of 30 mm, and a height of 110 mm was obtained.
The obtained ingot was held at 1000 ° C. for 30 minutes and then processed to a thickness of 12 mm by hot rolling. After hot rolling, quenching was performed quickly with water cooling, and after surface chamfering to a thickness of about 10 mm for removal of the oxide film on the surface, it was processed by cold rolling. Thereafter, for the purpose of solution and recrystallization, heat treatment was performed while maintaining the temperature at 950 ° C. for 30 seconds, and quenching was quickly performed with water cooling.
At that time, the rate of temperature increase from room temperature to the maximum temperature was in the range of 10 to 50 ° C./second, and the cooling rate was in the range of 30 to 200 ° C./second.
Thereafter, the surface oxide film was removed, and cold rolling was performed as necessary. This also serves as acceleration of work hardening and precipitation hardening in the heat treatment of the next step.
Next, a heat treatment was performed at 525 ° C. for 120 minutes for the purpose of aging precipitation. In this case, the rate of temperature rise from room temperature to the maximum temperature is in the range of 3 to 25 ° C./min. When the temperature is lowered, the temperature is 300 ° C., which is sufficiently lower than the temperature range considered to affect precipitation. Until then, cooling was performed within the range of 1 ° C./min to 2 ° C./min in the furnace.
After the aging heat treatment, cold rolling was performed so that the plate thickness was reduced by 20%. Thicknesses of 0.10 mm, 0.15 mm, 0.20 mm, and 0.25 mm were prepared for each alloy.
Next, heat treatment was performed at 350 ° C. for 30 minutes. In this case, the rate of temperature rise from room temperature to the maximum temperature is in the range of 3 to 25 ° C./min. When the temperature is lowered, the temperature is 300 ° C., which is sufficiently lower than the temperature range considered to affect precipitation. Until then, cooling was performed within the range of 1 ° C./min to 2 ° C./min in the furnace.
 このように作製した合金No.1~8の合金材の板厚0.20mmのものについて、以下の方法により、降伏応力(YS)、引張強さ(TS)、および導電率(EC)を測定した。結果を表3に示す。なお、合金No.9の合金材については、晶出、析出過多による熱間圧延が困難で、最終製品を製造できなかったため、以下の測定は行わなかった。
 降伏応力および引張強さ測定法:圧延方向に平行に切り出したJIS Z2201-5号の試験片をJIS Z2241に準じて各2本ずつ測定し、その平均値(MPa)を求めた。
 なお、降伏応力に関してはオフセット法に従った。すなわち、永久伸び0.2%の場合の耐力を、σ0.2=F0.2/Aの式を用いて算出した。ここでσ:オフセット法で算出した耐力(N/mm)、F:伸び計を用いて力と伸びた量との関係線図を求め、規定の永久伸び(ε%)に相当する伸び軸上の点から試験初期の直線部分に平行線を引き、これが線図と交わる点の示す力を求めたものである。
 導電率測定法:20℃(±0.5℃)に保持した恒温漕中で四端子法により比抵抗を測定して導電率(%IACS)を算出した。端子間距離は100mmとした。
Alloy no. Yield stress (YS), tensile strength (TS), and electrical conductivity (EC) were measured for the alloy materials 1 to 8 having a plate thickness of 0.20 mm by the following methods. The results are shown in Table 3. Alloy No. Regarding the alloy material No. 9, since the hot rolling due to crystallization and excessive precipitation was difficult and the final product could not be produced, the following measurement was not performed.
Yield stress and tensile strength measurement method: Two test pieces of JIS Z2201-5 cut out parallel to the rolling direction were measured in accordance with JIS Z2241, and the average value (MPa) was determined.
Note that the yield method was followed by the offset method. That is, the proof stress in the case of permanent elongation 0.2% was calculated using the formula of σ 0.2 = F 0.2 / A 0 . Here, σ: Yield strength calculated by the offset method (N / mm 2 ), F: A relationship diagram between the force and the amount of elongation was obtained using an extensometer, and the elongation axis corresponding to the specified permanent elongation (ε%) A parallel line is drawn from the upper point to the straight line portion in the initial stage of the test, and the force indicated by the point where the line intersects the diagram is obtained.
Conductivity measurement method: Specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate conductivity (% IACS). The distance between terminals was 100 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本試験においては、強度と導電率の評価のみを行っているので、処理温度は強度を十分に得られる950℃(上記表2における工程F)をとった。
 本発明に規定される組成の範囲を満たす合金No.1~5では、強度と導電率がバランスよく優れた合金材が得られた。
 一方、CoおよびSi量が少なすぎた合金No.6では析出硬化が小さくなり強度不足であった。
 また、Co量が多すぎた合金No.9では、溶解時の酸化物形成過多による製品劣化、析出過多などから鋳塊再熱割れ、熱間圧延の難化がおこるため、製造が困難なものであった。また、高価なCoを多量使用するためコスト的に競争力に劣る合金材となった。
 Co/Si=3~5以外の範囲の合金例No.7,8では、析出しないCo、Si固溶元素が多くなり導電率の著しい低下が起こった。
In this test, only strength and electrical conductivity were evaluated, so the processing temperature was 950 ° C. (Step F in Table 2 above) at which sufficient strength was obtained.
Alloy No. 1 satisfying the composition range defined in the present invention. From 1 to 5, an alloy material with excellent balance between strength and electrical conductivity was obtained.
On the other hand, Alloy No. with too little Co and Si content. In No. 6, precipitation hardening became small and strength was insufficient.
In addition, the alloy No. No. 9 was difficult to manufacture because product deterioration due to excessive oxide formation during dissolution, excessive precipitation, and ingot reheat cracking and hot rolling became difficult. Further, since a large amount of expensive Co is used, the alloy material is inferior in cost competitiveness.
Example of alloy No. in a range other than Co / Si = 3-5 In Nos. 7 and 8, the Co and Si solid solution elements that did not precipitate increased, resulting in a significant decrease in conductivity.
 実施例1
 表4に示した成分を含有し、残部がCuと不可避不純物から成る合金を用い、溶体化処理の温度を表2に示す工程A~Hの温度に変更した以外は、参考例1と同様にして本発明例1~3、10~16および比較例1~3、18~22の合金材を得た。なお、表4に示す合金No.1~3は、表1に示す合金No.1~3と同一の組成である。また、表4に示す発明例の合金No.10~12は、それぞれ表1および表4に示す合金No.1~3にCrを規定の範囲内で加えたものであり、表4に示す発明例の合金No.13~16は、表1および表4に示す合金No.3に、Mg(No.13)、Sn(No.14)、CrとMg(No.15)、CrとTi(No.16)をそれぞれ規定の範囲内で加えたものである。表4に示す比較例の合金No.18~22は、表1および表4に示す合金No.3に、Cr(No.18)、Ti(No.19)、Mg(No.20)、Sn(No.21)、Zr(No.22)をそれぞれ規定の範囲を超えて加えたものである。
Example 1
The same as in Reference Example 1 except that an alloy containing the components shown in Table 4 and the balance consisting of Cu and inevitable impurities was used and the solution treatment temperature was changed to the temperatures of Steps A to H shown in Table 2. Thus, alloy materials of Invention Examples 1 to 3, 10 to 16, and Comparative Examples 1 to 3, and 18 to 22 were obtained. In addition, alloy no. 1-3 are alloy Nos. Shown in Table 1. It has the same composition as 1-3. In addition, Alloy No. 10 to 12 are alloy Nos. Shown in Table 1 and Table 4, respectively. 1 to 3 with Cr added within the specified range. Nos. 13 to 16 are alloy Nos. Shown in Tables 1 and 4. 3, Mg (No. 13), Sn (No. 14), Cr and Mg (No. 15), Cr and Ti (No. 16) are added within the prescribed ranges. Comparative Example Alloy Nos. 18 to 22 are alloy Nos. Shown in Tables 1 and 4. 3, Cr (No. 18), Ti (No. 19), Mg (No. 20), Sn (No. 21), Zr (No. 22) are added beyond the prescribed ranges. .
 得られた、本発明例1~3、10~16および比較例1~3、18~22の合金材について、参考例1と同様に、降伏応力(YS)、引張強さ(TS)、および導電率(EC)を測定した。また、下記方法に基づき、結晶粒径(GS)および曲げ加工性(R/t)を測定した。結果を表5に示す。
 結晶粒径測定法:試験片の圧延方向に垂直な断面を湿式研磨、バフ研磨により鏡面に仕上げた後、クロム酸:水=1:1の液で数秒研磨面を腐食した後、SEMの二次電子像を用いて400~1000倍の倍率で写真をとり、断面の平均結晶粒径(μm)をJIS-H-0501の切断法に準じて測定した。断面は、圧延方向横断面で測定した。
 曲げ加工性評価:供試材から各板厚の板巾w=10(mm)のサンプルを金属研磨粉で表面上を軽くこすり酸化膜を除去した後、曲げの内側の角度が90°になるようなW曲げを圧延方向に平行なサンプルについての曲げ(GOOD WAY:以下GW)、圧延方向に垂直なサンプルについての曲げ(BAD WAY:以下BW)の2種類において行った。曲げの評価に関しては、微細クラックが入らない最も小さな曲げ半径Rをサンプル板厚tで割った値であるR/tで評価した。
For the obtained alloy materials of Invention Examples 1 to 3, 10 to 16 and Comparative Examples 1 to 3, 18 to 22, as in Reference Example 1, yield stress (YS), tensile strength (TS), and Conductivity (EC) was measured. Further, the crystal grain size (GS) and bending workability (R / t) were measured based on the following methods. The results are shown in Table 5.
Grain size measurement method: After the cross section perpendicular to the rolling direction of the test piece is polished to a mirror surface by wet polishing and buffing, the polished surface is corroded with a solution of chromic acid: water = 1: 1 for several seconds, A photograph was taken at a magnification of 400 to 1000 times using the next electron image, and the average crystal grain size (μm) of the cross section was measured according to the cutting method of JIS-H-0501. The cross section was measured by a cross section in the rolling direction.
Bending workability evaluation: After removing the oxide film by lightly rubbing the surface of the specimen with a plate width w = 10 (mm) of each thickness with metal polishing powder, the angle inside the bending becomes 90 °. Such W-bending was performed in two types: bending for a sample parallel to the rolling direction (GOOD WAY: hereinafter GW) and bending for a sample perpendicular to the rolling direction (BAD WAY: hereinafter BW). Regarding the evaluation of bending, it was evaluated by R / t, which is a value obtained by dividing the smallest bending radius R at which no fine cracks occur by the sample plate thickness t.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の本発明例1~3では、溶体化処理温度Ts(℃)を、800℃以上960℃以下、かつ、Co含有量(mass%)をXとした場合に、-122.77X+409.99X+615.74より低い温度(℃)としている。このため、20μm未満の粒径を維持でき、強度、導電率、曲げ性のバランスが優れた銅合金材を得ることができた。
 具体的には、降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上、かつ、曲げ加工性を示す値(R/t)が、GWとBWの両方で1.0以下となった。また、曲げ加工性を示す値(R/t)が、GWとBWの両方で0.6以下、さらには0.5未満となった例もあり、強度、導電率、曲げ性のバランスが優れた銅合金材が得られていることがわかった。
 一方、同様な組成であっても、比較例1~3に示す温度の熱処理を行った場合は、強度は本発明例1~3と同等かあるいは高くなるが、粒径が粗大になり、本発明例1~3より曲げ加工性が劣るものとなった。また、曲げ加工性を示す値(R/t)が、GWよりBWで劣る傾向がみられた。
 表5に示されるように、比較例3では、溶体化温度を規定より低くとる処理では、再結晶しない組織が残存し(表5に結晶粒径の値なし(-)として示した)、また溶体化温度を規定より高くとる処理では、結晶粒が粗大化し、いずれも課題となる良好な曲げ加工性を維持することはできなかった。
In Invention Examples 1 to 3 in Table 5, when the solution treatment temperature Ts (° C.) is 800 ° C. or more and 960 ° C. or less and the Co content (mass%) is X, −122.77X 2 +409 The temperature (° C.) is lower than .99X + 615.74. For this reason, it was possible to maintain a particle size of less than 20 μm and to obtain a copper alloy material having an excellent balance of strength, conductivity, and bendability.
Specifically, the yield stress was 500 MPa or more and less than 650 MPa, the electrical conductivity was 60% IACS or more, and the value (R / t) indicating bending workability was 1.0 or less for both GW and BW. In addition, there is an example in which the value (R / t) indicating bending workability is 0.6 or less for both GW and BW, and even less than 0.5, and the balance of strength, conductivity, and bendability is excellent. It was found that a copper alloy material was obtained.
On the other hand, even with the same composition, when the heat treatment at the temperature shown in Comparative Examples 1 to 3 is performed, the strength is equal to or higher than that of Examples 1 to 3, but the grain size becomes coarse, and Bending workability was inferior to Invention Examples 1 to 3. Moreover, the value (R / t) which shows bending workability showed the tendency to be inferior in BW rather than GW.
As shown in Table 5, in Comparative Example 3, in the treatment in which the solution temperature was lower than specified, a structure that did not recrystallize remained (shown in Table 5 as no crystal grain size value (−)), and In the treatment in which the solution temperature is higher than the specified value, the crystal grains are coarsened, and none of the good bending workability, which is a problem, can be maintained.
 表5の本発明例10~16では、Cr,Mg,Mn,Sn,V,Zn,Al,Fe,Nb,Ni,Ti,Zrを1種以上添加(すなわち前記添加元素IIを総計0.01~1mass%添加)し、溶体化処理温度Ts(℃)を、800℃以上960℃以下、かつ、Co含有量(mass%)をXとした場合に、-94.643X+329.99X+677.09より低い温度(℃)としている。このため、参考例1と同程度の高温での熱処理で粒径を20μm以下にすることができ、参考例1と同程度の強度を有し、曲げ加工性に優れるものとすることができた。
 具体的には、降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上となるサンプルについては、曲げ加工性を示す値(R/t)が、GWとBWの両方で1.2以下となった。また、曲げ加工性を示す値(R/t)が、GWとBWの両方で1.0以下、さらには0.6以下、さらには0.5未満となった例もあった。また、降伏応力が650MPa以上、導電率が50%IACS以上となるサンプルについては、曲げ加工性を示す値(R/t)が、GWとBWの両方で1.5以下、さらには1.2以下となった。このように、強度、導電率、曲げ性のバランスが優れた銅合金材が得られていることがわかった。
 また、参考例1の手段でCo、Siのみを添加時に粒径を20μm以下に制御できている場合でも、上記金属を添加することで更なる結晶粒微細化を促進でき、優位な曲げ加工特性を得ることができる。
 一方、添加元素IIの添加量が1%を超えた比較例18~22では鋳造時の酸化物の形成、また、高温熱処理中の析出過多による製造性の難化がおきる。また、添加元素IIの添加量が1%を超えた比較例21では、固溶型元素を添加すると導電率が大きく下がり、降伏応力が650MPa未満であるが、R/tの値がBWで1.2を超えており、曲げ加工性に劣るものであった。また、曲げ加工性を示す値(R/t)が、GWよりBWで劣る傾向がみられた。
In Invention Examples 10 to 16 in Table 5, one or more of Cr, Mg, Mn, Sn, V, Zn, Al, Fe, Nb, Ni, Ti, and Zr are added (that is, the total amount of the additive element II is 0.01). -14.63% X 2 + 329.9999 + 677.09 when the solution treatment temperature Ts (° C.) is 800 ° C. or more and 960 ° C. or less and the Co content (mass%) is X. Lower temperature (° C). For this reason, the particle size could be reduced to 20 μm or less by heat treatment at the same high temperature as in Reference Example 1, and had the same strength as Reference Example 1 and excellent bending workability. .
Specifically, for a sample having a yield stress of 500 MPa or more and less than 650 MPa and an electrical conductivity of 60% IACS or more, the value (R / t) indicating bending workability is 1.2 or less for both GW and BW. became. In addition, there was an example in which the value (R / t) indicating the bending workability was 1.0 or less, further 0.6 or less, and further less than 0.5 for both GW and BW. In addition, for a sample having a yield stress of 650 MPa or more and a conductivity of 50% IACS or more, the value (R / t) indicating the bending workability is 1.5 or less for both GW and BW, and further 1.2. It became the following. Thus, it was found that a copper alloy material having an excellent balance of strength, conductivity, and bendability was obtained.
Even when only Co and Si are added by the means of Reference Example 1 and the grain size can be controlled to 20 μm or less, further refinement of crystal grains can be promoted by adding the above metal, and superior bending properties Can be obtained.
On the other hand, in Comparative Examples 18 to 22 in which the amount of additive element II added exceeds 1%, the formation of oxide during casting and the difficulty of manufacturability due to excessive precipitation during high-temperature heat treatment occur. Further, in Comparative Example 21 in which the addition amount of the additive element II exceeds 1%, when the solid solution element is added, the conductivity is greatly lowered and the yield stress is less than 650 MPa, but the value of R / t is 1 in BW. .2 and was inferior in bending workability. Moreover, the value (R / t) which shows bending workability showed the tendency which is inferior in BW rather than GW.
 本発明の電気電子部品用銅合金材は、電気・電子機器用のコネクタ、端子材等、特に、高導電性が所望される高周波リレーやスイッチ、あるいは、自動車車載用などのコネクタや端子材およびリードフレームなどの電気電子部品に好適に用いられるものである。 The copper alloy material for electrical and electronic parts of the present invention includes connectors and terminal materials for electrical and electronic equipment, particularly high frequency relays and switches for which high conductivity is desired, or connectors and terminal materials for automobiles, etc. It is suitably used for electrical and electronic parts such as lead frames.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2008年3月21日に日本国で特許出願された特願2008-074650に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2008-074650 filed in Japan on March 21, 2008, which is hereby incorporated herein by reference. Capture as part.

Claims (6)

  1.  Coを0.5~2.5mass%、Siを0.1~1.0mass%、かつCo/Si=3~5(質量比)で含み、残部がCuおよび不可避不純物からなる銅合金材であって、800℃以上960℃以下、かつCo含有量(mass%)をXとした場合に-122.77X+409.99X+615.74より低い温度Ts(℃)で溶体化処理されたことを特徴とする電気電子部品用銅合金材。 A copper alloy material containing 0.5 to 2.5 mass% of Co, 0.1 to 1.0 mass% of Si, and Co / Si = 3 to 5 (mass ratio), with the balance being Cu and inevitable impurities. And a solution treatment at a temperature Ts (° C.) lower than −122.77X 2 + 4099.99X + 615.74 when the Co content (mass%) is X when the temperature is 800 ° C. or more and 960 ° C. or less. Copper alloy material for electrical and electronic parts.
  2.  Coを0.5~2.5mass%、Siを0.1~1.0mass%、かつCo/Si=3~5(質量比)で含み、更にCr、Mg、Mn、Sn、V、Al、Fe、Ni、Ti、およびZrからなる群から選ばれる1種または2種以上を0.01~1.0mass%含み、残部がCuおよび不可避不純物からなる銅合金材であって、800℃以上960℃以下、かつCo含有量(mass%)をXとした場合に-94.643X+329.99X+677.09より低い温度Ts(℃)で溶体化処理されたことを特徴とする電気電子部品用銅合金材。 Co containing 0.5 to 2.5 mass%, Si containing 0.1 to 1.0 mass%, and Co / Si = 3 to 5 (mass ratio), and further Cr, Mg, Mn, Sn, V, Al, A copper alloy material containing 0.01 to 1.0 mass% of one or more selected from the group consisting of Fe, Ni, Ti, and Zr, with the balance being Cu and inevitable impurities, 800 ° C. or higher and 960 ° C. Copper for electrical and electronic parts, characterized by a solution treatment at a temperature Ts (° C.) lower than −94.643X 2 + 329.99X + 677.09 when the Co content (mass%) is X. Alloy material.
  3.  降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上、かつ、曲げ加工性を示す値(R/t)が0.5未満であることを特徴とする請求項1または請求項2記載の電気電子部品用銅合金材。 The yield stress is 500 MPa or more and less than 650 MPa, the electrical conductivity is 60% IACS or more, and the value (R / t) indicating the bending workability is less than 0.5. Copper alloy material for electrical and electronic parts.
  4.  降伏応力が650MPa以上、導電率が50%IACS以上、かつ、曲げ加工性を示す値(R/t)が1.5未満であることを特徴とする請求項1または請求項2記載の電気電子部品用銅合金材。 3. The electric / electronic apparatus according to claim 1, wherein the yield stress is 650 MPa or more, the electrical conductivity is 50% IACS or more, and the value (R / t) indicating bending workability is less than 1.5. Copper alloy material for parts.
  5.  降伏応力が500MPa以上650MPa未満、導電率が60%IACS以上、かつ、曲げ加工性を示す値(R/t)が、圧延方向に平行なサンプルおよび圧延方向に垂直なサンプルの両方で1.2以下であることを特徴とする請求項1または請求項2記載の電気電子部品用銅合金材。 The yield stress is 500 MPa or more and less than 650 MPa, the conductivity is 60% IACS or more, and the value (R / t) indicating the bending workability is 1.2 in both the sample parallel to the rolling direction and the sample perpendicular to the rolling direction. The copper alloy material for electric and electronic parts according to claim 1 or 2, wherein:
  6.  降伏応力が650MPa以上、導電率が50%IACS以上、かつ、曲げ加工性を示す値(R/t)が、圧延方向に平行なサンプルおよび圧延方向に垂直なサンプルの両方で1.5以下であることを特徴とする請求項1または請求項2記載の電気電子部品用銅合金材。 The yield stress is 650 MPa or more, the conductivity is 50% IACS or more, and the value (R / t) indicating the bending workability is 1.5 or less in both the sample parallel to the rolling direction and the sample perpendicular to the rolling direction. The copper alloy material for electrical and electronic parts according to claim 1 or 2, wherein the copper alloy material is provided.
PCT/JP2009/055531 2008-03-21 2009-03-19 Copper alloy material for electric and electronic components WO2009116649A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09722228A EP2267172A1 (en) 2008-03-21 2009-03-19 Copper alloy material for electric and electronic components
JP2010503942A JP5065478B2 (en) 2008-03-21 2009-03-19 Copper alloy material for electric and electronic parts and manufacturing method
CN200980110059.3A CN101978081B (en) 2008-03-21 2009-03-19 Copper alloy material for electric/electronic parts
US12/886,268 US20110005644A1 (en) 2008-03-21 2010-09-20 Copper alloy material for electric/electronic parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008074650 2008-03-21
JP2008-074650 2008-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/886,268 Continuation US20110005644A1 (en) 2008-03-21 2010-09-20 Copper alloy material for electric/electronic parts

Publications (1)

Publication Number Publication Date
WO2009116649A1 true WO2009116649A1 (en) 2009-09-24

Family

ID=41091047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055531 WO2009116649A1 (en) 2008-03-21 2009-03-19 Copper alloy material for electric and electronic components

Country Status (5)

Country Link
US (1) US20110005644A1 (en)
EP (1) EP2267172A1 (en)
JP (1) JP5065478B2 (en)
CN (1) CN101978081B (en)
WO (1) WO2009116649A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152124A1 (en) 2010-05-31 2011-12-08 Jx日鉱日石金属株式会社 Cu-co-si-based copper alloy for electronic material, and process for production thereof
WO2012026488A1 (en) 2010-08-24 2012-03-01 Jx日鉱日石金属株式会社 Copper-cobalt-silicon alloy for electrode material
WO2012096351A1 (en) * 2011-01-13 2012-07-19 Jx日鉱日石金属株式会社 Cu-co-si-zr alloy material and method for producing same
JP2012167319A (en) * 2011-02-14 2012-09-06 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY, ROLLED COPPER ARTICLE, ELECTRONIC COMPONENT, CONNECTOR, AND METHOD FOR PRODUCING Cu-Co-Si-BASED ALLOY
JP2012207264A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY HAVING EXCELLENT BENDING WORKABILITY
CN105734337A (en) * 2016-05-05 2016-07-06 太仓小小精密模具有限公司 Wearing-resistant cooper alloy mold material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy
CN108133765A (en) * 2018-01-15 2018-06-08 郑家法 A kind of cable copper alloy conductive material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307232A (en) 1987-06-04 1988-12-14 Sumitomo Metal Mining Co Ltd Copper alloy
JPH02277735A (en) * 1989-04-20 1990-11-14 Sumitomo Metal Mining Co Ltd Copper alloy for lead frame
JP2006283120A (en) * 2005-03-31 2006-10-19 Nikko Metal Manufacturing Co Ltd Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2008074650A (en) 2006-09-20 2008-04-03 Covalent Materials Corp Single crystal manufacturing apparatus and method for controlling the same
JP2008088512A (en) * 2006-10-03 2008-04-17 Nikko Kinzoku Kk Method for producing copper alloy for electronic material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4943095B2 (en) * 2006-08-30 2012-05-30 三菱電機株式会社 Copper alloy and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307232A (en) 1987-06-04 1988-12-14 Sumitomo Metal Mining Co Ltd Copper alloy
JPH02277735A (en) * 1989-04-20 1990-11-14 Sumitomo Metal Mining Co Ltd Copper alloy for lead frame
JP2006283120A (en) * 2005-03-31 2006-10-19 Nikko Metal Manufacturing Co Ltd Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2008074650A (en) 2006-09-20 2008-04-03 Covalent Materials Corp Single crystal manufacturing apparatus and method for controlling the same
JP2008088512A (en) * 2006-10-03 2008-04-17 Nikko Kinzoku Kk Method for producing copper alloy for electronic material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152124A1 (en) 2010-05-31 2011-12-08 Jx日鉱日石金属株式会社 Cu-co-si-based copper alloy for electronic material, and process for production thereof
US9460825B2 (en) 2010-05-31 2016-10-04 Jx Nippon Mining & Metals Corporation Cu-Co-Si-based copper alloy for electronic materials, and method of manufacturing same
EP2578709A1 (en) * 2010-05-31 2013-04-10 JX Nippon Mining & Metals Corporation Cu-co-si-based copper alloy for electronic material, and process for production thereof
EP2578709A4 (en) * 2010-05-31 2014-04-09 Jx Nippon Mining & Metals Corp Cu-co-si-based copper alloy for electronic material, and process for production thereof
WO2012026488A1 (en) 2010-08-24 2012-03-01 Jx日鉱日石金属株式会社 Copper-cobalt-silicon alloy for electrode material
JP2012046774A (en) * 2010-08-24 2012-03-08 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL
KR101917416B1 (en) 2010-08-24 2018-11-09 제이엑스금속주식회사 Copper-cobalt-silicon alloy for electrode material
US10056166B2 (en) 2010-08-24 2018-08-21 Jx Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material
CN103052728A (en) * 2010-08-24 2013-04-17 Jx日矿日石金属株式会社 Copper-cobalt-silicon alloy for electrode material
EP2607508A1 (en) * 2010-08-24 2013-06-26 JX Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material
CN103052728B (en) * 2010-08-24 2015-07-08 Jx日矿日石金属株式会社 Copper-cobalt-silicon alloy for electrode material
EP2607508A4 (en) * 2010-08-24 2014-04-09 Jx Nippon Mining & Metals Corp Copper-cobalt-silicon alloy for electrode material
CN103298961B (en) * 2011-01-13 2015-06-17 Jx日矿日石金属株式会社 Cu-Co-Si-Zr alloy material and method for producing same
CN103298961A (en) * 2011-01-13 2013-09-11 Jx日矿日石金属株式会社 Cu-Co-Si-Zr alloy material and method for producing same
WO2012096351A1 (en) * 2011-01-13 2012-07-19 Jx日鉱日石金属株式会社 Cu-co-si-zr alloy material and method for producing same
JP2012167319A (en) * 2011-02-14 2012-09-06 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY, ROLLED COPPER ARTICLE, ELECTRONIC COMPONENT, CONNECTOR, AND METHOD FOR PRODUCING Cu-Co-Si-BASED ALLOY
JP2012207264A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY HAVING EXCELLENT BENDING WORKABILITY
CN105734337A (en) * 2016-05-05 2016-07-06 太仓小小精密模具有限公司 Wearing-resistant cooper alloy mold material

Also Published As

Publication number Publication date
EP2267172A1 (en) 2010-12-29
US20110005644A1 (en) 2011-01-13
CN101978081A (en) 2011-02-16
JP5065478B2 (en) 2012-10-31
CN101978081B (en) 2014-09-10
JPWO2009116649A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP5065478B2 (en) Copper alloy material for electric and electronic parts and manufacturing method
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4809602B2 (en) Copper alloy
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5619389B2 (en) Copper alloy material
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
JP4444245B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2010016428A1 (en) Copper alloy material for electrical/electronic component
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof
WO2012026488A1 (en) Copper-cobalt-silicon alloy for electrode material
JP5468798B2 (en) Copper alloy sheet
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP4781145B2 (en) Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JP2017179538A (en) Copper alloy sheet material and manufacturing method of copper alloy sheet material
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP4175920B2 (en) High strength copper alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110059.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010503942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009722228

Country of ref document: EP