JP6085633B2 - Copper alloy plate and press-molded product including the same - Google Patents

Copper alloy plate and press-molded product including the same Download PDF

Info

Publication number
JP6085633B2
JP6085633B2 JP2015070162A JP2015070162A JP6085633B2 JP 6085633 B2 JP6085633 B2 JP 6085633B2 JP 2015070162 A JP2015070162 A JP 2015070162A JP 2015070162 A JP2015070162 A JP 2015070162A JP 6085633 B2 JP6085633 B2 JP 6085633B2
Authority
JP
Japan
Prior art keywords
copper alloy
press
alloy plate
rolling
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015070162A
Other languages
Japanese (ja)
Other versions
JP2016191088A (en
Inventor
明宏 柿谷
明宏 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015070162A priority Critical patent/JP6085633B2/en
Priority to KR1020160036683A priority patent/KR101822740B1/en
Priority to CN201610185932.7A priority patent/CN106011523B/en
Priority to TW105110108A priority patent/TWI607098B/en
Publication of JP2016191088A publication Critical patent/JP2016191088A/en
Application granted granted Critical
Publication of JP6085633B2 publication Critical patent/JP6085633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Description

この発明は、所定の形状に打ち抜くプレス加工により製造される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレームその他の電子部品等に用いて好適な、導電性に優れる銅合金板および、それを備えるプレス成形品に関するものであり、特には、銅合金板のプレス打ち抜き性を改善することのできる技術を提案するものである。   The present invention relates to a copper alloy plate excellent in electrical conductivity suitable for use in terminals, connectors, relays, switches, sockets, bus bars, lead frames, and other electronic parts manufactured by press working in a predetermined shape, and the like In particular, it proposes a technique capable of improving the press punchability of a copper alloy plate.

電機・電子機器等に組み込まれる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム等の電子部品は、たとえば順送プレス金型を用いて、一方向に向けて間欠的に送られる長尺帯状の銅合金板に対し、パンチ及びダイによるプレス加工を順次に施すことによって、所期した形状に成形したプレス成形品として製造されることがある。   Electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, etc., incorporated in electrical and electronic equipment, etc., are long lengths that are sent intermittently in one direction using, for example, a progressive press die The belt-shaped copper alloy plate may be manufactured as a press-molded product that is formed into a desired shape by sequentially performing press processing using a punch and a die.

ここで、上記のようなプレス加工により成形されたプレス成形品では、パンチにより打ち抜かれたプレス成形品のプレス破面が、プレス成形品の厚み方向で表面側に位置するせん断面と、裏面側に位置する破断面の二つの層で構成されることが一般に知られている。   Here, in the press-molded product formed by the press work as described above, the press fracture surface of the press-molded product punched out by the punch has a shear surface located on the front side in the thickness direction of the press-molded product, and the back surface side. It is generally known to be composed of two layers of fractured surfaces located at

そして、このうちせん断面がプレス破面の大部分を占めるプレス成形品は、せん断面が裏面側に突出して形成されるバリが発生し易くなる。電子部品として用いられるプレス成形品で、バリが発生した場合、電機・電子機器に組み込まれたプレス成形品のバリが、短絡を招く可能性が高くなって故障の原因となり得ることから、特に、電子部品用途のプレス成形品では、かかるバリの発生を抑制するべく、プレス打ち抜き性を改善した銅合金板が希求されている。   Of these, the press-molded product in which the shear surface occupies most of the press fracture surface is likely to generate burrs formed with the shear surface protruding to the back surface side. When a burr occurs in a press-molded product used as an electronic component, the burr of the press-molded product built into an electric machine / electronic device can cause a short circuit and can cause a failure. In press molded products for use in electronic parts, a copper alloy sheet with improved press punchability is desired to suppress the occurrence of such burrs.

このような電子部品用の銅合金板で、プレス打ち抜き性の改善や金型の耐摩耗性等に着目した技術としては、特許文献1〜4に記載されたもの等がある。
特許文献1には、電気・電子機器に用いられるCu−Ni−Si系銅合金板材において、銅合金板材中に分散する化合物の粒径およびその分散密度を規定することにより、特にめっき性、プレス性、耐熱性等の特性の改善を図ることが記載されている。特許文献2には、プレス打ち抜き性に影響する表層にプレス打ち抜き性の向上に寄与する粒子径の析出物を存在させ、強度に影響する中央部には強度の向上に寄与する粒子径の析出物を存在させることにより、強度および導電率を維持しつつ、金型摩耗を軽減できるCu−Co−Si系銅合金が開示されている。特許文献3には、高強度、高導電性および耐熱性などの優れた特性を維持しつつ、さらにスタンピングによる金型摩耗を抑制するため、Mg、Crを所定の量で添加するとともに、特に、スタンピング金型摩耗を抑制する作用のあるPbを所定の量で添加して得られた銅合金が記載されている。
Examples of such a copper alloy plate for electronic components, which focus on improvement of press punchability and wear resistance of a mold, include those described in Patent Documents 1 to 4.
In Patent Document 1, in a Cu—Ni—Si based copper alloy sheet material used for electrical and electronic equipment, by defining the particle size of the compound dispersed in the copper alloy sheet material and its dispersion density, in particular, the plating property, press Improvement of properties such as heat resistance and heat resistance is described. In Patent Document 2, a precipitate having a particle size that contributes to improvement in press punchability is present in a surface layer that affects press punchability, and a precipitate having a particle size that contributes to improvement in strength is present in the central portion that affects strength. Cu—Co—Si based copper alloys that can reduce mold wear while maintaining strength and electrical conductivity are disclosed. In Patent Document 3, while maintaining excellent properties such as high strength, high conductivity and heat resistance, and further suppressing mold wear due to stamping, Mg, Cr is added in a predetermined amount, A copper alloy obtained by adding a predetermined amount of Pb having an action of suppressing stamping mold wear is described.

特許文献4には、Cu−Fe−P系銅合金板で、引張試験により求められる均一伸びと全伸びとの比、均一伸び/全伸びを0.50未満とすることが記載されている。そして、これによれば、プレス打ち抜き時の材料の延性変形量を小さくし、早期に打ち抜きの破断が生じて、プレス打ち抜き性が向上するとされている。   Patent Document 4 describes that, in a Cu—Fe—P-based copper alloy plate, the ratio of uniform elongation to total elongation and uniform elongation / total elongation obtained by a tensile test are less than 0.50. And according to this, the amount of ductile deformation of the material at the time of press punching is reduced, the punching breakage occurs at an early stage, and the press punchability is improved.

特開2008−95185号公報JP 2008-95185 A 特開2012−224922号公報JP 2012-224922 A 特開平8−13066号公報JP-A-8-13066 特開2008−88499号公報JP 2008-88499 A

しかるに、上述した技術では、析出物や介在物のサイズや分布の制御や、添加元素によって、プレス打ち抜き性の改善を図ることとしているが、Cu−Sn合金からなる銅合金板のプレス打ち抜き性については何ら検討されていない。Cu−Sn合金は固溶型合金であることから、上記の先行技術で着目されている銅合金のような析出物が存在せず、また、特に無酸素銅にSnを微量で添加したCu−Sn合金では、無酸素銅ベースの溶解となるため、介在物も少ない。
それ故に、上記の技術によっては、Cu−Sn合金の銅合金板のプレス打ち抜き性を有効に向上させることができなかった。
However, in the above-described technique, the size and distribution of precipitates and inclusions are controlled, and the press punchability is improved by an additive element. However, the press punchability of a copper alloy plate made of a Cu-Sn alloy is considered. Has not been studied at all. Since the Cu—Sn alloy is a solid solution type alloy, there is no precipitate such as the copper alloy noted in the above prior art, and in particular, Cu— In the Sn alloy, since it is an oxygen-free copper-based melt, there are few inclusions.
Therefore, the press punchability of the Cu—Sn alloy copper alloy sheet cannot be effectively improved by the above-described technique.

また、特許文献4のように、均一伸び、全伸びを調整する手法では、銅合金板の特性が変化してしまうことから、バリ等の表面性状の他の要求特性を満たさないものとなり、それにより、所要の特性を維持しつつもプレス打ち抜き性を改善させることはできない。   Further, as in Patent Document 4, the method of adjusting the uniform elongation and the total elongation changes the characteristics of the copper alloy plate, and therefore does not satisfy other required characteristics of the surface properties such as burrs. Therefore, it is not possible to improve the press punchability while maintaining the required characteristics.

この発明は、上述した従来技術が抱えるこのような問題を解決することを課題とするものであり、その目的とするところは、固溶型合金であるCu−Sn合金の銅合金板で、プレス加工後のバリの発生を有効に抑制して、プレス打ち抜き性を改善することのできる銅合金板及び、それを備えるプレス成形品を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art described above, and the object of the invention is a copper alloy plate of a Cu—Sn alloy, which is a solid solution type alloy, and press. An object of the present invention is to provide a copper alloy plate capable of effectively suppressing the occurrence of burrs after processing and improving press punchability, and a press-molded product including the same.

発明者は、プレス成形品のプレス破面において、バリの発生をもたらすせん断面の割合を減らして破断面の割合を増加させるため、プレス加工時のパンチストロークの増加に伴う、銅合金板に作用する荷重の変化について鋭意検討した。
その結果、プレス加工時にパンチとダイとの間に挟まれた際の銅合金板の板厚方向の伸びが小さくなるように、銅合金板を製造する際に、最終焼鈍時の結晶粒径を大きくすること、および、最終焼鈍後の仕上圧延でワークロール径と板厚の比を制御して、加工度を増加させることが有効であるとの新たな知見を得た。
The inventor reduces the ratio of the shear plane that causes burrs and increases the ratio of the fracture surface in the press fracture surface of the press-formed product, so that it acts on the copper alloy plate as the punch stroke increases during press processing. We studied diligently about the change of load.
As a result, when producing a copper alloy sheet so that the elongation in the thickness direction of the copper alloy sheet when sandwiched between a punch and a die during press working is reduced, the crystal grain size at the time of final annealing is set. We obtained new knowledge that it is effective to increase the degree of processing by controlling the ratio of the work roll diameter to the plate thickness in the finish rolling after final annealing.

そして、それにより製造されたCu−Sn合金では、引張特性が大きく変化することなしに、せん断試験で得られる変位―荷重曲線の半価幅が、従来のものに比して小さくなって、プレス加工時に銅合金板へのプレス破面の形成が早期になされることにより、バリの発生を有効に抑制できることを見出した。   And in the Cu-Sn alloy manufactured thereby, the half-value width of the displacement-load curve obtained by the shear test is smaller than that of the conventional one, without greatly changing the tensile properties. It was found that the generation of burrs can be effectively suppressed by forming the press fracture surface on the copper alloy plate at an early stage during processing.

このような知見の下、この発明の銅合金板は、0.01〜0.3質量%のSnを含有し、残部が銅およびその不可避的不純物から成り、70%IACS以上の導電率を有し、且つ、せん断試験における変位―荷重曲線から求められる半価幅の、板厚に対する比(r)が0.2≦r≦0.7であるものである。   Based on such knowledge, the copper alloy sheet of the present invention contains 0.01 to 0.3% by mass of Sn, the balance is made of copper and its inevitable impurities, and has a conductivity of 70% IACS or higher. In addition, the ratio (r) of the half width obtained from the displacement-load curve in the shear test to the plate thickness is 0.2 ≦ r ≦ 0.7.

ここで、この発明の銅合金板では、導電率が75%IACS以上であり、圧延平行方向の0.2%耐力が450MPa以上、且つ、圧延直角方向の0.2%耐力/圧延平行方向の0.2%耐力が1.0以上であることが好ましい。
またここで、この発明の銅合金板では、圧延平行方向の伸びに対する圧延直角方向の伸びの比が、0.8以上かつ1.2以下であることが好ましい。
Here, in the copper alloy sheet of the present invention, the electrical conductivity is 75% IACS or more, the 0.2% proof stress in the rolling parallel direction is 450 MPa or more, and the 0.2% proof stress in the direction perpendicular to the rolling / the rolling parallel direction. The 0.2% proof stress is preferably 1.0 or more.
Here, in the copper alloy sheet of the present invention, the ratio of the elongation in the direction perpendicular to the rolling to the elongation in the rolling parallel direction is preferably 0.8 or more and 1.2 or less.

そしてまた、この発明の銅合金板は、P、Ag、Ni、Mn、Mg、Zn、BおよびCaからなる群から選ばれる元素の少なくとも1種を合計0.1質量%以下でさらに含有するものとすることができる。   The copper alloy plate of the present invention further contains at least one element selected from the group consisting of P, Ag, Ni, Mn, Mg, Zn, B and Ca in a total amount of 0.1% by mass or less. It can be.

この発明のプレス成形品は、上述したいずれかの銅合金板を備えるものである。   The press-formed product of the present invention includes any one of the above-described copper alloy plates.

この発明によれば、せん断試験における変位―荷重曲線から求められる半価幅の、板厚に対する比(r)が0.2≦r≦0.7である銅合金板としたことにより、プレス加工時に、パンチとダイとの間に挟まれた銅合金板にプレス破面が早期に形成されることから、破断面の割合が大きいプレス破面となって、バリの発生を有効に抑制することができる。それによってプレス打ち抜き性を大きく改善することができる。
その結果として、この銅合金板は、端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレームその他の電子部品等に好適に用いることができる。
According to the present invention, the ratio of the half width obtained from the displacement-load curve in the shear test to the plate thickness (r) is a copper alloy plate in which 0.2 ≦ r ≦ 0.7. At times, a press fracture surface is formed early on a copper alloy plate sandwiched between a punch and a die, so that the ratio of fracture surface becomes a large press fracture surface and effectively suppresses the generation of burrs. Can do. Thereby, the press punchability can be greatly improved.
As a result, this copper alloy plate can be suitably used for terminals, connectors, relays, switches, sockets, bus bars, lead frames and other electronic components.

銅合金板のプレス加工時におけるパンチストロークの増大に伴う、銅合金板に作用する荷重の変化を、各段階の銅合金板の状態とともに模式的に示すグラフである。It is a graph which shows typically the change of the load which acts on a copper alloy plate with the increase in the punch stroke at the time of press processing of a copper alloy plate with the state of the copper alloy plate of each step. この発明の一の実施形態に係る銅合金板の変位―荷重曲線の一例を、従来の銅合金板の変位―荷重曲線の一例と比較して模式的に示すグラフである。It is a graph which shows typically an example of the displacement-load curve of the copper alloy plate concerning one embodiment of this invention compared with an example of the displacement-load curve of the conventional copper alloy plate. 変位―荷重曲線を求めるためのせん断試験を概略的に示す図である。It is a figure which shows roughly the shear test for calculating | requiring a displacement-load curve. 発明例1の破断面の一部を100倍及び200倍の各倍率で示す顕微鏡写真である。It is a microscope picture which shows a part of fracture surface of the example 1 of an invention by each magnification of 100 time and 200 times. 比較例2の破断面の一部を100倍及び200倍の各倍率で示す顕微鏡写真である。It is a microscope picture which shows a part of fracture surface of the comparative example 2 with each magnification of 100 time and 200 times.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態に係る銅合金板は、0.01〜0.3質量%のSnを含有し、残部が銅およびその不可避的不純物から成るCu−Sn合金で構成されたものであって、70%IACS以上の導電率を有し、且つ、せん断試験における変位―荷重曲線から求められる半価幅の、板厚に対する比(r)が0.2≦r≦0.7であるものである。このような銅合金板は、プレス加工により製造される電子部品の用途に適している。
Hereinafter, embodiments of the present invention will be described in detail.
A copper alloy plate according to an embodiment of the present invention is composed of a Cu-Sn alloy containing 0.01 to 0.3% by mass of Sn and the balance being made of copper and its inevitable impurities. And having a conductivity of 70% IACS or more and a ratio (r) of a half width obtained from a displacement-load curve in a shear test to a plate thickness is 0.2 ≦ r ≦ 0.7 It is. Such a copper alloy plate is suitable for applications of electronic parts manufactured by press working.

(合金成分濃度)
Sn濃度は0.01〜0.3質量%とする。Sn濃度が0.3質量%を超えると、70%IACS以上の導電率を得ることが難しくなる。Sn濃度が0.01質量%未満になると、せん断試験における変位―荷重曲線から求められる半価幅の、板厚に対する比(r)が0.7以上となりバリの低減効果が認められない。また、Sn濃度が0.01質量%未満になると、0.2%耐力が低下するので、所要の特性を満たす観点からあまり望ましくない。このような観点から、Sn濃度は、0.03〜0.25質量%とすることが好ましく、なかでも、0.08〜0.25質量%とすることが特に好適である。
(Alloy component concentration)
Sn concentration shall be 0.01-0.3 mass%. If the Sn concentration exceeds 0.3% by mass, it becomes difficult to obtain a conductivity of 70% IACS or more. When the Sn concentration is less than 0.01% by mass, the ratio (r) of the half width obtained from the displacement-load curve in the shear test to the plate thickness becomes 0.7 or more, and no burr reduction effect is observed. On the other hand, when the Sn concentration is less than 0.01% by mass, the 0.2% proof stress is lowered, which is not desirable from the viewpoint of satisfying the required characteristics. From such a viewpoint, the Sn concentration is preferably 0.03 to 0.25% by mass, and particularly preferably 0.08 to 0.25% by mass.

この発明のCu−Sn系合金では、Snの他にさらにP、Ag、Ni、Mn、Mg、Zn、BおよびCaからなる群から選ばれる元素の少なくとも1種以上を添加することができるが、かかる元素を添加する場合はその添加量は合計で0.1質量%以下とすることが好ましい。これらの合計が0.1質量%を超えると、導電率が低下したり、原料コストが増加したり、製造性が悪化したりする。   In the Cu—Sn based alloy of this invention, in addition to Sn, at least one element selected from the group consisting of P, Ag, Ni, Mn, Mg, Zn, B and Ca can be added. When such elements are added, the total amount is preferably 0.1% by mass or less. When the total of these exceeds 0.1% by mass, the electrical conductivity is lowered, the raw material cost is increased, or the productivity is deteriorated.

(導電率)
この発明の銅合金板では、JIS H0505に準拠して測定した導電率を70%IACS以上とする。導電率が70%IACS以上であれば、所定の電子部品に用いた際の所要の導電性を発揮することができる。導電率は、好ましくは75%IACS以上、より好ましくは80%IACS以上とする。
(conductivity)
In the copper alloy plate of the present invention, the conductivity measured in accordance with JIS H0505 is 70% IACS or more. If the electrical conductivity is 70% IACS or higher, the required electrical conductivity when used in a predetermined electronic component can be exhibited. The conductivity is preferably 75% IACS or more, more preferably 80% IACS or more.

(0.2%耐力)
この発明では、銅合金板の圧延平行方向(GW方向)の0.2%耐力を450MPa以上とすることが好ましく、この場合は、銅合金板が、構造材の素材として必要な強度を十分有しているといえる。圧延平行方向の0.2耐力は、500MPa以上とすることがより好ましく、特に、520MPa以上とすることがさらに好ましい。
(0.2% yield strength)
In this invention, it is preferable that the 0.2% proof stress in the rolling parallel direction (GW direction) of the copper alloy plate is 450 MPa or more. In this case, the copper alloy plate has sufficient strength necessary as a material for the structural material. It can be said that. The 0.2 proof stress in the rolling parallel direction is more preferably 500 MPa or more, and particularly preferably 520 MPa or more.

一方、銅合金板の圧延直角方向(BW方向)の0.2%耐力は、上述した圧延平行方向の0.2%耐力以上とすることが好適である。すなわち、圧延平行方向の0.2%耐力に対する圧延直角方向の0.2%耐力の比を1.0以上とすることが好ましい。これは、プレス加工後のバリの長さが短くなり、プレス性が良好となるためである。圧延直角方向の0.2%耐力/圧延平行方向の0.2%耐力の比は、より好ましくは1.03以上、さらに好ましくは1.05以上とする。この一方で、圧延直角方向の0.2%耐力/圧延平行方向の0.2%耐力の比が大きすぎると、圧延平行方向および圧延直角方向のプレス後の破面に異方性が生じるため、結果的にプレス後のバリ長さが長くなることから、この比は、1.2以下とすることができ、好ましくは1.15以下、より好ましくは1.1以下とする。
なお、0.2%耐力は、JIS Z2241に基いて測定する。
On the other hand, it is preferable that the 0.2% yield strength of the copper alloy sheet in the direction perpendicular to the rolling direction (BW direction) is not less than the 0.2% yield strength in the rolling parallel direction described above. That is, the ratio of the 0.2% proof stress in the direction perpendicular to the rolling to the 0.2% proof stress in the rolling parallel direction is preferably 1.0 or more. This is because the length of the burr after press working is shortened and the pressability is improved. The ratio of 0.2% yield strength in the direction perpendicular to rolling / 0.2% yield strength in the parallel direction of rolling is more preferably 1.03 or more, and further preferably 1.05 or more. On the other hand, if the ratio of 0.2% yield strength in the direction perpendicular to rolling / 0.2% yield strength in the direction parallel to rolling is too large, anisotropy will occur on the fracture surface after pressing in the direction parallel to rolling and in the direction perpendicular to rolling. As a result, since the burr length after pressing becomes long, this ratio can be made 1.2 or less, preferably 1.15 or less, more preferably 1.1 or less.
The 0.2% proof stress is measured based on JIS Z2241.

(変位―荷重曲線の半価幅)
発明者は、銅合金板のプレス加工時に、パンチが銅合金板の表面に接したときから、銅合金板を打ち抜くまでの間のパンチストロークと、銅合金板に作用する荷重との関係について鋭意検討した結果、プレス加工により得られるプレス成形品のプレス破面において、バリの発生を招くせん断面の割合を減らすとともに、破断面の割合を増加させるためには、せん断試験における変位―荷重曲線から求められる半価幅を小さくすることが有効であることを見出した。
(Displacement-half width of load curve)
The inventor has earnestly studied the relationship between the punch stroke from when the punch touches the surface of the copper alloy plate until the copper alloy plate is punched and the load acting on the copper alloy plate during the pressing of the copper alloy plate. As a result of the examination, in order to reduce the ratio of shear planes that cause burrs and increase the ratio of fractured surfaces in the press fracture surface of press-molded products obtained by press working, the displacement-load curve in the shear test is used. It has been found that it is effective to reduce the required half width.

このことを詳説すれば以下のとおりである。プレス加工時には、図1にグラフで模式的に例示するように、パンチストロークがまだ小さい加工初期の段階では、パンチとダイとの間に挟まれた銅合金板に、パンチおよびダイのそれぞれが接触した箇所でダレが生じる。次いで、パンチストロークの増大に伴い、パンチとダイの間の銅合金板にせん断面が形成され始め、パンチおよびダイのそれぞれがさらに銅合金板に食い込んで、上記の各ダレがクラックとなったときに荷重のピークを迎え、その後、荷重の減少とともに、クラックが伝播して破断面が形成される。
ここで、プレス成形品のプレス破面でせん断面の占める割合が増加するのは、銅合金板の表面及び裏面にダレが形成されてから、プレス破面が形成されるまでの間に、銅合金板が引きちぎれずに板厚方向に大きく伸び、その間にわたってパンチが銅合金板を削ることに起因すると考えられる。
This is explained in detail as follows. At the time of press working, as schematically illustrated in the graph of FIG. 1, at the initial stage of processing where the punch stroke is still small, each of the punch and the die contacts the copper alloy plate sandwiched between the punch and the die. Sagging occurs at the point where it is done. Next, as the punch stroke increases, a shear surface begins to be formed on the copper alloy plate between the punch and the die, and each of the punch and the die further bites into the copper alloy plate, and each of the above sagging becomes a crack. The peak of the load is reached, and then the crack propagates and a fracture surface is formed as the load decreases.
Here, the ratio of the shearing surface to the press fracture surface of the press-formed product increases because the copper alloy plate is dipped on the surface and the back surface until the press fracture surface is formed. It is considered that the alloy plate is not torn and extends greatly in the thickness direction, and the punch cuts the copper alloy plate in the meantime.

従って、プレス加工時の銅合金板の板厚方向の伸びを小さくして、銅合金板にダレが形成された後、速やかにプレス破面が形成されるように、せん断試験における変位―荷重曲線から求められる半価幅が小さい銅合金板とすることにより、プレス成形品のプレス破面で、せん断面の占める割合が減少し、破断面の占める割合が増加すると考えた。   Therefore, the displacement-load curve in the shear test is used so that the fracture in the thickness direction of the copper alloy plate during press working is reduced and the fracture surface is formed immediately after the copper alloy plate is sagged. It was thought that by using a copper alloy plate having a small half-value width obtained from the above, the ratio of the shear surface to the press fracture surface of the press-formed product decreases and the ratio of the fracture surface increases.

かかる知見に基き、この発明の実施形態の銅合金板では、板厚に対し、せん断試験における変位―荷重曲線から求められる半価幅の比(r)を0.2≦r≦0.7とする。
せん断試験における変位―荷重曲線は、たとえば、図2に示すように、変位の増大に伴い、荷重は初期の段階では増加するもピークを経た後に低下する山型の曲線となるところ、この発明の実施形態の銅合金板では、ピーク荷重の1/2の荷重の変位幅である半価幅が、同じ板厚の従来の銅合金板に比して小さくなる。
Based on such knowledge, in the copper alloy plate of the embodiment of the present invention, the ratio (r) of the half width obtained from the displacement-load curve in the shear test to the plate thickness is 0.2 ≦ r ≦ 0.7. To do.
For example, as shown in FIG. 2, the displacement-load curve in the shear test is a mountain-shaped curve that increases in the initial stage but decreases after passing through the peak as the displacement increases. In the copper alloy plate of the embodiment, the half width, which is a displacement width of a load that is half the peak load, is smaller than that of a conventional copper alloy plate having the same thickness.

その結果として、この実施形態の銅合金板に対してプレス加工を施した際に、図1に示すようなパンチストローク量に対する荷重の曲線で、銅合金板の表面及び裏面にダレが形成されてピークを経た後、荷重が急速に低下して早期にプレス破面が形成されることになるので、プレス破面が形成されるまでの間にパンチが銅合金板を削ることに起因する、せん断面の割合の増大を効果的に抑制することができる。それにより、プレス破面でせん断面が小さくなるとともに破断面が大きくなるので、プレス破面から表裏面側に突出するバリの発生を有効に抑制することが可能になる。   As a result, when the copper alloy plate of this embodiment is subjected to press working, sagging is formed on the front and back surfaces of the copper alloy plate in a load curve with respect to the punch stroke amount as shown in FIG. After the peak, the load decreases rapidly and a press fracture surface is formed at an early stage.Therefore, the punch is caused by scraping the copper alloy plate before the press fracture surface is formed. An increase in the ratio of the cross section can be effectively suppressed. As a result, the shear surface becomes smaller and the fracture surface becomes larger at the press fracture surface, so that it is possible to effectively suppress the generation of burrs protruding from the press fracture surface to the front and rear surfaces.

ここで、変位―荷重曲線を求めるためのせん断試験は、図3に示すように、厚さ0.1mmの銅合金板のサンプルを、直径9.98mmの円柱型のポンチと、クリアランスを0.01mm設けたダイスとの間に挟み込み、速度0.1mm/minでパンチをダイに向けて変位させ、変位の増加に伴い、パンチ側に設けたロードセルで荷重を適宜測定することにより行うことができる。   Here, as shown in FIG. 3, the shear test for obtaining the displacement-load curve was performed using a copper alloy plate sample with a thickness of 0.1 mm, a cylindrical punch with a diameter of 9.98 mm, and a clearance of 0. The punch can be sandwiched between dies provided at 01 mm, and the punch is displaced toward the die at a speed of 0.1 mm / min. As the displacement increases, the load can be appropriately measured with a load cell provided on the punch side. .

板厚に対する半価幅の比(r)の下限を特に設定しないが、通常ダレ及びせん断面が形成される場合は0.2以上となる。この一方で、板厚に対する半価幅の比(r)が0.7を超える場合は、プレス加工時の板厚方向の伸びが十分に小さくならないことから、バリの発生を抑制する効果を所期したほどに発揮することができない。
従って、板厚に対する半価幅の比(r)のより好ましい範囲は、0.25≦r<0.7であり、さらに好ましい範囲は、0.3≦r<0.7である。
Although the lower limit of the ratio of the half width to the plate thickness (r) is not particularly set, it is usually 0.2 or more when a sag and a shear surface are formed. On the other hand, if the ratio of the half width to the plate thickness (r) exceeds 0.7, the elongation in the plate thickness direction during press working is not sufficiently reduced, so that the effect of suppressing the generation of burrs is obtained. Can't perform as well as expected.
Therefore, a more preferable range of the ratio (r) of the half width to the plate thickness is 0.25 ≦ r <0.7, and a further preferable range is 0.3 ≦ r <0.7.

(板厚)
銅合金板の厚み、つまり板厚は具体的には、0.05mm〜2.0mmとすることができる。上記範囲外ではプレスのせん断面やバリの管理の難易度が高くなるため、より好ましい板厚は0.06mm〜1.5mmである。但し、板厚は、銅合金板の用途等に応じて適宜決定されるものであり、ここで例示した数値範囲に限定されるものではない。
(Thickness)
Specifically, the thickness of the copper alloy plate, that is, the plate thickness can be set to 0.05 mm to 2.0 mm. Outside the above range, since the difficulty of managing the shear plane and burrs of the press becomes high, a more preferable plate thickness is 0.06 mm to 1.5 mm. However, the plate thickness is appropriately determined according to the use of the copper alloy plate and the like, and is not limited to the numerical range exemplified here.

(伸び)
圧延平行方向の伸びと、圧延直角方向の伸びの異方性は小さいほうが、いずれの向きのプレス加工を施した場合であっても、バリの発生を抑制することができる点で好ましい。そのため、圧延平行方向の伸びに対する圧延直角方向の伸びの比は、0.8以上かつ1.2以下とすることが好適である。圧延平行方向の伸びに対する圧延直角方向の伸びの比は、より好ましくは0.8以上かつ1.15以下、さらに好ましくは0.8以上かつ1.1以下とする。この伸びはJIS Z2241に準拠して測定する。
(Elongation)
It is preferable that the anisotropy between the elongation in the rolling parallel direction and the elongation in the direction perpendicular to the rolling is smaller in that it is possible to suppress the generation of burrs, even when pressing is performed in any direction. Therefore, the ratio of the elongation in the direction perpendicular to the rolling to the elongation in the rolling parallel direction is preferably 0.8 or more and 1.2 or less. The ratio of the elongation in the direction perpendicular to the rolling to the elongation in the rolling parallel direction is more preferably from 0.8 to 1.15, and even more preferably from 0.8 to 1.1. This elongation is measured according to JIS Z2241.

(バリ高さ)
上記のせん断試験後に得られる円柱状の試験片について、光学顕微鏡(倍率1000倍)および実体顕微鏡を用いて、その試験片のプレス破面の全体を360°にわたって観察し、観察した中で最も長いバリの板厚方向に沿う長さを、バリ高さとした。バリ高さは1μm単位で測定し、5μm未満であれば機能上問題ない。好ましくは3μm未満、さらに好ましくはバリが無いことが望ましい。
(Burr height)
About the cylindrical test piece obtained after the above shear test, the entire press fracture surface of the test piece was observed over 360 ° using an optical microscope (magnification 1000 times) and a stereomicroscope, and was the longest observed. The length along the thickness direction of the burr was defined as the burr height. The burr height is measured in units of 1 μm, and if it is less than 5 μm, there is no functional problem. Preferably it is less than 3 μm, more preferably no burr.

(製造方法)
以上に述べた銅合金板は、以下に一例として示す製造方法により製造することができる。
純銅原料として無酸素銅等を溶解し、Snおよび必要に応じて他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを、必要に応じて所定の回数で繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。歪取り焼鈍は特に行わなくともプレス性への影響はない。
(Production method)
The copper alloy plate described above can be manufactured by a manufacturing method shown as an example below.
Oxygen-free copper or the like is dissolved as a pure copper raw material, Sn and other alloy elements are added as necessary, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated a predetermined number of times as necessary, and the final cold rolling is performed. Finish to a predetermined product thickness and finally apply strain relief annealing. There is no influence on the pressability even if the strain relief annealing is not particularly performed.

再結晶焼鈍では、圧延組織を再結晶化させる。
特にここでは、最終冷間圧延前の再結晶焼鈍(最終焼鈍)では、材料の平均結晶粒径を50μm以上に調整する。このときの平均結晶粒径が小さすぎると、製造される銅合金板の、プレス加工時の板厚方向の伸びを十分に小さくすることができない。言い換えれば、銅合金板の変位―荷重曲線の半価幅の比(r)を0.2≦r≦0.7とすることが困難になる。このため、最終焼鈍時の平均結晶粒径は、50μm以上とすることがより好ましく、特に、60μm以上とするさらに好適である。
この一方で、最終焼鈍時の平均結晶粒径が大きすぎる場合は、製造される銅合金板の0.2%耐力が低下する。そのため、最終焼鈍時の平均結晶粒径は100μm以下とすることが好ましく、特に95μm以下、さらには85μm以下とすることがより一層好ましい。
In recrystallization annealing, the rolled structure is recrystallized.
In particular, here, in the recrystallization annealing (final annealing) before the final cold rolling, the average crystal grain size of the material is adjusted to 50 μm or more. If the average crystal grain size at this time is too small, the elongation of the produced copper alloy plate in the thickness direction during press working cannot be made sufficiently small. In other words, it becomes difficult to set the ratio (r) of the half-value width of the displacement-load curve of the copper alloy plate to 0.2 ≦ r ≦ 0.7. For this reason, the average crystal grain size at the time of final annealing is more preferably 50 μm or more, and particularly preferably 60 μm or more.
On the other hand, when the average crystal grain size at the time of final annealing is too large, the 0.2% yield strength of the manufactured copper alloy sheet is lowered. Therefore, the average crystal grain size during the final annealing is preferably 100 μm or less, more preferably 95 μm or less, and even more preferably 85 μm or less.

最終冷間圧延前の再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径および目標とする製品の導電率に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を550〜850℃として焼鈍を行えばよい。バッチ炉では550〜850℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では550〜850℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。   The conditions for recrystallization annealing before the final cold rolling are determined based on the target crystal grain size after annealing and the target product conductivity. Specifically, annealing may be performed using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 550 to 850 ° C. In a batch furnace, the heating time may be appropriately adjusted within the range of 30 minutes to 30 hours at a furnace temperature of 550 to 850 ° C. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 550 to 850 ° C.

最終冷間圧延(仕上圧延)では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げてゆく。
ここにおいて、圧延ロール間に通過させる回数をnパスとすると、各パスの加工度を同じ大きさに設定し、最初のパスからn/3パス以上は、材料の板厚に対するワークロールの直径の比を40以上とすることが重要である。このような大径のワークロールで圧延することにより、材料へのワークロールの接触面積が大きいことに起因して材料が大きく圧縮されることになり、製造される銅合金板の変位―荷重曲線の半価幅を有効に小さくすることができる。ここで、最終冷間圧延の総パス数は、3パス〜25パスとし、好ましくは5パス〜15パスとする。
In the final cold rolling (finish rolling), the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness.
Here, if the number of passes between the rolling rolls is n passes, the processing degree of each pass is set to the same size, and n / 3 passes or more from the first pass is the diameter of the work roll relative to the thickness of the material. It is important that the ratio is 40 or more. By rolling with such a large-diameter work roll, the material is greatly compressed due to the large contact area of the work roll with the material, and the displacement-load curve of the produced copper alloy sheet The half width of can be effectively reduced. Here, the total number of passes of the final cold rolling is 3 to 25 passes, preferably 5 to 15 passes.

このように複数パスにわたって行う最終冷間圧延の加工度Rf(%)は、Rf=(t0−t)/t0×100(t0:最終冷間圧延前の板厚、t:最終冷間圧延後の板厚)で与えられる。この最終冷間圧延の加工度Rfは、60%以上とすることが好適である。言い換えれば、最終冷間圧延の加工度Rfが60%未満の場合は、銅合金の0.2%耐力が450MPa以上とすることが困難となり、要求特性を十分に満たすことができない可能性がある。 Thus, the workability Rf (%) of the final cold rolling performed over a plurality of passes is Rf = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before final cold rolling, t: final cold (Thickness after cold rolling). The workability Rf of this final cold rolling is preferably 60% or more. In other words, when the workability Rf of the final cold rolling is less than 60%, it is difficult to make the 0.2% proof stress of the copper alloy 450 MPa or more, and the required characteristics may not be sufficiently satisfied. .

また、再結晶焼鈍と交互に繰り返し行う冷間圧延全体の総加工度R(%)は、R=(T0−T)/T0×100(T0:冷間圧延前の板厚、T:冷間圧延後の板厚)で与えられる。この総加工度Rは90%以上とすることが好ましく、92%以上とすることがより好ましい。総加工度Rが低い場合は、銅合金板の圧延直角方向の伸び/圧延平行方向の伸びの比が0.8未満となる。この一方で、冷間圧延の総加工度Rの上限は99.5%以下とすることができる。99.5%より大きい場合は銅合金板の圧延直角方向の伸び/圧延平行方向の伸びが1.2以上となる。総加工度Rは99.5%以下とすることができる。 Moreover, the total workability R (%) of the entire cold rolling repeated alternately with recrystallization annealing is R = (T 0 −T) / T 0 × 100 (T 0 : plate thickness before cold rolling, T : Thickness after cold rolling). The total processing degree R is preferably 90% or more, and more preferably 92% or more. When the total workability R is low, the ratio of elongation in the direction perpendicular to the rolling / elongation in the direction parallel to the rolling of the copper alloy sheet is less than 0.8. On the other hand, the upper limit of the total workability R of cold rolling can be 99.5% or less. When it is larger than 99.5%, the elongation in the direction perpendicular to the rolling / elongation in the rolling parallel direction of the copper alloy sheet is 1.2 or more. The total processing degree R can be 99.5% or less.

本発明の歪取り焼鈍は、連続焼鈍炉またはバッチ炉を用いて行う。いずれも炉内温度を300〜600℃の範囲で5秒〜10分の範囲で加熱条件を調整する。歪取り焼鈍は特に行わなくともよい。   The strain relief annealing of the present invention is performed using a continuous annealing furnace or a batch furnace. In all cases, the heating conditions are adjusted in the range of 300 to 600 ° C. for 5 seconds to 10 minutes. The strain relief annealing is not particularly required.

この発明では、プレス加工時に銅合金板の板厚方向の伸びが小さくなって、プレス破面の形成が早期になされるように、銅合金板の変位―荷重曲線から求められる半価幅の、板厚に対する比(r)を所定の範囲内とすることを一つの特徴としている。そのための銅合金板の製造条件は下記のとおりである。
a.最終焼鈍時の平均結晶粒径を50μm以上に調整する。
b.最終冷間圧延の初期のパスで、ワークロール直径/材料の板厚を40以上とする。
In the present invention, the half-value width obtained from the displacement-load curve of the copper alloy plate so that the elongation in the thickness direction of the copper alloy plate during press working is reduced and the formation of the press fracture surface is made early. One characteristic is that the ratio (r) to the plate thickness is within a predetermined range. The manufacturing conditions of the copper alloy plate for that purpose are as follows.
a. The average grain size during final annealing is adjusted to 50 μm or more.
b. In the initial pass of the final cold rolling, the work roll diameter / material thickness is set to 40 or more.

以上のようにして製造された銅合金板は、様々な板厚の伸銅品に加工されて、たとえば、プレス加工により成形される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム等の電子部品その他のプレス成形品に用いることに適している。   The copper alloy plates manufactured as described above are processed into copper products having various thicknesses, such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, etc., formed by pressing. Suitable for use in electronic parts and other press-formed products.

次に、この発明の銅合金板を試作し、その性能を評価したので以下に説明する。但し、ここでの説明は、単なる例示を目的としたものであって、これに限定されることを意図するものではない。   Next, the copper alloy plate of the present invention was prototyped and its performance was evaluated and will be described below. However, the description here is for illustrative purposes only and is not intended to be limiting.

溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。このインゴットを800℃で3時間加熱し、800℃で熱間圧延により厚み16mmの板状にした。熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取り焼鈍を行った。   After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 800 ° C. for 3 hours, and hot rolled at 800 ° C. to form a plate having a thickness of 16 mm. After grinding and removing the oxide scale on the surface of the hot rolled sheet with a grinder, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を300〜700℃の範囲で調整し、焼鈍後の結晶粒径と導電率を変化させた。焼鈍後の結晶粒径の測定においては、圧延方向に直角な断面を鏡面研磨後に化学腐食し、切断法(JIS H0501(1999年))により平均結晶粒径を求めた。   Annealing before final cold rolling (final recrystallization annealing) uses a batch furnace, adjusts the furnace temperature in the range of 300 to 700 ° C. with a heating time of 5 hours, and sets the crystal grain size and conductivity after annealing. Changed. In the measurement of the crystal grain size after annealing, a cross section perpendicular to the rolling direction was subjected to chemical corrosion after mirror polishing, and the average crystal grain size was determined by a cutting method (JIS H0501 (1999)).

冷間圧延の総加工度ならびに、最終冷間圧延(仕上圧延)の加工度、パス数およびワークロール直径を、表1に示すように各発明例及び比較例で変化させて制御した。
各条件の下で製造された銅合金板に対し、次の測定を行った。
As shown in Table 1, the total degree of cold rolling, the degree of final cold rolling (finish rolling), the number of passes, and the diameter of the work roll were changed and controlled in each invention example and comparative example.
The following measurement was performed with respect to the copper alloy plate manufactured under each condition.

(成分)
合金元素濃度はICP−質量分析法で分析した。
(component)
The alloy element concentration was analyzed by ICP-mass spectrometry.

(せん断試験)
厚さ0.1mmのサンプルを採取し、これを、直径9.98mmの円柱型のポンチと、クリアランスを0.01mm設けたダイスとの間に配置した状態で、速度0.1mm/minでパンチをダイに向けて変位させ、変位の増加に伴い、パンチ側に設けたロードセルで荷重を測ることにより、求めた変位―荷重曲線から半価幅を算出した。
(Shear test)
A sample with a thickness of 0.1 mm was taken and punched at a speed of 0.1 mm / min in a state where it was placed between a cylindrical punch with a diameter of 9.98 mm and a die with a clearance of 0.01 mm. The half width was calculated from the obtained displacement-load curve by measuring the load with a load cell provided on the punch side as the displacement increased.

(バリ高さ)
せん断試験後の円柱状の試験片の周囲に形成されたプレス破面を全周にわたって、光学顕微鏡(倍率1000倍)および実体顕微鏡を用いて観察し、バリの高さを測定した。バリの高さは1μm単位で測定した。
(Burr height)
The press fracture surface formed around the cylindrical test piece after the shear test was observed over the entire circumference using an optical microscope (magnification 1000 times) and a stereomicroscope, and the height of the burr was measured. The height of the burr was measured in units of 1 μm.

(引張強さ及び0.2%耐力)
JIS Z2241に準拠し、圧延方向と平行な方向及び、圧延方向と直角な方向のそれぞれに沿う向きに各試験片を採取して、それぞれの方向の引張試験を行うことにより、引張強さ及び0.2%耐力を求めた。
(Tensile strength and 0.2% yield strength)
In accordance with JIS Z2241, each test piece was sampled in a direction parallel to the rolling direction and a direction perpendicular to the rolling direction, and a tensile test in each direction was performed. .2% yield strength was determined.

(伸び)
JIS Z2241に準拠し、圧延方向と平行な方向及び、圧延方向と直角な方向のそれぞれに沿う向きに各試験片を採取して、標点間距離50mmとして、それぞれの方向の伸びを測定した。
(Elongation)
Based on JIS Z2241, each test piece was extract | collected in the direction along each of the direction parallel to a rolling direction, and the direction orthogonal to a rolling direction, and the elongation of each direction was measured as the distance between gauge points of 50 mm.

(導電率)
導電率は、試験片の長手方向が圧延方向と平行になるように銅合金板から試験片を採取し、JIS H0505に準拠し四端子法により20℃を測ることにより測定した。
(conductivity)
The conductivity was measured by taking a test piece from a copper alloy plate so that the longitudinal direction of the test piece was parallel to the rolling direction, and measuring 20 ° C. by a four-terminal method in accordance with JIS H0505.

発明例及び比較例の各条件を表1に、また測定により得られた結果を表2に示す。   Table 1 shows the conditions of the invention and comparative examples, and Table 2 shows the results obtained by the measurement.

表1及び2に示すところから、発明例1〜23ではいずれも、最終焼鈍時の平均結晶粒径を50μm以上とし、またワークロール直径/材料の板厚を40以上としたことにより、製造した銅合金板の変位―荷重曲線から求められる半価幅の、板厚に対する比(r)が0.2≦r≦0.7となるとともに、バリ高さが5以下でプレス打ち抜き性が良好なものとなった。また、発明例1〜23では、銅合金板の導電率が70%IACS以上であったため、電子部品に用いる場合等に要求される導電性を満たすものであった。   As shown in Tables 1 and 2, in each of Invention Examples 1 to 23, the average crystal grain size at the time of final annealing was set to 50 μm or more, and the work roll diameter / material thickness was set to 40 or more. The ratio (r) of the half width obtained from the displacement-load curve of the copper alloy plate to the plate thickness is 0.2 ≦ r ≦ 0.7, and the burr height is 5 or less and the press punching property is good. It became a thing. In Invention Examples 1 to 23, since the conductivity of the copper alloy plate was 70% IACS or more, the conductivity required when used for electronic parts was satisfied.

これに対し、比較例1では、Snの添加量が0.007質量%と少なかったことにより、銅合金板の半価幅の、板厚に対する比(r)が大きくなり、バリ高さも高くなった。
比較例2、5では、最終焼鈍の温度が低く、かつ最終焼鈍時の平均結晶粒径が小さかった結果として、銅合金板の半価幅の、板厚に対する比(r)が大きくなり、比較例1ほどではないもののバリ高さが高くなった。
On the other hand, in Comparative Example 1, since the amount of Sn added was as small as 0.007% by mass, the ratio (r) of the half width of the copper alloy plate to the plate thickness was increased, and the burr height was also increased. It was.
In Comparative Examples 2 and 5, as a result of the final annealing temperature being low and the average crystal grain size at the time of final annealing being small, the ratio (r) of the half-value width of the copper alloy plate to the plate thickness was increased. Although not as high as in Example 1, the burr height was high.

比較例3、6では、最終冷間圧延の初期のパスで、ワークロール直径/材料の板厚が小さかったため、銅合金板の半価幅の、板厚に対する比(r)が大きくなり、バリ高さが高くなった。
比較例4では、仕上圧延でワークロール直径を大きくした初期のパス数が少なかったことにより、材料が大径のワークロールによる圧延を十分に受けなかったので、銅合金板の半価幅の、板厚に対する比(r)が大きくなり、バリ高さが高くなった。
なお、比較例7では、銅合金板の半価幅の、板厚に対する比(r)は所定の範囲内となったが、Pの添加量が多かったことに起因して導電率が小さくなった。
In Comparative Examples 3 and 6, since the work roll diameter / material thickness was small in the initial pass of the final cold rolling, the ratio (r) of the half-value width to the thickness of the copper alloy sheet increased, The height has increased.
In Comparative Example 4, since the number of initial passes in which the work roll diameter was increased by finish rolling was small, the material was not sufficiently rolled by the work roll having a large diameter. The ratio (r) to the plate thickness was increased, and the burr height was increased.
In Comparative Example 7, the ratio (r) of the half width of the copper alloy plate to the plate thickness was within a predetermined range, but the conductivity decreased due to the large amount of P added. It was.

以上の結果より、この発明の銅合金板によれば、バリの発生を有効に抑制することができ、プレス打ち抜き性を改善できることが解かった。   From the above results, it was found that according to the copper alloy plate of the present invention, the generation of burrs can be effectively suppressed and the press punchability can be improved.

Claims (5)

0.01〜0.3質量%のSnを含有し、残部が銅およびその不可避的不純物から成り、
70%IACS以上の導電率を有し、且つ、せん断試験における変位―荷重曲線から求められる半価幅の、板厚に対する比(r)が0.2≦r≦0.7である銅合金板。
0.01 to 0.3% by mass of Sn, with the balance being copper and its inevitable impurities,
Copper alloy sheet having a conductivity of 70% IACS or more and a ratio (r) of a half width obtained from a displacement-load curve in a shear test to a sheet thickness of 0.2 ≦ r ≦ 0.7 .
導電率が75%IACS以上であり、圧延平行方向の0.2%耐力が450MPa以上、且つ、圧延直角方向の0.2%耐力/圧延平行方向の0.2%耐力が1.0以上である請求項1に記載の銅合金板。   Conductivity is 75% IACS or more, 0.2% proof stress in the rolling parallel direction is 450 MPa or more, and 0.2% proof stress in the direction perpendicular to rolling / 0.2% proof stress in the rolling parallel direction is 1.0 or more. The copper alloy plate according to claim 1. 圧延平行方向の伸びに対する圧延直角方向の伸びの比が、0.8以上かつ1.2以下である請求項1又は2に記載の銅合金板。   The copper alloy sheet according to claim 1 or 2, wherein a ratio of elongation in the direction perpendicular to the rolling to elongation in the rolling parallel direction is 0.8 or more and 1.2 or less. P、Ag、Ni、Mn、Mg、Zn、BおよびCaからなる群から選ばれる元素の少なくとも1種を合計0.1質量%以下でさらに含有する請求項1〜3のいずれか一項に記載の銅合金板。   The at least 1 sort (s) of the element chosen from the group which consists of P, Ag, Ni, Mn, Mg, Zn, B, and Ca is further contained at a total of 0.1 mass% or less, The any one of Claims 1-3 further containing. Copper alloy plate. 請求項1〜4のいずれか一項に記載の銅合金板を備えるプレス成形品。   A press-molded article comprising the copper alloy plate according to any one of claims 1 to 4.
JP2015070162A 2015-03-30 2015-03-30 Copper alloy plate and press-molded product including the same Active JP6085633B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015070162A JP6085633B2 (en) 2015-03-30 2015-03-30 Copper alloy plate and press-molded product including the same
KR1020160036683A KR101822740B1 (en) 2015-03-30 2016-03-28 Copper alloy sheet and press-molded product with the same
CN201610185932.7A CN106011523B (en) 2015-03-30 2016-03-29 Copper alloy plate and with its manufacturing press-molded products
TW105110108A TWI607098B (en) 2015-03-30 2016-03-30 Copper alloy plate and stamped product with copper alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070162A JP6085633B2 (en) 2015-03-30 2015-03-30 Copper alloy plate and press-molded product including the same

Publications (2)

Publication Number Publication Date
JP2016191088A JP2016191088A (en) 2016-11-10
JP6085633B2 true JP6085633B2 (en) 2017-02-22

Family

ID=57081955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070162A Active JP6085633B2 (en) 2015-03-30 2015-03-30 Copper alloy plate and press-molded product including the same

Country Status (4)

Country Link
JP (1) JP6085633B2 (en)
KR (1) KR101822740B1 (en)
CN (1) CN106011523B (en)
TW (1) TWI607098B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019112A (en) 2018-08-02 2020-02-06 トヨタ自動車株式会社 Dividing device and dividing method
JP6790153B2 (en) * 2019-03-04 2020-11-25 Jx金属株式会社 A method for manufacturing a rolled copper foil for a secondary battery negative electrode current collector, a secondary battery negative electrode current collector and a secondary battery using the rolled copper foil, and a rolled copper foil for a secondary battery negative electrode current collector.
JP7034112B2 (en) * 2019-03-26 2022-03-11 Jx金属株式会社 Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials
JP7351171B2 (en) * 2019-09-27 2023-09-27 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, copper alloy sheets and strips for electronic and electrical equipment, parts for electronic and electrical equipment, terminals, and bus bars

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813066A (en) 1994-06-23 1996-01-16 Mitsubishi Shindoh Co Ltd Copper alloy or copper alloy sheet, excellent in stamping property
JP2003055722A (en) * 2001-08-10 2003-02-26 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate sheet
JP3871064B2 (en) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 Copper alloy plate for electrical connection parts
JP4247922B2 (en) 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same
JP4157898B2 (en) 2006-10-02 2008-10-01 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent press punchability
CN101709402B (en) * 2009-12-11 2011-05-18 九星控股集团有限公司 Cu-Sn-Te-P alloy strip for automobile water tank radiator
JP4601085B1 (en) * 2010-06-03 2010-12-22 Jx日鉱日石金属株式会社 Cu-Co-Si-based copper alloy rolled plate and electrical component using the same
JP2012224922A (en) 2011-04-20 2012-11-15 Jx Nippon Mining & Metals Corp Copper alloy, and method of manufacturing the same
JP6128976B2 (en) * 2012-09-20 2017-05-17 Jx金属株式会社 Copper alloy and high current connector terminal material
JP5427971B1 (en) * 2013-03-25 2014-02-26 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6246502B2 (en) * 2013-06-13 2017-12-13 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6081513B2 (en) 2015-03-30 2017-02-15 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts

Also Published As

Publication number Publication date
CN106011523A (en) 2016-10-12
KR101822740B1 (en) 2018-01-26
KR20160117242A (en) 2016-10-10
CN106011523B (en) 2018-06-08
JP2016191088A (en) 2016-11-10
TW201702394A (en) 2017-01-16
TWI607098B (en) 2017-12-01

Similar Documents

Publication Publication Date Title
US10392680B2 (en) Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
TWI521073B (en) Copper alloy plate, and with its high current with electronic components and thermal electronic components
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP6085633B2 (en) Copper alloy plate and press-molded product including the same
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP2014189816A (en) Copper alloy sheet, electronic component for heat release having the same, manufacturing method of copper alloy sheet
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP5869288B2 (en) Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
US20180245183A1 (en) Copper alloy for electronic and electric device, component for electronic and electric device, terminal, and bus bar
KR102121180B1 (en) Cu-Ni-Si BASED COPPER ALLOY HAVING EXCELLENT WEAR-RESISTANCE OF MOLDING
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP6845885B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP6154996B2 (en) High-strength copper alloy material and manufacturing method thereof
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP6816056B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
JP2015017280A (en) Cu-Zr-Ti-BASED COPPER ALLOY STRIP

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6085633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250