JP5748945B2 - Copper alloy material manufacturing method and copper alloy material obtained thereby - Google Patents

Copper alloy material manufacturing method and copper alloy material obtained thereby Download PDF

Info

Publication number
JP5748945B2
JP5748945B2 JP2009182794A JP2009182794A JP5748945B2 JP 5748945 B2 JP5748945 B2 JP 5748945B2 JP 2009182794 A JP2009182794 A JP 2009182794A JP 2009182794 A JP2009182794 A JP 2009182794A JP 5748945 B2 JP5748945 B2 JP 5748945B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
compound
mass
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009182794A
Other languages
Japanese (ja)
Other versions
JP2011046970A (en
Inventor
亮佑 松尾
亮佑 松尾
立彦 江口
立彦 江口
邦照 三原
邦照 三原
佐藤 浩二
浩二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009182794A priority Critical patent/JP5748945B2/en
Publication of JP2011046970A publication Critical patent/JP2011046970A/en
Application granted granted Critical
Publication of JP5748945B2 publication Critical patent/JP5748945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は端子・コネクタなどの電子部品用に好適な、強度、導電率、および打ち抜き加工性に優れた電子機器用の銅合金材を製造する方法と、それにより得られる銅合金材に関する。   The present invention relates to a method for producing a copper alloy material for an electronic device excellent in strength, electrical conductivity, and punchability, suitable for electronic parts such as terminals and connectors, and a copper alloy material obtained thereby.

近年、大電流を通電する電子機器の小型軽量化が進展し、電子部品材料は導電率が高くかつ強度に優れることが強く求められている。CoとSiを主添加元素とした銅合金は優れた機械的強度、導電率を有しているため、上記電子部品に適しているとされる。これら電子部品は金型を用いた高速プレスによる打ち抜き加工を行って製造されるものが主であり、製造時、材料は金型のパンチによりせん断変形、破断変形を生じて所定の形状に打ち抜かれる。しかし、プレスショット数が増すにつれて金型のパンチの刃先の磨耗が進み、破断形状が乱れて製品形状を保てなくなる。金型メンテナンスのコスト削減の手段として、金型磨耗を軽減する、もしくは初期の金型形状から磨耗が進んだ時点においてもプレス形状を維持できる、打ち抜き加工性に優れる銅合金が求められている(特許文献1〜6参照)。   In recent years, electronic devices that carry a large current have been reduced in size and weight, and electronic component materials are strongly required to have high conductivity and excellent strength. A copper alloy containing Co and Si as main additive elements is considered to be suitable for the electronic component because it has excellent mechanical strength and electrical conductivity. These electronic components are mainly manufactured by punching with a high-speed press using a mold, and at the time of manufacturing, the material is punched into a predetermined shape by causing shear deformation or fracture deformation by the punch of the mold. . However, as the number of press shots increases, the cutting edge of the die punch advances and the fracture shape is disturbed, making it impossible to maintain the product shape. As a means of reducing the cost of mold maintenance, there is a need for a copper alloy with excellent punchability that can reduce mold wear or maintain the press shape even when the wear progresses from the initial mold shape ( Patent References 1 to 6).

特開昭61−87838号公報JP-A-61-87838 特開昭63−307232号公報JP-A 63-307232 特開平02−129326号公報Japanese Patent Laid-Open No. 02-129326 特開平02−277735号公報Japanese Patent Laid-Open No. 02-277735 特開2008−88512号公報JP 2008-88512 A 特開2008−56977号公報JP 2008-55977 A

しかしながら、特許文献1〜6で提案されているCo、Siを主添加元素とした銅合金は、いずれも高強度、高導電性や熱間加工性などに着目したもので、プレス打ち抜き性についての記載はない。これらの文献に記載された銅合金の製造方法においては、プレス打ち抜き加工性向上に必要な化合物制御がなされていないことが伺える。
そこで、本発明は、Cu−Co−Si系合金において、コネクタ用端子など電子部品に要求される強度と導電性を維持しつつ打ち抜き加工性に優れる銅合金材を製造する方法と、それにより得られる銅合金材を提供することを課題とする。
However, the copper alloys with Co and Si as the main additive elements proposed in Patent Documents 1 to 6 are all focused on high strength, high conductivity, hot workability, etc. There is no description. In the copper alloy manufacturing methods described in these documents, it can be seen that the compound control necessary for improving the press punching processability is not performed.
Accordingly, the present invention provides a method for producing a copper alloy material excellent in punching workability while maintaining strength and conductivity required for electronic parts such as connector terminals in a Cu-Co-Si based alloy, and thereby obtained. It is an object of the present invention to provide a copper alloy material.

本発明者等は、Cu−Co−Si系合金において打ち抜き加工性を向上させる化合物を制御することにより、上記の課題を解決できることを見出した。すなわち、合金組成と鋳造・熱処理などの製造条件を特定の条件に規定して、得られる銅合金中の化合物サイズ、密度を特定の範囲内にコントロールすることによって、従来の銅合金の強度、導電率特性を維持しつつ、打ち抜き加工性を改善しうることを見出し、この知見に基づき本発明をなすに至った。   The present inventors have found that the above problem can be solved by controlling a compound that improves the punching workability in a Cu—Co—Si based alloy. That is, by specifying the manufacturing conditions such as the alloy composition and casting / heat treatment to specific conditions, and controlling the compound size and density in the obtained copper alloy within a specific range, the strength and conductivity of conventional copper alloys are controlled. It has been found that the punching processability can be improved while maintaining the rate characteristics, and the present invention has been made based on this finding.

上記課題は以下の発明により解決される。
(1)Coを0.5〜2.5mass%含有し、CoとSiの含有量の比Co/Siが2.5〜4.5の間にあり、さらにCr、Fe、Ni、Al、Nb、Ti、V及びZrからなる群から選ばれる少なくとも1種の添加元素を合計で0.01〜0.2mass%含み、残部がCuおよび不可避不純物からなる銅合金原料を溶解し、鋳造時の冷却速度が1〜30℃/秒の条件で鋳造して鋳塊を得、
均質処理、
熱間圧延、
水冷却、
冷間圧延、
800〜1025℃で1〜100秒間の溶体化熱処理、
300〜600℃で1〜10時間の時効熱処理、
加工率が0%を超えて30%以下の仕上げ圧延、
200〜450℃で0.5〜5時間の歪取り焼鈍を施す
各工程をこの順に施し、
直径が0.05〜5μmで、密度が10 〜10 個/mm の、前記添加元素及びCoからなる群から選ばれる少なくとも1種の元素とSiからなる化合物を含有する銅合金材を得ることを特徴とする銅合金材の製造方法。
(2)Coを1.4mass%以上2.5mass%以下含有し、CoとSiの含有量の比Co/Siが3.0〜5.0の間にあり、残部がCuおよび不可避不純物からなる銅合金原料を溶解し、鋳造時の冷却速度が1〜30℃/秒の条件で鋳造して鋳塊を得、
均質処理、
熱間圧延、
水冷却、
冷間圧延、
800〜1025℃で1〜100秒間の溶体化熱処理、
300〜600℃で1〜10時間の時効熱処理、
加工率が0%を超えて30%以下の仕上げ圧延、
200〜450℃で0.5〜5時間の歪取り焼鈍を施す
各工程をこの順に施し、
直径が0.05〜5μmで、密度が10 〜10 個/mm のCo及びSiで構成される化合物を含有する銅合金材を得ることを特徴とする銅合金材の製造方法
(3)(1項に記載の方法で製造される銅合金材であって、得られる銅合金材が、直径が0.05〜5μmで、密度が10〜10個/mmの、前記添加元素及びCoからなる群から選ばれる少なくとも1種の元素とSiからなる化合物を含有する銅合金材。
)(2項に記載の方法で製造される銅合金材であって、得られる銅合金材が、直径が0.05〜5μmで、密度が10〜10個/mmのCo及びSiで構成される化合物を含有する銅合金材。
なお、本発明における「化合物」は上記2種以上の元素からなる金属間化合物であり、晶出物(液体から固体に変態する際あらわれる金属間化合物)と析出物(固体から固体に変態する際、例えば固溶状態から、あらわれる金属間化合物)の両方を含む。
The above problems are solved by the following invention.
(1) Co is contained at 0.5 to 2.5 mass%, Co / Si content ratio Co / Si is between 2.5 and 4.5, and Cr, Fe, Ni, Al, Nb , Including at least one additive element selected from the group consisting of Ti, V and Zr in a total amount of 0.01 to 0.2 mass%, with the balance being a copper alloy raw material consisting of Cu and inevitable impurities, and cooling during casting Casting at a speed of 1-30 ° C / sec to obtain an ingot,
Homogeneous treatment,
Hot rolling,
Water cooling,
Cold rolling,
Solution heat treatment for 1 to 100 seconds at 800 to 1025 ° C.,
Aging heat treatment at 300-600 ° C. for 1-10 hours,
Working ratio of 30% or less of finish rolling exceeds 0%,
Each step of at 200 to 450 ° C. performing stress relief annealing of 0.5-5 hours facilities in this order,
A copper alloy material containing a compound comprising Si and at least one element selected from the group consisting of the additive element and Co, having a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2. A method for producing a copper alloy material, comprising: obtaining a copper alloy material.
(2) Co is contained in an amount of 1.4 mass% to 2.5 mass%, the Co / Si content ratio Co / Si is between 3.0 and 5.0, and the balance is made of Cu and inevitable impurities. A copper alloy raw material is melted and cast at a cooling rate of 1-30 ° C./second during casting to obtain an ingot,
Homogeneous treatment,
Hot rolling,
Water cooling,
Cold rolling,
Solution heat treatment for 1 to 100 seconds at 800 to 1025 ° C.,
Aging heat treatment at 300-600 ° C. for 1-10 hours,
Working ratio of 30% or less of finish rolling exceeds 0%,
Each step of at 200 to 450 ° C. performing stress relief annealing of 0.5-5 hours facilities in this order,
A method for producing a copper alloy material, comprising: obtaining a copper alloy material containing a compound composed of Co and Si having a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2 .
(3 ) A copper alloy material produced by the method according to (1 ) , wherein the obtained copper alloy material has a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2 . A copper alloy material comprising a compound comprising Si and at least one element selected from the group consisting of the additive element and Co.
( 4 ) A copper alloy material produced by the method according to (2 ) , wherein the obtained copper alloy material has a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2 . A copper alloy material containing a compound composed of Co and Si.
The “compound” in the present invention is an intermetallic compound composed of two or more elements described above, and a crystallized product (intermetallic compound that appears when transforming from liquid to solid) and a precipitate (when transforming from solid to solid). For example, an intermetallic compound appearing from a solid solution state).

本発明の銅合金材の製造方法により得られる銅合金材(以下、本書において単に「本発明の銅合金材」ともいう。)は、強度、導電率を損なわずに打ち抜き加工性を向上させたものである。よって、電子機器用の部品、例えば端子・コネクタ等としたときに銅合金材に要求される高レベルの特性を有し、かつ、打ち抜き加工における金型長寿命化によってコストパフォーマンスの改善が行われる。   The copper alloy material obtained by the method for producing a copper alloy material of the present invention (hereinafter, also simply referred to as “the copper alloy material of the present invention” in this document) has improved punching workability without impairing strength and electrical conductivity. Is. Therefore, it has high-level characteristics required for copper alloy materials when used as parts for electronic equipment such as terminals and connectors, etc., and cost performance is improved by extending the die life in stamping. .

以下に、本発明の好ましい実施の形態を述べる。なお、本発明において銅合金材とは、圧延工程によって、例えば板材、条材、箔などの特定の形状に加工された銅合金を意味する。
本発明の銅合金材の第一の実施形態における組成は、Co、Siとその他の添加元素(Cr、Fe、Ni、Al、Nb、Ti、V及びZrからなる群から選ばれる少なくとも1種)とを含有し、残部がCuおよび不可避的不純物を含むものである。
The preferred embodiments of the present invention will be described below. In the present invention, the copper alloy material means a copper alloy processed into a specific shape such as a plate material, a strip material, or a foil by a rolling process.
The composition of the first embodiment of the copper alloy material of the present invention is Co, Si and other additive elements (at least one selected from the group consisting of Cr, Fe, Ni, Al, Nb, Ti, V, and Zr). And the balance contains Cu and inevitable impurities.

本実施形態の銅合金材において、Coの含有量は0.5〜2.5mass%とする。この理由は、製品として十分な強度を確保するためである。0.5mass%未満ではSiとの析出によって得られる強度が不十分となる。また、2.5mass%を超えると固溶しきれなくなり、銅合金の強化に寄与しなくなるほか、地金コストの高いコバルトの添加量増加によって、価格面で競争力に劣る銅合金となってしまう。好ましくは0.6〜2.2mass%であり、より好ましくは0.7〜2.0mass%である。   In the copper alloy material of the present embodiment, the Co content is 0.5 to 2.5 mass%. The reason for this is to ensure sufficient strength as a product. If it is less than 0.5 mass%, the strength obtained by precipitation with Si becomes insufficient. Moreover, if it exceeds 2.5 mass%, it will not be able to be completely dissolved and will not contribute to strengthening of the copper alloy, and it will become a copper alloy that is inferior in competitiveness in terms of price due to an increase in the amount of cobalt added with high metal costs. . Preferably it is 0.6-2.2 mass%, More preferably, it is 0.7-2.0 mass%.

Siの含有量は、少なくとも0.1〜1mass%の範囲を満足するようにすることが好ましい。この理由も、製品として十分な強度を確保するためである。少なすぎるとCoとの析出によって得られる強度が不十分となる場合がある。また、多すぎると固溶によって導電率が低下する場合がある。本実施形態では、CoとSiの質量比、Co/Siが2.5〜4.5となるようにする。   It is preferable that the Si content satisfies a range of at least 0.1 to 1 mass%. This is also for ensuring sufficient strength as a product. If the amount is too small, the strength obtained by precipitation with Co may be insufficient. Moreover, when there is too much, electrical conductivity may fall by solid solution. In the present embodiment, the mass ratio of Co and Si and Co / Si are set to 2.5 to 4.5.

本実施形態では、Co、Siの他に、Cr、Fe、Ni、Al、Nb、Ti、V及びZrからなる群から選ばれる少なくとも1種の添加元素を有する。
Cr、Fe、Ni、Al、Nb、Ti、V、Zrは、Co、Siと共に化合物として晶出し、打ち抜き加工性の向上に有効である。前記添加元素の合計の含有量は0.01〜0.2mass%とする。0.01mass%未満では打ち抜き加工性向上の効果が十分得られない。また、0.2mass%を超えると、Co、Siの多くが強度に寄与しない化合物となることで、材料強度が要求強度よりも低下してしまう。
In this embodiment, in addition to Co and Si, at least one additive element selected from the group consisting of Cr, Fe, Ni, Al, Nb, Ti, V, and Zr is included.
Cr, Fe, Ni, Al, Nb, Ti, V, and Zr crystallize as a compound together with Co and Si, and are effective in improving the punching workability. The total content of the additive elements is 0.01 to 0.2 mass%. If it is less than 0.01 mass%, the effect of improving the punching workability cannot be obtained sufficiently. On the other hand, if it exceeds 0.2 mass%, most of Co and Si become compounds that do not contribute to the strength, so that the material strength is lower than the required strength.

本実施形態では、銅合金中に、Co及び他の添加元素(Cr、Fe、Ni、Al、Nb、Ti、V、Zr)から選ばれる少なくとも1種の元素とSiからなる、直径0.05〜5μmサイズの化合物を10〜10個/mm含有する。この化合物とは、具体的には、CoSiの他にCo2−xCrSi、Co2−xFeSi(xは1または2)などである。
なお、化合物の直径と密度は、圧延平行方向の断面を走査型電子顕微鏡で写真撮影して、その写真上で化合物の粒径と密度を測定したものである。
CoとSiの添加量については、Co(mass%)とSi(mass%)の比、Co/Siを2.5〜4.5とする。このような比率とする理由は、時効熱処理時に、同系にて強化、導電率の回復に最も寄与するCoSi化合物の析出を促進しやすいためである。Co、Si以外の元素を含む本実施形態では、Co、Siとその他の元素にて上記化合物を形成し、ややSi量を多く含んだ化合物となるために、CoSi析出を促すCo/Si比の固溶状態が維持できるよう、後述する他の元素を含まない形態に比べ、ややSi量が多くなるような比になっている。上記比を満たすことによって目的の銅合金材を得ることができる。この実施形態におけるCo/Siは好ましくは2.5〜4であり、より好ましくは3〜3.5である。
In the present embodiment, the copper alloy contains at least one element selected from Co and other additive elements (Cr, Fe, Ni, Al, Nb, Ti, V, Zr) and Si, and has a diameter of 0.05. Contains 10 3 to 10 5 compounds / mm 2 of ˜5 μm size. And the compound, specifically, (the x 1 or 2) in addition to Co 2-x Cr x Si, Co 2-x Fe x Si of Co 2 Si and the like.
The diameter and density of the compound are obtained by taking a photograph of a cross section in the rolling parallel direction with a scanning electron microscope and measuring the particle size and density of the compound on the photograph.
About the addition amount of Co and Si, ratio of Co (mass%) and Si (mass%), Co / Si shall be 2.5-4.5. The reason for this ratio is that during the aging heat treatment, it is easy to promote the precipitation of the Co 2 Si compound that contributes most to strengthening and electrical conductivity recovery in the same system. In the present embodiment including elements other than Co and Si, the above compound is formed with Co, Si and other elements, and becomes a compound containing a slightly large amount of Si, so that Co / Si promotes Co 2 Si precipitation. In order to maintain the solid solution state of the ratio, the ratio is such that the amount of Si is slightly increased as compared with a form not including other elements described later. By satisfying the above ratio, a target copper alloy material can be obtained. Co / Si in this embodiment is preferably 2.5-4, more preferably 3-3.5.

化合物の直径を0.05〜5μmとする理由は、この直径の化合物粒子が打ち抜き加工性を向上させるからである。直径が0.05μm未満の粒子では、打ち抜き加工性を向上させることができず、直径が5μmを超える粒子は化合物による材料強化、プレス性向上の双方への寄与が非常に小さい。好ましくは0.1〜1μmである。   The reason why the diameter of the compound is 0.05 to 5 μm is that the compound particles having this diameter improve the punching processability. Particles having a diameter of less than 0.05 μm cannot improve punching processability, and particles having a diameter of more than 5 μm contribute very little to both material strengthening and pressability improvement by the compound. Preferably it is 0.1-1 micrometer.

化合物の密度を10〜10個/mmに規定したのは、打ち抜き加工性の向上と材料強度を両立させるからである。10個/mm未満であると、打ち抜き加工する時の破断のクラックの起点が少ないため、打ち抜き加工性を向上させることができない。10個/mmを超えると、直径0.05μm未満の化合物と比べ比較的強度に対する寄与の小さい0.05〜5μmの化合物が全体の大きな割合を占め、材料の強度化が出来ず、製品に求められる特性が得られない。好ましくは5×10〜5×10個/mmである。 The reason why the density of the compound is defined as 10 3 to 10 5 pieces / mm 2 is that the improvement of the punching workability and the material strength are compatible. If it is less than 10 3 pieces / mm 2, the number of cracks at the start of the punching process is small, and therefore the punching processability cannot be improved. If it exceeds 10 5 pieces / mm 2 , the compound of 0.05 to 5 μm, which has a relatively small contribution to strength compared to the compound of less than 0.05 μm in diameter, occupies a large proportion of the whole, and the material cannot be strengthened, resulting in a The required characteristics cannot be obtained. Preferably it is 5 * 10 < 3 > -5 * 10 < 4 > piece / mm < 2 >.

本発明の銅合金材の第二の実施形態における組成は、Coを1.4mass%以上2.5mass%以下含有し、CoとSiの含有量の比Co/Siが3.0〜5.0の間にあり、残部がCuおよび不可避的不純物を含むものである。   The composition of the second embodiment of the copper alloy material of the present invention is that Co is contained in an amount of 1.4 mass% to 2.5 mass%, and the Co / Si content ratio Co / Si is 3.0 to 5.0. And the balance contains Cu and inevitable impurities.

この実施形態の銅合金材において、Coの含有量を1.4mass%以上2.5mass%以下とする理由は、打ち抜き加工性を良好にする化合物、強度を良好にする化合物の析出量を双方において適量にするためであり、特に高強度材の要求に応えるためである。Coの含有量を上記範囲内とし、銅合金材の製造方法における熱処理条件等を制御することで、化合物の晶出、析出を、打ち抜き性が良好で、かつ、高強度材とすることができるような量にすることができる。Coの含有量は好ましくは1.4mass%以上2.0mass%以下である。   In the copper alloy material of this embodiment, the reason why the Co content is 1.4 mass% or more and 2.5 mass% or less is that the precipitation amount of the compound that improves the punching workability and the compound that improves the strength is both This is to make the amount suitable, and in particular to meet the demand for high strength materials. By controlling the heat treatment conditions and the like in the method for producing a copper alloy material with the Co content within the above range, the crystallization and precipitation of the compound can be made into a high-strength material with good punchability. The amount can be as follows. The content of Co is preferably 1.4 mass% or more and 2.0 mass% or less.

Siの含有量は、少なくとも0.3〜1.0mass%の範囲を満足するようにすることが好ましい。この理由は、Coの添加量と同様に、打ち抜き加工性を良好にする化合物、強度を良好にする化合物の析出量を双方において適量にするためであり、特に高強度材の要求に応えるためである。少なすぎると打ち抜き性、強度双方を良好にするための析出総量を満たせなくなってしまい、どちらか一方の特性が劣化してしまう場合がある。また、多すぎると有効に寄与する化合物の晶出、析出量が飽和してしまうことがある。本実施形態では、CoとSiの質量比、Co/Siが3.0〜5.0となるようにする。   It is preferable that the Si content satisfies at least a range of 0.3 to 1.0 mass%. The reason for this is to make the amount of precipitation of the compound that improves the punching workability and the compound that improves the strength appropriate for both, as well as the amount of Co added, especially to meet the demand for high strength materials. is there. If the amount is too small, the total amount of precipitation for improving both punchability and strength may not be satisfied, and either one of the properties may be deteriorated. On the other hand, if the amount is too large, the amount of crystallization and precipitation of compounds that contribute effectively may be saturated. In the present embodiment, the mass ratio of Co and Si and Co / Si are set to 3.0 to 5.0.

本実施形態では、銅合金中にCo及びSiの化合物を有する。この化合物とは、具体的にはCoSiである。化合物の直径及び密度は上記他の添加元素を含有する実施形態と同様であり、その好ましい範囲も同様である。
Co/Siは3.0〜5.0とする。このような添加比とする理由は、時効熱処理時に、同系にて強化、導電率の回復に最も寄与するCoSi化合物の析出を促進しやすいためである。この実施形態におけるCo/Siは好ましくは3.2〜4.5であり、より好ましくは3.5〜4.2である。
In this embodiment, the copper alloy has Co and Si compounds. Specifically, this compound is Co 2 Si. The diameter and density of the compound are the same as those in the embodiment containing the other additive elements, and the preferred ranges thereof are also the same.
Co / Si is set to 3.0 to 5.0. The reason for setting such an addition ratio is that during the aging heat treatment, it is easy to promote precipitation of the Co 2 Si compound that contributes most to strengthening and restoring electrical conductivity in the same system. Co / Si in this embodiment is preferably 3.2 to 4.5, more preferably 3.5 to 4.2.

本発明の銅合金材の製造方法においては、鋳造時の冷却速度が1〜30℃/秒、好ましくは3〜25℃/秒の条件下で作製された鋳塊を均質処理後、熱間圧延、冷間圧延、溶体化熱処理、時効熱処理をこの順に施した後、仕上げ圧延、歪取り焼鈍をこの順に施すことにより銅合金材を製造する。
本発明の銅合金材の製造方法の好ましい実施形態の一例を挙げると、CoとSiと、実施形態によってはその他の添加元素と、残部がCuからなる銅合金を高周波溶解炉等により溶解して鋳造の冷却速度を1〜30℃/秒の条件で鋳造し、鋳塊を得る。この条件により直径0.05〜5μmサイズの上記化合物を10〜10個/mm含有する組織制御をすることができる。その鋳塊を均質処理に付した後、例えば、熱間圧延によって厚さ8〜15mmになるまで加工後、速やかに水冷却(急速冷却)にて焼入れを施し、表面上の酸化皮膜除去のため、圧延された表面を片側0.5〜2mm面削して4〜13mmにした後、冷間圧延にて厚さ約0.1〜0.3mmとなるように加工する。さらに溶体化熱処理(温度800〜1025℃、1〜100秒間)を加え、水冷後、材料に300〜600℃で1〜10時間の時効熱処理を行う。この熱処理後に、加工率が0%を超えて30%以下の圧延(仕上げ圧延)を加え、さらに200〜450℃で0.5〜5時間の低温熱処理(歪取り焼鈍)を行うことにより目的の銅合金材を得ることができる。
In the method for producing a copper alloy material of the present invention, an ingot produced under conditions of a cooling rate during casting of 1 to 30 ° C./second, preferably 3 to 25 ° C./second is subjected to homogenization treatment, and then hot rolled. After performing cold rolling, solution heat treatment, and aging heat treatment in this order, finish rolling and strain relief annealing are performed in this order to produce a copper alloy material.
An example of a preferred embodiment of the method for producing a copper alloy material of the present invention is as follows. Co and Si, and depending on the embodiment, other additive elements, and a copper alloy with the balance being Cu are melted by a high-frequency melting furnace or the like. An ingot is obtained by casting at a cooling rate of 1 to 30 ° C./sec. Under these conditions, it is possible to control the tissue containing 10 3 to 10 5 / mm 2 of the above compound having a diameter of 0.05 to 5 μm. After the ingot is subjected to a homogenous treatment, for example, after being processed to a thickness of 8 to 15 mm by hot rolling, it is rapidly quenched with water cooling (rapid cooling) to remove the oxide film on the surface. The rolled surface is chamfered to 0.5 to 2 mm on one side to 4 to 13 mm, and then processed to a thickness of about 0.1 to 0.3 mm by cold rolling. Further, solution heat treatment (temperature 800 to 1025 ° C., 1 to 100 seconds) is added, and after water cooling, the material is subjected to aging heat treatment at 300 to 600 ° C. for 1 to 10 hours. After this heat treatment, rolling (finish rolling) with a processing rate exceeding 0 % and 30% or less is added, and further, low-temperature heat treatment (distortion annealing) is performed at 200 to 450 ° C. for 0.5 to 5 hours. A copper alloy material can be obtained.

本発明の銅合金材の製造方法により得られる銅合金材は、特に限定されるものではないが、例えば、コネクタ、端子、リレー、スイッチ、さらにはリードフレームなどの電子電気機器部品に好適に用いることができる。   Although the copper alloy material obtained by the manufacturing method of the copper alloy material of the present invention is not particularly limited, for example, it is suitably used for electronic and electrical equipment parts such as connectors, terminals, relays, switches, and lead frames. be able to.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

下記表1、表2に示す銅合金材を以下のように作製した。表1は本発明の効果を確認するための参考例での評価結果を示すものであり、この参考例で良好な特性を示すサンプルの組成について、表2に示す各種評価を行っている。表2は第一の実施形態および第二の実施形態に関する評価結果であるThe copper alloy materials shown in Tables 1 and 2 below were produced as follows. Table 1 shows the evaluation results in a reference example for confirming the effects of the present invention, and various evaluations shown in Table 2 are performed on the composition of a sample exhibiting good characteristics in this reference example. Table 2 is an evaluation result for the first embodiment and the second embodiment.

(銅合金材の製造条件)
各表に記載する量のCoとSiとその他の添加元素と残部がCuからなる銅合金を高周波溶解炉により溶解し、これを鋳造して、厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。鋳造時の冷却速度については、表1の各サンプルについては5℃/秒とし、表2の各サンプルについては表2に示した。各サンプルにおいては、冷却速度の速いサンプルは厚さ5mmにて、遅いサンプルにおいては厚さ100mmにし、モールドに断熱材を使用するなどして、冷却速度を変えた。
(Manufacturing conditions for copper alloy materials)
The amount of Co and Si described in each table, a copper alloy composed of other additive elements and the balance Cu are melted in a high-frequency melting furnace, and this is cast, and an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm Got. The cooling rate during casting was set at 5 ° C./second for each sample in Table 1, and Table 2 for each sample in Table 2 . In each sample, the sample having a fast cooling rate was 5 mm in thickness, the sample having a slow cooling rate was 100 mm, and the cooling rate was changed by using a heat insulating material for the mold.

次にこの鋳塊に950℃で1時間加熱する均質化処理を施した直後に熱間圧延を行い(600℃までの降温速度は30℃/秒)、両面をそれぞれ1mm面削して酸化皮膜を除去した。次いで冷間圧延にて板厚を0.1〜0.3mmにした後、不活性化ガス雰囲気中で溶体化熱処理(1000℃到達、昇温、降温速度とも50℃/秒)を行った。   Next, this ingot was hot-rolled immediately after being subjected to a homogenization treatment at 950 ° C. for 1 hour (the temperature decreasing rate up to 600 ° C. was 30 ° C./second), and both sides were each 1 mm chamfered to form an oxide film. Was removed. Next, the plate thickness was reduced to 0.1 to 0.3 mm by cold rolling, and then solution heat treatment (reaching 1000 ° C., both heating and cooling rates were 50 ° C./second) was performed in an inert gas atmosphere.

水冷後、材料に時効熱処理(475〜575℃、2時間で最も強度の高い温度を選定)を行った。この熱処理後0%を超えて30%以下の圧延を加え、さらに200〜450℃で0.5〜5時間の低温熱処理(歪取り焼鈍)を行った。 After water cooling, the material was subjected to an aging heat treatment (select the temperature having the highest strength in 2 hours at 475 to 575 ° C.). After this heat treatment, rolling exceeding 0 % and 30% or less was added, and further low-temperature heat treatment (strain relief annealing) was performed at 200 to 450 ° C. for 0.5 to 5 hours.

このようにして得られた各々の板材を供試材として下記の特性調査を行った。各評価項目の測定方法は以下の通りである。
a.引張強度(TS、YS):
試験片の圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を表1に示した。また、評価として表1に示される特性に対し、表2における同じ組成の銅合金の強度(引張強度(TS)、0.2%耐力(YS)共に)の低下が30MPa未満なら製品に求められる強度を満たすとして○、30MPa以上なら満たさないとして×と評価し、表2に示した。なお、表1において、引張強度(TS)が550MPa以上、0.2%耐力(YS)が400MPa以上である組成について、表2に記載の条件で銅合金材を製造し、評価対象とすることとした。
b.導電率(EC)測定:
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本について導電率(EC)を測定し、その平均値(%IACS)を表1、表2に示した。このとき端子間距離は100mmとした。なお、評価基準として、導電率(EC)が57%IACS以上であるものを、導電性がすぐれているものとした。
c.プレス打ち抜き加工性
金型を研磨した後に、各サンプルで連続プレス加工を実施し、10万回おきにサンプルプレス破面のバリ測定をした。材料のプレス破面に5μmを越えるバリが発生した段階を限界ショット数として、ショット数200万回を満たすものを打ち抜き性が特に優れているとして◎、100万回以上200万回未満のものを打ち抜き性が良好であるとして○、100万回未満のものを打ち抜き性が劣っているとして×として表2中に記載した。
The following characteristic investigation was performed by using each plate material thus obtained as a test material. The measurement method for each evaluation item is as follows.
a. Tensile strength (TS, YS):
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction of the test pieces were measured according to JIS Z2241, and the average values are shown in Table 1. Further, with respect to properties shown in Table 1 as an evaluation, determined the strength of the copper alloy of the definitive same composition in Table 2 for less reduction of the (tensile strength (TS), 0.2% yield strength (YS) both) is 30MPa Product ○ as meet strength to, and evaluated as × as not satisfied if more than 30 MPa, are shown in Table 2. In Table 1, for a composition having a tensile strength (TS) of 550 MPa or more and a 0.2% proof stress (YS) of 400 MPa or more, a copper alloy material is produced under the conditions shown in Table 2 and is to be evaluated. It was.
b. Conductivity (EC) measurement:
Using a four-terminal method, in a thermostat controlled at 20 ° C. (± 1 ° C.), the electrical conductivity (EC) was measured for two of each test piece, and the average value (% IACS) is shown in Table 1. It is shown in Table 2 . At this time, the distance between terminals was set to 100 mm. Note that, as an evaluation standard, one having an electrical conductivity (EC) of 57% IACS or more is considered to have excellent conductivity.
c. Press punching process After polishing the mold, each sample was subjected to continuous pressing, and the burr on the fracture surface of the sample press was measured every 100,000 times. A stage where a burr exceeding 5 μm is generated on the press fracture surface of the material is considered to be particularly excellent in punching performance that satisfies the number of shots of 2 million shots, ◎, those of 1 million times to less than 2 million times Table 2 shows that the punchability is good, and that less than 1,000,000 times is shown as x that the punchability is inferior.

なお、晶出、析出物(化合物)の比は、直径0.05〜5μmの晶出、析出物をSEM付属のEDXにて10個測定し構成元素を判断し、定量測定にて平均値をとった(化合物種類が複数あれば、全て列記した)。
直径0.05〜5μmの化合物の1mmあたりの個数は、400μmの面積内に存在するサイズ該当化合物を、測定場所を10回変えてカウントし、その平均値を2500倍した結果を示した。
The ratio of crystallization and precipitates (compounds) was determined by measuring 10 crystallization and precipitates having a diameter of 0.05 to 5 μm with the EDX attached to the SEM, determining the constituent elements, and calculating the average value by quantitative measurement. (If there are multiple types of compounds, all are listed).
The number per 1 mm 2 of the compound having a diameter of 0.05 to 5 μm is the result of counting the size corresponding compound existing in the area of 400 μm 2 by changing the measurement place 10 times and multiplying the average value by 2500 times. .

参考例
表1に示す組成の銅合金材(第一の実施形態の組成:試験No.101〜107、第二の実施形態の組成:試験No.108109、比較組成:試験No.151〜167)を上記のようにして作製し、引張強度(TS、YS)及び導電性(EC)を測定した。結果を表1に併せて示す。比較組成の銅合金材は、強度、導電率のいずれかもしくは両方が試験No.101〜109に対し低下している。詳しくは以下の通りである。
比較組成の試験No.151〜162は、CoとSiの添加比が本発明で規定する範囲に入っていない。試験No.101〜109に対し強度、または導電率のいずれかもしくは両方が劣っている。また、試験No.163〜167はその他の添加元素の添加量が多すぎるため、試験No.101〜109に対し強度、または導電率のいずれかもしくは両方が劣っている。
これに対し、試験No.101〜109はいずれも、強度、導電率ともに良好であった。
なお、晶出物、析出物(化合物)が与える影響については、添加元素についてCoまたはSiと化合物をつくると、強度に寄与するCoSi化合物の全体量が減ってしまう。また、添加元素とCo−Siの組成比がCoSiと異なるため、CoやSiの添加量を調整して強度に寄与するCoSi化合物の全体量を確保しなければ特性値が劣化してしまう傾向がある。
The composition of the copper alloy material (the first embodiment of the composition shown in Example Table 1: Test No.101~ 107, the composition of the second embodiment: Test No. 108 ~ 109, comparison composition: Test No.151 ˜167) were prepared as described above, and tensile strength (TS, YS) and conductivity (EC) were measured. The results are also shown in Table 1. The copper alloy material of the comparative composition has a test number of either or both of strength and conductivity. It has declined for the 101-109. Details are as follows.
Comparative composition test no. In 151 to 162, the addition ratio of Co and Si is not within the range defined by the present invention. Test No. Either 101 or 109 is inferior in strength or conductivity, or both. In addition, Test No. Since Nos. 163 to 167 have too much addition amount of other additive elements, Either 101 or 109 is inferior in strength or conductivity, or both.
In contrast, test no. All of 101 to 109 were good in strength and conductivity.
Regarding the influence of crystallized substances and precipitates (compounds), if a compound of Co or Si is made for the additive element, the total amount of Co 2 Si compound that contributes to the strength is reduced. Further, since the composition ratio of the additive element and Co—Si is different from that of Co 2 Si, the characteristic value deteriorates unless the total amount of the Co 2 Si compound contributing to the strength is secured by adjusting the addition amount of Co or Si. There is a tendency to end up.

Figure 0005748945
Figure 0005748945

実施例1
表2に示す組成で、上記のようにして得た銅合金材サンプルについて、プレス性と強度を評価した。結果を表2に示す。表2は第一の実施形態および第二の実施形態に関する評価結果であり、所定の製造工程に従って製造するとともに、鋳造時の冷却速度が1〜30℃/秒の範囲内であれば、Co−Si系化合物の直径と密度がコントロールされ、プレス打ち抜き加工性と強度のバランスの取れた銅合金材が得られている。鋳造時の冷却速度が遅すぎる場合は所望のサイズのCo−Si系化合物が多くなりすぎ、強度低下している。また、鋳造時の冷却速度が速すぎる場合は所望のサイズのCo−Si系化合物が少なすぎ、プレス打ち抜き加工性が低下している。なお、選択元素(Cr、Fe、Ni、Al、Nb、Ti、V、Zr)を含まない場合で、化合物が適正に生成していない場合は、プレス打ち抜き加工性が低下している。
Example 1
With the compositions shown in Table 2, the pressability and strength of the copper alloy material samples obtained as described above were evaluated. The results are shown in Table 2. Table 2 shows the evaluation results relating to the first embodiment and the second embodiment, and is manufactured according to a predetermined manufacturing process, and if the cooling rate during casting is within the range of 1 to 30 ° C./second, Co— The diameter and density of the Si-based compound are controlled, and a copper alloy material having a balance between press punching workability and strength is obtained. When the cooling rate at the time of casting is too slow, the amount of the Co-Si compound having a desired size is excessive, and the strength is reduced. Moreover, when the cooling rate at the time of casting is too high, there are too few Co-Si type compounds of desired size, and press punching workability is falling. In the case where the selective element (Cr, Fe, Ni, Al, Nb, Ti, V, Zr) is not included and the compound is not properly generated, the press punching processability is lowered.

Figure 0005748945
Figure 0005748945

Claims (4)

Coを0.5〜2.5mass%含有し、CoとSiの含有量の比Co/Siが2.5〜4.5の間にあり、さらにCr、Fe、Ni、Al、Nb、Ti、V及びZrからなる群から選ばれる少なくとも1種の添加元素を合計で0.01〜0.2mass%含み、残部がCuおよび不可避不純物からなる銅合金原料を溶解し、鋳造時の冷却速度が1〜30℃/秒の条件で鋳造して鋳塊を得、
均質処理、
熱間圧延、
水冷却、
冷間圧延、
800〜1025℃で1〜100秒間の溶体化熱処理、
300〜600℃で1〜10時間の時効熱処理、
加工率が0%を超えて30%以下の仕上げ圧延、
200〜450℃で0.5〜5時間の歪取り焼鈍を施す
各工程をこの順に施し、
直径が0.05〜5μmで、密度が10 〜10 個/mm の、前記添加元素及びCoからなる群から選ばれる少なくとも1種の元素とSiからなる化合物を含有する銅合金材を得ることを特徴とする銅合金材の製造方法。
Co containing 0.5 to 2.5 mass%, Co / Si content ratio Co / Si is between 2.5 and 4.5, and Cr, Fe, Ni, Al, Nb, Ti, A total of at least one additive element selected from the group consisting of V and Zr is contained in an amount of 0.01 to 0.2 mass%, and the remainder of the copper alloy raw material consisting of Cu and inevitable impurities is dissolved, and the cooling rate during casting is 1 Casting under conditions of -30 ° C / second to obtain an ingot,
Homogeneous treatment,
Hot rolling,
Water cooling,
Cold rolling,
Solution heat treatment for 1 to 100 seconds at 800 to 1025 ° C.,
Aging heat treatment at 300-600 ° C. for 1-10 hours,
Working ratio of 30% or less of finish rolling exceeds 0%,
Each step of at 200 to 450 ° C. performing stress relief annealing of 0.5-5 hours facilities in this order,
A copper alloy material containing a compound comprising Si and at least one element selected from the group consisting of the additive element and Co, having a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2. A method for producing a copper alloy material, comprising: obtaining a copper alloy material.
Coを1.4mass%以上2.5mass%以下含有し、CoとSiの含有量の比Co/Siが3.0〜5.0の間にあり、残部がCuおよび不可避不純物からなる銅合金原料を溶解し、鋳造時の冷却速度が1〜30℃/秒の条件で鋳造して鋳塊を得、
均質処理、
熱間圧延、
水冷却、
冷間圧延、
800〜1025℃で1〜100秒間の溶体化熱処理、
300〜600℃で1〜10時間の時効熱処理、
加工率が0%を超えて30%以下の仕上げ圧延、
200〜450℃で0.5〜5時間の歪取り焼鈍を施す
各工程をこの順に施し、
直径が0.05〜5μmで、密度が10〜10個/mmのCo及びSiで構成される化合物を含有する銅合金材を得ることを特徴とする銅合金材の製造方法
Copper alloy raw material containing Co in an amount of 1.4 mass% to 2.5 mass%, Co / Si content ratio Co / Si being between 3.0 and 5.0, the balance being Cu and inevitable impurities And the ingot is obtained by casting at a cooling rate of 1 to 30 ° C./second during casting,
Homogeneous treatment,
Hot rolling,
Water cooling,
Cold rolling,
Solution heat treatment for 1 to 100 seconds at 800 to 1025 ° C.,
Aging heat treatment at 300-600 ° C. for 1-10 hours,
Finish rolling with a processing rate exceeding 0% to 30%,
Each step of applying strain relief annealing at 200 to 450 ° C. for 0.5 to 5 hours is performed in this order,
A method for producing a copper alloy material, comprising: obtaining a copper alloy material containing a compound composed of Co and Si having a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2 .
請求項に記載の方法で製造される銅合金材であって、得られる銅合金材が、直径が0.05〜5μmで、密度が10〜10個/mmの、前記添加元素及びCoからなる群から選ばれる少なくとも1種の元素とSiからなる化合物を含有する銅合金材。 The copper alloy material manufactured by the method according to claim 1 , wherein the obtained copper alloy material has a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2. And a copper alloy material containing a compound comprising Si and at least one element selected from the group consisting of Co. 請求項に記載の方法で製造される銅合金材であって、得られる銅合金材が、直径が0.05〜5μmで、密度が10〜10個/mmのCo及びSiで構成される化合物を含有する銅合金材。
The copper alloy material manufactured by the method according to claim 2 , wherein the obtained copper alloy material is Co and Si having a diameter of 0.05 to 5 μm and a density of 10 3 to 10 5 pieces / mm 2. A copper alloy material containing a compound composed.
JP2009182794A 2009-07-30 2009-08-05 Copper alloy material manufacturing method and copper alloy material obtained thereby Active JP5748945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182794A JP5748945B2 (en) 2009-07-30 2009-08-05 Copper alloy material manufacturing method and copper alloy material obtained thereby

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009178477 2009-07-30
JP2009178477 2009-07-30
JP2009182794A JP5748945B2 (en) 2009-07-30 2009-08-05 Copper alloy material manufacturing method and copper alloy material obtained thereby

Publications (2)

Publication Number Publication Date
JP2011046970A JP2011046970A (en) 2011-03-10
JP5748945B2 true JP5748945B2 (en) 2015-07-15

Family

ID=43833592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182794A Active JP5748945B2 (en) 2009-07-30 2009-08-05 Copper alloy material manufacturing method and copper alloy material obtained thereby

Country Status (1)

Country Link
JP (1) JP5748945B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205105B2 (en) * 2011-04-18 2017-09-27 Jx金属株式会社 Cu-Ni-Si based alloy for electronic material, Cu-Co-Si based alloy and method for producing the same
JP6879971B2 (en) * 2018-03-30 2021-06-02 Jx金属株式会社 Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
CN110205515B (en) * 2019-04-15 2020-07-10 南阳裕泰隆粉体材料有限公司 Preparation method of corrosion-resistant Cu-Ni alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943095B2 (en) * 2006-08-30 2012-05-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
JP2008266787A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy material and its manufacturing method
JP5006405B2 (en) * 2007-11-01 2012-08-22 古河電気工業株式会社 Conductor wire for electronic equipment and wiring wire using the same

Also Published As

Publication number Publication date
JP2011046970A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP4247922B2 (en) Copper alloy sheet for electrical and electronic equipment and method for producing the same
KR102196590B1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
JP4729680B2 (en) Copper-based alloy with excellent press punchability
TWI387657B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
JP6385382B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
WO2006019035A1 (en) Copper alloy plate for electric and electronic parts having bending workability
WO2015022837A1 (en) Copper alloy for electronic/electrical devices, copper alloy thin plate for electronic/electrical devices, component for electronic/electrical devices, terminal and bus bar
JP2008196042A (en) Copper alloy sheet for electrical/electronic component having excellent strength and formability
JP2008031525A (en) Copper alloy having high strength and high softening resistance
JP3977376B2 (en) Copper alloy
TWI429764B (en) Cu-Co-Si alloy for electronic materials
TWI502084B (en) Copper alloy for electronic/electric device, component for electronic/electric device, and terminal
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP2005113180A (en) Copper alloy for electronic equipment, and its production method
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141119

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R151 Written notification of patent or utility model registration

Ref document number: 5748945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350