JP6088741B2 - Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof - Google Patents

Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof Download PDF

Info

Publication number
JP6088741B2
JP6088741B2 JP2012061252A JP2012061252A JP6088741B2 JP 6088741 B2 JP6088741 B2 JP 6088741B2 JP 2012061252 A JP2012061252 A JP 2012061252A JP 2012061252 A JP2012061252 A JP 2012061252A JP 6088741 B2 JP6088741 B2 JP 6088741B2
Authority
JP
Japan
Prior art keywords
phase
mass
copper alloy
less
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061252A
Other languages
Japanese (ja)
Other versions
JP2013194268A (en
Inventor
亮佑 松尾
亮佑 松尾
立彦 江口
立彦 江口
清慈 廣瀬
清慈 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2012061252A priority Critical patent/JP6088741B2/en
Publication of JP2013194268A publication Critical patent/JP2013194268A/en
Application granted granted Critical
Publication of JP6088741B2 publication Critical patent/JP6088741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は銅合金材料およびその製造方法に関し、EV、HEVを中心とした車載部品および周辺インフラや太陽光発電システムなどのコネクタや端子材のほか、リードフレーム、リレー、スイッチ、ソケット等に適用される銅合金材およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a copper alloy material and a method for manufacturing the same, and is applied to lead frames, relays, switches, sockets, etc. in addition to connectors and terminal materials such as in-vehicle components such as EV and HEV, peripheral infrastructure, and photovoltaic power generation systems. The present invention relates to a copper alloy material and a manufacturing method thereof.

EV、HEVを中心とした車載部品および周辺インフラや太陽光発電システムなどのコネクタや端子材、その他リードフレーム、リレー、スイッチ、ソケットなどの用途に使用される銅合金材料に要求される特性項目としては、例えば導電率や耐応力緩和特性が挙げられる。近年、各システムの高電圧化や使用環境の高温化が進行しており、通電ロスの減少や高温環境下での端子の信頼性向上が求められている。従って、導電率や耐応力緩和特性の要求レベルが同時に高まっている。   As characteristic items required for automotive parts such as EV and HEV, connectors and terminal materials for peripheral infrastructure and solar power generation systems, and other copper alloy materials used for lead frames, relays, switches, sockets, etc. For example, conductivity and stress relaxation resistance can be mentioned. In recent years, each system has been increased in voltage and used in high temperatures, and there has been a demand for reduction in energization loss and improvement in the reliability of terminals in a high temperature environment. Accordingly, the required levels of conductivity and stress relaxation resistance are simultaneously increasing.

一方で、このような銅合金材料は、プレス性も求められている。端子製造時のプレス過程では、プレス回数が増すと金型が徐々に磨耗していき、最終的には打ち抜き材の寸法が維持できなくなるため金型交換が必要となる。従って、製品となる端子等の生産性を上げるためには、プレス性の良い銅合金材料を提供することによって、交換までの金型打ち抜き回数を十分に確保しなければならない。   On the other hand, such copper alloy materials are also required to have pressability. In the pressing process at the time of manufacturing the terminal, as the number of presses increases, the mold gradually wears and eventually the dimensions of the punched material cannot be maintained, so that the mold needs to be replaced. Therefore, in order to increase the productivity of terminals and the like that are products, it is necessary to sufficiently secure the number of times of die punching until replacement by providing a copper alloy material with good pressability.

Cu−Cr系合金は中程度の強度と高導電を有していることで知られている。特許文献1,2では、耐熱性の改善を、Ti,P,Fe,Co,Ni添加や、Al,Mg添加にて試みている。また、Cu−Cr系合金は従来プレス性が悪く、そのプレス性はPbやSeを添加することで改善されることが知られている(特許文献3,4)。また、特許文献5にあるように、化合物サイズを制御することにより、Cu−Cr系合金の特性を改善できることが知られている。   Cu-Cr alloys are known to have moderate strength and high conductivity. Patent Documents 1 and 2 attempt to improve heat resistance by adding Ti, P, Fe, Co, Ni, or adding Al, Mg. Moreover, it is known that Cu-Cr alloys have poor pressability in the past, and the pressability is improved by adding Pb or Se (Patent Documents 3 and 4). Further, as disclosed in Patent Document 5, it is known that the characteristics of the Cu—Cr alloy can be improved by controlling the compound size.

特許第4132451号公報Japanese Patent No. 4132451 特開昭61−99642号公報JP-A-61-99642 特開平8−13066号公報JP-A-8-13066 特開平11−323463号公報JP-A-11-323463 特開昭59−193233号公報JP 59-193233 A

EVのバッテリー、ジャンクションボックス、充電口やPVのモジュールのような大電流が通電される端子は板の厚みがあり、金型磨耗はこれまでの薄板条よりも頻繁に起きるために改善の要求が強まっている。これまでCu−Cr系合金においてプレス性改善されたものには、上記のようにPbやSeを添加元素として加えており、環境面においての配慮は不十分である。   Terminals that are energized with a large current, such as EV batteries, junction boxes, charging ports, and PV modules, have plate thickness, and mold wear occurs more frequently than conventional thin strips, so there is a need for improvement. It is getting stronger. To date, Cu-Cr alloys with improved pressability have added Pb and Se as additive elements as described above, and environmental considerations are insufficient.

上記のような課題に鑑み、本発明の目的は、EV、HEVを中心とした車載部品および周辺インフラや太陽光発電システムなどのリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した優れた強度、導電性、耐応力緩和特性を有しており、更にPbやSeを加えずプレス時の金型耐摩耗性に優れた銅合金材料およびその製造方法を提供することにある。   In view of the problems as described above, the object of the present invention is to provide connectors and terminals for automobiles, such as EV, HEV-mounted parts, peripheral frames, lead frames such as solar power generation systems, connectors, and terminal materials. Copper alloy material with excellent strength, conductivity and stress relaxation resistance suitable for materials, relays, switches, etc., and excellent die wear resistance during pressing without adding Pb or Se, and its manufacture It is to provide a method.

本発明者らは、検討を重ね、電気・電子部品用途に適した銅合金材について研究を行い、製品が有する組織において、0.01μm以上0.1μm未満の直径サイズの第2相Aの密度が1×10個/mm2を越え、0.1〜5μmの直径サイズの第2相Bの密度が1×10個/mm2を越えて存在しているCu−Cr系合金材において、強度、導電性、耐応力緩和特性に優れ、更にプレス性を改善させることを見出した。 The present inventors have studied and studied copper alloy materials suitable for electric / electronic component applications, and in the structure of the product, the density of the second phase A having a diameter size of 0.01 μm or more and less than 0.1 μm. In a Cu-Cr alloy material in which the density of the second phase B having a diameter of 0.1 to 5 μm exceeds 1 × 10 6 pieces / mm 2 and the density of the second phase B exceeds 1 × 10 3 pieces / mm 2 The present inventors have found that it is excellent in strength, conductivity, and stress relaxation resistance and further improves pressability.

すなわち、上記課題は以下の発明により解決された。
(1)Crを0.1〜1.2mass%含有し、Mgを0.15mass%以下,Tiを0.06mass%以下,Zrを0.10mass%以下,Znを0.20mass%以下,Feを0.08mass%以下,Snを0.25mass%以下,Agを0.10mass%以下,及びSiを0.03mass%以下から選ばれる少なくとも一種を合計で0.005〜0.5mass%含有し、残部が銅と不可避不純物からなり、
電子顕微鏡(例えば、SEM,TEM)の電子像又は透過像から、粒子の重心を通り、最も直径が大きくなる長径と、最も直径が小さくなる短径を測定して各粒子の長径/短径の比であるアスペクト比を算出し、長径と短径の平均値を直径サイズとした際に、0.01μm以上0.1μm未満の直径サイズの第2相を第2相A、0.1〜5μmの直径サイズの第2相を第2相Bとしたときに、第2相Aの密度が1×10個/mm2を越え、第2相Bの密度が1×10個/mm2を越えて存在しており、
引張強度が500MPaを越え、導電率が75%IACSを越え、応力緩和率が25%未満であることを特徴とする銅合金材。
(2)前記第2相Bのアスペクト比について、長径を短径で割った平均値が10〜50となる(1)に記載の銅合金材。
(3)(1)または(2)に記載の銅合金材の製造方法であって、
前記銅合金材を与える合金組成の銅合金原料に、鋳造[工程1]、均質化熱処理工程[工程2]、熱間加工工程[工程3]、冷間加工後、必要に応じ熱処理と冷間加工とを繰り返す加工工程[工程4]、時効熱処理工程[工程5]、最終冷間圧延工程[工程6]、歪取焼鈍工程[工程7]を施すにあたり、
前記均質化熱処理[工程2]を900〜1000℃で0.5〜8時間行い、
鋳造[工程1]後からの総圧延率を90〜99.95%とし、最終冷間圧延工程[工程6]の加工率を0〜30%とする
銅合金材の製造方法。
That is, the said subject was solved by the following invention.
(1) 0.1 to 1.2 mass% of Cr, 0.15 mass% or less of Mg, 0.06 mass% or less of Ti, 0.10 mass% or less of Zr, 0.20 mass% or less of Zn, Fe 0.05 mass% or less, Sn is 0.25 mass% or less, Ag is 0.10 mass% or less, and Si is contained in a total amount of 0.005 to 0.5 mass%, and the balance. Consists of copper and inevitable impurities,
From the electron image or transmission image of an electron microscope (for example, SEM, TEM), the major axis having the largest diameter and the minor axis having the smallest diameter pass through the center of gravity of the particle, and the major axis / minor axis of each particle is measured. The aspect ratio as a ratio is calculated, and when the average value of the major axis and the minor axis is the diameter size, the second phase having a diameter size of 0.01 μm or more and less than 0.1 μm is designated as the second phase A, 0.1 to 5 μm. When the second phase having a diameter size of 2 is the second phase B, the density of the second phase A exceeds 1 × 10 6 pieces / mm 2 and the density of the second phase B is 1 × 10 3 pieces / mm 2. Exist beyond
A copper alloy material characterized by a tensile strength exceeding 500 MPa, an electrical conductivity exceeding 75% IACS, and a stress relaxation rate being less than 25%.
(2) The copper alloy material according to (1), wherein an average value obtained by dividing the major axis by the minor axis is 10 to 50 with respect to the aspect ratio of the second phase B.
(3) A method for producing a copper alloy material according to (1) or (2),
To the copper alloy raw material having an alloy composition to give the copper alloy material, casting [step 1], homogenization heat treatment step [step 2], hot working step [step 3], after cold working, heat treatment and cold as necessary In performing the processing step [Step 4] that repeats processing, the aging heat treatment step [Step 5], the final cold rolling step [Step 6], and the strain relief annealing step [Step 7]
The homogenization heat treatment [Step 2] is performed at 900 to 1000 ° C. for 0.5 to 8 hours,
A method for producing a copper alloy material in which the total rolling rate after casting [Step 1] is 90 to 99.95% and the processing rate in the final cold rolling step [Step 6] is 0 to 30%.

本発明のCu−Cr系を中心とした銅合金材料は、特に耐応力緩和特性に優れ、中程度の強度と高導電性を有し、EV、HEVを中心とした車載部品および周辺インフラや太陽光発電システムなどのリードフレーム、コネクタ、端子材等に好適である。しかもプレス時の金型磨耗量を抑制する効果に優れており、プレス加工での生産性が高い。   The copper alloy material centering on the Cu-Cr system of the present invention is particularly excellent in stress relaxation resistance, has a medium strength and high conductivity, and is equipped with automotive components such as EV and HEV, peripheral infrastructure and solar power. It is suitable for lead frames, connectors, terminal materials, etc. for photovoltaic systems. Moreover, it has an excellent effect of suppressing the amount of die wear during pressing, and the productivity in pressing is high.

本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。なお、実施形態として板材、条材について以下に説明する。
なお、本発明の銅合金材は、その特性を組織中の化合物分布状態、およびその形状を規定している。しかし、これは銅合金材としてそのような特性を有しておれば良いのであって、銅合金材の形状は板材や条材に限定されるものではない。
A preferred embodiment of the copper alloy material of the present invention will be described in detail. Here, the “copper alloy material” is a material obtained by processing a copper alloy material (having a predetermined alloy composition before processing) into a predetermined shape (for example, plate, strip, foil, bar, wire, etc.) Means. In addition, a board | plate material and a strip are demonstrated below as embodiment.
In addition, the copper alloy material of this invention has prescribed | regulated the characteristic the compound distribution state in a structure | tissue, and its shape. However, as long as it has such characteristics as a copper alloy material, the shape of the copper alloy material is not limited to a plate material or a strip material.

また、本発明において第2相とは、銅母相(第1相)に対して、添加元素が析出、晶出等した相である。添加元素が固溶状態以外に変態している状態であれば第2相と呼ぶことができる。すなわち、第2相は添加元素(Cr,Ti,Zr,Fe,Siなど)が反応してできる化合物や単体であり、金属間化合物に限定されない。例えば、具体的にはCr系化合物であればCrTi,CrZr,CrSiなどである。当然、晶出・析出したCr単体も第2相に含まれる。
この第2相の形成は、合金製造の、合金組成の調整、均質化熱処理工程、熱間圧延工程、各熱処理工程(あるいはこれらの1つ又は2つ以上の組み合わせ)などで、析出促進される温度域である300℃以上で数時間熱処理することで行うことができる。
以下に述べる第2相Aと第2相Bは、そのサイズが異なっていれば種類は同じでも異なっていてもよい。
In the present invention, the second phase is a phase in which an additive element is precipitated and crystallized from the copper matrix phase (first phase). If the additive element is in a transformed state other than a solid solution state, it can be called a second phase. That is, the second phase is a compound or simple substance formed by reaction of an additive element (Cr, Ti, Zr, Fe, Si, etc.), and is not limited to an intermetallic compound. For example, specifically CrCr, CrZr, CrSi and the like are Cr-based compounds. Naturally, the crystallized / precipitated Cr alone is also included in the second phase.
The formation of this second phase is promoted by precipitation in adjustment of alloy composition, homogenization heat treatment step, hot rolling step, each heat treatment step (or a combination of one or more of these), etc. in alloy production. The heat treatment can be performed at a temperature range of 300 ° C. or higher for several hours.
The second phase A and the second phase B described below may be the same or different as long as their sizes are different.

(添加元素:Cr)
本発明は、強度と導電性を確保するため、Cu−Cr系合金材を対象とする。ここでCrは析出により2つの寄与をする。
1つは従来通りの析出硬化であり、0.01μm以上0.1μm未満の直径サイズの第2相(以下第2相Aという)が寄与する。またこのサイズのCr系化合物は耐応力緩和特性にも寄与するため、少なすぎると耐熱性が大きく下がる場合がある。
なお、本発明における直径サイズとは、電子顕微鏡(SEM,TEM)の電子像や透過像から、粒子の重心を通り、最も直径が大きくなる長径と、最も直径が小さくなる短径を測定して各粒子の長径/短径(アスペクト比)を算出した後、長径と短径の平均値を求めた値をいう。
(Additive element: Cr)
The present invention is directed to a Cu—Cr alloy material in order to ensure strength and conductivity. Here, Cr contributes two by precipitation.
One is conventional precipitation hardening, and a second phase (hereinafter referred to as second phase A) having a diameter size of 0.01 μm or more and less than 0.1 μm contributes. Further, since a Cr-based compound of this size also contributes to stress relaxation resistance, if it is too small, the heat resistance may be greatly reduced.
The diameter size in the present invention refers to the measurement of the major axis with the largest diameter and the minor axis with the smallest diameter passing through the center of gravity of the particle from an electron image or transmission image of an electron microscope (SEM, TEM). After calculating the major axis / minor axis (aspect ratio) of each particle, the average value of the major axis and the minor axis is obtained.

もう1つはプレス時の金型磨耗量を抑制する効果(プレス性)であり、0.1〜5μmサイズの化合物(以下化合物Bという)が寄与する。化合物についてはいずれもCrを成分として含有しており、その他の添加元素及びCuが含まれていても良い。ここで先行技術文献でも示している特許文献5には、同様のCu−Cr系合金を成分とし、その組織について、0.10〜50μm径の化合物が100〜100000個/mm存在した発明を示している。後に実施例で示すが、特許文献5のプロセスにて製造した合金は、同文献中の化合物密度を有しておらず、また、別プロセスにて化合物数が上記範囲内にあるよう制御すると、本発明が示す強度、導電性、耐熱性(耐応力緩和特性)、並びにプレス性は同時に成立しない。本発明においては、特許文献5に対しより小さいサイズの第2相Aを規定していることが特に重要であり、これが発明に対し有効に寄与しているところが、特許文献5と大きく異なっている。 The other is the effect of suppressing the amount of die wear during pressing (pressability), and a compound having a size of 0.1 to 5 μm (hereinafter referred to as compound B) contributes. All of the compounds contain Cr as a component, and may contain other additive elements and Cu. Here, Patent Document 5 also shown in the prior art document describes an invention in which the same Cu—Cr alloy is used as a component, and the structure has 100 to 100,000 / mm 2 of a compound having a diameter of 0.10 to 50 μm. Show. As shown in Examples later, the alloy produced by the process of Patent Document 5 does not have the compound density in the same document, and when the number of compounds is controlled to be within the above range by another process, The strength, conductivity, heat resistance (stress relaxation resistance), and pressability exhibited by the present invention are not simultaneously established. In the present invention, it is particularly important that the second phase A having a smaller size is specified with respect to Patent Document 5, and this contributes effectively to the invention, but is greatly different from Patent Document 5. .

第2相のサイズが0.01μm未満であると強度、プレス性の双方に寄与しない。0.01μm以上0.1μm未満であると強度には寄与するが、プレス性には寄与しない。0.1〜5μmであるとプレス性には寄与するが、強度には寄与しない。5μmを越えると、強度、プレス性の双方に寄与せず、かつその第2相が存在することで製造プロセス中の割れを引き起したりする可能性があり、靭性、疲労などの特性劣化をもたらすこともある。また、規定外の第2相が出来ることで所定の必要なサイズの第2相が出来なくなってしまい、材料強化、もしくはプレス性改善が望めなくなってしまう。   If the size of the second phase is less than 0.01 μm, it does not contribute to both strength and pressability. If it is 0.01 μm or more and less than 0.1 μm, it contributes to strength but does not contribute to pressability. When it is 0.1 to 5 μm, it contributes to pressability but does not contribute to strength. If it exceeds 5 μm, it does not contribute to both strength and pressability, and the presence of the second phase may cause cracking during the manufacturing process, resulting in deterioration of properties such as toughness and fatigue. Sometimes it brings. In addition, if the second phase outside the specification is formed, the second phase having a predetermined required size cannot be formed, and the material strengthening or pressability improvement cannot be expected.

A,B両第2相の数は、ある一定の析出量において、一方が多いと他方が少なくなる関係にある。両サイズの第2相が一定量存在していることが、双方の特性を十分に満たすために必要で、第2相Aの密度が1×10個/mm2を越え、第2相Bの密度が1×10個/mm2を越えて存在する。好ましくはAについては3×10〜5×1012個/mm、Bについては1×10個/mmを越え5×10個/mm以下の密度で存在することで、製造性を従来のCu−Cr系合金と同等に保ちながら、特性面において、強度とプレス性の双方の特性改善が成された合金材となる。 The number of the second phases of both A and B has a relationship that when one is larger, the other is smaller at a certain precipitation amount. The presence of a certain amount of the second phase of both sizes is necessary in order to sufficiently satisfy both characteristics. The density of the second phase A exceeds 1 × 10 6 pieces / mm 2 , and the second phase B Density exceeds 1 × 10 3 / mm 2 . Preferably, A is present at a density of 3 × 10 6 to 5 × 10 12 pieces / mm 2 , and B is present at a density exceeding 1 × 10 3 pieces / mm 2 and not more than 5 × 10 5 pieces / mm 2. The alloy material is improved in both strength and pressability in terms of properties while maintaining the same properties as conventional Cu-Cr alloys.

本発明では、Cr含有量は0.1〜1.2mass%の範囲にある。含有量が多いほど、有効サイズの第2相が増え、強度とプレス時の金型磨耗を改善する効果は大きくなる。含有量が少ないとその第2相の総量は有効量以下となり十分な特性改善には至らない。一方含有量が多すぎると5μm以上の第2相が生成したり、有効サイズであってもその総量が規定の範囲以上に増加したりして、共に製造プロセス中の割れを引き起こす可能性があり、靭性、疲労などの特性劣化をもたらすこともある。   In the present invention, the Cr content is in the range of 0.1 to 1.2 mass%. The greater the content, the greater the effective size second phase, and the greater the effect of improving strength and die wear during pressing. If the content is small, the total amount of the second phase becomes less than the effective amount, and sufficient characteristics cannot be improved. On the other hand, if the content is too large, a second phase of 5 μm or more may be formed, or even if it is an effective size, the total amount may exceed the specified range, and both may cause cracking during the manufacturing process. It may cause deterioration of properties such as toughness and fatigue.

(添加元素:Mg,Ti,Zr,Zn,Fe,Sn,Ag,Si)
これらの元素は、それぞれ次の役割を果たす。
Mg,Snは固溶、Ti,Siの一部は固溶し、またZr,Ti,Siは第2相を形成し耐応力緩和特性を改善し、強化にも寄与する。固溶元素に関しては、同時に添加すると単独添加時よりも耐応力緩和に対しより大きな効果を示すものもあり、特にSn,Mg同時添加した場合それぞれを単独で添加するより有効である。
(Additive elements: Mg, Ti, Zr, Zn, Fe, Sn, Ag, Si)
Each of these elements plays the following role.
Mg and Sn are solid solution, and part of Ti and Si are solid solution, and Zr, Ti and Si form a second phase to improve the stress relaxation resistance and contribute to strengthening. Some solid solution elements have a greater effect on stress relaxation than when they are added at the same time, and are particularly effective when Sn and Mg are added simultaneously, respectively.

また、これら上記の元素は固溶状態時に粒界の移動を妨げるドラッグ効果をもたらすことができ、これは本規定内の平均結晶粒の成長に対し有効である。そのため、急激な粒粗大化を抑制することができ、変動係数の制御に対し有効に寄与することができる。
いずれも添加量が少ないと効果を得られず、添加量が多いと第2相を形成する場合は溶解、鋳造、熱間圧延時の製造性に対し著しく悪影響を与え、固溶状態にある場合は導電率を減少させる。
In addition, these above-mentioned elements can bring about a drag effect that hinders the movement of the grain boundary in the solid solution state, which is effective for the growth of the average grain within this rule. Therefore, rapid grain coarsening can be suppressed, and it can contribute effectively to control of the coefficient of variation.
In any case, if the added amount is small, the effect cannot be obtained, and if the added amount is large, the formation of the second phase has a significant adverse effect on the productivity during melting, casting and hot rolling, and is in a solid solution state. Decreases the conductivity.

銅合金材中の含有量がCrに関しては0.1〜0.8mass%、その他添加元素に関しては合計で0.005〜0.5mass%である。Crおよびその他第2相を形成する元素については、その含有量および工程条件中の熱処理条件等を制御することで、強度に寄与する第2相、プレス性改善に寄与する第2相を制御する。また、固溶状態にある元素によるドラッグ効果にて、結晶粒径とその変動係数を制御することで、耐応力緩和特性向上に寄与することが出来る。   The content in the copper alloy material is 0.1 to 0.8 mass% for Cr, and 0.005 to 0.5 mass% in total for other additive elements. For Cr and other elements forming the second phase, the second phase contributing to strength and the second phase contributing to pressability improvement are controlled by controlling the content and heat treatment conditions in the process conditions. . Further, by controlling the crystal grain size and its coefficient of variation by the drag effect by the element in the solid solution state, it is possible to contribute to the improvement of the stress relaxation resistance.

(製造方法)
次に、本発明の銅合金材料の製造方法(化合物Aと化合物Bの制御方法)について説明する。ここでは、析出型銅合金の板材(条材)を例に挙げて説明するが、析出を利用する固溶型合金材に展開することが可能である。本発明の板材(条材)の厚さは特に制限はないが、好ましくは0.05〜5mmである。
(Production method)
Next, the manufacturing method (control method of the compound A and the compound B) of the copper alloy material of this invention is demonstrated. Here, a plate material (strip material) of a precipitation type copper alloy will be described as an example, but it can be developed into a solid solution type alloy material utilizing precipitation. The thickness of the plate material (strip material) of the present invention is not particularly limited, but is preferably 0.05 to 5 mm.

本発明合金は、鋳造[工程1]後、均質化熱処理[工程2]として900℃〜1000℃、0.5〜8時間の加熱を行う。この熱処理によって、鋳造で生成された晶出物、析出物のサイズや密度の一次的な制御を行い、後の工程によって第2相AおよびBのサイズと密度を満足できるようにしている。従来、この均質化熱処理では極力固溶状態とする高温熱処理が行われてきたが、本願では課題解決のために低い温度域で均質化熱処理を行っている。   The alloy of the present invention is heated at 900 ° C. to 1000 ° C. for 0.5 to 8 hours as a homogenization heat treatment [Step 2] after casting [Step 1]. By this heat treatment, primary control of the size and density of the crystallized product and precipitates produced by casting is performed, and the size and density of the second phases A and B can be satisfied by the subsequent steps. Conventionally, this homogenization heat treatment has been performed by high-temperature heat treatment in a solid solution state as much as possible. However, in this application, the homogenization heat treatment is performed in a low temperature range in order to solve the problem.

なお、強度に寄与しないため従来では添加されることがないような、例えば0.5mass%超のCr添加量においては、第2相Bに相当する第2相は1000℃超でも十分な密度で残存する。よって、強化を目的とした固溶を促進させるために1000℃超の処理を施すことも可能である。処理温度の上限としては、材料強度が極端に落ち、熱処理中、もしくはその後の熱間圧延にて鋳塊形状が大きく部分変形してしまう約1050℃が目安となる。   It should be noted that, for example, in the case where Cr is added in an amount exceeding 0.5 mass%, which does not contribute to the strength, for example, the second phase corresponding to the second phase B has a sufficient density even if it exceeds 1000 ° C. Remains. Therefore, in order to promote the solid solution for the purpose of strengthening, it is possible to perform a treatment at over 1000 ° C. The upper limit of the processing temperature is about 1050 ° C., at which the material strength is extremely lowered and the ingot shape is largely deformed during the heat treatment or in the subsequent hot rolling.

均質化熱処理が終わった後は、一般的な熱間圧延を施し[工程3]、冷間圧延と、必要に応じ熱処理と冷間圧延とを繰り返す工程をとる[工程4]。その後、時効熱処理工程[工程5]、最終冷間圧延工程[工程6]、歪取焼鈍工程[工程7]を施す。このとき、鋳造終了時から、製品板厚に至るまでの圧延率が全体で90〜99.95%であると、プレス時に剪断面よりも金型磨耗への影響が小さい破断面の面積率が高くなることから、一層プレス性の改善に至る。また、適切な歪を導入することで析出密度をより大きくすることができることから、強化を望める。その状態にてCr系の0.1〜5μmの共晶化合物および粗大析出物は、粒子の重心を通り、最も直径が大きくなる長径を、最も直径が小さくなる短径で割った値(アスペクト比)の平均が10〜50にあることが好ましい。アスペクト比の測定方法は上記直径サイズの測定で述べた。
この圧延率が90%より低いと、プレス性が劣化したり、強度が低下したりすることがある。圧延率が99.95%より高いと、材料が破壊される可能性が格段と高くなることがある。
After the homogenization heat treatment is completed, general hot rolling is performed [Step 3], and cold rolling and, if necessary, heat treatment and cold rolling are repeated [Step 4]. Thereafter, an aging heat treatment step [Step 5], a final cold rolling step [Step 6], and a strain relief annealing step [Step 7] are performed. At this time, when the rolling ratio from the end of casting to the product sheet thickness is 90 to 99.95% as a whole, the area ratio of the fractured surface is less affected by the wear of the mold than the sheared surface during pressing. Since it becomes higher, the pressability is further improved. In addition, the precipitation density can be increased by introducing an appropriate strain, so that strengthening can be expected. In this state, the Cr-based eutectic compound of 0.1 to 5 μm and the coarse precipitate pass through the center of gravity of the particle, and the value obtained by dividing the major axis with the largest diameter by the minor axis with the smallest diameter (aspect ratio). ) Is preferably 10 to 50. The method for measuring the aspect ratio has been described in the measurement of the diameter size.
When this rolling rate is lower than 90%, the pressability may be deteriorated or the strength may be lowered. If the rolling rate is higher than 99.95%, the possibility that the material is destroyed may be remarkably increased.

Cu−Cr系のような析出型合金の従来工程では、最終の再結晶溶体化処理、もしくは時効熱処理までに固溶状態を維持する工程条件が一般的であり、鋳造時の晶出物は再固溶させるのが常である。
本発明の銅合金材料の製造方法としては鋳造、均質化熱処理、熱間加工、冷間加工、その後必要に応じて熱処理と冷間圧延を繰返し行う。鋳造後の均質化熱処理では、従来製法はより良好な固溶状態にするために、高温の熱処理を行い、鋳造時に形成された第2相を固溶させるか、最低限の加熱を行い、速やかに熱延を行うのが一般であるが、本発明では晶出物を過度に固溶させず、かつ後の時効にて強度に有効に寄与する第2相を生成するためにある程度の固溶をさせることが出来る、900〜1000℃、0.5〜8時間の熱処理が必要となる。Cr添加量が0.5mass%以上の場合は、熱処理条件がより高くても晶出物や粗大な化合物は残存するために、第2相Bが規定の範囲内で残存することを条件に、1000〜1050℃の熱処理にて固溶処理を行っても良い。
In the conventional process of precipitation type alloys such as Cu-Cr, the process conditions for maintaining the solid solution state until the final recrystallization solution treatment or aging heat treatment are common. It is usual to make a solid solution.
As a method for producing the copper alloy material of the present invention, casting, homogenization heat treatment, hot working, cold working, and then heat treatment and cold rolling are repeated as necessary. In the homogenization heat treatment after casting, the conventional manufacturing method performs heat treatment at a high temperature in order to obtain a better solid solution state, so that the second phase formed at the time of casting is dissolved or minimal heating is performed, In general, in the present invention, a certain amount of solid solution is produced in order to form a second phase that does not excessively dissolve the crystallized product and effectively contributes to strength in later aging. It is necessary to perform heat treatment at 900 to 1000 ° C. for 0.5 to 8 hours. In the case where the Cr addition amount is 0.5 mass% or more, the crystallized substance and the coarse compound remain even if the heat treatment condition is higher, so that the second phase B remains within the specified range. You may perform a solid solution process by 1000-1050 degreeC heat processing.

後の冷間圧延と熱処理の組合せは任意であるが、固溶している残りのCrについて、第2相Aを発明範囲内にある密度で析出させるプロセス(時効熱処理工程)が必要である。例えば300〜600℃、数分〜数時間程度の熱処理にて析出させて、規定の範囲内の化合物密度とする。時効熱処理工程において、通常は2時間程度の熱処理を施すのが一般的であるが、2時間よりも長時間の熱処理を、より低温にて施すことによって強化することも可能である。特に、粗大化合物を有している本発明材については、その微細析出量が限られているために有効な手段である。   The combination of the subsequent cold rolling and heat treatment is arbitrary, but a process for precipitating the second phase A at a density within the scope of the invention (aging heat treatment step) is required for the remaining Cr in solid solution. For example, precipitation is performed by heat treatment at 300 to 600 ° C. for several minutes to several hours to obtain a compound density within a specified range. In the aging heat treatment step, heat treatment is usually performed for about 2 hours, but it can be strengthened by performing heat treatment for longer than 2 hours at a lower temperature. In particular, the present invention material having a coarse compound is an effective means because its fine precipitation amount is limited.

最終冷間圧延工程の加工率は、直前の工程での板圧(時効熱処理後の板圧)に対して0〜30%とする。なお、この圧延工程は、総圧延率(初期板圧からの圧延率)が90〜99.95%になるように行われる。最終冷間圧延工程の圧延率は、0%に近ければ、全体の歪量を極力低減させることで、導電率を高い状態に維持したり、耐応力緩和特性をより良好な状態にしたりすることができる。一方圧延率が30%に近ければ、より強化をすることができる。なお、本発明外ではあるが、導電性、耐応力緩和特性をある程度犠牲にしても良い場合において、最終冷間圧延工程の加工率が30%以上の圧延を行い、より一層の強化をすることも可能である。 The processing rate in the final cold rolling step is 0 to 30% with respect to the plate pressure in the immediately preceding step (plate pressure after aging heat treatment) . This rolling step is performed so that the total rolling rate (rolling rate from the initial plate pressure) is 90 to 99.95%. If the rolling ratio of the final cold rolling process is close to 0%, the overall strain amount should be reduced as much as possible to maintain the electrical conductivity at a high level or to improve the stress relaxation resistance. Can do. On the other hand, if the rolling rate is close to 30%, it can be further strengthened. In addition, although it is outside the present invention, when the conductivity and stress relaxation resistance may be sacrificed to some extent, rolling is performed at a processing rate of 30% or more in the final cold rolling step to further strengthen. Is also possible.

歪取り焼鈍は、例えば走間炉で行う場合は400〜800℃で5秒〜180秒程度、バッチ炉で行う場合は、250〜500℃で10分〜180分程度行うのが好ましい。   For example, the strain relief annealing is preferably performed at 400 to 800 ° C. for about 5 seconds to 180 seconds when performed in a running furnace, and when performed in a batch furnace for about 10 to 180 minutes at 250 to 500 ° C.

上述のように製造した本発明の銅合金材は、同組成の従来合金の耐応力緩和特性を上回る特性を有しており、EV、HEVを中心とした車載部品および周辺インフラや太陽光発電システムなどのリードフレーム、コネクタ、端子材等に要求される特性を満足することができる。   The copper alloy material of the present invention manufactured as described above has a characteristic that exceeds the stress relaxation resistance of the conventional alloy having the same composition, and includes in-vehicle components such as EV and HEV, peripheral infrastructure, and solar power generation system. The characteristics required for lead frames, connectors, terminal materials, etc. can be satisfied.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

<実施例1、比較例1>
原料を溶解後、120mmw×30〜200mmt×180mmLのサイズのブックモールドに鋳造し、以下発明例と比較例で次のような条件でサンプル試作した。
(発明例)
均質化熱処理を900〜1000℃で0.5〜8時間行った後、熱間圧延を施し、更に冷間圧延を90〜99.95%施し、時効熱処理を450℃、2時間施した。その後、最終冷間圧延を総圧延率が99.95%以上とならない範囲で、直前の板圧に対して0〜30%施した後、歪取り焼鈍を300℃、30分程度施し最終特性を評価した。均質化熱処理〜時効処理前の冷間圧延までの各条件が規定の範囲内にあるようにして発明例とした。また、時効工程を工夫し強度とプレス性についてより高いバランスを有した発明例として、時効処理を350℃、10時間施した例を加えた。
上記処理でCr系化合物、Cr単体、CrZr、CrTiなどの第2相が生成した。
(比較例)
均質化熱処理を800〜1080℃で0.1〜15時間行った後、熱間圧延を施し、更に冷間圧延を50〜99.99%施し、時効熱処理を450℃、2時間施し、その後冷間圧延を30%施した後、歪取り焼鈍を300℃、30分程度施し最終特性を評価した。均質化熱処理〜時効処理前の冷間圧延までの各条件のひとつ以上が規定の範囲外にあるようにして比較例とした。
<Example 1, comparative example 1>
After the raw material was melted, it was cast into a book mold having a size of 120 mmw × 30 to 200 mmt × 180 mmL, and a sample was prototyped under the following conditions in the invention example and the comparative example.
(Invention example)
The homogenization heat treatment was performed at 900 to 1000 ° C. for 0.5 to 8 hours, followed by hot rolling, further cold rolling 90 to 99.95%, and aging heat treatment 450 ° C. for 2 hours. Then, after the final cold rolling is performed within a range where the total rolling rate does not become 99.95% or more, 0-30% with respect to the immediately preceding plate pressure, the strain relief annealing is performed at 300 ° C. for about 30 minutes to obtain the final characteristics. evaluated. The invention example was made so that each condition from the homogenization heat treatment to the cold rolling before the aging treatment was within the specified range. In addition, as an example of the invention in which the aging process was devised to have a higher balance between strength and pressability, an example in which aging treatment was performed at 350 ° C. for 10 hours was added.
A second phase such as a Cr compound, Cr alone, CrZr, or CrTi was generated by the above treatment.
(Comparative example)
After homogenizing heat treatment at 800 to 1080 ° C. for 0.1 to 15 hours, hot rolling is performed, cold rolling is further applied to 50 to 99.99%, aging heat treatment is applied at 450 ° C. for 2 hours, and then cooling is performed. After 30% hot rolling, strain relief annealing was performed at 300 ° C. for about 30 minutes to evaluate the final characteristics. A comparative example was made such that one or more of the conditions from homogenization heat treatment to cold rolling before aging treatment were outside the specified range.

なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。   After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape.

この供試材について下記の特性調査を行った。ここで、供試材の厚さは断りが無い場合は0.1〜1.0mmtとした。   The following property investigation was conducted on this specimen. Here, the thickness of the test material was 0.1 to 1.0 mmt unless otherwise noted.

a.化合物測定、およびそのアスペクト比測定:
電子顕微鏡により母相に析出、晶出した第2相を観察しその数を確認した。0.01μm以上0.1μm未満の化合物Aついては、析出物密度が確定し、更に最も歪量が少ない時効熱処理直後のサンプルについて、硝酸20%のメタノール溶液にて電解研磨を行い観察用サンプルとし、TEMにて×10000〜×100000の倍率で観察および測定を行った。0.1〜5μmの化合物Bについては、製品について圧延方向に対して垂直断面を湿式研磨およびバフ研磨を施した後、クロム酸:水=1:1の割合で混合した液にて数秒間研磨面を腐食した後、×500〜×5000の倍率で観察及び測定を行った。共に総数100〜200個程度の化合物を観察した総面積で割り、更に1mm当りの密度に換算した。
アスペクト比については、先のSEMにて観察された第2相において、粒子の重心を通り、最も直径が大きくなる長径と、最も直径が小さくなる短径を測定して各粒子の長径/短径を算出した後、その平均値を求めた。
a. Compound measurement and aspect ratio measurement:
The number of second phases precipitated and crystallized in the parent phase was observed with an electron microscope to confirm the number. For compound A of 0.01 μm or more and less than 0.1 μm, the precipitate density is determined and the sample immediately after the aging heat treatment with the least amount of strain is subjected to electrolytic polishing with a methanol solution of 20% nitric acid to obtain a sample for observation. Observation and measurement were performed with a TEM at a magnification of × 10000 to × 100,000. About 0.1 to 5 μm of compound B, the product was subjected to wet polishing and buff polishing on the cross section perpendicular to the rolling direction, and then polished for several seconds with a mixture of chromic acid: water = 1: 1. After corroding the surface, observation and measurement were performed at a magnification of × 500 to × 5000. In both cases, the total number of compounds of about 100 to 200 was divided by the observed total area and further converted to a density per mm 2 .
Regarding the aspect ratio, in the second phase observed in the previous SEM, the major axis with the largest diameter and the minor axis with the smallest diameter passing through the center of gravity of the particle were measured, and the major axis / minor axis of each particle was measured. Then, the average value was obtained.

以下、引張強度、導電性、耐応力緩和特性の特性評価を行った。   In the following, characteristics of tensile strength, conductivity, and stress relaxation resistance were evaluated.

b.引張強度 [TS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。
b. Tensile strength [TS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown.

c.導電率 [EC]:
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
c. Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.

d.応力緩和率 [SR]:
日本伸銅協会 JCA/B T309:2004「銅及び銅合金薄板条の曲げによる応力緩和試験方法」に準じ、以下に示すように、150℃で1000時間保持の条件で測定した。片持ちはり法(片持ちはりブロック式ジグ使用)により耐力の80%の初期応力を負荷した。
d. Stress relaxation rate [SR]:
According to the Japan Copper and Brass Association JCA / B T309: 2004 “Stress Relaxation Test Method by Bending Copper and Copper Alloy Sheet Strips”, the measurement was carried out at 150 ° C. for 1000 hours as shown below. An initial stress of 80% of the proof stress was applied by the cantilever method (using a cantilever block type jig).

e.プレス時の金型磨耗性(プレス性):
プレス10万回毎にその破断面を観察し、10μm以上のダレやバリが出ている場合、その金型の磨耗が進行し製品信頼性を満たす形状維持が出来ず、金型の交換が必要であるとした。100万回ごとにサンプリングし、その断面のバリ、ダレを測定することで有効なプレス回数を判断した。サンプル断面を湿式研磨およびバフ研磨を施した後、光学顕微鏡で観察実測により評価し、1000万回以上のプレス後に発生したのであれば耐磨耗性は良好、900万回以下であれば不良とみなした。なお、各サンプル厚を0.3mmtと統一し、鋳造ブックモールドの厚みを変えたり、鋳塊の面削などを行ったりするなどして試験板厚が変化しないようサンプル作製を行った。
e. Die wear during press (pressability):
When the fracture surface is observed every 10 000 times of press, and a sag or burr of 10 μm or more appears, the wear of the mold progresses, the shape cannot be maintained to satisfy product reliability, and the mold needs to be replaced It was said that. Sampling was performed every 1 million times, and the effective number of presses was determined by measuring burrs and sagging in the cross section. After the sample cross-section is wet-polished and buffed, it is evaluated by observation with an optical microscope. If it occurs after pressing 10 million times or more, the wear resistance is good, and if it is 9 million times or less, it is bad. I saw it. In addition, each sample thickness was unified with 0.3 mmt, and the sample preparation was performed so that the thickness of the cast book mold was changed, or the ingot of the ingot was chamfered, so that the test plate thickness did not change.

TS>500MPa、EC>75%IACS、SR<25%であり、かつプレス性が上記の良好条件を満たすとき、端子特性として耐熱性、バネ特性、導電性に優れ、かつ金型についてコストパフォーマンスに優れた銅合金材となる。   When TS> 500MPa, EC> 75% IACS, SR <25%, and pressability satisfies the above-mentioned good conditions, the terminal characteristics are excellent in heat resistance, spring characteristics, and conductivity, and cost performance for the mold Excellent copper alloy material.

Figure 0006088741
Figure 0006088741

Figure 0006088741
Figure 0006088741

表1−1は成分が範囲内の発明例(合金No.1〜21)、表1−2は成分が範囲外の比較例(合金No.22〜47)について示す。   Table 1-1 shows invention examples (alloys Nos. 1 to 21) having components within the range, and Table 1-2 shows comparative examples (alloys Nos. 22 to 47) having components outside the range.

Figure 0006088741
Figure 0006088741

Figure 0006088741
Figure 0006088741

表2−1は成分が範囲内、表2−2は成分が範囲外で、製造条件が発明の範囲内にある一例にて試作した結果を示す。成分、製造条件が範囲内にあると必要な特性、およびプレス性は全て満たされ、成分が範囲外であると、製造条件が範囲内であっても強度、導電性、耐応力緩和特性、プレス性いずれか1つ以上の特性が満たされていないか、もしくは製造難となっている。   Table 2-1 shows the results of trial manufacture in an example in which the components are within the range, Table 2-2 is the components outside the range, and the manufacturing conditions are within the scope of the invention. If the components and manufacturing conditions are within the range, all necessary characteristics and pressability are satisfied. If the components are out of the range, the strength, conductivity, stress relaxation resistance, press, even if the manufacturing conditions are within the range. One or more of the properties is not met or is difficult to manufacture.

Figure 0006088741
Figure 0006088741

Figure 0006088741
Figure 0006088741

表3−1は成分が範囲内、表3−2は成分が範囲外で、製造条件が発明の範囲外にある一例にて試作した結果を示す。成分が範囲内外に関わらず、製造条件が範囲外にあれば特性は満たさないか、製造難となっている。特に、均質化熱処理条件において、熱処理が範囲より低温もしくは短時間となると強度及び耐応力緩和特性に劣り、熱処理が範囲より高温もしくは長時間となると、プレス性が劣っている。No.2−10〜18、20、21、38〜43、47については均質化熱処理条件が範囲より高温で行われている例である。同様の温度域で処理されたNo.1−8が発明例であるのに対し、これらが特性の劣る比較例となっているのは、Cr添加量が大きく異なるためである。すなわち、高温熱処理でBに相当する第2相が範囲内量で残存したか否かによるものである。   Table 3-1 shows the results of trial manufacture in an example where the components are within the range, Table 3-2 is the components outside the range, and the manufacturing conditions are outside the scope of the invention. Regardless of whether the component is within the range or not, if the manufacturing condition is out of the range, the characteristics are not satisfied or it is difficult to manufacture. In particular, when the heat treatment is performed at a temperature lower or shorter than the range under the homogenized heat treatment conditions, the strength and stress relaxation resistance are inferior, and when the heat treatment is performed at a higher temperature or longer than the range, the pressability is inferior. No. 2-10 to 18, 20, 21, 38 to 43, 47 are examples in which the homogenization heat treatment conditions are performed at a temperature higher than the range. No. processed in the same temperature range. The reason why 1-8 is an example of the invention, but these are comparative examples having inferior characteristics is that the amount of Cr added is greatly different. That is, it depends on whether or not the second phase corresponding to B remains in an amount within the range in the high temperature heat treatment.

Figure 0006088741
Figure 0006088741

表4には、成分比率が発明範囲内にある合金No.3、9、15について、更に熱処理条件を変えたり、表2〜3で一定であった圧延工程条件を変えたりして試作した結果を示す。条件が異なっても範囲内であれば特性は全て満たされ、範囲外であれば強度、導電性、耐応力緩和特性、プレス性いずれか1つ以上の特性が満たされていないか、もしくは製造難となっている。No.3−35、36は時効条件を低温、長時間に変更した場合であり、強度とプレス性のバランスを高めた発明例となっている。   Table 4 shows alloy Nos. Whose component ratios are within the scope of the invention. 3, 9, and 15 show the results of trial manufacture by further changing the heat treatment conditions or changing the rolling process conditions that are constant in Tables 2 to 3. Even if the conditions are different, all the characteristics are satisfied if they are within the range, and if they are out of the range, one or more of the strength, conductivity, stress relaxation resistance, and press properties are not satisfied, or manufacturing is difficult. It has become. No. Nos. 3-35 and 36 are cases in which the aging conditions are changed to a low temperature and a long time, which are invention examples in which the balance between strength and pressability is improved.

以上のように本発明の合金材は、EV、HEVを中心とした車載部品および周辺インフラや太陽光発電システムなどのリードフレーム、コネクタ、端子材等に好適である。   As described above, the alloy material of the present invention is suitable for in-vehicle components centering on EVs and HEVs, as well as lead frames, connectors, terminal materials, etc. for peripheral infrastructures and solar power generation systems.

Claims (3)

Crを0.1〜1.2mass%含有し、Mgを0.15mass%以下,Tiを0.06mass%以下,Zrを0.10mass%以下,Znを0.20mass%以下,Feを0.08mass%以下,Snを0.25mass%以下,Agを0.10mass%以下、及びSiを0.03mass%以下から選ばれる少なくとも一種を合計で0.005〜0.5mass%含有し、残部が銅と不可避不純物からなり、
電子顕微鏡の電子像又は透過像から、粒子の重心を通り、最も直径が大きくなる長径と、最も直径が小さくなる短径を測定して各粒子の長径/短径の比であるアスペクト比を算出し、長径と短径の平均値を直径サイズとした際に、0.01μm以上0.1μm未満の直径サイズの第2相を第2相A、0.1〜5μmの直径サイズの第2相を第2相Bとしたときに、第2相Aの密度が1×10個/mm2を越え、第2相Bの密度が1×10個/mm2を越えて存在しており、
引張強度が500MPaを越え、導電率が75%IACSを越え、応力緩和率が25%未満であることを特徴とする銅合金材。
Containing 0.1 to 1.2 mass% of Cr, 0.15 mass% or less of Mg, 0.06 mass% or less of Ti, 0.10 mass% or less of Zr, 0.20 mass% or less of Zn, and 0.08 mass of Fe % Or less, Sn is 0.25 mass% or less, Ag is 0.10 mass% or less, and Si is contained in a total of 0.005 to 0.5 mass%, with the balance being copper. Consisting of inevitable impurities,
From the electron image or transmission image of the electron microscope, the aspect ratio which is the ratio of the major axis / minor axis of each particle is calculated by measuring the major axis with the largest diameter and the minor axis with the smallest diameter passing through the center of gravity of the particle. When the average value of the major axis and the minor axis is the diameter size, the second phase having a diameter size of 0.01 μm or more and less than 0.1 μm is designated as the second phase A, and the second phase having a diameter size of 0.1 to 5 μm. Is the second phase B, the density of the second phase A exceeds 1 × 10 6 pieces / mm 2, and the density of the second phase B exceeds 1 × 10 3 pieces / mm 2 ,
A copper alloy material characterized by a tensile strength exceeding 500 MPa, an electrical conductivity exceeding 75% IACS, and a stress relaxation rate being less than 25%.
前記第2相Bのアスペクト比について、長径を短径で割った平均値が10〜50となる請求項1に記載の銅合金材。   The copper alloy material according to claim 1, wherein an average value obtained by dividing the major axis by the minor axis is 10 to 50 with respect to the aspect ratio of the second phase B. 請求項1または2に記載の銅合金材の製造方法であって、
前記銅合金材を与える合金組成の銅合金原料に、鋳造[工程1]、均質化熱処理工程[工程2]、熱間加工工程[工程3]、冷間加工後、必要に応じ熱処理と冷間加工とを繰り返す加工工程[工程4]、時効熱処理工程[工程5]、最終冷間圧延工程[工程6]、歪取焼鈍工程[工程7]を施すにあたり、
前記均質化熱処理[工程2]を900〜1000℃で0.5〜8時間行い、
鋳造[工程1]後からの総圧延率を90〜99.95%とし、最終冷間圧延工程[工程6]の加工率を0〜30%とする
銅合金材の製造方法。
It is a manufacturing method of the copper alloy material according to claim 1 or 2,
To the copper alloy raw material having an alloy composition to give the copper alloy material, casting [step 1], homogenization heat treatment step [step 2], hot working step [step 3], after cold working, heat treatment and cold as necessary In performing the processing step [Step 4] that repeats processing, the aging heat treatment step [Step 5], the final cold rolling step [Step 6], and the strain relief annealing step [Step 7]
The homogenization heat treatment [Step 2] is performed at 900 to 1000 ° C. for 0.5 to 8 hours,
A method for producing a copper alloy material in which the total rolling rate after casting [Step 1] is 90 to 99.95% and the processing rate in the final cold rolling step [Step 6] is 0 to 30%.
JP2012061252A 2012-03-16 2012-03-16 Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof Active JP6088741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061252A JP6088741B2 (en) 2012-03-16 2012-03-16 Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061252A JP6088741B2 (en) 2012-03-16 2012-03-16 Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013194268A JP2013194268A (en) 2013-09-30
JP6088741B2 true JP6088741B2 (en) 2017-03-01

Family

ID=49393594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061252A Active JP6088741B2 (en) 2012-03-16 2012-03-16 Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6088741B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301734B2 (en) * 2014-05-26 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
RU2587114C2 (en) * 2014-09-22 2016-06-10 Дмитрий Андреевич Михайлов Copper alloy for collectors of electric machines
MX2017015525A (en) * 2015-06-04 2018-02-21 Nippon Steel & Sumitomo Metal Corp Surface treatment liquid for plated steel sheet to be hot-pressed.
JP2017057476A (en) * 2015-09-18 2017-03-23 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method therefor
JP6951999B2 (en) * 2018-03-26 2021-10-20 古河電気工業株式会社 Copper alloy strip, its manufacturing method and flat cable using it
JP2019178366A (en) * 2018-03-30 2019-10-17 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method therefor
JP7213086B2 (en) * 2018-12-26 2023-01-26 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method thereof
JP6869397B2 (en) * 2020-04-17 2021-05-12 Dowaメタルテック株式会社 Copper alloy plate material and its manufacturing method
CN114672688A (en) * 2022-03-23 2022-06-28 中南大学 Copper alloy and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735005B2 (en) * 1999-10-15 2006-01-11 古河電気工業株式会社 Copper alloy having excellent punchability and method for producing the same
JP2009185324A (en) * 2008-02-05 2009-08-20 Nippon Mining & Metals Co Ltd Cu-cr-sn-zn based alloy for press work
JP5312920B2 (en) * 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 Copper alloy plate or strip for electronic materials
JP5426936B2 (en) * 2009-06-18 2014-02-26 株式会社Shカッパープロダクツ Copper alloy manufacturing method and copper alloy

Also Published As

Publication number Publication date
JP2013194268A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
JP5307305B1 (en) Copper alloy material and method of manufacturing the same
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
US10392680B2 (en) Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
US8287669B2 (en) Copper alloy for electric and electronic equipments
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
JP6265582B2 (en) Copper alloy material and method for producing the same
JP5619389B2 (en) Copper alloy material
KR102441663B1 (en) Copper alloy sheet material, production method therefor, and electrical/electronic component comprising said copper alloy sheet material
JP5734156B2 (en) Copper alloy sheet and manufacturing method thereof
JP2006265731A (en) Copper alloy
TWI541367B (en) Cu-Ni-Si type copper alloy sheet having good mold resistance and shearing workability and manufacturing method thereof
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP2013204083A (en) Copper alloy sheet for electric and electronic parts excellent in bendability and stress relaxation resistance
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP4642119B2 (en) Copper alloy and method for producing the same
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP6301734B2 (en) Copper alloy material and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
KR102499442B1 (en) Copper alloy sheet and its manufacturing method
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6088741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350