JP2008266787A - Copper alloy material and its manufacturing method - Google Patents

Copper alloy material and its manufacturing method Download PDF

Info

Publication number
JP2008266787A
JP2008266787A JP2008085013A JP2008085013A JP2008266787A JP 2008266787 A JP2008266787 A JP 2008266787A JP 2008085013 A JP2008085013 A JP 2008085013A JP 2008085013 A JP2008085013 A JP 2008085013A JP 2008266787 A JP2008266787 A JP 2008266787A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
heat treatment
cold working
aging precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085013A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaneko
洋 金子
Kuniteru Mihara
邦照 三原
Tatsuhiko Eguchi
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008085013A priority Critical patent/JP2008266787A/en
Priority to EP08739314A priority patent/EP2157199A4/en
Priority to PCT/JP2008/056196 priority patent/WO2008123455A1/en
Priority to US12/593,402 priority patent/US20100170595A1/en
Priority to CN2008800181847A priority patent/CN101680056B/en
Publication of JP2008266787A publication Critical patent/JP2008266787A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy material for an electric-electronic equipment having a high electrical conductivity of ≥50% LACS which can be hardly realized in a Cu-Ni-Si system and having a high strength, stress relaxation resistance characteristic, and bending workability, and a manufacturing method for controlling the crystal grain size thereof. <P>SOLUTION: The copper alloy material contains, by mass, 0.1 to 4% X element (where the element X denotes one or two or more among transition metals Ni, Fe, Co, Cu) and 0.01 to 3% Y element (where the element Y denotes one or two or more among Si, Zt, Hf) and the balance copper and inevitable impurities. The copper alloy material has the electrical conductivity of ≥50% LACS and an yield strength of ≥600 MPa and the stress relaxation rate when the copper alloy material is held for 1,000 hours in the state of applying a stress of 80% of the yield strength thereto is ≤20%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電気・電子機器用のリードフレーム、コネクタ、端子材等、例えば、自動車車載用などのコネクタや端子材、リレ−、スイッチ、ソケットなどに適用される銅合金材に関する。   The present invention relates to a copper alloy material applied to a lead frame, a connector, a terminal material, etc. for an electric / electronic device, for example, a connector, a terminal material, a relay, a switch, a socket, etc. for an automobile.

これらの用途に使用される銅合金材に要求される特性項目は、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性がある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、この要求特性が高まっている。
従来、一般的に電気・電子機器用材料としては、鉄系材料の他、リン青銅、丹銅、黄銅等の銅系材料も広く用いられている。これらの合金はSnやZnの固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせにより強度を向上させている。この方法では、導電率が不十分であり、また、高い冷間加工率を加えることによって高強度を得ているために、曲げ加工性や耐応力緩和特性が不十分である。
The characteristic items required for the copper alloy material used for these applications include conductivity, yield strength (yield stress), tensile strength, bending workability, and stress relaxation resistance. In recent years, the required characteristics have been increased with the downsizing, weight reduction, high functionality, high density mounting, and high usage environment of electric / electronic devices.
Conventionally, as materials for electric and electronic devices, copper-based materials such as phosphor bronze, red brass, brass and the like are widely used in addition to iron-based materials. These alloys have improved strength by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and wire drawing. In this method, the electrical conductivity is insufficient, and high strength is obtained by adding a high cold work rate, so that bending workability and stress relaxation resistance are insufficient.

これに替わる強化法として材料中にナノメートルオーダーの微細な第二相を析出させる析出強化がある。この強化方法は強度が高くなることに加えて、導電率を同時に向上させるメリットがあるため、多くの合金系で行われている。その中で、Cu中にNiとSiの化合物を微細に析出させて強化させたCu−Ni−Si系合金(例えば、CDA[Copper Development Association]登録合金であるCDA70250)は、その強化する能力が高いメリットはあるものの、導電率が不十分であり、更なる高導電化の要求がある。   An alternative strengthening method is precipitation strengthening in which a fine second phase of nanometer order is precipitated in the material. This strengthening method has a merit of improving the conductivity at the same time in addition to increasing the strength, and is therefore performed in many alloy systems. Among them, a Cu—Ni—Si alloy (for example, CDA 70250, which is a registered CDA [Copper Development Association] registered alloy) strengthened by finely depositing a compound of Ni and Si in Cu, has the ability to strengthen. Although there is a high merit, the electrical conductivity is insufficient, and there is a demand for further higher conductivity.

また一般的に析出硬化型合金では微細な析出状態を得る時効析出熱処理の前に、溶質原子を固溶させるための溶体化熱処理が中間工程で導入される。この温度は合金系や溶質濃度によって異なるものの750℃から1000℃と高温である。充分な析出硬化量を得るためには溶質原子の濃度を増やし、溶体化処理温度をより高温にして析出密度を増やすことが好ましい。
また、高導電の実現には、銅母相への溶質原子の固溶限が小さい析出型銅合金系を選択する必要があり、この場合も必要な析出硬化量を得るためには、溶体化温度が高くなる。この溶体化処理温度が高温になるために、材料の結晶粒径が粗大になる問題がある。結晶粒径が粗大な場合、曲げ加工時の局所変形を助長してクラックが発生する不具合や、曲げ部表面のシワが大きくなるために、曲げ部を接点として使用する場合は電流の集中や、材料表面に施されたメッキが割れたりなどの不具合が発生する。この溶体化熱処理での高温下において結晶粒径を小さく制御する技術が求められている。
Further, generally, in the precipitation hardening type alloy, a solution heat treatment for dissolving solute atoms is introduced in an intermediate step before the aging precipitation heat treatment for obtaining a fine precipitation state. Although this temperature varies depending on the alloy system and solute concentration, it is as high as 750 ° C. to 1000 ° C. In order to obtain a sufficient amount of precipitation hardening, it is preferable to increase the concentration of solute atoms and increase the precipitation density by increasing the solution treatment temperature.
In order to achieve high conductivity, it is necessary to select a precipitation-type copper alloy system in which the solid solubility limit of the solute atoms in the copper matrix phase is small. The temperature rises. Since the solution treatment temperature becomes high, there is a problem that the crystal grain size of the material becomes coarse. If the crystal grain size is coarse, the problem of cracking by promoting local deformation during bending, and the wrinkle on the surface of the bent part will increase, so when using the bent part as a contact point, Problems such as cracking of the plating applied to the material surface occur. There is a need for a technique for controlling the crystal grain size to be small at a high temperature in the solution heat treatment.

この技術背景に対して、NiとTiの化合物を分散させた高強度銅合金の製造法の発明例がある(例えば、特許文献1参照)。また、TiとFeの化合物を分散させた銅合金の製造法の発明例がある(例えば、特許文献2参照)。
しかし、強度、導電率、耐応力緩和特性、曲げ加工性を並立させることが難しく、これら全ての要求特性を満足するには至っていない。
特公平04−53945号公報 特開平07−258806号公報
Against this technical background, there is an invention example of a method for producing a high-strength copper alloy in which a compound of Ni and Ti is dispersed (for example, see Patent Document 1). In addition, there is an invention example of a method for producing a copper alloy in which a compound of Ti and Fe is dispersed (see, for example, Patent Document 2).
However, it is difficult to make the strength, electrical conductivity, stress relaxation resistance, and bending workability parallel to each other, and all these required characteristics have not been satisfied.
Japanese Patent Publication No. 04-53945 JP 07-258806 A

上記のような問題点に鑑み、本発明の目的は、導電率、強度、耐応力緩和特性、曲げ加工性に優れ、電気・電子機器用の、コネクタ、端子材等、例えば、自動車車載用などのコネクタや端子材、リレ−、スイッチ、ソケットなどへの使用に適した銅合金材を提供することにある。特に、Cu−Ni−Si系では実現し難い50%IACS以上の高い導電率を実現出来る析出型銅合金材と、その製造において結晶粒径を制御するための技術を提供することにある。   In view of the above problems, the object of the present invention is excellent in conductivity, strength, stress relaxation resistance, bending workability, connectors for electrical and electronic devices, terminal materials, etc. To provide a copper alloy material suitable for use in connectors, terminal materials, relays, switches, sockets and the like. In particular, it is to provide a precipitation-type copper alloy material capable of realizing a high conductivity of 50% IACS or higher, which is difficult to realize with a Cu-Ni-Si system, and a technique for controlling the crystal grain size in the production thereof.

本発明者等は、銅合金材の組成とその平均結晶粒径および導電性、耐力、応力緩和性、曲げ加工性について検討し、これを適正に規定することにより、これらの特性を改善しうることを知見し、本発明をなすに至った。
すなわち本発明は、
(1)質量で、X元素を0.1〜4%(ここで、X元素はNi、Fe、Co、Crの遷移元素の中の1種または2種以上である)およびY元素を0.01〜3%(ここでY元素はTi、Si、Zr、Hfの中の1種または2種以上である)含有し、残部が銅と不可避不純物からなる銅合金材であって、
50%IACS以上の導電率と、600MPa以上の耐力を有し、耐力の80%の応力を付与した状態で1000時間保持したときの応力緩和率が20%以下であることを特徴とする銅合金材、
(2)質量で、Z元素を0.01〜3%(ここで、Z元素はSn、Mg、Zn、Ag、Mn、B、Pの中の1種または2種以上である)更に含有することを特徴とする(1)記載の銅合金材、
(3)平均結晶粒径が10μm以下であり、曲げ加工性に優れていることを特徴とする(1)または(2)記載の銅合金材、
(4)50〜1000nmの粒径の第二相が10個/mm以上の分布密度で存在することを特徴とする(1)〜(3)のいずれか1項記載の銅合金材、
(5)前記第二相が、Si、Co、Ni、Fe、Ti、ZrまたはCrを含む化合物であることを特徴とする(4)記載の銅合金材、
(6)前記第二相が三元からなる化合物であることを特徴とする(4)または(5)記載の銅合金材、
(7)銅合金材素材に、鋳造[1] 、均質化熱処理[2]、熱間加工[3]、面削[4]、冷間加工[6]、溶体化熱処理[7]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理をこの順に施し、その冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和が5〜65%とする前記(1)〜(6)のいずれか1項記載の銅合金材を得ることを特徴とする銅合金材の製造方法、
(8)銅合金材素材に、鋳造[1] 、均質化熱処理[2]、熱間加工[3]、面削[4]、冷間加工[6]、溶体化熱処理[7]、時効析出熱処理[8]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理をこの順に施し、その冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和が5〜65%で、時効析出熱処理[8]の処理温度が400〜700℃、時効析出熱処理[10]の処理温度が時効析出熱処理[8]の処理温度よりも低くする前記(1)〜(6)のいずれか1項記載の銅合金材を得ることを特徴とする電子電気機器用銅合金材の製造方法、および
(9)前記(7)または(8)の製造方法において、面削[4]の後に400〜800℃で5秒〜20時間の時効析出熱処理[5]を行い、冷間加工[6]を行うことを特徴とする電子電気機器用銅合金材の製造方法、
を提供するものである。
The inventors of the present invention can improve these characteristics by examining the composition of the copper alloy material and its average crystal grain size, conductivity, proof stress, stress relaxation, and bending workability, and appropriately defining these. This has been found and the present invention has been made.
That is, the present invention
(1) 0.1-4% by mass of X element (where X element is one or more of transition elements of Ni, Fe, Co, Cr) and Y element is 0.1%. Containing 0.1 to 3% (where Y element is one or more of Ti, Si, Zr, and Hf), the balance being a copper alloy material consisting of copper and inevitable impurities,
A copper alloy having a conductivity of 50% IACS or more, a proof stress of 600 MPa or more, and a stress relaxation rate of 20% or less when held for 1000 hours with a stress of 80% of the proof stress applied Material,
(2) The element further contains 0.01 to 3% of the Z element (wherein the Z element is one or more of Sn, Mg, Zn, Ag, Mn, B, and P). The copper alloy material according to (1),
(3) The copper alloy material according to (1) or (2), wherein the average crystal grain size is 10 μm or less and the bending workability is excellent,
(4) The copper alloy material according to any one of (1) to (3), wherein the second phase having a particle size of 50 to 1000 nm is present at a distribution density of 10 4 pieces / mm 2 or more,
(5) The copper alloy material according to (4), wherein the second phase is a compound containing Si, Co, Ni, Fe, Ti, Zr or Cr,
(6) The copper alloy material according to (4) or (5), wherein the second phase is a ternary compound,
(7) For copper alloy material, casting [1], homogenization heat treatment [2], hot working [3], facing [4], cold working [6], solution heat treatment [7], cold The processing composed of the processing [9], the aging precipitation heat treatment [10], the cold processing [11] and the temper annealing [12] is performed in this order, and the processing rate R1 (%) in the cold processing [9] ) And the processing rate R2 (%) in cold working [11] is 5 to 65%, and the copper alloy material according to any one of (1) to (6) is obtained. Copper alloy material manufacturing method,
(8) Casting [1], homogenization heat treatment [2], hot working [3], face milling [4], cold working [6], solution heat treatment [7], aging precipitation on copper alloy material A process comprising a heat treatment [8], a cold work [9], an aging precipitation heat treatment [10], a cold work [11] and a temper annealing [12] is performed in this order, and the cold work [9]. The sum of the processing rate R1 (%) in the cold working and the processing rate R2 (%) in the cold working [11] is 5 to 65%, the processing temperature of the aging precipitation heat treatment [8] is 400 to 700 ° C., and the aging precipitation heat treatment. The copper alloy material according to any one of (1) to (6), wherein the processing temperature of [10] is lower than the processing temperature of aging precipitation heat treatment [8]. In the manufacturing method of the alloy material and (9) the manufacturing method of the above (7) or (8), 400 to 800 ° C. after the chamfering [4]. Performing a aging precipitation heat treatment [5] for 5 seconds to 20 hours and performing a cold working [6], a method for producing a copper alloy material for electronic and electrical equipment,
Is to provide.

本発明によって導電率、強度、耐応力緩和特性および曲げ加工性が共に優れた、電気・電子機器の用途に最適な銅合金材とその製造方法を提供することができる。なお、応力緩和特性の評価としは、標準規格では150℃での評価であるが、本発明の銅合金材は150℃以下では、その効果が発揮される。   According to the present invention, it is possible to provide a copper alloy material that is excellent in electrical conductivity, strength, stress relaxation resistance and bending workability, and is optimal for use in electrical and electronic equipment, and a method for producing the same. The stress relaxation characteristics are evaluated at 150 ° C. in the standard specification, but the effect of the copper alloy material of the present invention is exhibited at 150 ° C. or less.

本発明の銅合金材の好ましい実施の態様について、詳細に説明する。
まず、本発明の電気・電子機器用に好適な銅合金材を構成する成分元素の添加理由とその含有量について述べる。
本発明の中では、X元素とは、Ni、Fe、Co、Crの3d電子を外殻に持つ遷移元素のことを示し、Y元素とは、Ti、Si、Zr、Hfの価電子が2個または4個である元素のことを示す。X元素とY元素は、NiSiTi、NiSiZr、CoSiTi、CoSi、CuSiTi、CoHfSi、CuHfSi、FeSi、TiSi、NiTiSi、CoTiSi、CrTiSi、FeTi、NiZrSi、CoSiZr、CrTi、CrMnTi、NiSi、NiSi、NiTiZrなどの化合物や、これらの化合物の構成元素が他の元素に置換された化合物が、銅中で主に50nm以下の微細な大きさで母相に対して整合に析出することによって、強度、導電率、耐応力緩和特性を向上するはたらきがある。
A preferred embodiment of the copper alloy material of the present invention will be described in detail.
First, the reason for addition of the component elements constituting the copper alloy material suitable for the electric / electronic device of the present invention and the content thereof will be described.
In the present invention, the X element indicates a transition element having 3d electrons of Ni, Fe, Co, and Cr in the outer shell, and the Y element indicates 2 valence electrons of Ti, Si, Zr, and Hf. Indicates an element that is four or four. X element and Y element are NiSiTi, NiSiZr, CoSiTi, Co 2 Si, CuSiTi, CoHfSi, CuHfSi, Fe 5 Si 3 , Ti 5 Si 3 , Ni 3 Ti 2 Si, Co 3 Ti 2 Si, Cr 3 Ti 2 Si , Fe 2 Ti, Ni 3 Zr 2 Si, CoSiZr, Cr 2 Ti, CrMnTi, Ni 2 Si, Ni 3 Si, Ni 9 Ti 2 Zr, etc., and constituent elements of these compounds are replaced with other elements When the compound is precipitated in copper with a fine size of mainly 50 nm or less in conformity with the parent phase, the strength, conductivity, and stress relaxation resistance are improved.

この効果は、X元素の含有量が0.1質量%未満、または、Y元素の含有量が0.01質量%未満の場合は、その析出硬化量が不十分であるため、好ましくない。また、X元素が4質量%、または、Y元素とも3質量%を上回る場合は、合金材組織中に粗大な晶出物が発生してメッキ性を悪化させたり、曲げ加工時のクラックの原因になるため、好ましくない。
したがって、X元素の範囲は、0.1〜4質量%、好ましくは0.3〜3.0質量%、更に好ましくは、0.3〜2.5質量%である。Y元素の含有範囲は、0.01〜3質量%、好ましくは0.03〜2.0質量%、更に好ましくは0.04〜1.5質量%である。
This effect is not preferable when the X element content is less than 0.1% by mass or the Y element content is less than 0.01% by mass because the precipitation hardening amount is insufficient. In addition, when the X element exceeds 4 mass% or the Y element exceeds 3 mass%, coarse crystallized matter is generated in the alloy material structure to deteriorate the plating property or cause cracks during bending. Therefore, it is not preferable.
Therefore, the range of the X element is 0.1 to 4% by mass, preferably 0.3 to 3.0% by mass, and more preferably 0.3 to 2.5% by mass. The content range of Y element is 0.01-3 mass%, Preferably it is 0.03-2.0 mass%, More preferably, it is 0.04-1.5 mass%.

本発明では、Z元素とは、Sn、Mg、Zn、Ag、Mn、B、Pを示す。
Sn、Mg、Zn、Ag、MnはX、Y元素と化合物を形成して相乗効果によって、また一部は単独で銅中に固溶することで、強度や耐応力緩和特性を向上させる働きがある。B、PはXとY元素、またはXとYとZ元素からなる微細析出物の密度を向上させることによって強度と耐応力緩和特性を向上させる作用を発揮する。また、Z元素は後述する、結晶粒径の制御に効果のある第二相の構成元素となる場合もある。
Z元素が0.01質量%未満の場合ではこの作用効果が充分に得らない。また、3質量%を上回る場合では、導電率の低下や鋳造性の悪化を招くため好ましくない。したがって、Z元素の含有量範囲は、0.01〜3質量%、好ましくは0.03〜2質量%、更に好ましくは0.05〜1.0質量%である。
In the present invention, the Z element represents Sn, Mg, Zn, Ag, Mn, B, and P.
Sn, Mg, Zn, Ag, and Mn form a compound with X and Y elements and have a synergistic effect, and partly dissolve in copper alone, thereby improving strength and stress relaxation resistance. is there. B and P exhibit an effect of improving strength and stress relaxation resistance by improving the density of fine precipitates composed of X and Y elements or X, Y and Z elements. In addition, the Z element may be a constituent element of the second phase that is effective for controlling the crystal grain size, which will be described later.
When the element Z is less than 0.01% by mass, this effect cannot be obtained sufficiently. Moreover, when exceeding 3 mass%, since the fall of electroconductivity and the deterioration of castability are caused, it is unpreferable. Therefore, the content range of the Z element is 0.01 to 3% by mass, preferably 0.03 to 2% by mass, and more preferably 0.05 to 1.0% by mass.

また、高温の溶体化熱処理で結晶粒径を制御でき、結晶粒径の平均が10μm以下の場合に曲げ加工性を良好にすることが出来る。結晶粒を小さくすることによって、強度を向上する作用効果がある。好ましい平均結晶粒径は6μm以下、さらに好ましくは4μm以下とすることにより、良好な曲げ加工性と強度が得られる。
なお、平均結晶粒径は後述するJISH0501の切断法に基づき測定できる。
Further, the crystal grain size can be controlled by high-temperature solution heat treatment, and the bending workability can be improved when the average crystal grain size is 10 μm or less. There is an effect of improving the strength by reducing the crystal grains. By setting the preferable average crystal grain size to 6 μm or less, more preferably 4 μm or less, good bending workability and strength can be obtained.
The average crystal grain size can be measured based on the cutting method of JISH0501 described later.

また、結晶粒径を制御するにあたっては、50〜1000nmの第二相を10個/mm以上の密度で分散させることが有効であることも、本発明で見出した。ここで第二相とは主に析出物と一部の晶出物のことを指す。750℃以上などの高温での溶体化熱処理において、この第二相が存在する場合は再結晶粒の成長を抑制する効果があり、その結果、結晶粒径をより小さく保持することによって高強度と曲げ加工性をさらに改善することが出来る。この第二相の粒径は、好ましくは60nm〜800nm、更に好ましくは、70nm〜700nmであり、その分布密度は、好ましくは105個/mm以上である。
前記第二相の粒径が50nm未満である場合は、粒成長を抑制する効果が低く、好ましくなく、1000nmよりも大きい場合は、曲げ加工性の低下や第二相の密度低下を招くため、好ましくない。
なお、第二相の粒径と分布密度は後述する方法に基づき測定できる。
Moreover, in controlling the crystal grain size, the present inventors have also found that it is effective to disperse the second phase of 50 to 1000 nm at a density of 10 4 / mm 2 or more. Here, the second phase mainly refers to precipitates and some crystallized substances. In the solution heat treatment at a high temperature such as 750 ° C. or more, when this second phase is present, it has an effect of suppressing the growth of recrystallized grains, and as a result, by keeping the crystal grain size smaller, high strength and Bending workability can be further improved. The particle size of the second phase is preferably 60 nm to 800 nm, more preferably 70 nm to 700 nm, and the distribution density is preferably 10 5 particles / mm 2 or more.
When the particle size of the second phase is less than 50 nm, the effect of suppressing the grain growth is low, which is not preferable, and when larger than 1000 nm, the bending workability and the density of the second phase are reduced. It is not preferable.
The particle size and distribution density of the second phase can be measured based on the method described later.

この第二相は、Si、Co、Ni、Fe、Ti、Zr、Crといった融点が1400℃以上の元素から構成されることによって、より高温でも銅中で固溶せずに安定して存在することが出来るために、結晶粒径の粗大化を抑制する作用・効果を大きく出来る。
この第二相の構成は、具体的には、(a)これらの元素が単体の場合、(b)これらの元素がSi、Co、Ni、Fe、Ti、Zr、Crを含む化合物の場合、(c)これらの元素がCu−Zr、Cu−Hfなどの銅と化合物を形成している場合が含まれる。
(b)の場合としては、例えば、Ni−Co−Cr−Si、Co−Si、Ni−Co−Si、Cr−Ni−Si、Co−Cr−Si、Ni−Zr、Mn−Zr、Ni−Mn−Zr、Fe−Zr、Mn−Zr、Fe−Mn−Zr、Ni−Ti、Co−Ti、Ni−Co−Ti、Fe−Ni−Si、Fe−Si、Mn−Si、Ni−Mn−P、Fe−P、Ni−P、Fe−Ni−P、Mn−B、Fe−B、Mn−Fe−B、Ni−B、Cr−B、Ni−Cr−B、Ni−Co−B、Ni−Co−Hf−Si、Ni−Co−Al、Ni−Ca、Ni−Co−Mn−Sn、Co−Ni−P、Al−Hf、Al−Zr、Al−Crなどの化合物を形成している場合である。
この第二相は、中でもCr−Ni−Si、Co−Cr−Si、Fe−Ni−Si、のような三元からなる化合物が好ましい。
This second phase is composed of elements having a melting point of 1400 ° C. or higher, such as Si, Co, Ni, Fe, Ti, Zr, and Cr, and thus stably exists without being dissolved in copper even at higher temperatures. Therefore, the action and effect of suppressing the coarsening of the crystal grain size can be increased.
Specifically, the configuration of this second phase is (a) when these elements are simple substances, (b) when these elements are compounds containing Si, Co, Ni, Fe, Ti, Zr, Cr, (C) The case where these elements form a compound with copper such as Cu—Zr and Cu—Hf is included.
In the case of (b), for example, Ni—Co—Cr—Si, Co—Si, Ni—Co—Si, Cr—Ni—Si, Co—Cr—Si, Ni—Zr, Mn—Zr, Ni— Mn-Zr, Fe-Zr, Mn-Zr, Fe-Mn-Zr, Ni-Ti, Co-Ti, Ni-Co-Ti, Fe-Ni-Si, Fe-Si, Mn-Si, Ni-Mn- P, Fe-P, Ni-P, Fe-Ni-P, Mn-B, Fe-B, Mn-Fe-B, Ni-B, Cr-B, Ni-Cr-B, Ni-Co-B, Forming compounds such as Ni-Co-Hf-Si, Ni-Co-Al, Ni-Ca, Ni-Co-Mn-Sn, Co-Ni-P, Al-Hf, Al-Zr, Al-Cr This is the case.
The second phase is preferably a ternary compound such as Cr—Ni—Si, Co—Cr—Si, or Fe—Ni—Si.

次に、本発明の合金材系の特性を最も有効に引き出し、電気・電子機器用として適切な銅合金材の製造方法について、その好ましい処理工程を例示する。
銅合金材素材に、鋳造[1] 、均質化熱処理[2]、熱間加工[3]、面削[4]、冷間加工[6]、溶体化熱処理[7]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理工程をこの順に施す。
冷間加工[6]は、溶体化熱処理[7]において、微細析出物の析出状態を制御によって、より高密、微細にするはたらきがあり、強度、導電率、耐応力緩和特性を向上させることが出来る。冷間加工[9]は、加工硬化によって強度を向上させることが出来る。その冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和を5〜65%とするのが好ましい。
この冷間加工の加工率の合計が5%未満の場合は、上記の効果を充分に得られないため、また、65%を上回る場合は曲げ加工性を著しく低下させるために、好ましくない。二つの加工率の合計を5〜65%にすることによって、全ての特性を良好にすることが出来る。好ましくは、加工率10〜60%、更に好ましくは15〜55%である。
Next, a preferable processing step will be exemplified for a method for producing a copper alloy material that is most effective in extracting the characteristics of the alloy material system of the present invention and is suitable for use in electrical and electronic equipment.
For copper alloy material, casting [1], homogenization heat treatment [2], hot working [3], face milling [4], cold working [6], solution heat treatment [7], cold working [9] ], An aging precipitation heat treatment [10], a cold working [11] and a temper annealing [12] are performed in this order.
Cold work [6] has the function of making fine precipitates denser and finer by controlling the precipitation state of fine precipitates in solution heat treatment [7], and can improve strength, conductivity, and stress relaxation resistance. I can do it. Cold work [9] can improve strength by work hardening. The sum of the processing rate R1 (%) in the cold processing [9] and the processing rate R2 (%) in the cold processing [11] is preferably 5 to 65%.
If the total of the cold working ratios is less than 5%, the above effect cannot be obtained sufficiently, and if it exceeds 65%, the bending workability is remarkably lowered. By setting the total of the two processing rates to 5 to 65%, all characteristics can be improved. Preferably, the processing rate is 10 to 60%, more preferably 15 to 55%.

また、本発明の銅合金材の製造方法においては、上記の処理工程の溶体化熱処理[7]の次に時効析出熱処理[8]を追加するのが好ましい。時効析出熱処理[8]は、析出の核を与え、また冷間加工[7]での転位密度を上昇させることによって、時効析出熱処理[8]において析出状態をより高密、微細にするはたらきがあり、強度、導電率、耐応力緩和特性を向上させることが出来る。時効析出熱処理[8]の温度は400〜700℃、好ましくは425〜675℃、更に好ましくは450〜650℃の温度範囲である。400℃未満の場合は析出量が少なく、700℃を上回る場合は析出物が粗大になってしまうために、上記の効果が充分に得られないために好ましくない。400〜700℃において5秒〜20時間の場合に最も良好な特性が得られる。
析出硬化に寄与する析出物を高密かつ微細に保つ必要があるので、時効析出熱処理[10]の処理温度は、時効析出熱処理[8]の処理温度よりも低くするのが好ましい。
In the method for producing a copper alloy material of the present invention, it is preferable to add an aging precipitation heat treatment [8] after the solution heat treatment [7] in the above treatment step. The aging precipitation heat treatment [8] has the function of making the precipitation state denser and finer in the aging precipitation heat treatment [8] by providing precipitation nuclei and increasing the dislocation density in the cold working [7]. , Strength, electrical conductivity and stress relaxation resistance can be improved. The temperature of the aging precipitation heat treatment [8] is 400 to 700 ° C, preferably 425 to 675 ° C, more preferably 450 to 650 ° C. When the temperature is lower than 400 ° C., the amount of precipitation is small, and when the temperature exceeds 700 ° C., the precipitate becomes coarse, and thus the above effect cannot be obtained sufficiently. The best characteristics are obtained at 400-700 ° C. for 5 seconds to 20 hours.
Since the precipitates contributing to precipitation hardening need to be kept dense and fine, the treatment temperature of the aging precipitation heat treatment [10] is preferably lower than the treatment temperature of the aging precipitation heat treatment [8].

さらに、50〜1000nmの第二相の分散状態を制御する方法として、面削[4]の後に400〜800℃で5秒〜20時間の時効析出熱処理[5]を施すのが好ましい。
結晶粒径を制御するための第2相は、熱間加工[3]の冷却過程や溶体化熱処理[7]の昇温過程で析出し、結晶粒径を小さく制御することに寄与するが、時効析出熱処理[5]は、前記第2相の密度をさらに高密にする働きがある。この温度が400℃未満または800℃を上回る場合や処理時間が5秒未満の場合は、その効果が小さい。20時間を上回る場合は、第2相の密度が粗大になるためにその効果が小さい。時効析出熱処理[5]の温度は好ましくは、425〜675℃、更に好ましくは450〜650℃の温度範囲である。
Further, as a method for controlling the dispersion state of the second phase of 50 to 1000 nm, it is preferable to perform aging precipitation heat treatment [5] at 400 to 800 ° C. for 5 seconds to 20 hours after the chamfering [4].
The second phase for controlling the crystal grain size precipitates during the cooling process of hot working [3] and the temperature increasing process of solution heat treatment [7], and contributes to controlling the crystal grain size small. The aging precipitation heat treatment [5] has a function of further increasing the density of the second phase. When this temperature is less than 400 ° C. or over 800 ° C. or when the treatment time is less than 5 seconds, the effect is small. When it exceeds 20 hours, the density of the second phase becomes coarse, so the effect is small. The temperature of the aging precipitation heat treatment [5] is preferably in the temperature range of 425 to 675 ° C, more preferably 450 to 650 ° C.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。
なお、実施例で得られた銅合金材の供試材について、下記の特性調査を行った。
A.耐力[YS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を求めた。
B.導電率[EC]:
20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
C.応力緩和率[SR]:
日本電子材料工業会標準規格 EMAS−3003に準じて150℃×1000時間の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
図1は応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図1(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持し、負荷を除いた後の試験片2の位置は、図1(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。
この関係から、応力緩和率(%)は(H−H)/(δ−H)×100と算出した。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
In addition, about the test material of the copper alloy material obtained in the Example, the following characteristic investigation was conducted.
A. Yield strength [YS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was obtained.
B. Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.
C. Stress relaxation rate [SR]:
The measurement was performed under the conditions of 150 ° C. × 1000 hours in accordance with Japan Electronic Material Industries Association Standard EMAS-3003. An initial stress of 80% of the proof stress was applied by the cantilever method.
FIG. 1 is an explanatory diagram of a stress relaxation characteristic test method, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment. As shown in FIG. 1A, the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of δ 0 from the reference. is there. This was held for 1000 hours in a thermostat at 0.99 ° C., the position of the test piece 2 after removing the load, the distance from the reference H t as shown in FIG. 1 (b). 3 is a test piece when no stress is applied, and its position is a distance H 1 from the reference.
From this relationship, the stress relaxation rate (%) was calculated as (H t −H 1 ) / (δ 0 −H 1 ) × 100.

D.曲げ加工性[R/t]:
圧延方向に平行に幅10mm、長さ25mmに切出し、これに曲げの軸が圧延方向に直角と平行にW曲げし、曲げ部における割れの有無を光学顕微鏡および走査型電子顕微鏡(SEM)によりその曲げ加工部位の割れの有無を観察し、割れが発生しない限界の曲げ半径Rと板厚tの比を採用して、R/tを算出した。測定は供試材から各板厚の板巾w=10(mm)のサンプルを金属研磨粉で表面上を軽くこすり酸化膜を除去した後、曲げの内側の角度が90°になるようなw曲げを圧延方向に平行なサンプルについての曲げ(GOOD WAY:以下GW)、圧延方向に垂直なサンプルについての曲げ(BAD WAY:以下BW)の2種類において行った。
E.平均結晶粒径[GS]:
供試材の圧延方向に垂直な断面を湿式研磨、バフ研磨により鏡面に仕上げた後、クロム酸:水=1:1の液で数秒研磨面を腐食した後、走査型電子顕微鏡(SEM)の反射電子像を用いて400〜1000倍の倍率で写真をとり、断面粒径をJIS H0501のクロスカット法によって測定した。
F.第二相の粒径と分布密度:
供試材を直径3mmへ打ち抜き、ツインジェット研磨法を用いて薄膜研磨を行って観察試験片を作製した。加速電圧300kVの透過型電子顕微鏡(TEM)で2000倍と40000倍の写真を任意で10視野ずつ撮影して、第二相の粒径と分布密度を測定した。視野中の50〜1000nm大の個数を測定し、その個数を単位面積当たり(/mm)へ演算した。化合物の同定にはTEM付属のEDX分析装置を使用した。
D. Bending workability [R / t]:
Cut to a width of 10 mm and a length of 25 mm in parallel to the rolling direction, and the bending axis is W-bent parallel to the rolling direction at right angles to the rolling direction. R / t was calculated by observing the presence or absence of cracks in the bent part and adopting the ratio of the bending radius R and the plate thickness t, at which no cracks were generated. The measurement is performed such that a sample with a plate width w = 10 (mm) of each plate thickness is lightly rubbed on the surface with a metal polishing powder to remove the oxide film, and then the inner angle of bending becomes 90 °. Bending was performed in two types: bending for a sample parallel to the rolling direction (GOOD WAY: hereinafter GW) and bending for a sample perpendicular to the rolling direction (BAD WAY: hereinafter BW).
E. Average crystal grain size [GS]:
After the cross section perpendicular to the rolling direction of the test material is mirror-polished by wet polishing and buffing, the polished surface is corroded for several seconds with a solution of chromic acid: water = 1: 1, and then subjected to scanning electron microscope (SEM). A photograph was taken at a magnification of 400 to 1000 times using the backscattered electron image, and the cross-sectional particle size was measured by the cross cut method of JIS H0501.
F. Particle size and distribution density of the second phase:
The specimen was punched into a diameter of 3 mm, and thin film polishing was performed using a twin jet polishing method to produce an observation test piece. Images of 2000 and 40,000 times were arbitrarily taken with a transmission electron microscope (TEM) at an acceleration voltage of 300 kV for 10 fields of view, and the particle size and distribution density of the second phase were measured. The number of 50 to 1000 nm in the field of view was measured, and the number was calculated per unit area (/ mm 2 ). For identification of the compound, an EDX analyzer attached to TEM was used.

(実施例1)
下記の表1−1、表1−2に示す成分・組成(質量%)になるようにX元素およびY元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化熱処理後、断面減少率が50%以上で処理温度が650℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。
この後の工程は、次に記載する工程A〜Dのいずれかの(表示する)処理を施こすことによって銅合金材を製造した。
工程A:断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜450℃で5秒〜10時間の調質焼鈍を行った。
工程B:断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、400〜650℃の時効析出熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行った。
工程C:400〜650℃の時効析出熱処理を施し、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行った。
工程D:400〜650℃の時効析出熱処理を施し、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、400〜550℃の時効析出熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行った。
Example 1
The X element and the Y element are blended so as to have the components and composition (mass%) shown in Table 1-1 and Table 1-2 below, and an alloy consisting of Cu and inevitable impurities is melted in a high frequency melting furnace, This was cast at a cooling rate of 0.1 to 100 ° C./second to obtain an ingot. This was subjected to a homogenization heat treatment at 900 to 1050 ° C. for 0.5 to 10 hours, followed by hot working with a cross-section reduction rate of 50% or more and a processing temperature of 650 ° C. or more, followed by water quenching to remove oxide scale. Carved for.
In the subsequent process, a copper alloy material was manufactured by performing (displaying) any one of the processes A to D described below.
Step A: Cold work with a cross-section reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C., cold work with a cross-section reduction rate of 5 to 50%, and aging at 400 to 650 ° C. Precipitation heat treatment was performed, finish cold work of 5 to 50% was performed, and temper annealing was performed at 200 to 450 ° C. for 5 seconds to 10 hours.
Step B: Cold work with a cross-section reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C, aging precipitation heat treatment at 400 to 650 ° C, and cold reduction with a cross-section reduction rate of 5 to 50% An aging precipitation heat treatment at 400 to 650 ° C. was performed, a finish cold work at 5 to 50% was performed, and temper annealing was performed at 200 to 550 ° C. for 5 seconds to 10 hours.
Step C: Aging precipitation heat treatment at 400 to 650 ° C., cold working with a cross-section reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C., and a cross-section reduction rate of 5 to 50% An aging precipitation heat treatment at 400 to 650 ° C. was performed, a finish cold work at 5 to 50% was performed, and temper annealing was performed at 200 to 550 ° C. for 5 seconds to 10 hours.
Step D: Aging precipitation heat treatment at 400 to 650 ° C., cold working with a cross-sectional reduction rate of 50 to 98%, solution heat treatment at 800 to 1000 ° C., and aging precipitation heat treatment at 400 to 550 ° C. In addition, a cold working with a cross-sectional reduction rate of 5 to 50% is performed, an aging precipitation heat treatment at 400 to 650 ° C. is performed, a finish cold working at 5 to 50% is performed, and a temperature of 200 to 550 ° C. is applied for 5 seconds to 10 hours. Temper annealing was performed.

得られた銅合金材の各一部を供試材とし、その各供試材について、耐力[YS]、導電率[EC]および応力緩和率[SR]の特性調査を行い、得られた結果を表1−1、表1−2に示した。   Each part of the obtained copper alloy material was used as a test material, and the characteristics of the yield strength [YS], conductivity [EC], and stress relaxation rate [SR] were examined for each test material, and the results obtained Are shown in Table 1-1 and Table 1-2.

Figure 2008266787
Figure 2008266787

Figure 2008266787
Figure 2008266787

表1で明らかなように、本発明例1−1〜本発明例1−32は、耐力、導電性、耐応力緩和特性に優れた。しかし、表1−2に示すように、本発明の規定を満たさない場合は、特性が優れなかった。すなわち、比較例1−1はX元素の量が少ないために、析出物の密度が低く、強度と導電率と耐応力緩和特性が劣った。比較例1−2はX元素の量が多いために固溶原子量が増え、導電率が劣った。比較例1−3はY元素の量が少ないために、析出物の密度が低く、強度と導電率と耐応力緩和特性が劣った。比較例1−4はY元素の量が多いために、固溶原子量が増え、導電率が劣った。   As is clear from Table 1, Invention Example 1-1 to Invention Example 1-32 were excellent in yield strength, conductivity, and stress relaxation resistance. However, as shown in Table 1-2, the characteristics were not excellent when the provisions of the present invention were not satisfied. That is, since Comparative Example 1-1 had a small amount of X element, the density of precipitates was low, and the strength, conductivity, and stress relaxation resistance were inferior. In Comparative Example 1-2, since the amount of X element was large, the amount of solid solution atoms was increased and the conductivity was inferior. Since Comparative Example 1-3 had a small amount of Y element, the density of precipitates was low, and the strength, conductivity, and stress relaxation resistance were inferior. Since Comparative Example 1-4 had a large amount of Y element, the amount of solid solution atoms increased and the conductivity was inferior.

(実施例2)
下記の表2−1、表2−2に示す成分・組成になるようにX元素、Y元素およびZ元素を配合し、残部がCuと不可避不純物からなる銅合金を上記実施例1に記載したと同様の製造方法に従って合金材を作製し、その各一部を供試材とした。この各供試材について実施例1と同様に特性調査を行い、得られた結果を表2−1及び表2−2に示した。
(Example 2)
The copper alloy which mix | blends X element, Y element, and Z element so that it may become a component and composition shown in the following Table 2-1 and Table 2-2, and the remainder consists of Cu and an unavoidable impurity was described in the said Example 1. An alloy material was prepared according to the same manufacturing method as above, and a part of each was used as a test material. The characteristics of each test material were investigated in the same manner as in Example 1, and the obtained results are shown in Tables 2-1 and 2-2.

Figure 2008266787
Figure 2008266787

Figure 2008266787
Figure 2008266787

表2−1で明らかなように、本発明例2−1〜本発明例2−32は耐力、導電性、耐応力緩和特性に優れた。しかし、表2−2に示すように、本発明の成分量の規定値を満たさない場合は、特性が優れなかった。すなわち、比較例2−1〜比較例2−3はZ元素の量が多すぎるために導電率が非常に劣っていた。   As is apparent from Table 2-1, Invention Example 2-1 to Invention Example 2-32 were excellent in yield strength, conductivity, and stress relaxation resistance. However, as shown in Table 2-2, the characteristics were not excellent when the prescribed values of the component amounts of the present invention were not satisfied. That is, Comparative Example 2-1 to Comparative Example 2-3 had very poor conductivity because the amount of Z element was too large.

(実施例3)
下記の表3−1、表3−2に示す成分・組成になるようにX元素、Y元素およびZ元素を配合し、残部がCuと不可避不純物からなる銅合金を上記実施例1に記載したと同様の製造方法に従って合金材を作製し、その各一部を供試材とした。しかし、比較例3−1〜比較例3−3は本発明例3−1〜本発明例3−3のそれぞれの製造工程よりも溶体化熱処理を20〜30℃程度高い温度で行った。
この各供試材について実施例1と同様に耐力[YS]、導電率[EC]および応力緩和率[SR]の他に、平均結晶粒径[GS]および曲げ加工性[R/t]の特性調査を行い、得られた結果を表3−1及び表3−2に示した。
(Example 3)
The copper alloy which mix | blended X element, Y element, and Z element so that it might become a component and composition shown in the following Table 3-1 and Table 3-2, and the remainder consists of Cu and an unavoidable impurity was described in the said Example 1. An alloy material was prepared according to the same manufacturing method as above, and a part of each was used as a test material. However, Comparative Example 3-1 to Comparative Example 3-3 performed solution heat treatment at a temperature higher by about 20 to 30 ° C. than the respective manufacturing steps of Invention Example 3-1 to Invention Example 3-3.
In addition to the yield strength [YS], the electrical conductivity [EC], and the stress relaxation rate [SR], for each of these test materials, the average crystal grain size [GS] and the bending workability [R / t] Characteristic investigation was performed and the obtained results are shown in Tables 3-1 and 3-2.

Figure 2008266787
Figure 2008266787

Figure 2008266787
Figure 2008266787

表3−1で明らかなように、本発明例3−1〜本発明例3−32は耐力、導電性、耐応力緩和特性、曲げ加工性に優れた。しかし、表3−2に示すように溶体化熱処理温度の高い比較例3−1〜比較例3−3の場合は、結晶粒径が10μmよりも大きく、曲げ加工性が劣った。   As is apparent from Table 3-1, Invention Example 3-1 to Invention Example 3-32 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Table 3-2, in Comparative Examples 3-1 to 3-3 having a high solution heat treatment temperature, the crystal grain size was larger than 10 μm and the bending workability was inferior.

(実施例4)
下記の表4−1、表4−2に示す成分・組成になるようにX元素、Y元素およびZ元素を配合し、残部がCuと不可避不純物からなる銅合金を上記実施例1に記載したと同様の製造方法に従って合金材を作製し、その各一部を供試材とした。しかし、比較例4−1〜比較例4−3は溶体化熱処理を1200℃で10分間行った。
この各供試材について実施例3と同様に耐力[YS]、導電率[EC]、応力緩和率[SR]、平均結晶粒径[GS]および曲げ加工性[R/t]の特性調査の他に、さらに第二相を構成する50〜1000nm粒子の構成元素とその粒子密度を調査し、得られた結果を表4−1及び表4−2に示した。なお、表中「10^nは10を表す」(以後の表中でも、同様である)。
Example 4
The copper alloy which mix | blends X element, Y element, and Z element so that it may become a component and composition shown in the following Table 4-1 and Table 4-2, and the remainder consists of Cu and an unavoidable impurity was described in the said Example 1. An alloy material was prepared according to the same manufacturing method as above, and a part of each was used as a test material. However, Comparative Examples 4-1 to 4-3 were subjected to solution heat treatment at 1200 ° C. for 10 minutes.
For each of the test materials, as in Example 3, the characteristics of the yield strength [YS], conductivity [EC], stress relaxation rate [SR], average grain size [GS] and bending workability [R / t] were investigated. In addition, the constituent elements of the 50-1000 nm particles constituting the second phase and the particle density thereof were investigated, and the results obtained are shown in Tables 4-1 and 4-2. In the table, “10 ^ n represents 10 n ” (the same applies to the following tables).

Figure 2008266787
Figure 2008266787

Figure 2008266787
Figure 2008266787

表4−1で明らかなように、本発明例4−1〜本発明例4−32は耐力、導電性、耐応力緩和特性、曲げ加工性に優れた。しかし、表4−2の比較例4−1〜比較例4−3に示すように、第二相の粒子密度が低い場合は、結晶粒径が10μmよりも大きく、曲げ加工性が劣った。   As is clear from Table 4-1, Invention Example 4-1 to Invention Example 4-32 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Comparative Example 4-1 to Comparative Example 4-3 in Table 4-2, when the particle density of the second phase was low, the crystal grain size was larger than 10 μm and the bending workability was inferior.

(実施例5)
下記の表5−1に示す成分・組成になるように元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化処理後、断面減少率が50%以上で処理温度が650℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。その後に、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が表中R1[%]の冷間加工を施し、400〜650℃の時効析出熱処理を施し、断面減少率が表中R2[%]の仕上げ冷間加工を施し、200〜450℃で5秒〜10時間の調質焼鈍を行い、銅合金材を製造し、その各一部を供試材とした。その結果を表5−2、5−3に示す。
(Example 5)
The elements are blended so as to have the components and compositions shown in Table 5-1 below, and an alloy composed of Cu and inevitable impurities is melted in a high-frequency melting furnace, and this is cooled at a rate of 0.1 to 100 ° C./second. The ingot was obtained by casting. This was homogenized at 900 to 1050 ° C for 0.5 to 10 hours, then hot-worked with a cross-section reduction rate of 50% or more and a processing temperature of 650 ° C or more, and then water quenching to remove oxide scale. Carved for. Thereafter, cold working with a cross-sectional reduction rate of 50 to 98% is performed, solution heat treatment at 800 to 1000 ° C. is performed, and cold working with a cross-sectional reduction rate of R1 [%] in the table is performed, and 400 to 650 ° C. Aging precipitation heat treatment, finish cold working with a cross-sectional reduction rate of R2 [%] in the table, temper annealing at 200-450 ° C. for 5 seconds to 10 hours to produce a copper alloy material, Each part was used as a test material. The results are shown in Tables 5-2 and 5-3.

Figure 2008266787
Figure 2008266787

Figure 2008266787
Figure 2008266787

Figure 2008266787
Figure 2008266787

表5−2で明らかなように、本発明例5−1〜本発明例5−3は耐力、導電性、耐応力緩和特性、曲げ加工性に優れた。しかし、比較例5−1に示すように、R1とR2の和が5%未満の場合は強度が低いために好ましくない。比較例5−2に示すように、R1とR2の和が65%を超える場合は、耐応力緩和特性と曲げ加工性が劣り、好ましくない。   As apparent from Table 5-2, Invention Example 5-1 to Invention Example 5-3 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Comparative Example 5-1, when the sum of R1 and R2 is less than 5%, the strength is low, which is not preferable. As shown in Comparative Example 5-2, when the sum of R1 and R2 exceeds 65%, the stress relaxation resistance and bending workability are inferior, which is not preferable.

(実施例6)
実施例5と同様に、表5−1に示す成分・組成になるように元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化処理後、断面減少率が50%以上で処理温度が650℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。その後に、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、表6−1および表6−2中にT8[℃]で示す温度で4時間の時効析出熱処理を施し、断面減少率が5〜50%の冷間加工を施し、表中にT10[℃]で示す温度で4時間の時効析出熱処理を施した。続いて、5〜50%の仕上げ冷間加工を施し、200〜450℃で5秒〜10時間の調質焼鈍を行い銅合金材を製造し、その各一部を供試材とした。
この各供試材について、同様に耐力[YS]、導電率[EC]、応力緩和率[SR]、平均結晶粒径[GS]、曲げ加工性[R/t]および第二相の構成元素と密度等の特性調査を行い、得られた結果を表6−1および表6−2に示した。
(Example 6)
In the same manner as in Example 5, the elements were blended so as to have the components and compositions shown in Table 5-1, and an alloy composed of Cu and unavoidable impurities in the remainder was melted in a high-frequency melting furnace. An ingot was obtained by casting at a cooling rate of / sec. This was homogenized at 900 to 1050 ° C for 0.5 to 10 hours, then hot-worked with a cross-section reduction rate of 50% or more and a processing temperature of 650 ° C or more, and then water quenching to remove oxide scale. Carved for. Thereafter, cold working with a cross-section reduction rate of 50 to 98% is performed, solution heat treatment at 800 to 1000 ° C. is performed, and the temperature indicated by T8 [° C.] in Table 6-1 and Table 6-2 is 4 hours. The aging precipitation heat treatment was applied, cold working was performed with a cross-sectional reduction rate of 5 to 50%, and aging precipitation heat treatment was performed at a temperature indicated by T10 [° C.] in the table for 4 hours. Subsequently, 5 to 50% finish cold work was performed, and temper annealing was performed at 200 to 450 ° C. for 5 seconds to 10 hours to produce a copper alloy material, each of which was used as a test material.
For each specimen, the yield strength [YS], conductivity [EC], stress relaxation rate [SR], average grain size [GS], bending workability [R / t], and constituent elements of the second phase And the characteristics such as density were investigated, and the obtained results are shown in Table 6-1 and Table 6-2.

Figure 2008266787
Figure 2008266787

Figure 2008266787
Figure 2008266787

表6−1で明らかなように、本発明例6−1〜本発明例6−2は耐力、導電性、耐応力緩和特性、曲げ加工性に優れていた。しかし、表6−2の比較例6−1と比較例6−2に示すように、時効析出熱処理の温度T8よりもT10が高いと、析出硬化能が不十分であり、強度が低く好ましくないことが分かる。   As apparent from Table 6-1, Invention Example 6-1 to Invention Example 6-2 were excellent in yield strength, conductivity, stress relaxation resistance, and bending workability. However, as shown in Comparative Example 6-1 and Comparative Example 6-2 in Table 6-2, if T10 is higher than the temperature T8 of the aging precipitation heat treatment, the precipitation hardening ability is insufficient, and the strength is low, which is not preferable. I understand that.

(実施例7)
実施例5と同様に、表5−1に示す成分・組成になるように元素を配合し、残部がCuと不可避不純物からなる合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1050℃で0.5〜10hrの均質化処理後、断面減少率が50%以上で処理温度が650℃以上である熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削した。その後に、表7中にT5[℃]で示す温度で4時間の時効析出熱処理を施し、断面減少率が50〜98%の冷間加工を施し、800〜1000℃の溶体化熱処理を施し、断面減少率が5〜50%の冷間加工を施し、400〜650℃の時効析出熱処理を施し、5〜50%の仕上げ冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を行い、銅合金材を製造し、その各一部を供試材とした。
この各供試材について、同様に耐力[YS]、導電率[EC]、応力緩和率[SR]、平均結晶粒径[GS]、曲げ加工性[R/t]および第二相の構成元素と密度等の特性調査を行い、得られた結果を表7に示した。
(Example 7)
In the same manner as in Example 5, the elements were blended so as to have the components and compositions shown in Table 5-1, and an alloy composed of Cu and unavoidable impurities in the remainder was melted in a high-frequency melting furnace. An ingot was obtained by casting at a cooling rate of / sec. This was homogenized at 900 to 1050 ° C for 0.5 to 10 hours, then hot-worked with a cross-section reduction rate of 50% or more and a processing temperature of 650 ° C or more, and then water quenching to remove oxide scale. Carved for. Thereafter, an aging precipitation heat treatment is performed for 4 hours at a temperature indicated by T5 [° C.] in Table 7, a cold working with a cross-section reduction rate of 50 to 98% is performed, and a solution heat treatment at 800 to 1000 ° C. is performed. Perform cold working with a cross-section reduction rate of 5 to 50%, perform aging precipitation heat treatment at 400 to 650 ° C, perform finish cold working at 5 to 50%, and adjust for 5 seconds to 10 hours at 200 to 550 ° C. Quality annealing was performed to produce a copper alloy material, and a part of each was used as a test material.
For each specimen, the yield strength [YS], conductivity [EC], stress relaxation rate [SR], average grain size [GS], bending workability [R / t], and constituent elements of the second phase And the characteristics such as density were investigated, and the obtained results are shown in Table 7.

Figure 2008266787
Figure 2008266787

表7に示すように、時効析出熱処理[5]を400〜800℃で行う場合には、第二相の密度を高くし、結晶粒径を小さくすることができ、曲げ加工性を良好に出来た。   As shown in Table 7, when the aging precipitation heat treatment [5] is performed at 400 to 800 ° C., the density of the second phase can be increased, the crystal grain size can be reduced, and the bending workability can be improved. It was.

応力緩和試験方法の概略説明図である。It is a schematic explanatory drawing of a stress relaxation test method.

符号の説明Explanation of symbols

1 耐力の80%の初期応力を付与した試験片
2 1の状態で熱処理し、除荷した試験片
3 負荷しなかった場合の試験片
4 試験台
δ たわませた時の試験片の基準位置からの距離
H1 たわませなかった時の試験片の基準位置からの距離
Ht たわませて熱処理し、除荷したあとの試験片の基準位置からの距離
1 Test piece to which 80% of the proof stress was given 2 Test piece heat-treated and unloaded in the state of 1 3 Test piece when not loaded 4 Test stand δ 0 Standard of test piece when deflected Distance from position
H 1 Distance from the reference position of the specimen when not bent
H t Distance from the reference position of the specimen after bending, heat treatment and unloading

Claims (9)

質量で、X元素を0.1〜4%(ここで、X元素はNi、Fe、Co、Crの遷移元素の中の1種または2種以上である)およびY元素を0.01〜3%(ここでY元素はTi、Si、Zr、Hfの中の1種または2種以上である)含有し、残部が銅と不可避不純物からなる銅合金材であって、
50%IACS以上の導電率と、600MPa以上の耐力を有し、耐力の80%の応力を付与した状態で1000時間保持したときの応力緩和率が20%以下であることを特徴とする銅合金材。
0.1-4% by mass of X element (where X element is one or more of transition elements of Ni, Fe, Co, Cr) and Y element is 0.01-3% % (Where Y element is one or more of Ti, Si, Zr, and Hf), the balance being a copper alloy material consisting of copper and inevitable impurities,
A copper alloy having a conductivity of 50% IACS or more, a proof stress of 600 MPa or more, and a stress relaxation rate of 20% or less when held for 1000 hours with a stress of 80% of the proof stress applied Wood.
質量で、Z元素を0.01〜3%(ここで、Z元素はSn、Mg、Zn、Ag、Mn、B、Pの中の1種または2種以上である)更に含有することを特徴とする請求項1記載の銅合金材。   The element further contains 0.01 to 3% by mass of Z element (wherein the Z element is one or more of Sn, Mg, Zn, Ag, Mn, B, and P). The copper alloy material according to claim 1. 平均結晶粒径が10μm以下であることを特徴とする請求項1または2記載の銅合金材。   The copper alloy material according to claim 1 or 2, wherein an average crystal grain size is 10 µm or less. 50〜1000nmの粒径の第二相が10個/mm以上の分布密度で存在することを特徴とする請求項1〜3のいずれか1項記載の銅合金材。 The copper alloy material according to any one of claims 1 to 3, wherein a second phase having a particle diameter of 50 to 1000 nm is present at a distribution density of 10 4 pieces / mm 2 or more. 前記第二相が、Si、Co、Ni、Fe、Ti、ZrまたはCrを含む化合物であることを特徴とする請求項4記載の銅合金材。   The copper alloy material according to claim 4, wherein the second phase is a compound containing Si, Co, Ni, Fe, Ti, Zr, or Cr. 前記第二相が三元からなる化合物であることを特徴とする請求項5記載の銅合金材。   The copper alloy material according to claim 5, wherein the second phase is a ternary compound. 銅合金材素材に、鋳造[1]、均質化熱処理[2]、熱間加工[3]、面削[4]、冷間加工[6]、溶体化熱処理[7]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理をこの順に施し、その冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和が5〜65%とする請求項1〜6のいずれか1項記載の銅合金材を得ることを特徴とする銅合金材の製造方法。   For copper alloy material, casting [1], homogenization heat treatment [2], hot working [3], face cutting [4], cold working [6], solution heat treatment [7], cold working [9] ], Aging precipitation heat treatment [10], cold working [11], and temper annealing [12] are performed in this order, and the processing rate R1 (%) and cold processing in the cold working [9] are performed. The copper alloy material according to any one of claims 1 to 6, wherein the sum of the processing rates R2 (%) in the inter-working [11] is 5 to 65%. . 銅合金材素材に、鋳造[1]、均質化熱処理[2]、熱間加工[3]、面削[4]、冷間加工[6]、溶体化熱処理[7]、時効析出熱処理[8]、冷間加工[9]、時効析出熱処理[10]、冷間加工[11]および調質焼鈍[12]とから構成される処理をこの順に施し、その冷間加工[9]での加工率R1(%)と冷間加工[11]での加工率R2(%)の和が5〜65%で、時効析出熱処理[8]の処理温度が400〜700℃、時効析出熱処理[10]の処理温度が時効析出熱処理[8]の処理温度よりも低くする請求項1〜6のいずれか1項記載の銅合金材を得ることを特徴とする電子電気機器用銅合金材の製造方法。   For copper alloy material, casting [1], homogenization heat treatment [2], hot working [3], facing [4], cold working [6], solution heat treatment [7], aging precipitation heat treatment [8] ], Cold working [9], aging precipitation heat treatment [10], cold working [11] and temper annealing [12] in this order, and processing in the cold working [9] The sum of the rate R1 (%) and the processing rate R2 (%) in the cold work [11] is 5 to 65%, the treatment temperature of the aging precipitation heat treatment [8] is 400 to 700 ° C., and the aging precipitation heat treatment [10]. A method for producing a copper alloy material for electronic equipment, comprising obtaining the copper alloy material according to any one of claims 1 to 6, wherein the treatment temperature is lower than the treatment temperature of the aging precipitation heat treatment [8]. 請求項7または8の製造方法において、面削[4]の後に400〜800℃で5秒〜20時間の時効析出熱処理[5]を行い、冷間加工[6]を行うことを特徴とする電子電気機器用銅合金材の製造方法。   The manufacturing method according to claim 7 or 8, characterized in that after the chamfering [4], an aging precipitation heat treatment [5] is performed at 400 to 800 ° C for 5 seconds to 20 hours, and a cold working [6] is performed. A method for producing a copper alloy material for electronic and electrical equipment.
JP2008085013A 2007-03-28 2008-03-27 Copper alloy material and its manufacturing method Pending JP2008266787A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008085013A JP2008266787A (en) 2007-03-28 2008-03-27 Copper alloy material and its manufacturing method
EP08739314A EP2157199A4 (en) 2007-03-28 2008-03-28 Copper alloy material, and method for production thereof
PCT/JP2008/056196 WO2008123455A1 (en) 2007-03-28 2008-03-28 Copper alloy material, and method for production thereof
US12/593,402 US20100170595A1 (en) 2007-03-28 2008-03-28 Copper alloy material, and method for production thereof
CN2008800181847A CN101680056B (en) 2007-03-28 2008-03-28 Copper alloy material, and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007086026 2007-03-28
JP2008085013A JP2008266787A (en) 2007-03-28 2008-03-27 Copper alloy material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008266787A true JP2008266787A (en) 2008-11-06

Family

ID=39830940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085013A Pending JP2008266787A (en) 2007-03-28 2008-03-27 Copper alloy material and its manufacturing method

Country Status (5)

Country Link
US (1) US20100170595A1 (en)
EP (1) EP2157199A4 (en)
JP (1) JP2008266787A (en)
CN (1) CN101680056B (en)
WO (1) WO2008123455A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096546A1 (en) * 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
WO2010067863A1 (en) * 2008-12-12 2010-06-17 日鉱金属株式会社 Ni-Si-Co COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2010215976A (en) * 2009-03-17 2010-09-30 Furukawa Electric Co Ltd:The Copper alloy sheet material
JP2010261066A (en) * 2009-04-30 2010-11-18 Jx Nippon Mining & Metals Corp Method for manufacturing titanium-copper for electronic component
JP2011017070A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material for electric and electronic component
JP2011046970A (en) * 2009-07-30 2011-03-10 Furukawa Electric Co Ltd:The Copper alloy material and method for producing the same
US20110186192A1 (en) * 2008-07-31 2011-08-04 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic parts and method of producing the same
WO2011122490A1 (en) 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 Cu-co-si alloy material
KR101095597B1 (en) 2009-08-28 2011-12-16 송건 Copper alloy used for electrode
WO2012043170A1 (en) 2010-09-29 2012-04-05 Jx日鉱日石金属株式会社 Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
WO2012081573A1 (en) 2010-12-13 2012-06-21 国立大学法人東北大学 Copper alloy and method for producing copper alloy
WO2012096351A1 (en) 2011-01-13 2012-07-19 Jx日鉱日石金属株式会社 Cu-co-si-zr alloy material and method for producing same
WO2012111674A1 (en) 2011-02-16 2012-08-23 株式会社日本製鋼所 High-strength copper alloy forging
WO2012133651A1 (en) * 2011-03-31 2012-10-04 国立大学法人東北大学 Copper alloy and method for producing copper alloy
CN103526072A (en) * 2013-04-26 2014-01-22 洛阳新火种节能技术推广有限公司 Copper-based alloy preparation process
KR101510222B1 (en) 2013-03-29 2015-04-08 한국기계연구원 A copper alloy having high strength and high electrical conductivity
JP2015132008A (en) * 2014-01-15 2015-07-23 株式会社神戸製鋼所 Copper alloy for electric-electronic component
US9476474B2 (en) 2010-12-13 2016-10-25 Nippon Seisen Co., Ltd. Copper alloy wire and copper alloy spring
US9499885B2 (en) 2010-04-14 2016-11-22 Jx Nippon Mining & Metals Corporation Cu—Si—Co alloy for electronic materials, and method for producing same
KR101810925B1 (en) 2017-10-18 2017-12-20 주식회사 풍산 Copper alloy strips having high heat resistance and thermal dissipation properties
JP2018141231A (en) * 2017-02-25 2018-09-13 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Slide member composed of copper alloy

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619391B2 (en) * 2009-08-12 2014-11-05 古河電気工業株式会社 Copper alloy material and method for producing the same
JP4677505B1 (en) 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5451674B2 (en) 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP5818724B2 (en) * 2011-03-29 2015-11-18 株式会社神戸製鋼所 Copper alloy material for electric and electronic parts, copper alloy material for plated electric and electronic parts
JP4799701B1 (en) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
CN104137191A (en) * 2011-12-28 2014-11-05 矢崎总业株式会社 Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire
CN102534299B (en) * 2012-02-06 2013-12-04 南京达迈科技实业有限公司 Beryllium-free polybasic copper alloy
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy
JP2014127345A (en) * 2012-12-26 2014-07-07 Yazaki Corp Insulated wire
JP2015086452A (en) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy twisted wire, coated cable, wire harness and manufacturing method of copper alloy wire
CN103667785A (en) * 2013-12-03 2014-03-26 江苏帕齐尼铜业有限公司 Copper-cobalt alloy and preparation method thereof
EP3088543A4 (en) * 2013-12-27 2017-08-16 Furukawa Electric Co., Ltd. Copper alloy sheet material, connector, and production method for copper alloy sheet material
CN106164306B (en) * 2014-03-31 2020-03-17 古河电气工业株式会社 Copper alloy wire and method for producing same
CN103898353A (en) * 2014-04-02 2014-07-02 太原理工大学 Copper alloy with high strength and high conductivity and preparation method thereof
CN104060120B (en) * 2014-07-03 2016-02-24 兰宝琴 The preparation method of high strength copper alloy wire rod
US20170283910A1 (en) * 2014-08-25 2017-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Conductive material for connection parts which has excellent minute slide wear resistance
DE102014217570A1 (en) * 2014-09-03 2016-03-03 Federal-Mogul Wiesbaden Gmbh Sliding bearing or part thereof, method for producing the same and use of a CuCrZr alloy as a sliding bearing material
CN104451245A (en) * 2014-12-25 2015-03-25 春焱电子科技(苏州)有限公司 Copper alloy for electronic material with balanced properties
CN105088010B (en) * 2015-08-31 2017-08-25 河南科技大学 A kind of high-strength highly-conductive rare earth copper zirconium alloy and preparation method thereof
JP6246173B2 (en) * 2015-10-05 2017-12-13 Jx金属株式会社 Cu-Co-Ni-Si alloy for electronic parts
CN105274386B (en) * 2015-10-30 2017-05-17 北京有色金属研究总院 High-performance complex multi-element phosphor bronze alloy material and preparation method thereof
DE102016001994A1 (en) * 2016-02-19 2017-08-24 Wieland-Werke Ag Sliding element made of a copper-zinc alloy
KR102226988B1 (en) * 2016-10-05 2021-03-11 가부시키가이샤 고베 세이코쇼 Copper alloy plate for heat dissipation parts, heat dissipation parts, and manufacturing method of heat dissipation parts
RU2622190C1 (en) * 2016-10-10 2017-06-13 Юлия Алексеевна Щепочкина Copper-based alloy
KR102117891B1 (en) * 2016-12-01 2020-06-02 후루카와 덴끼고교 가부시키가이샤 Copper alloy wire
KR101900793B1 (en) 2017-06-08 2018-09-20 주식회사 풍산 A method for tin plating copper alloy for electrical and electronic and car components, and tin plated copper alloy therefrom
CA3039936C (en) * 2017-09-29 2021-05-25 Jx Nippon Mining & Metals Corporation Metal powder for additive manufacturing metal laminate and metal additive manufactured object manufactured using said metal powder
CN107739878B (en) * 2017-11-23 2019-10-18 全南晶环科技有限责任公司 A kind of anti-softening copper alloy of high-strength highly-conductive and preparation method thereof
CN108220664A (en) * 2017-12-31 2018-06-29 安徽晋源铜业有限公司 A kind of preparation process of high intensity copper wire
WO2020014582A1 (en) * 2018-07-12 2020-01-16 Materion Corporation Copper-nickel-silicon alloys with high strength and high electrical conductivity
JP7202121B2 (en) * 2018-09-27 2023-01-11 Dowaメタルテック株式会社 Cu-Ni-Al-based copper alloy plate material, manufacturing method thereof, and conductive spring member
CN109355525B (en) * 2018-11-06 2020-01-10 有研工程技术研究院有限公司 Multi-scale multi-element high-strength high-conductivity copper chromium zirconium alloy material and preparation method thereof
CN110079696B (en) * 2019-03-08 2020-08-04 陕西斯瑞新材料股份有限公司 Cu-Fe-Ag-RE magnetic copper alloy for energy-saving motor rotor and preparation method thereof
US20220205074A1 (en) * 2019-04-12 2022-06-30 Materion Corporation Copper alloys with high strength and high conductivity, and processes for making such copper alloys
CN112080666A (en) * 2019-06-12 2020-12-15 深圳市中科量能科技发展有限公司 Preparation formula and preparation method of composite material with high conductivity
CN112030030B (en) * 2020-08-06 2021-09-10 国网江西省电力有限公司电力科学研究院 High-strength high-conductivity copper alloy wire and preparation method thereof
CN112048637B (en) * 2020-09-15 2021-09-14 杭州铜信科技有限公司 Copper alloy material and manufacturing method thereof
CN112359247B (en) * 2020-11-16 2021-11-09 福州大学 Cu-Hf-Si-Ni-Ce copper alloy material and preparation method thereof
CN113817932A (en) * 2021-07-27 2021-12-21 中国兵器科学研究院宁波分院 High-strength heat-resistant stress relaxation-resistant copper alloy material and preparation method thereof
CN114395705A (en) * 2021-12-27 2022-04-26 中铝洛阳铜加工有限公司 High-temperature-resistant softened nickel-zirconium bronze rod material and processing technology thereof
CN114774733B (en) * 2022-04-28 2023-05-26 郑州大学 High-performance copper-based alloy material for casting roller sleeve and preparation method thereof
CN115044800B (en) * 2022-06-02 2023-03-24 浙江大学 High-strength high-conductivity copper alloy and preparation method thereof
CN115821110B (en) * 2022-12-08 2024-01-30 大连交通大学 C70350 alloy for establishing ingredient cooperative change relation based on cluster method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177946C (en) * 2001-09-07 2004-12-01 同和矿业株式会社 Copper alloy for connector use and producing method thereof
WO2005118896A1 (en) * 2004-06-02 2005-12-15 The Furukawa Electric Co., Ltd. Copper alloy for electrical and electronic devices
JP4728704B2 (en) * 2005-06-01 2011-07-20 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
JP4441467B2 (en) * 2004-12-24 2010-03-31 株式会社神戸製鋼所 Copper alloy with bending workability and stress relaxation resistance
JP2006265731A (en) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The Copper alloy
JP5202812B2 (en) * 2005-03-02 2013-06-05 古河電気工業株式会社 Copper alloy and its manufacturing method
JP3871064B2 (en) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 Copper alloy plate for electrical connection parts
JP5002767B2 (en) * 2005-06-10 2012-08-15 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326573A1 (en) * 2008-01-30 2010-12-30 Kuniteru Mihara Copper alloy material for electric/electronic component and method for manufacturing the same
WO2009096546A1 (en) * 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
US20110186192A1 (en) * 2008-07-31 2011-08-04 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic parts and method of producing the same
WO2010067863A1 (en) * 2008-12-12 2010-06-17 日鉱金属株式会社 Ni-Si-Co COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2010138461A (en) * 2008-12-12 2010-06-24 Nippon Mining & Metals Co Ltd Ni-Si-Co BASE COPPER ALLOY, AND METHOD FOR PRODUCING THE SAME
EP2386665A4 (en) * 2008-12-12 2012-07-04 Jx Nippon Mining & Metals Corp Ni-Si-Co COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
KR101338710B1 (en) 2008-12-12 2013-12-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Ni-si-co copper alloy and manufacturing method therefor
US9394589B2 (en) 2008-12-12 2016-07-19 Jx Nippon Mining & Metals Corporation Ni-Si-Co copper alloy and manufacturing method therefor
EP2386665A1 (en) * 2008-12-12 2011-11-16 JX Nippon Mining & Metals Corporation Ni-Si-Co COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2010215976A (en) * 2009-03-17 2010-09-30 Furukawa Electric Co Ltd:The Copper alloy sheet material
JP2010261066A (en) * 2009-04-30 2010-11-18 Jx Nippon Mining & Metals Corp Method for manufacturing titanium-copper for electronic component
JP2011017070A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material for electric and electronic component
JP2011046970A (en) * 2009-07-30 2011-03-10 Furukawa Electric Co Ltd:The Copper alloy material and method for producing the same
KR101095597B1 (en) 2009-08-28 2011-12-16 송건 Copper alloy used for electrode
WO2011122490A1 (en) 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 Cu-co-si alloy material
US9076569B2 (en) 2010-03-30 2015-07-07 Jx Nippon Mining & Metals Corporation Cu—Co—Si alloy material and manufacturing method thereof
US9499885B2 (en) 2010-04-14 2016-11-22 Jx Nippon Mining & Metals Corporation Cu—Si—Co alloy for electronic materials, and method for producing same
WO2012043170A1 (en) 2010-09-29 2012-04-05 Jx日鉱日石金属株式会社 Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
US9476474B2 (en) 2010-12-13 2016-10-25 Nippon Seisen Co., Ltd. Copper alloy wire and copper alloy spring
WO2012081573A1 (en) 2010-12-13 2012-06-21 国立大学法人東北大学 Copper alloy and method for producing copper alloy
WO2012096351A1 (en) 2011-01-13 2012-07-19 Jx日鉱日石金属株式会社 Cu-co-si-zr alloy material and method for producing same
WO2012111674A1 (en) 2011-02-16 2012-08-23 株式会社日本製鋼所 High-strength copper alloy forging
CN103502485B (en) * 2011-03-31 2015-11-25 国立大学法人东北大学 The preparation method of copper alloy and copper alloy
US9666325B2 (en) 2011-03-31 2017-05-30 Tohoku University Copper alloy and method of manufacturing copper alloy
CN103502485A (en) * 2011-03-31 2014-01-08 国立大学法人东北大学 Copper alloy and method for producing copper alloy
JP5988048B2 (en) * 2011-03-31 2016-09-07 国立大学法人東北大学 Copper alloy and method for producing copper alloy
WO2012133651A1 (en) * 2011-03-31 2012-10-04 国立大学法人東北大学 Copper alloy and method for producing copper alloy
KR101510222B1 (en) 2013-03-29 2015-04-08 한국기계연구원 A copper alloy having high strength and high electrical conductivity
CN103526072A (en) * 2013-04-26 2014-01-22 洛阳新火种节能技术推广有限公司 Copper-based alloy preparation process
JP2015132008A (en) * 2014-01-15 2015-07-23 株式会社神戸製鋼所 Copper alloy for electric-electronic component
JP2018141231A (en) * 2017-02-25 2018-09-13 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Slide member composed of copper alloy
KR101810925B1 (en) 2017-10-18 2017-12-20 주식회사 풍산 Copper alloy strips having high heat resistance and thermal dissipation properties
WO2019078474A1 (en) * 2017-10-18 2019-04-25 주식회사 풍산 Copper alloy sheet having excellent heat resistance and heat dissipation
CN109937262A (en) * 2017-10-18 2019-06-25 株式会社豊山 Copper alloy band with high heat resistance and heat dissipation performance
CN109937262B (en) * 2017-10-18 2021-03-30 株式会社豊山 Copper alloy strip with high heat resistance and heat dissipation
US11697864B2 (en) 2017-10-18 2023-07-11 Poongsan Corporation Copper alloy strip having high heat resistance and thermal dissipation properties

Also Published As

Publication number Publication date
US20100170595A1 (en) 2010-07-08
CN101680056A (en) 2010-03-24
EP2157199A4 (en) 2012-06-27
CN101680056B (en) 2013-01-09
EP2157199A1 (en) 2010-02-24
WO2008123455A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP2008266787A (en) Copper alloy material and its manufacturing method
JP2009242814A (en) Copper alloy material and producing method thereof
JP4615628B2 (en) Copper alloy material, electrical and electronic component, and method for producing copper alloy material
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP4660735B2 (en) Method for producing copper-based alloy sheet
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
EP2508635B1 (en) Copper alloy sheet and process for producing same
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP2007169765A (en) Copper alloy and its production method
JP2006265731A (en) Copper alloy
JP4959141B2 (en) High strength copper alloy
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP5619389B2 (en) Copper alloy material
JP3977376B2 (en) Copper alloy
JP4785092B2 (en) Copper alloy sheet
JPWO2010016429A1 (en) Method for producing copper alloy material for electric / electronic parts
JP4887851B2 (en) Ni-Sn-P copper alloy
JP5468798B2 (en) Copper alloy sheet
JP5207927B2 (en) Copper alloy with high strength and high conductivity
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
JP2006336068A (en) Copper alloy for electrical and electronic devices
WO2016059707A1 (en) Cu-Ni-Si ALLOY AND MANUFACTURING METHOD THEREFOR
JP2010209379A (en) Copper alloy material for terminal-connector, and method for producing the same