JP6355672B2 - Cu-Ni-Si based copper alloy and method for producing the same - Google Patents

Cu-Ni-Si based copper alloy and method for producing the same Download PDF

Info

Publication number
JP6355672B2
JP6355672B2 JP2016070079A JP2016070079A JP6355672B2 JP 6355672 B2 JP6355672 B2 JP 6355672B2 JP 2016070079 A JP2016070079 A JP 2016070079A JP 2016070079 A JP2016070079 A JP 2016070079A JP 6355672 B2 JP6355672 B2 JP 6355672B2
Authority
JP
Japan
Prior art keywords
copper alloy
strain relief
aging
mpa
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016070079A
Other languages
Japanese (ja)
Other versions
JP2017179512A (en
Inventor
寛之 北川
寛之 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016070079A priority Critical patent/JP6355672B2/en
Publication of JP2017179512A publication Critical patent/JP2017179512A/en
Application granted granted Critical
Publication of JP6355672B2 publication Critical patent/JP6355672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、例えばコネクタ、端子、リレ−、スイッチ等の導電性ばね材に好適なCu-Ni-Si系銅合金及びその製造方法に関する。   The present invention relates to a Cu—Ni—Si based copper alloy suitable for conductive spring materials such as connectors, terminals, relays, switches and the like, and a method for producing the same.

従来から、端子やコネクタの材料として、固溶強化型合金である黄銅やりん青銅が用いられてきた。ところで、電子機器の高性能化に伴い、使用される銅合金には高電流化が求められている。そこで、従来の固溶強化型の銅合金に比べ、強度、電気伝導性および熱伝導性に優れた析出強化型の銅合金が使用されてきている。析出強化型の銅合金は、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると共に、銅中の固溶元素量が減少して電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好となる。   Conventionally, brass and phosphor bronze, which are solid solution strengthened alloys, have been used as materials for terminals and connectors. By the way, with the improvement in performance of electronic equipment, the copper alloy used is required to have a high current. Thus, precipitation-strengthened copper alloys that are superior in strength, electrical conductivity, and thermal conductivity have been used compared to conventional solid solution-strengthened copper alloys. Precipitation-strengthened copper alloys are obtained by aging the solution-treated supersaturated solid solution to disperse fine precipitates uniformly, increasing the strength of the alloy and reducing the amount of solid solution elements in copper. As a result, electrical conductivity is improved. For this reason, it is excellent in mechanical properties such as strength and springiness, and also has good electrical and thermal conductivity.

析出強化型銅合金として、Cu-Ni-Si系銅合金が開発されている(特許文献1)。しかし、一般にCu-Ni-Si系銅合金は、プレス打抜き面のせん断面が大きく、金型の摩耗量が増加するという問題があり、金型摩耗の抑制が望まれている。
そこで、粒径20〜150nmの析出物を分散させたCu-Ni-Sn-P系銅合金が提案されている(特許文献2)。この銅合金によれば、析出物がプレス打抜き時にクラックの発生源として機能し、ダレやバリの増大を防止するため、プレス金型の摩耗を軽減するとされている。
同様に析出物を分散させたCu-Co-Si系銅合金も開発されている(特許文献3)。
A Cu-Ni-Si based copper alloy has been developed as a precipitation strengthening type copper alloy (Patent Document 1). However, in general, the Cu—Ni—Si based copper alloy has a problem that the shear surface of the press punched surface is large and the amount of wear of the mold increases, and suppression of mold wear is desired.
Therefore, a Cu—Ni—Sn—P-based copper alloy in which precipitates having a particle size of 20 to 150 nm are dispersed has been proposed (Patent Document 2). According to this copper alloy, the precipitate functions as a generation source of cracks at the time of punching, and the wear of the press die is reduced in order to prevent an increase in sagging and burrs.
Similarly, a Cu—Co—Si based copper alloy in which precipitates are dispersed has also been developed (Patent Document 3).

国際公開第WO 2011/068134号(表1)International Publication No. WO 2011/068134 (Table 1) 特開2007−100111号公報JP 2007-100111 A 特開2012−224922号公報JP 2012-224922 A

しかしながら、析出強化型銅合金の析出物によって金型摩耗を低減させようとすると、この高硬度の析出物、及び析出物に起因して硬度の高いせん断面が金型と接触し、かえって摩耗を促進するおそれがある。
本発明は上記の課題を解決するためになされたものであり、強度,導電率及び金型摩耗性に共に優れるCu-Ni-Si系銅合金の提供を目的とする。
However, when trying to reduce mold wear by precipitates of precipitation-strengthened copper alloy, the high hardness precipitates and the shear surface with high hardness due to the precipitates come into contact with the mold, and wear is reduced. May promote.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a Cu—Ni—Si based copper alloy that is excellent in strength, conductivity, and mold wear.

本発明者は、Cu-Ni-Si系銅合金の伸びが低いと金型と銅合金材料の接触部のダレが抑制され金型摩耗性が向上することを見出した。さらに銅合金が熱により軟化し易いと、プレス時の発熱によりプレスとの接触面であるせん断面が軟化し、これによっても、金型摩耗性が向上する。   The present inventor has found that when the elongation of the Cu—Ni—Si based copper alloy is low, sagging of the contact portion between the mold and the copper alloy material is suppressed, and the mold wear is improved. Further, if the copper alloy is easily softened by heat, the shear surface which is a contact surface with the press is softened due to heat generation during pressing, and this also improves the mold wear resistance.

又、このような特性を付与する方法の一例として、歪取焼鈍における低温焼鈍硬化に着目した。低温焼鈍硬化とは時効後の冷間圧延によって組織中に圧延ひずみを導入すると、その後の歪取焼鈍で固溶元素がひずみに固着し、転位を妨げることで強化される現象である。この低温焼鈍硬化は材料の強度を高め、かつ伸びを低下させる。また、歪取焼鈍によって低温焼鈍硬化された材料は、その後に熱を加えられると、後述するように却って軟化する。
低温焼鈍硬化は歪取焼鈍直前の時効後冷間圧延の加工度と、その冷間圧延時の固溶元素の析出の度合によって硬化の程度が変化する。このため、金型摩耗性の指標となる、製品の軟化特性、及び製造時の加工度と析出の度合を規定した。
Further, as an example of a method for imparting such characteristics, attention was paid to low-temperature annealing hardening in strain relief annealing. Low-temperature annealing hardening is a phenomenon in which when rolling strain is introduced into a structure by cold rolling after aging, solid solution elements are fixed to the strain by subsequent strain relief annealing and are strengthened by preventing dislocation. This low-temperature annealing hardening increases the strength of the material and reduces the elongation. In addition, a material that has been subjected to low-temperature annealing hardening by strain relief annealing will soften as will be described later when heat is applied thereafter.
In the low-temperature annealing hardening, the degree of hardening varies depending on the degree of cold rolling after aging just before strain relief annealing and the degree of precipitation of solid solution elements during the cold rolling. For this reason, the softening characteristics of the product and the degree of processing and the degree of precipitation at the time of manufacture, which are indicators of mold wear, were defined.

上記の目的を達成するために、本発明のCu-Ni-Si系銅合金は、質量%で、NiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜4.5%、Si:0.6〜1.0%含有し、残部がCu及び不可避不純物からなり、圧延平行方向の引張強さTSが1000MPa以上、かつ前記方向の伸びが2%以下、かつ、500℃×60秒の大気加熱による、前記引張強さTSの低下量ΔTS1が30〜140MPaの焼鈍軟化特性を有する。   In order to achieve the above object, the Cu—Ni—Si based copper alloy of the present invention is, in mass%, at least one selected from the group of Ni and Co in a total amount of 3.0 to 4.5%, Si: 0.6 to Containing 1.0%, the balance consisting of Cu and inevitable impurities, tensile strength TS in the rolling parallel direction is 1000MPa or more, elongation in the direction is 2% or less, and the above-mentioned tensile force by atmospheric heating at 500 ° C for 60 seconds The amount of decrease TS1 in strength TS has an annealing softening property of 30 to 140 MPa.

本発明のCu-Ni-Si系銅合金は、更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有することが好ましい。
本発明のCu-Ni-Si系銅合金は、更にP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有することが好ましい。
The Cu—Ni—Si based copper alloy of the present invention preferably further contains at least one selected from the group of Mg, Mn, Sn, Zn and Cr in a total amount of 0.005 to 1.0 mass%.
The Cu—Ni—Si based copper alloy of the present invention preferably further contains at least one selected from the group of P, B, Ti, Zr, Al, Fe and Ag in a total amount of 0.005 to 1.0 mass%.

本発明のCu-Ni-Si系銅合金の製造方法は、前記Cu-Ni-Si系銅合金の製造方法であって、質量%で、NiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜4.5%、Si:0.6〜1.0%含有し、更に必要に応じてMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有し、及び/又はP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有し、残部がCu及び不可避不純物からなる鋳塊を熱間圧延、冷間圧延、溶体化処理、時効処理、低温溶体化処理、時効後冷間圧延、歪取焼鈍の順で行い、前記時効後冷間圧延の加工率REを50%以上とし、前記時効処理後に比べて前記低温溶体化処理後に導電率が2〜4%IACS低くなるように前記低温溶体化処理を設定し、前記歪取焼鈍を200〜500℃で1〜1000秒間行う。   The method for producing a Cu—Ni—Si based copper alloy according to the present invention is a method for producing the Cu—Ni—Si based copper alloy, wherein the total amount of at least one selected from the group of Ni and Co by mass%. 3.0 to 4.5%, Si: 0.6 to 1.0%, and if necessary, at least one selected from the group of Mg, Mn, Sn, Zn and Cr in a total amount of 0.005 to 1.0% by mass, and / Or hot rolling an ingot containing at least one selected from the group consisting of P, B, Ti, Zr, Al, Fe and Ag in a total amount of 0.005 to 1.0 mass%, the balance being Cu and inevitable impurities, Perform cold rolling, solution treatment, aging treatment, low temperature solution treatment, cold rolling after aging, strain relief annealing in this order, and processing rate RE of the cold rolling after aging is 50% or more, after the aging treatment In comparison, after the low temperature solution treatment, the low temperature solution treatment is set so that the conductivity is lowered by 2 to 4% IACS, and the strain relief annealing is performed at 200 to 500 ° C. for 1 to 1000 seconds.

本発明によれば、強度,導電率及び金型摩耗性に共に優れるCu-Ni-Si系銅合金が得られる。   According to the present invention, it is possible to obtain a Cu—Ni—Si based copper alloy that is excellent in strength, electrical conductivity, and mold wear.

金型摩耗を定量化するためのパンチの摩耗面積を説明する図である。It is a figure explaining the wear area of the punch for quantifying die wear.

以下、本発明の実施形態に係るCu-Ni-Si系銅合金について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, a Cu—Ni—Si based copper alloy according to an embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

(組成)
[Ni、Co及びSi]
銅合金中のNiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜4.5%、Si:0.6〜1.0%含有し、Si:0.6〜1.0%含有する。Ni、Co及びSiは、適当な熱処理を施すことにより金属間化合物を形成し,導電率を劣化させずに強度を向上させる。
Ni、Co及びSiの含有量が上記範囲未満であると、強度の向上効果が得られず、上記範囲を超えると導電性が低下すると共に熱間加工性が低下する。
(composition)
[Ni, Co and Si]
The total amount of at least one selected from the group of Ni and Co in the copper alloy is 3.0 to 4.5%, Si: 0.6 to 1.0%, and Si: 0.6 to 1.0%. Ni, Co, and Si form an intermetallic compound by performing an appropriate heat treatment, and improve strength without deteriorating conductivity.
If the content of Ni, Co and Si is less than the above range, the effect of improving the strength cannot be obtained, and if it exceeds the above range, the conductivity is lowered and the hot workability is also lowered.

[他の添加元素]
合金中に、更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有してもよい。
Mgは強度と耐応力緩和特性を向上させる。Mnは強度と熱間加工性を向上させる。Snは強度を向上させる。Znは半田接合部の耐熱性を向上させる。Crは、Niと同様にSiと化合物を形成するため、析出硬化により導電率を劣化させずに強度を向上させる。
又、合金中に、更にP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有してもよい。これら元素を含有すると、導電率、強度、応力緩和特性、めっき性等の製品特性が改善される。
なお、上記した各元素の総量が上記範囲未満であると上記した効果が得られず、上記範囲を超えると導電率の低下を招く場合がある。
[Other additive elements]
The alloy may further contain 0.005 to 1.0% by mass in total of at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr.
Mg improves strength and stress relaxation resistance. Mn improves strength and hot workability. Sn improves the strength. Zn improves the heat resistance of the solder joint. Cr forms a compound with Si in the same manner as Ni, and therefore improves the strength without deteriorating the conductivity by precipitation hardening.
Further, the alloy may further contain at least one selected from the group of P, B, Ti, Zr, Al, Fe and Ag in a total amount of 0.005 to 1.0% by mass. When these elements are contained, product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties are improved.
In addition, when the total amount of each element described above is less than the above range, the above effect cannot be obtained, and when it exceeds the above range, the conductivity may be lowered.

[強度]
Cu-Ni-Si系銅合金の圧延平行方向の引張強さTSが1000MPa以上である。上述の低温焼鈍硬化を発現するためには多量の固溶元素が必要であるため、本発明ではNi(Co)およびSiの含有量を多くしている。その結果、圧延平行方向の引張強さTSが1000MPa以上に高くなる。
なお、TSは、JIS−Z2241に従い引張試験して求める。
[Strength]
The tensile strength TS in the rolling parallel direction of the Cu-Ni-Si copper alloy is 1000 MPa or more. Since a large amount of solid solution element is required to develop the above-described low-temperature annealing hardening, the contents of Ni (Co) and Si are increased in the present invention. As a result, the tensile strength TS in the rolling parallel direction becomes higher than 1000 MPa.
TS is obtained by a tensile test according to JIS-Z2241.

[伸び]
Cu-Ni-Si系銅合金の圧延平行方向の伸びが2%以下である。伸びを2%以下に低減すると、銅合金材料を金型で打ち抜く際、抵抗が少なく打ち抜けるので、金型と銅合金材料の接触部のダレが抑制され、金型摩耗性が向上する。
伸びの下限は特に制限されないが、例えば1%である。
又、伸びは、破断伸びであり、引張試験機により、JIS−Z2241に従い、上述のTSを測定するのと同時に測定した。そして、試験片が破断したときの標点間の長さL(ゲージ長さ)と、試験前の標点距離L0との差を%で求めた。
引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さL=50mmで、銅箔の圧延方向に引張試験する。
[Elongation]
The elongation in the rolling parallel direction of the Cu-Ni-Si copper alloy is 2% or less. When the elongation is reduced to 2% or less, resistance is reduced when the copper alloy material is punched with a mold, so that sagging of the contact portion between the mold and the copper alloy material is suppressed, and mold wear resistance is improved.
The lower limit of elongation is not particularly limited, but is, for example, 1%.
Elongation is the elongation at break, and was measured simultaneously with the above-described TS according to JIS-Z2241 using a tensile tester. Then, the difference between the length L (gauge length) between the gauge points when the test piece broke and the gauge distance L0 before the test was obtained in%.
The tensile test conditions were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, a gauge length L = 50 mm, and a tensile test in the rolling direction of the copper foil.

[軟化特性]
本発明のCu-Ni-Si系銅合金の軟化特性として、500℃×60秒の大気加熱による、引張強さTSの低下量ΔTS1が30〜140MPaである。一旦低温焼鈍硬化が行われた銅合金は、その後に熱が加わると却って軟化し易く、プレス時の発熱によりプレス抜き後の金型との接触面であるせん断面が軟化し、これによっても、金型摩耗性が向上する。従って、低温焼鈍硬化の後に熱が加えられたことによる軟化の度合いとしてΔTS1を指標とする。
上述のように、低温焼鈍硬化によって材料の強度が高く、かつ伸びが低下し、これにより金型摩耗(特にプレス抜き時の)が抑制される。また、上述のように、低温焼鈍硬化が行われた材料はプレス時の発熱によりせん断面が軟化し易く、これによっても、金型摩耗(特にプレス抜き後)が抑制される。そして、金型摩耗を有効に抑制できる低温焼鈍硬化の程度は、軟化特性を上述の範囲に管理することで実現される。
ΔTS1=(500℃×60秒の大気加熱前のTS)- =(500℃×60秒の大気加熱後のTS)で表される。
[Softening properties]
As a softening characteristic of the Cu—Ni—Si based copper alloy of the present invention, the decrease amount ΔTS1 of the tensile strength TS due to atmospheric heating at 500 ° C. for 60 seconds is 30 to 140 MPa. The copper alloy once subjected to low-temperature annealing hardening is easily softened when heat is applied thereafter, and the shearing surface that is the contact surface with the die after punching is softened due to heat generated during pressing, Mold wear resistance is improved. Therefore, ΔTS1 is used as an index as the degree of softening due to the application of heat after low-temperature annealing hardening.
As described above, the low-temperature annealing hardening increases the strength of the material and decreases the elongation, thereby suppressing die wear (particularly during press-release). Further, as described above, the material subjected to the low-temperature annealing hardening tends to soften the sheared surface due to heat generated during pressing, and this also suppresses mold wear (particularly after pressing). And the grade of the low temperature annealing hardening which can suppress metal mold | die wear effectively is implement | achieved by managing a softening characteristic in the above-mentioned range.
ΔTS1 = (TS before heating at 500 ° C. × 60 seconds) − = (TS after heating at 500 ° C. × 60 seconds) −

従って、ΔTS1が30MPa未満である場合、歪取焼鈍前(低温焼鈍硬化が生じる前)の材料の固溶元素の量が少ないことを示す。歪取焼鈍時に固溶元素の量が少ないと、歪取焼鈍で転位に固着する固溶元素の量が減り、低温焼鈍硬化での硬化の度合いが低減し、又は硬化しなくなる。つまり、歪取焼鈍後の加熱による軟化の度合いであるΔTS1が減少する。そのため、プレス時の発熱によるせん断面の軟化の程度が小さいため金型摩耗を抑制することが困難である。
ΔTS1が140MPaを超える場合は、歪取焼鈍前(低温焼鈍硬化が生じる前)の材料の固溶元素の量が多すぎることを示す。歪取焼鈍時に固溶元素の量が多いと、上述のように歪取焼鈍で転位に固着する固溶元素の量が増え、低温焼鈍硬化で硬化しすぎるため、歪取焼鈍後の加熱による軟化の度合い、つまりΔTS1が増加する。また、強度に寄与しない固溶元素が増えることで材料の引張強さが低下し、それに伴い伸びが2%を超えて大きくなる。その結果、材料を金型で打ち抜く際の抵抗が大きくなり、ダレが発生して金型摩耗性に劣る。
又、ΔTS1が140MPaを超えると、材料の引張強さが低下し、伸びが大きくなるので、所期の引張強さや伸びを確保することが困難となり、機械的特性が劣る。
Therefore, when ΔTS1 is less than 30 MPa, it indicates that the amount of the solid solution element in the material before the strain relief annealing (before the low temperature annealing hardening occurs) is small. When the amount of the solid solution element is small during the strain relief annealing, the amount of the solid solution element fixed to the dislocation by the strain relief annealing is reduced, and the degree of curing in the low temperature annealing hardening is reduced or is not cured. That is, ΔTS1, which is the degree of softening due to heating after strain relief annealing, decreases. Therefore, since the degree of softening of the shear surface due to heat generation during pressing is small, it is difficult to suppress mold wear.
When ΔTS1 exceeds 140 MPa, it indicates that the amount of solid solution elements in the material before strain relief annealing (before low-temperature annealing hardening) is too large. When there is a large amount of solid solution elements during strain relief annealing, the amount of solid solution elements that adhere to dislocations increases as described above, and because it is hardened too much by low-temperature annealing hardening, softening by heating after strain relief annealing , That is, ΔTS1 increases. In addition, the increase in the amount of solid solution elements that do not contribute to the strength decreases the tensile strength of the material, and accordingly, the elongation increases beyond 2%. As a result, resistance when the material is punched with a mold increases, sagging occurs and the mold wear resistance is poor.
On the other hand, if ΔTS1 exceeds 140 MPa, the tensile strength of the material decreases and the elongation increases, so that it becomes difficult to ensure the desired tensile strength and elongation, and the mechanical properties are inferior.

<製造方法>
本発明のCu-Ni-Si系銅合金は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、低温溶体化処理、時効後冷間圧延、歪取焼鈍の順で行って製造することができる。溶体化処理前の冷間圧延や再結晶焼鈍は必須ではなく、必要に応じて実施してもよい。
<Manufacturing method>
In the Cu-Ni-Si copper alloy of the present invention, the ingot is usually performed in the order of hot rolling, cold rolling, solution treatment, aging treatment, low temperature solution treatment, cold rolling after aging, and strain relief annealing. Can be manufactured. Cold rolling and recrystallization annealing before solution treatment are not essential, and may be performed as necessary.

<時効後冷間圧延>
ここで、時効後冷間圧延の加工率REを50%以上とする。Cu-Ni-Si系銅合金の圧延平行方向の強度を向上させるためには、最終焼鈍である歪取焼鈍での強度の向上が重要である。そして、そのためには歪取焼鈍の直前の時効後冷間圧延の加工率をなるべく高くし、歪取焼鈍直前の固溶元素(Ni(Co)およびSi)の量を増やす必要がある。これは、時効後冷間圧延によって組織中に圧延歪を導入すると、その後の歪取焼鈍で、固溶元素がこの歪に固着し、転位障害となって強化される機構(低温焼鈍硬化)を生じさせるためである。
従って、加工率REが50%未満であると、低温焼鈍硬化が不十分である。
なお、加工率REは、時効後冷間圧延の前後での合金の板厚の変化の割合(%)である。
<Cold rolling after aging>
Here, the processing rate RE of cold rolling after aging is set to 50% or more. In order to improve the strength of the Cu—Ni—Si based copper alloy in the rolling parallel direction, it is important to improve the strength by strain relief annealing, which is the final annealing. For this purpose, it is necessary to increase the working rate of post-aging cold rolling immediately before strain relief annealing and increase the amount of solid solution elements (Ni (Co) and Si) immediately before strain relief annealing. This is because when a rolling strain is introduced into the structure by cold rolling after aging, a mechanism (low temperature annealing hardening) in which solid solution elements are fixed to this strain and strengthened as dislocation obstacles by subsequent strain relief annealing. This is to cause it to occur.
Accordingly, when the processing rate RE is less than 50%, the low-temperature annealing hardening is insufficient.
The processing rate RE is the rate (%) of the change in the thickness of the alloy before and after cold rolling after aging.

<低温溶体化処理>
又、歪取焼鈍直前の固溶元素量を増やすため、低温溶体化処理を行う。低温溶体化処理は、最初の溶体化温度未満で、かつ時効温度以上の温度で実施する。低温溶体化処理は、時効処理で析出した固溶元素を、再びマトリクス中に固溶させるので、歪取焼鈍直前の固溶元素量が増加する。
そして、歪取焼鈍直前の固溶元素の量を表す指標として、時効処理後(つまり、低温溶体化処理前)と、低温溶体化処理後の導電率の変化量ΔECを用いる。ΔEC=(時効処理後の導電率)-(低温溶体化処理後の導電率)で表される。ΔEC=2〜4%(IAC)となるように低温溶体化処理は550〜800℃で1〜250秒で行う。
歪取焼鈍直前の低温溶体化処理により、時効処理後に比べて固溶元素の量が増えれば、導電率が低下する。
<Low temperature solution treatment>
Moreover, in order to increase the amount of solid solution elements immediately before the strain relief annealing, a low temperature solution treatment is performed. The low temperature solution treatment is performed at a temperature lower than the initial solution temperature and not less than the aging temperature. In the low-temperature solution treatment, the solid solution element precipitated by the aging treatment is again dissolved in the matrix, so that the amount of the solid solution element immediately before the strain relief annealing increases.
Then, as an index representing the amount of the solid solution element immediately before the strain relief annealing, the change amount ΔEC of conductivity after the aging treatment (that is, before the low temperature solution treatment) and after the low temperature solution treatment is used. ΔEC = (conductivity after aging treatment) − (conductivity after low-temperature solution treatment). The low temperature solution treatment is performed at 550 to 800 ° C. for 1 to 250 seconds so that ΔEC = 2 to 4% (IAC).
If the amount of the solid solution element is increased by the low-temperature solution treatment just before the strain relief annealing as compared with that after the aging treatment, the conductivity is lowered.

ΔECが2%IACS未満の場合、低温溶体化処理後(歪取焼鈍前)の材料の固溶元素の量が少なく、低温焼鈍硬化が不十分となる。
一方、ΔECが4%IACSを超える場合は、ΔTS1が140MPaを超えた場合と同様、低温溶体化処理後(歪取焼鈍前)に材料の固溶元素の量が多すぎることを示す。このため、ΔTS1が140MPaを超えた場合と同様な理由により、歪取焼鈍時の低温焼鈍硬化での硬化の度合いが増加しすぎると共に、歪取焼鈍後の材料の引張強さが低下し、それに伴い伸びが大きくなる。その結果、上述のように金型摩耗性及び製品の機械的特性が劣る。
When ΔEC is less than 2% IACS, the amount of solid solution elements in the material after low-temperature solution treatment (before strain relief annealing) is small, and low-temperature annealing hardening is insufficient.
On the other hand, when ΔEC exceeds 4% IACS, it indicates that the amount of solid solution elements in the material is too large after the low-temperature solution treatment (before strain relief annealing), as in the case where ΔTS1 exceeds 140 MPa. For this reason, for the same reason as when ΔTS1 exceeds 140 MPa, the degree of hardening in low-temperature annealing hardening during strain relief annealing increases too much, and the tensile strength of the material after strain relief annealing decreases, Along with this, the growth increases. As a result, the mold wear and the mechanical properties of the product are inferior as described above.

<歪取焼鈍>
その後、歪取焼鈍を200〜500℃で1〜1000秒間行う。歪取焼鈍の温度又は焼鈍時間が上記範囲未満であると、歪取焼鈍が不十分となり、上述の低温焼鈍硬化による強度の向上、及び歪取焼鈍後の加熱による軟化が不十分となり、せん断面の軟化の程度が小さいため金型摩耗を抑制することが困難である。
歪取焼鈍の温度又は焼鈍時間が上記範囲を超えると、歪取焼鈍による上述の低温焼鈍硬化が過度となって合金が軟化し、強度の向上が図れない。
<Strain relief annealing>
Thereafter, strain relief annealing is performed at 200 to 500 ° C. for 1 to 1000 seconds. If the temperature or annealing time of the stress relief annealing is less than the above range, the stress relief annealing becomes insufficient, the strength is improved by the low temperature annealing hardening described above, and the softening due to heating after the stress relief annealing becomes insufficient, and the shear plane Since the degree of softening is small, it is difficult to suppress mold wear.
If the temperature or annealing time of strain relief annealing exceeds the above range, the above-described low temperature annealing hardening due to strain relief annealing becomes excessive and the alloy is softened, and the strength cannot be improved.

歪取り焼鈍による上述の低温焼鈍硬化の度合いを最適化する指標として、低温焼鈍硬化量ΔTS2を20〜50MPaに管理することが好ましい。ΔTS2=(歪取り焼鈍後のTS)-(歪取り焼鈍前のTS)で表される。
ΔTS2が20MPa未満である場合、上述のΔTS1が30MPa未満となり、既に述べたように歪取焼鈍が不十分となる。
ΔTS2が50MPaを超える場合は、上述のΔTS1が140MPaを超え、既に述べたように金型摩耗性及び機械的特性が劣る。
As an index for optimizing the above-mentioned degree of low-temperature annealing hardening by strain relief annealing, it is preferable to manage the low-temperature annealing hardening amount ΔTS2 to 20 to 50 MPa. ΔTS2 = (TS after strain relief annealing) − (TS before strain relief annealing)
When ΔTS2 is less than 20 MPa, the above-described ΔTS1 is less than 30 MPa, and as described above, the stress relief annealing is insufficient.
When ΔTS2 exceeds 50 MPa, the above-described ΔTS1 exceeds 140 MPa, and the mold wear and mechanical properties are inferior as described above.

また、低温焼鈍硬化により材料の伸びが低下する。伸びの低下量ΔEl2(%)=(歪取り焼鈍後のEl)-(歪取り焼鈍前のEl)で表される。
歪取り焼鈍による上述の低温焼鈍硬化の度合いを最適化する指標として、ΔEl2を-0.3〜-1.4%に管理することが好ましい。
Further, the elongation of the material is lowered by the low-temperature annealing hardening. Elongation reduction amount ΔEl2 (%) = (El after stress relief annealing) − (El before stress relief annealing)
As an index for optimizing the above-described low-temperature annealing hardening degree by strain relief annealing, it is preferable to manage ΔEl2 to be −0.3 to −1.4%.

大気溶解炉中にて電気銅を溶解し、必要に応じて表1に示す添加元素を所定量投入し、溶湯を攪拌した。その後、鋳込み温度1200℃にて鋳型に出湯し、表1に示す組成の銅合金インゴットを得た。インゴットを、熱間圧延、面削後、第1の冷間圧延、溶体化処理、時効処理、低温溶体化処理、時効後冷間圧延の順に行い、板厚0.2mmの試料を得た。時効後冷間圧延の後に表1に示す条件で歪取焼鈍を行った。
なお、熱間圧延は1000℃で3時間行い、溶体化処理を800〜1000℃で行った。時効処理は400℃〜550℃で1〜15時間の範囲で、時効後の引張強さが最大となる温度及び時間で行った。
低温溶体化処理を、650℃で行った。
Electrolytic copper was melted in an air melting furnace, and a predetermined amount of additive elements shown in Table 1 was added as necessary, and the molten metal was stirred. Thereafter, the molten metal was poured into a mold at a casting temperature of 1200 ° C. to obtain a copper alloy ingot having the composition shown in Table 1. The ingot was subjected to hot rolling, chamfering, first cold rolling, solution treatment, aging treatment, low temperature solution treatment, and cold rolling after aging in this order to obtain a sample having a thickness of 0.2 mm. After cold rolling after aging, strain relief annealing was performed under the conditions shown in Table 1.
In addition, hot rolling was performed at 1000 degreeC for 3 hours, and the solution treatment was performed at 800-1000 degreeC. The aging treatment was performed at 400 ° C. to 550 ° C. for 1 to 15 hours at a temperature and a time at which the tensile strength after aging was maximized.
The low temperature solution treatment was performed at 650 ° C.

<評価>
得られた試料について以下の項目を評価した。
[導電率]
時効処理後、及び低温溶体化処理後の圧延平行方向の試料、及び歪取焼鈍後の最終製品の圧延平行方向の試料について、JISH0505に準拠し、ダブルブリッジ装置を用いた四端子法により求めた体積抵抗率から導電率(%IACS)を算出した。
[強度]
歪取焼鈍後の最終製品につき、引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、引張強度TSを測定した。
又、この最終製品に500℃×60秒の大気加熱を施した後のTSを同様に測定した。
[伸び]
上記引張試験により、破断伸びを求めた。試験片が破断したときの標点間の長さLと、試験前の標点距離L0との差を%で求めて伸びとした。
<Evaluation>
The following items were evaluated for the obtained samples.
[conductivity]
The samples in the rolling parallel direction after the aging treatment and the low-temperature solution treatment, and the samples in the rolling parallel direction of the final product after the strain relief annealing were obtained by a four-terminal method using a double bridge apparatus in accordance with JISH0505. The conductivity (% IACS) was calculated from the volume resistivity.
[Strength]
About the final product after strain relief annealing, the JIS13B test piece was produced using the press so that the tension direction might become parallel to the rolling direction. The test piece was subjected to a tensile test according to JIS-Z2241, and the tensile strength TS was measured.
In addition, TS was measured in the same manner after subjecting the final product to atmospheric heating at 500 ° C. for 60 seconds.
[Elongation]
The elongation at break was determined by the tensile test. The difference between the length L between the gauge points when the test piece broke and the gauge distance L0 before the test was determined in% to obtain the elongation.

[金型摩耗性]
タレットパンチプレスを使用して最終製品の試料を打ち抜き、20万ショット打ち抜いた後のパンチ刃の摩耗量を、プレス前を基準として測定した。パンチは円筒形のものを使用し、クリアランスは板厚の5%、プレス速度は290shot/minとし、パンチの押し込み深さは板厚の50%に設定した。また、パンチとダイはそれぞれ硬度の異なるものを使用し、パンチの硬度がダイの硬度の60〜80%の値となるよう設定した。
パンチ刃の摩耗量は、レーザー顕微鏡を使用し、図1に示すように、プレス前のパンチ刃の断面プロファイルP1とプレス後のパンチ刃の断面プロファイルP2の間で高低差が生じた面積S1を摩耗した面積とみなし、その面積を算出した。図1の符号Dはプレス方向を示す。以下の基準で金型摩耗性を評価した。評価が○であれば、金型摩耗性が優れている。
○:摩耗面積が4000μm2未満
×:摩耗面積が 4000μm2以上
[Mold wearability]
A sample of the final product was punched using a turret punch press, and the wear amount of the punch blade after punching 200,000 shots was measured based on the pre-press. A cylindrical punch was used, the clearance was 5% of the plate thickness, the press speed was 290 shots / min, and the punch indentation depth was set to 50% of the plate thickness. In addition, punches and dies having different hardnesses were used, and the punch hardness was set to 60 to 80% of the die hardness.
As shown in FIG. 1, the wear amount of the punch blade is an area S1 in which a height difference is generated between the cross-sectional profile P1 of the punch blade before pressing and the cross-sectional profile P2 of the punch blade after pressing, as shown in FIG. The area was calculated as the worn area. A symbol D in FIG. 1 indicates a pressing direction. The mold wear was evaluated according to the following criteria. If evaluation is (circle), metal mold | die abrasion property is excellent.
○: Wear area is less than 4000 μm 2 ×: Wear area is 4000 μm 2 or more

得られた結果を表1に示す。表1の「0.5Zn」は、Znを0.5質量%含むことを意味する。   The obtained results are shown in Table 1. “0.5Zn” in Table 1 means that 0.5% by mass of Zn is contained.

表1から明らかなように、圧延平行方向の引張強さTSが1000MPa以上、伸びが2%以下、ΔTS1が30〜140MPaである各実施例の場合、金型摩耗性に優れていた。   As is apparent from Table 1, in each of the examples in which the tensile strength TS in the rolling parallel direction was 1000 MPa or more, the elongation was 2% or less, and ΔTS1 was 30 to 140 MPa, the mold wear was excellent.

一方、ΔECが2%IACS未満、ΔTS2が20MPa未満の比較例1の場合、ΔTS1が30MPa未満となり、製品のTSが1000MPa未満で伸びが2%を超えたため、金型摩耗性が劣った。これは、低温焼鈍硬化が不十分なためと考えられる。
低温溶体化処理を過度に行い、ΔECが4%IACSを超え、ΔTS2が50MPaを超えた比較例2の場合も、ΔTS1が140MPaを超え、製品のTSが1000MPa未満で伸びが2%を超えたため、金型摩耗性が劣った。
On the other hand, in Comparative Example 1 in which ΔEC was less than 2% IACS and ΔTS2 was less than 20 MPa, ΔTS1 was less than 30 MPa, and the product TS was less than 1000 MPa, and the elongation exceeded 2%. This is thought to be due to insufficient low-temperature annealing hardening.
In the case of Comparative Example 2 in which ΔEC exceeded 4% IACS and ΔTS2 exceeded 50 MPa, ΔTS1 exceeded 140 MPa, the product TS was less than 1000 MPa, and the elongation exceeded 2%. The mold wear was inferior.

時効後冷間圧延の加工率REが50%未満である比較例3の場合も、ΔTS1が30MPa未満となり、製品のTSが1000MPa未満で伸びが2%を超えたため、金型摩耗性が劣った。これは、低温焼鈍硬化が不十分なためと考えられる。   In the case of Comparative Example 3 in which the reduction rate RE of cold rolling after aging is less than 50%, ΔTS1 was less than 30 MPa, the product TS was less than 1000 MPa, and the elongation exceeded 2%. . This is thought to be due to insufficient low-temperature annealing hardening.

ΔECが2%IACS未満、ΔTS2が20MPa未満の比較例4の場合も、比較例1と同様にΔTS1が30MPa未満となり、金型摩耗性が劣った。但し、比較例4の場合、比較例1に比べて時効後冷間圧延の加工率REが大幅に高いため、製品のTSが1000MPa以上で伸びが2%以下となった。   In Comparative Example 4 in which ΔEC was less than 2% IACS and ΔTS2 was less than 20 MPa, ΔTS1 was less than 30 MPa as in Comparative Example 1, and the mold wear was inferior. However, in the case of Comparative Example 4, since the processing rate RE of the cold rolling after aging was significantly higher than that of Comparative Example 1, the product TS was 1000 MPa or more and the elongation was 2% or less.

NiとCoの合計含有量が3.0%未満である比較例5の場合、固溶量が少ないためそもそも低温焼鈍硬化が不十分となって、強度及び金型摩耗性が劣った。
NiとCoの合計含有量が4.5%を超えた比較例6、8の場合、熱間圧延で割れが発生し、合金を製造できなかった。
In the case of Comparative Example 5 in which the total content of Ni and Co is less than 3.0%, since the amount of solid solution is small, the low-temperature annealing hardening is insufficient in the first place, and the strength and mold wear resistance are inferior.
In Comparative Examples 6 and 8 in which the total content of Ni and Co exceeded 4.5%, cracking occurred during hot rolling, and the alloy could not be produced.

Mg、Mn、Sn、Zn、Co及びCrを総量で1.0%を超えて含有した比較例7の場合も熱間圧延で割れが発生し、合金を製造できなかった。   In the case of Comparative Example 7 containing Mg, Mn, Sn, Zn, Co and Cr in a total amount exceeding 1.0%, cracks were generated by hot rolling, and an alloy could not be produced.

なお、歪取り焼鈍による低温焼鈍硬化量ΔTS2が20MPa未満の比較例1,3,4,5の場合、ΔTS1が30MPa未満となった。又ΔTS2が50MPaを超えた比較例2の場合、ΔTS1が140MPaを超えた。   In Comparative Examples 1, 3, 4, and 5 in which the low temperature annealing hardening amount ΔTS2 by strain relief annealing was less than 20 MPa, ΔTS1 was less than 30 MPa. In Comparative Example 2 where ΔTS2 exceeded 50 MPa, ΔTS1 exceeded 140 MPa.

Claims (4)

質量%で、NiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜4.5%、Si:0.6〜1.0%含有し、残部がCu及び不可避不純物からなり、
圧延平行方向の引張強さTSが1000MPa以上、かつ前記方向の伸びが2%以下、
かつ、500℃×60秒の大気加熱による、前記引張強さTSの低下量ΔTS1が30〜140MPaの焼鈍軟化特性を有するCu-Ni-Si系銅合金。
In a mass%, it contains at least one or more selected from the group of Ni and Co in a total amount of 3.0 to 4.5%, Si: 0.6 to 1.0%, the balance consisting of Cu and inevitable impurities,
The tensile strength TS in the rolling parallel direction is 1000 MPa or more, and the elongation in the direction is 2% or less,
And the Cu-Ni-Si type copper alloy which has the annealing softening characteristic of the fall amount (DELTA) TS1 of the said tensile strength TS by 30 to 140 MPa by the atmospheric heating of 500 degreeC x 60 second.
更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有する請求項1に記載のCu-Ni-Si系銅合金。   The Cu-Ni-Si based copper alloy according to claim 1, further comprising 0.005 to 1.0 mass% in total of at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr. 更にP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有する請求項1又は2に記載のCu-Ni-Si系銅合金。   The Cu-Ni-Si based copper alloy according to claim 1 or 2, further comprising 0.005 to 1.0 mass% in total of at least one selected from the group consisting of P, B, Ti, Zr, Al, Fe and Ag. 請求項1〜3のいずれか一項に記載のCu-Ni-Si系銅合金の製造方法であって、
質量%で、NiとCoの群から選ばれる少なくとも1種以上を総量で3.0〜4.5%、Si:0.6〜1.0%含有し、更に必要に応じてMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有し、及び/又はP、B、Ti、Zr、Al、Fe及びAgの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有し、残部がCu及び不可避不純物からなる鋳塊を熱間圧延、冷間圧延、溶体化処理、時効処理、低温溶体化処理、時効後冷間圧延、歪取焼鈍の順で行い、
前記時効後冷間圧延の加工率REを50%以上とし、
前記時効処理後に比べて前記低温溶体化処理後に導電率が2〜4%IACS低くなるように前記低温溶体化処理を設定し、
前記歪取焼鈍を200〜500℃で1〜1000秒間行うCu-Ni-Si系銅合金の製造方法。
It is a manufacturing method of the Cu-Ni-Si system copper alloy according to any one of claims 1 to 3,
Contains at least one or more selected from the group of Ni and Co by mass% in a total amount of 3.0 to 4.5%, Si: 0.6 to 1.0%, and if necessary, from the group of Mg, Mn, Sn, Zn and Cr Contains at least one selected from 0.005 to 1.0% by mass in total and / or at least one selected from the group of P, B, Ti, Zr, Al, Fe and Ag in total from 0.005 to 1.0% by mass Containing, the remainder of the ingot made of Cu and inevitable impurities, in the order of hot rolling, cold rolling, solution treatment, aging treatment, low temperature solution treatment, cold rolling after aging, strain relief annealing,
The processing rate RE of the cold rolling after aging is 50% or more,
Set the low temperature solution treatment so that the conductivity is 2-4% IACS lower after the low temperature solution treatment than after the aging treatment,
A method for producing a Cu—Ni—Si based copper alloy, wherein the strain relief annealing is performed at 200 to 500 ° C. for 1 to 1000 seconds.
JP2016070079A 2016-03-31 2016-03-31 Cu-Ni-Si based copper alloy and method for producing the same Active JP6355672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070079A JP6355672B2 (en) 2016-03-31 2016-03-31 Cu-Ni-Si based copper alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070079A JP6355672B2 (en) 2016-03-31 2016-03-31 Cu-Ni-Si based copper alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017179512A JP2017179512A (en) 2017-10-05
JP6355672B2 true JP6355672B2 (en) 2018-07-11

Family

ID=60005651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070079A Active JP6355672B2 (en) 2016-03-31 2016-03-31 Cu-Ni-Si based copper alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP6355672B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811199B2 (en) * 2018-03-26 2021-01-13 Jx金属株式会社 Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
CN109576528B (en) * 2018-12-21 2020-09-18 华北电力大学(保定) Copper-based composite material with SiC-CDCs @ TiC as reinforcing phase and preparation method thereof
JP6845885B2 (en) * 2019-03-27 2021-03-24 Jx金属株式会社 Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP7430502B2 (en) * 2019-09-19 2024-02-13 Jx金属株式会社 Copper alloy wire and electronic equipment parts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266130A (en) * 1988-08-29 1990-03-06 Mitsubishi Shindoh Co Ltd Cu alloy for terminal and connector having less wear or blanking die
JP5225787B2 (en) * 2008-05-29 2013-07-03 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy plate or strip for electronic materials
JP5088385B2 (en) * 2010-01-26 2012-12-05 三菱マテリアル株式会社 High strength and high conductivity copper alloy
CN104011236B (en) * 2011-12-22 2016-03-16 三菱伸铜株式会社 Mould wear resistance and the good Cu-Ni-Si series copper alloy plate of shearing and manufacture method thereof
JP5647703B2 (en) * 2013-02-14 2015-01-07 Dowaメタルテック株式会社 High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts

Also Published As

Publication number Publication date
JP2017179512A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US10392680B2 (en) Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
JP2008095185A (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP5619389B2 (en) Copper alloy material
JP2011214087A (en) Cu-ni-si based alloy with excellent bendability
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
WO2014109211A1 (en) Copper alloy for electronic or electrical device, component for electronic or electrical device, and terminal
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP6085633B2 (en) Copper alloy plate and press-molded product including the same
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP6670277B2 (en) Cu-Ni-Si based copper alloy with excellent mold wear
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP6845885B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP4175920B2 (en) High strength copper alloy
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP6328166B2 (en) Cu-Ni-Si rolled copper alloy and method for producing the same
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
JP4154131B2 (en) High-strength phosphor bronze for fork-type contacts and method for producing the same
JP6845884B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP2016160470A (en) Copper alloy material, lead frame and connector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R150 Certificate of patent or registration of utility model

Ref document number: 6355672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250