JP2019178366A - Copper alloy sheet material and manufacturing method therefor - Google Patents

Copper alloy sheet material and manufacturing method therefor Download PDF

Info

Publication number
JP2019178366A
JP2019178366A JP2018067776A JP2018067776A JP2019178366A JP 2019178366 A JP2019178366 A JP 2019178366A JP 2018067776 A JP2018067776 A JP 2018067776A JP 2018067776 A JP2018067776 A JP 2018067776A JP 2019178366 A JP2019178366 A JP 2019178366A
Authority
JP
Japan
Prior art keywords
content
mass
copper alloy
rolling
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018067776A
Other languages
Japanese (ja)
Inventor
剛史 伊東
Tsuyoshi Ito
剛史 伊東
輔 水上
Tasuku Mizukami
輔 水上
直太 樋上
Naota Higami
直太 樋上
智胤 青山
Tomotane Aoyama
智胤 青山
宏人 成枝
Hiroto Narueda
宏人 成枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2018067776A priority Critical patent/JP2019178366A/en
Publication of JP2019178366A publication Critical patent/JP2019178366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

To provide a copper alloy sheet material small in load of a manufacturing process and excellent in stress relaxation resistance, and to provide a manufacturing method therefor.SOLUTION: There is provided a copper alloy sheet material consisting of, by mass%, Cr:0.3 to 0.7%, Ti:0.03 to 0.15%, Si:0.03 to 0.15%, Fe:0.03 to 0.20%, total content of Mg, P, Mn, Co, Ag, Ni, Zn, Ca, B:0 to 0.50%, and the balance Cu with inevitable impurities, satisfying the following (Formula 1), and having a deposit containing Si in 400 μmwhen a rolling surface is observed of 50 or more and tensile strength of 500 MPa or more. (Formula 1) [Ti]<1.32[Cr]-6[Si], wherein [Ti] is content of Ti (mass%), [Cr] is content of Cr (mass%), and [Si] is content of Si (mass%).SELECTED DRAWING: Figure 1

Description

本発明は、高圧端子やバスバーなどの通電部材用素材として好適なプレス打抜き性の良好なCu−Cr−Ti−Si系銅合金板材およびその製造方法に関する。   The present invention relates to a Cu-Cr-Ti-Si-based copper alloy sheet material having good press punching properties suitable as a material for a current-carrying member such as a high-voltage terminal and a bus bar, and a method for producing the same.

Cu−Cr−Ti−Si系銅合金板材は、75%IACS以上といった高い導電率を有することから、特に高圧端子やバスバーなど電源回路周りの通電部材として有用であり、コネクタやリードフレーム等にも好適に用いることができる。この種の通電部材に使用するためには、例えば圧延方向の引張強さが500MPa以上といった強度と、曲げ軸が圧延平行方向(B.W.)となる90°W曲げ試験において割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値が0.5以下である曲げ加工性を備えていることが望まれる。また、高温環境下での部品の信頼性を維持するために、例えば200℃で1000時間経過後の応力緩和率20%以下であるような耐応力緩和特性を備えていることも望まれる。従来、時効条件や最終的な加工度を適正化することによって、銅合金板材の導電性および強度を上記所望のレベルに調整することは可能であった。しかし、曲げ加工性および耐応力緩和特性をも同時に上記所望の範囲に調整することは必ずしも容易でないのが現状である。   Cu-Cr-Ti-Si-based copper alloy sheet has a high electrical conductivity of 75% IACS or higher, and is particularly useful as a current-carrying member around power supply circuits such as high-voltage terminals and bus bars. It can be used suitably. In order to use this type of current-carrying member, for example, cracks do not occur in a 90 ° W bending test in which the tensile strength in the rolling direction is 500 MPa or more and the bending axis is parallel to the rolling direction (BW). It is desirable to have a bending workability in which the value of the ratio MBR / t between the minimum bending radius MBR and the sheet thickness t is 0.5 or less. In addition, in order to maintain the reliability of the component in a high temperature environment, it is also desired to have a stress relaxation resistance characteristic such that the stress relaxation rate is 20% or less after 1000 hours at 200 ° C., for example. Conventionally, it has been possible to adjust the conductivity and strength of a copper alloy sheet to the desired levels by optimizing the aging conditions and the final workability. However, at present, it is not always easy to adjust the bending workability and the stress relaxation resistance to the desired ranges at the same time.

ここで特許文献1には、質量%で、Cr:0.10〜0.50%、Ti:0.005〜0.50、Si:0.005〜0.20%(Fe:0.10%以下)を含有し、残部がCuであって、CrおよびSiその他の元素を含む化合物が粒径5μm以下であると共に500μm内に30個以下であり、断面SEM(走査型電子顕微鏡)観察による圧延方向の平均結晶粒径が15μm以下及び板厚方向の平均結晶粒径が10μm以下の金属組織を有する銅合金材が示されている。この銅合金材は、70%IACS以上の導電率、500MPa以上の耐力、優れた応力緩和特性を備えることが開示されている。また、この銅合金材は熱間圧延後に水冷された熱延材を冷間圧延し、さらに析出時効のための熱処理を施されることにより製造される。 Here, Patent Document 1 includes mass%, Cr: 0.10 to 0.50%, Ti: 0.005 to 0.50, Si: 0.005 to 0.20% (Fe: 0.10%). And the balance is Cu, and the compound containing Cr and Si or other elements has a particle size of 5 μm or less and 30 or less in 500 μm 2 , and is observed by cross-sectional SEM (scanning electron microscope) observation A copper alloy material having a metal structure with an average crystal grain size in the rolling direction of 15 μm or less and an average crystal grain size in the plate thickness direction of 10 μm or less is shown. It is disclosed that this copper alloy material has a conductivity of 70% IACS or more, a yield strength of 500 MPa or more, and excellent stress relaxation characteristics. Moreover, this copper alloy material is manufactured by cold-rolling a hot-rolled material that has been water-cooled after hot rolling, and further performing a heat treatment for precipitation aging.

また特許文献2には、質量%で、Cr:0.1〜0.8%、Mg、Ti、Zr、Zn、Fe、Sn、Ag、Siの一種以上を0.005〜0.5%含有し、残部がCuであって、平均結晶粒径が15〜80μm、引張強さ400MPa以上、導電率75%IACS以上、150℃、1000h後の応力緩和率25%以下、曲げ加工性R/tが1以下の銅合金材が示されている。この銅合金材は、熱間圧延および冷間圧延によって得た冷延材を850〜1025℃で再結晶熱処理および溶体化熱処理することにより製造される。   Patent Document 2 contains 0.005 to 0.5% by mass of Cr: 0.1 to 0.8%, one or more of Mg, Ti, Zr, Zn, Fe, Sn, Ag, and Si. The remainder is Cu, the average crystal grain size is 15 to 80 μm, the tensile strength is 400 MPa or more, the electrical conductivity is 75% IACS or more, the stress relaxation rate is 25% or less after 1000 ° C. and 1000 hours, the bending workability R / t A copper alloy material of 1 or less is shown. This copper alloy material is produced by subjecting a cold-rolled material obtained by hot rolling and cold rolling to recrystallization heat treatment and solution heat treatment at 850 to 1025 ° C.

さらに特許文献3には、質量%で、Cr:0.15〜0.7%、Ag:0.005〜0.3%、Ti:0.01〜0.15%、Si:0.01〜0.1%、Fe:0.2%以下、Sn:0.5%以下を含有し、残部がCuであって、75%IACS以上、550MPa以上の降伏強度と、銀を含まないものと比べ耐応力緩和特性が向上した銅合金材が示されている。この銅合金材は、熱間圧延および冷間圧延によって得た冷延材を固溶化焼鈍することにより製造される。   Furthermore, in Patent Document 3, Cr: 0.15-0.7%, Ag: 0.005-0.3%, Ti: 0.01-0.15%, Si: 0.01- Compared to 0.1%, Fe: 0.2% or less, Sn: 0.5% or less, the balance being Cu, yield strength of 75% IACS or more and 550MPa or more, and no silver A copper alloy material with improved stress relaxation resistance is shown. This copper alloy material is manufactured by solution annealing the cold-rolled material obtained by hot rolling and cold rolling.

特開2016−20543号公報Japanese Patent Laying-Open No. 2006-20543 特開2013−129889号公報JP2013-129889A 特開2008−57046号公報JP 2008-57046 A

特許文献1の銅合金材は、曲げ加工性が不十分で、R/t=0.5(B.W.)で大きなしわ発生している。また、550MPa以上の高強度を得るためには多量のTiを必要とし、導電率との両立が出来ない。また、特許文献2の銅合金材は、中間工程で再結晶焼鈍を挟むなど製造工程の負荷が高い。さらに、特許文献3の銅合金材は、耐応力緩和特性も不十分であり、製造工程の負荷も高い。   The copper alloy material of Patent Document 1 has insufficient bending workability, and large wrinkles are generated at R / t = 0.5 (BW). Further, in order to obtain a high strength of 550 MPa or more, a large amount of Ti is required, and it is impossible to achieve both conductivity. Moreover, the copper alloy material of patent document 2 has high load of a manufacturing process, such as sandwiching recrystallization annealing in an intermediate process. Further, the copper alloy material of Patent Document 3 has insufficient stress relaxation resistance and a high manufacturing process load.

一方、銅合金の板材を通電部材に加工する際には、プレス打抜きの工程を経るのが一般的である。図1に、銅合金板材を打ち抜いたときに形成される切口の形状を模式的に示す。切口には、通常、ダレ、せん断面、破断面およびばりが形成される。せん断面はポンチ軸方向にほぼ平行な直線状の形態を有する。本明細書では、ポンチ軸方向およびせん断面法線方向に平行な断面において、板厚に対する破断面の占める比率を「破断面の割合」と呼ぶ。ポンチとダイのクリアランスが適正である場合に、破断面の割合が小さすぎる材料や大きすぎる材料では、プレス打抜き時にいわゆる“打抜きかす”の生成量が多くなったり、金型寿命や製品の寸法精度に悪影響を及ぼす。従来のCu−Cr−Ti−Si系銅合金板材では破断面の割合を適正な範囲にするための材料側からのアプローチは十分になされておらず、プレス打抜き性に関しても改善の余地が残されている。   On the other hand, when a copper alloy plate is processed into a current-carrying member, a press punching process is generally performed. FIG. 1 schematically shows the shape of the cut formed when a copper alloy sheet is punched out. A sag, a shear surface, a fracture surface and a flash are usually formed at the cut end. The shear surface has a linear shape substantially parallel to the punch axis direction. In this specification, the ratio of the fracture surface to the plate thickness in the cross section parallel to the punch axis direction and the shear plane normal direction is referred to as “ratio of fracture surface”. When the punch-to-die clearance is appropriate, if the fracture surface ratio is too small or too large, the amount of so-called “punching debris” generated during press punching increases, the die life and the dimensional accuracy of the product Adversely affect. In the conventional Cu-Cr-Ti-Si based copper alloy sheet material, the approach from the material side to make the ratio of the fractured surface to an appropriate range has not been made sufficiently, and there is still room for improvement in terms of press punchability. ing.

すなわち特許文献1〜3のようなCrを含む銅合金はプレス加工時にせん断/破断の界面が安定しない(粉が生じる)、バリが立つ等の課題から、金型寿命や表面品質の問題からその用途は限られてきた。   In other words, the copper alloy containing Cr as in Patent Documents 1 to 3 has problems such as unstable shearing / breaking interface (powder is generated) and burr formation during press working, and from the problem of mold life and surface quality. Applications have been limited.

本発明は上記事情に鑑みてなされたものであり、製造工程の負荷が小さく、導電率、強度、曲げ加工性、耐応力緩和特性の同時改善を図るとともに、プレス打ち抜き性に優れた銅合金板材およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a copper alloy sheet material that has a small manufacturing process load, simultaneously improves conductivity, strength, bending workability, and stress relaxation resistance, and is excellent in press punchability. And it aims at providing the manufacturing method.

本発明では、Cu−Cr−Ti−Si系銅合金にFeを添加した特定の組成の銅合金板材であって、鋳造後の均質化処理条件及び熱間圧延時のパス間温度等を制御し、プレス加工時の破断起点となるSiを含む析出物を圧延面の観察において400μm内に50個以上とすることで、高い強度とプレス加工性に優れた銅合金板材を提供できることを見出し本発明の完成に至った。 In the present invention, a copper alloy sheet material having a specific composition in which Fe is added to a Cu-Cr-Ti-Si-based copper alloy, the homogenization conditions after casting, the temperature between passes during hot rolling, etc. are controlled. It has been found that a copper alloy sheet material having high strength and excellent press workability can be provided by setting 50 or more precipitates containing Si, which is the starting point of fracture at the time of press work, within 400 μm 2 in the observation of the rolled surface. The invention has been completed.

本発明の銅合金板材の発明によれば、質量%で、Cr:0.3〜0.7%、Ti:0.03〜0.15%、Si:0.03〜0.15%、Fe:0.03〜0.20%、Mg、P、Mn、Co、Ag、Ni、Zn、Ca、Bの合計含有量:0〜0.50%、残部がCuおよび不可避不純物からなり、且つ下記(式1)を満足し、圧延面を観察した際に、400μm内にSiを含む析出物が50個以上であり、500MPa以上の引張強さを有する、銅合金板材が提供される。
(式1) [Ti]<1.32[Cr]−6[Si]
ただし、[Ti]はTiの含有量(質量%)
[Cr]はCrの含有量(質量%)
[Si]はSiの含有量(質量%)
According to the invention of the copper alloy sheet of the present invention, in mass%, Cr: 0.3-0.7%, Ti: 0.03-0.15%, Si: 0.03-0.15%, Fe : 0.03 to 0.20%, Mg, P, Mn, Co, Ag, Ni, Zn, Ca, B total content: 0 to 0.50%, the balance consists of Cu and inevitable impurities, and There is provided a copper alloy sheet material satisfying (Formula 1) and having 50 or more precipitates containing Si in 400 μm 2 and having a tensile strength of 500 MPa or more when the rolled surface is observed.
(Formula 1) [Ti] <1.32 [Cr] -6 [Si]
However, [Ti] is the Ti content (mass%)
[Cr] is the Cr content (% by mass)
[Si] is the Si content (% by mass)

この銅合金板材は、導電率が75%IACS以上であることが好ましく、プレスした際のプレス面に占める破断面の割合が40%〜60%であることが好ましい。また、B.W.方向の90°W曲げで最小曲げ半径MBRと板厚tとの比MBR/t≦0.5であることが好ましく、200℃×1000h保持後の応力緩和率が20%以下であることが好ましく、さらに、下記(式2)を満足することが好ましい。
(式2) [Fe]>2.6[Ti]−0.143−0.5[Si]
ただし、[Fe]はFeの含有量(質量%)
[Ti]はTiの含有量(質量%)
[Si]はSiの含有量(質量%)
The copper alloy sheet preferably has an electrical conductivity of 75% IACS or more, and preferably has a fracture surface ratio of 40% to 60% in the pressed surface when pressed. B. W. It is preferable that the ratio MBR / t ≦ 0.5 between the minimum bending radius MBR and the sheet thickness t in 90 ° W bending in the direction, and the stress relaxation rate after holding at 200 ° C. × 1000 h is preferably 20% or less. Furthermore, it is preferable that the following (Formula 2) is satisfied.
(Formula 2) [Fe]> 2.6 [Ti] -0.143-0.5 [Si]
However, [Fe] is the Fe content (mass%)
[Ti] is the Ti content (mass%)
[Si] is the Si content (% by mass)

また本発明の銅合金板材の製造方法の発明によれば、質量%で、Cr:0.3〜0.7%、Ti:0.03〜0.15%、Si:0.03〜0.15%、Fe:0.03〜0.20%、Mg、P、Mn、Co、Ag、Ni、Zn、Ca、Bの合計含有量:0〜0.50%、残部がCuおよび不可避不純物からなり、且つ下記(式1)を満足する銅合金の鋳片を、850〜950℃に加熱し、0.5h以上保持した後に熱間圧延を開始し、最終圧延パス温度を750℃以上とし、熱間圧延の総圧延率に対する800℃未満の温度域での圧延比率を50%以下とする条件で熱延材を得る熱間圧延工程と、前記熱延材に合計圧延率88%以上の冷間圧延を施して冷延材を得る冷間圧延工程と、前記冷延材に350℃以上で2h以上の時効処理を施す時効処理工程を有する、銅合金板材の製造方法が提供される。
(式1) [Ti]<1.32[Cr]−6[Si]
ただし、[Ti]はTiの含有量(質量%)
[Cr]はCrの含有量(質量%)
[Si]はSiの含有量(質量%)
Moreover, according to the invention of the method for producing a copper alloy sheet material of the present invention, Cr: 0.3-0.7%, Ti: 0.03-0.15%, Si: 0.03-0. 15%, Fe: 0.03 to 0.20%, Mg, P, Mn, Co, Ag, Ni, Zn, Ca, B total content: 0 to 0.50%, the remainder from Cu and inevitable impurities And a slab of copper alloy satisfying the following (formula 1) is heated to 850 to 950 ° C., held for 0.5 h or more, hot rolling is started, and the final rolling pass temperature is set to 750 ° C. or more, A hot rolling step of obtaining a hot rolled material under a condition that the rolling ratio in a temperature range of less than 800 ° C. is 50% or less with respect to the total rolling rate of the hot rolling; A cold rolling step of performing cold rolling to obtain a cold rolled material, and subjecting the cold rolled material to an aging treatment at 350 ° C. or higher for 2 hours or longer Having aging treatment step, the manufacturing method of the copper alloy sheet is provided.
(Formula 1) [Ti] <1.32 [Cr] -6 [Si]
However, [Ti] is the Ti content (mass%)
[Cr] is the Cr content (% by mass)
[Si] is the Si content (% by mass)

この製造方法は、 前記熱間圧延工程と冷間圧延工程との間に、中間圧延と再結晶が生じない温度、時間で中間焼鈍を有しても良い。また、下記(式2)を満足することが好ましい。
(式2) [Fe]>2.6[Ti]−0.143−0.5[Si]
ただし、[Fe]はFeの含有量(質量%)
[Ti]はTiの含有量(質量%)
[Si]はSiの含有量(質量%)
This manufacturing method may have intermediate annealing at a temperature and time at which intermediate rolling and recrystallization do not occur between the hot rolling process and the cold rolling process. Moreover, it is preferable to satisfy the following (Formula 2).
(Formula 2) [Fe]> 2.6 [Ti] -0.143-0.5 [Si]
However, [Fe] is the Fe content (mass%)
[Ti] is the Ti content (mass%)
[Si] is the Si content (% by mass)

本発明によれば、製造工程の負荷が小さく、強度およびプレス打ち抜き性に優れた銅合金板材およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper alloy board | plate material with the small load of a manufacturing process and excellent in intensity | strength and press punching property, and its manufacturing method can be provided.

銅合金板材を打ち抜いたときに形成される切口の形状を模式的に示す説明図である。It is explanatory drawing which shows typically the shape of the cut formed when a copper alloy board | plate material is pierce | punched.

(成分組成)
先ず、本発明の銅合金板材の成分組成について説明する。なお、成分組成についての%は質量%である。
(Component composition)
First, the component composition of the copper alloy sheet material of the present invention will be described. In addition,% about a component composition is the mass%.

Cr:0.3〜0.7%
Crは、マトリックス(金属素地)であるCu母相中に固溶、析出することにより耐応力緩和特性及び強度向上に寄与する。CrはSiと共にCr−Si系析出物を形成し、析出硬化によって強度を向上させ、Cu母相中のSiの固溶量を減少させて導電率を高めるために有効な元素である。また、Crは、Tiと共にCr−Ti系析出物を形成し、析出硬化によって強度を向上させ、Cu母相中のTiの固溶量を減少させて導電率を高める効果もある。Crの含有量が0.3%未満では、十分な析出硬化による強度の向上が得られない。一方、Crの含有量が0.7%を超えると、導電率の低下を招くとともに、析出物が粗大化する原因となり銅合金材の耐応力緩和特性が低下し、また、粗大な介在物が形成されることにより、曲げ加工性が低下する。従って、Crの含有量は0.3〜0.7%とする。
Cr: 0.3-0.7%
Cr contributes to stress relaxation resistance and strength improvement by solid solution and precipitation in a Cu matrix that is a matrix (metal substrate). Cr is an effective element for forming a Cr—Si based precipitate together with Si, improving the strength by precipitation hardening, and reducing the solid solution amount of Si in the Cu matrix to increase the conductivity. Cr also has the effect of forming Cr—Ti-based precipitates together with Ti, improving the strength by precipitation hardening, and reducing the solid solution amount of Ti in the Cu matrix to increase the conductivity. If the Cr content is less than 0.3%, sufficient strength cannot be improved by precipitation hardening. On the other hand, if the Cr content exceeds 0.7%, the electrical conductivity is lowered, the precipitates are coarsened, the stress relaxation resistance of the copper alloy material is lowered, and coarse inclusions are formed. By being formed, bending workability is lowered. Therefore, the Cr content is set to 0.3 to 0.7%.

Ti:0.03〜0.15%
Tiは、Cu母相中に固溶により耐応力緩和特性を向上させるために有効な元素である。また、Tiは、CrやSiと共に析出物を形成して、析出硬化によって強度を向上させると共に、Cu母相中のCr及びSiの固溶量を減少させて導電率を高めるために有効な元素である。また、Ti固溶量を低減させることで曲げ加工性を向上させることができる。Tiの含有量が0.03%未満では、耐応力緩和特性を十分に向上させることができない。一方、0.15%を超えると、Cu母相中のTiの固溶量が増加して、導電率や曲げ加工性の低下を招く。また、Tiの含有量が多い場合、溶解炉の炉壁にTi酸化物であるノロが多く付着し、次の鋳造工程において、鋳塊の品質低下を招く虞があり、炉洗い増加などによる生産効率低下という問題も生じる。従って、Tiの含有量は0.03〜0.15%とする。
Ti: 0.03-0.15%
Ti is an effective element for improving the stress relaxation resistance by solid solution in the Cu matrix. Ti is an effective element for forming a precipitate with Cr and Si and improving the strength by precipitation hardening, and reducing the solid solution amount of Cr and Si in the Cu matrix to increase the conductivity. It is. Moreover, bending workability can be improved by reducing the amount of Ti solid solution. When the Ti content is less than 0.03%, the stress relaxation resistance cannot be sufficiently improved. On the other hand, if it exceeds 0.15%, the solid solution amount of Ti in the Cu matrix increases, leading to a decrease in conductivity and bending workability. In addition, when the Ti content is high, a large amount of Ti oxide sticks to the furnace wall of the melting furnace, and there is a risk of ingot quality deterioration in the next casting process. There is also the problem of reduced efficiency. Therefore, the Ti content is 0.03 to 0.15%.

Si:0.03〜0.15%
Siは、Crと共にCr−Si系析出物、Tiと共にTi−Si系析出物を形成して、析出硬化によって強度を増加させると共に、Cu母相中のCr及びTiの固溶量を減少させて導電率を高めるために有効な元素である。また、Siは、Cr及びTiと共にCr−Si−Ti析出物も形成するが、発明者らの検討によると析出硬化による強度向上の効果は確認できなかった。Siの含有量が0.03%未満では、Cr−Si系析出物、Ti−Si系析出物による強度の向上を十分に得ることができない。一方、Siの含有量が0.15%を超えると、Cu母相中のSiの固溶量が増加して、導電率が低下する。また、Cr−Si系析出物、Ti−Si系析出物、Cr−Ti−Si系析出物が粗大化し、銅合金材の耐応力緩和特性が低下する。従って、Siの含有量は0.03〜0.15%とする。
Si: 0.03-0.15%
Si forms Cr—Si based precipitates together with Cr, and Ti—Si based precipitates together with Ti, increasing the strength by precipitation hardening, and decreasing the solid solution amount of Cr and Ti in the Cu matrix. It is an effective element for increasing conductivity. Si also forms Cr—Si—Ti precipitates together with Cr and Ti, but according to the study by the inventors, the effect of improving the strength by precipitation hardening could not be confirmed. If the Si content is less than 0.03%, sufficient improvement in strength due to Cr—Si based precipitates and Ti—Si based precipitates cannot be obtained. On the other hand, when the Si content exceeds 0.15%, the solid solution amount of Si in the Cu matrix increases and the electrical conductivity decreases. In addition, Cr—Si based precipitates, Ti—Si based precipitates, and Cr—Ti—Si based precipitates are coarsened, and the stress relaxation resistance of the copper alloy material is reduced. Accordingly, the Si content is set to 0.03 to 0.15%.

Fe:0.03〜0.20%
本発明では、Cu−Cr−Ti−Si系合金にFeを添加し、Ti過剰(本発明のTiの組成範囲内でも、TiがCrやSiと析出物とならずに、すなわちCu母相中に固溶するTiが比較的多い状態)となった際の導電率低下を抑制する。Feは、Tiと共にTi―Fe系析出物を形成し、析出硬化によって強度を増加させると共に、Cu母相中のTi固溶量を減少させて導電率を高めるために有効な元素である。Feの含有量が0.03%未満であると、導電率低下の抑制や析出による強度向上の効果を十分に得ることができない。一方、Feの含有量が0.20%を超えると、Cu母相中の固溶量が増加して導電率の低下を引き起こすと共に、析出物を粗大化させ、析出硬化による強度の向上を妨げる。従って、Feの含有量は0.03〜0.20%とする。
Fe: 0.03 to 0.20%
In the present invention, Fe is added to a Cu-Cr-Ti-Si alloy, and Ti is excessive (even within the Ti composition range of the present invention, Ti does not become Cr and Si and precipitates, that is, in the Cu matrix). In a relatively large amount of Ti that dissolves in the solution). Fe is an effective element for forming Ti—Fe-based precipitates together with Ti, increasing the strength by precipitation hardening, and decreasing the amount of Ti solid solution in the Cu matrix to increase the conductivity. When the Fe content is less than 0.03%, it is not possible to sufficiently obtain the effect of suppressing the decrease in conductivity and improving the strength by precipitation. On the other hand, if the Fe content exceeds 0.20%, the amount of solid solution in the Cu matrix increases, causing a decrease in conductivity and coarsening the precipitates, thereby preventing an increase in strength due to precipitation hardening. . Therefore, the Fe content is 0.03 to 0.20%.

Mg、P、Mn、Co、Ag、Ni、Zn、Ca、Bの合計含有量:0〜0.50%
Mg、Mn、Ag、Znは、Cu母相中に固溶して強度、耐応力緩和特性を向上させる作用を有するので、必要に応じて含有させることができる。その場合、Mg、Mn、Ag含有量は0.01〜0.50%の範囲とすることがより効果的である。また、Zn含有量は0.01〜0.30%の範囲とすることが効果的である。
Ni、P、Coは、SiやTiと析出物を形成して強度向上に寄与するので、必要に応じて含有させることができる。その場合、Ni含有量は0.03〜0.20%の範囲とすることが好ましい。また、P含有量は0.01〜0.10%の範囲とすることが好ましい。また、Co含有量は0.01〜0.50%の範囲とすることが好ましい。
Ca、Bは単体またはCu母相と析出し、曲げ加工性や強度向上に寄与するので、必要に応じて含有させることが出来る。Ca、B含有量は0.01〜0.20%の範囲とすることがより効果的である。
これらの元素の合計含有量が0〜0.50%であることが好ましい。0.50%を超えると導電率の低下を引きおこす。
Total content of Mg, P, Mn, Co, Ag, Ni, Zn, Ca, B: 0 to 0.50%
Mg, Mn, Ag, and Zn have the effect of improving the strength and stress relaxation resistance by solid solution in the Cu matrix, and can be contained as necessary. In that case, it is more effective to set the Mg, Mn, and Ag contents in the range of 0.01 to 0.50%. Moreover, it is effective that Zn content shall be 0.01 to 0.30% of range.
Ni, P and Co form precipitates with Si and Ti and contribute to strength improvement, and can be contained as necessary. In that case, the Ni content is preferably in the range of 0.03 to 0.20%. The P content is preferably in the range of 0.01 to 0.10%. The Co content is preferably in the range of 0.01 to 0.50%.
Ca and B precipitate with a simple substance or a Cu parent phase and contribute to improvement of bending workability and strength, and can be contained as necessary. It is more effective to set the Ca and B contents in the range of 0.01 to 0.20%.
The total content of these elements is preferably 0 to 0.50%. If it exceeds 0.50%, the conductivity is lowered.

(式1) [Ti]<1.32[Cr]−6[Si]
ただし、[Ti]はTiの含有量(質量%)
[Cr]はCrの含有量(質量%)
[Si]はSiの含有量(質量%)
(式2) [Fe]>2.6[Ti]−0.143−0.5[Si]
ただし、[Fe]はFeの含有量(質量%)
[Ti]はTiの含有量(質量%)
[Si]はSiの含有量(質量%)
Cr、Ti、Si、Feの各元素の含有量(質量%)が、(式1)、(式2)を満足することで、本発明の銅合金板材の強度、導電率、耐応力緩和特性のバランスが決まる。
(Formula 1) [Ti] <1.32 [Cr] -6 [Si]
However, [Ti] is the Ti content (mass%)
[Cr] is the Cr content (% by mass)
[Si] is the Si content (% by mass)
(Formula 2) [Fe]> 2.6 [Ti] -0.143-0.5 [Si]
However, [Fe] is the Fe content (mass%)
[Ti] is the Ti content (mass%)
[Si] is the Si content (% by mass)
When the content (mass%) of each element of Cr, Ti, Si, and Fe satisfies (Formula 1) and (Formula 2), the strength, conductivity, and stress relaxation resistance of the copper alloy sheet of the present invention The balance is determined.

Cr、Ti、Siの各元素の含有量(質量%)が、(式1)を満足することで、強度、導電率、耐応力緩和特性のバランスが好適となりプレス打ち抜き性にも優れた本発明の銅合金板材を得ることができる。Cr、Ti,Si、Feの各元素の含有量(質量%)が本発明の範囲内であっても、この(式1)が満たされていないと、例えば導電率や応力緩和特性、曲げ加工性の少なくとも一つの特性が劣る。また、Fe、Ti、Siの各元素の含有量(質量%)が(式2)を満足することがより好ましい。(式1)、(式2)は、いずれも発明者らが鋭意検討し組成比の調査を行った際、実験的に導いた式である。   When the content (mass%) of each element of Cr, Ti, and Si satisfies (Formula 1), the balance of strength, electrical conductivity, and stress relaxation resistance is suitable, and the present invention is excellent in press punchability. The copper alloy sheet can be obtained. Even if the content (mass%) of each element of Cr, Ti, Si, and Fe is within the scope of the present invention, if this (Equation 1) is not satisfied, for example, conductivity, stress relaxation characteristics, bending work, etc. At least one characteristic of the sex is inferior. Moreover, it is more preferable that the content (mass%) of each element of Fe, Ti, and Si satisfies (Formula 2). (Equation 1) and (Equation 2) are equations that were experimentally derived when the inventors studied diligently and investigated the composition ratio.

本合金の特性発現のためにはCr−Si系析出物、Ti−Si系析出物が有効だが、Ti量が(式1)を上回ると、特性発現にほとんど寄与が認められないCr−Ti−Si系析出物が生成される。この析出物の量が多すぎると特性発現に効果のあるCr−Si系析出物、Ti−Si系析出物が減少し、特性低下(特に耐応力緩和特性)を招くため、(式1)を満たす必要がある。   Cr-Si-based precipitates and Ti-Si-based precipitates are effective for exhibiting the characteristics of this alloy, but when Ti content exceeds (Equation 1), Cr-Ti- is hardly contributed to the expression of characteristics. Si-based precipitates are generated. If the amount of this precipitate is too large, Cr—Si-based precipitates and Ti—Si-based precipitates that are effective in developing the characteristics will decrease, leading to characteristic deterioration (particularly stress relaxation resistance). It is necessary to satisfy.

FeはTiと析出物を作ることで、導電率を安定化させる働きがあり、すなわち、本発明の銅合金の製造難度を下げる働きがあるが、過剰添加するとFeの固溶による導電率低下の効果(作用)の方が大きくなりメリットが得られない。Ti含有量のうち特性向上効果のあるTi−Si系析出物の析出により失われたTi差分が残存Tiとして導電率を下げるため、(式2)は、その残存Tiと析出できるFe量を規定したものである。   Fe has the function of stabilizing the conductivity by forming precipitates with Ti, that is, the function of lowering the manufacturing difficulty of the copper alloy of the present invention. However, if added excessively, the conductivity decreases due to the solid solution of Fe. The effect (action) becomes larger and no merit can be obtained. Since Ti difference lost due to precipitation of Ti-Si-based precipitates having an effect of improving the characteristics of Ti content decreases as residual Ti, (Equation 2) defines the amount of Fe that can be precipitated with the remaining Ti. It is a thing.

残部:Cuおよび不可避不純物
以上の必須元素及び任意添加元素の他、残部はCuおよび不可避不純物からなる。不可避不純物としては例えばC、S、O、N、Hなどの炉体や大気中から混入するものがある。
Balance: Cu and inevitable impurities In addition to the above essential elements and optional additional elements, the balance consists of Cu and inevitable impurities. Inevitable impurities include, for example, C, S, O, N, H, and other furnace bodies and those mixed from the atmosphere.

(金属組織)
次に、本発明の銅合金板材の金属組織について説明する。
(Metal structure)
Next, the metal structure of the copper alloy sheet material of the present invention will be described.

本発明の銅合金板材は、圧延面をEPMA(電子線マイクロアナライザー)で観察した際に、400μm内にSiを含有する析出物が50個以上存在する。本発明の銅合金材は、プレス加工時の破断起点となるCr−Si系析出物などのSiを含有する析出物が多く存在することにより、せん断/破断界面を安定させることができる。すなわちSiを含有する析出物を400μm内に50個以上存在させることで、Cu母相中にSiを含有する析出物が高分散している状態を作り出し、プレス加工特性を向上させると考えられる。400μm内におけるSiを含有する析出物が50個未満では、かかる効果を得ることができない。Siを含有する析出物の算出は、EPMA(或いはSEM)により1000倍の観察によって行うことができる。 When the rolled surface of the copper alloy sheet of the present invention is observed with EPMA (electron beam microanalyzer), 50 or more precipitates containing Si are present in 400 μm 2 . The copper alloy material of the present invention can stabilize the shear / rupture interface due to the presence of a large amount of Si-containing precipitates such as Cr—Si-based precipitates that are the starting points of fracture during pressing. That is, it is considered that the presence of 50 or more precipitates containing Si in 400 μm 2 creates a state in which precipitates containing Si are highly dispersed in the Cu matrix and improves the press working characteristics. . If the number of precipitates containing Si within 400 μm 2 is less than 50, such an effect cannot be obtained. The calculation of the precipitate containing Si can be performed by observing 1000 times with EPMA (or SEM).

具体的には、銅合金板材の圧延面をEPMAで観察した際に、その観察エリアにおけるSiの最大検出強度の10%以上のSiが検出された領域を白色、その他領域を黒色と画像処理により2値化し、1ピクセル以上の白色領域を、Siを含有する析出物1個と判定して数をカウントした。なお、Ti−Si系析出物は非常に微細であり、通常は1000倍程度では検出されない場合が多い。   Specifically, when the rolling surface of the copper alloy sheet is observed with EPMA, the area where Si of 10% or more of the maximum detected intensity of Si in the observation area is detected is white, and the other areas are black and image processing. Binarization was performed, and a white area of 1 pixel or more was determined as one precipitate containing Si, and the number was counted. Note that the Ti—Si-based precipitates are very fine and are usually not detected at about 1000 times.

(特性)
次に、本発明の銅合金板材の特性について説明する。
(Characteristic)
Next, the characteristics of the copper alloy sheet of the present invention will be described.

引張強さ:500MPa以上
0.2%耐力:450MPa以上
本発明の銅合金板材の圧延平行方向(LD)の引張強さは500MPa以上、0.2%耐力は450MPa以上である。この強度レベルを有する材料であれば高圧端子やバスバーをはじめとする種々の通電部材に広く適用できる。引張強さは510MPa以上、0.2%耐力は480MPa以上であるものがより好適な対象となる。引張強さ、0.2%耐力はJIS Z 2241に従って測定、算出する。
Tensile strength: 500 MPa or more and 0.2% proof stress: 450 MPa or more The copper alloy sheet material of the present invention has a tensile strength in the rolling parallel direction (LD) of 500 MPa or more and a 0.2% proof stress of 450 MPa or more. Any material having this strength level can be widely applied to various current-carrying members such as high-voltage terminals and bus bars. Those having a tensile strength of 510 MPa or more and a 0.2% proof stress of 480 MPa or more are more suitable targets. Tensile strength and 0.2% proof stress are measured and calculated according to JIS Z 2241.

プレス打抜き面(切口)の破断界面の割合:40%〜60%
前述の通り、本明細書では銅合金板材をプレス金型で打ち抜いたときに現れる切口(図1に示す)に関し、ポンチ軸方向およびせん断面法線方向に平行な断面において、板厚に対する破断面の占める比率を「破断面の割合」とし、下記式により求める。
破断面の割合(%)=破断面の厚さ(mm)/板厚(mm)×100
ポンチとダイのクリアランスが適正(例えばクリアランス/板厚の比が3〜10%程度)である場合に、破断面の割合が小さすぎる材料や大きすぎる材料では、プレス打抜き時にいわゆる“打抜きかす”の生成量が多くなったり、金型寿命や製品の寸法精度に悪影響を及ぼすため、破断面の割合は40〜60%であることが好ましい。
Ratio of fracture interface of press punched surface (cut): 40% to 60%
As described above, in this specification, regarding the cut surface (shown in FIG. 1) that appears when a copper alloy sheet material is punched with a press die, the fracture surface relative to the sheet thickness in the section parallel to the punch axis direction and the shear plane normal direction. The ratio occupied by is defined as “ratio of fractured surface” and is obtained by the following formula.
Fracture surface ratio (%) = fracture surface thickness (mm) / plate thickness (mm) × 100
When the punch-to-die clearance is appropriate (for example, the clearance / plate thickness ratio is about 3 to 10%), if the fracture surface ratio is too small or too large, so-called “punching” will occur during press punching. In order to increase the amount of production and to adversely affect the mold life and dimensional accuracy of the product, the fracture surface ratio is preferably 40 to 60%.

導電率:75%IACS以上
高圧端子やバスバーなど電源回路周りの通電部材として実用的な導電性を確保することを考慮すると、導電率は75%IACS以上であることが好ましく、80%IACS以上であることがより好ましい。導電率はJIS H 0505に従って測定することができる。
Conductivity: 75% IACS or more In consideration of securing practical conductivity as a current-carrying member around a power circuit such as a high-voltage terminal or bus bar, the conductivity is preferably 75% IACS or more, and 80% IACS or more. More preferably. The conductivity can be measured according to JIS H 0505.

曲げ加工性:MBR/t≦0.5
本発明の銅合金材は、JIS H3130に記載の90°W曲げ試験において、曲げ軸が圧延平行方向(B.W.)とした場合の割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値が0.5以下であることが好ましい。この曲げ試験でMBR/tが0.5以下であれば、高圧端子やバスバーなどの通電部材への加工に際し、優れた曲げ加工性を有していると評価される。MBR/tが0.3以下であることがより好ましい。
Bending workability: MBR / t ≦ 0.5
The copper alloy material of the present invention has a minimum bending radius MBR and a sheet thickness t that do not generate cracks when the bending axis is the rolling parallel direction (BW) in the 90 ° W bending test described in JIS H3130. The value of the ratio MBR / t is preferably 0.5 or less. If MBR / t is 0.5 or less in this bending test, it is evaluated that it has excellent bending workability in processing of current-carrying members such as high-voltage terminals and bus bars. It is more preferable that MBR / t is 0.3 or less.

応力緩和率特性:25%以下
本発明の銅合金材は、LDで200℃×1000h保持後の応力緩和率が25%以下であることが好ましく、20%以下であることがより好ましい。耐応力緩和特性(応力緩和率)は、供試材からLDの長さが60mm、TDの幅が10mmの試験片を切り出し、これを日本電子材料工業会標準規格EMAS−1011に示される片持ち梁ブロック式の応力緩和試験に準拠した試験を行うことによって求めた。試験片は、たわみ変位が板厚方向となるように、0.2%耐力の80%に相当する負荷応力を付与した状態でセットし、200℃で1000時間保持後のたわみ変位を測定し、その変位の変化率から応力緩和率(%)を算出した。
Stress relaxation rate characteristic: 25% or less The copper alloy material of the present invention preferably has a stress relaxation rate of 25% or less, more preferably 20% or less after being held at 200 ° C. for 1000 hours by LD. As for the stress relaxation resistance (stress relaxation rate), a test piece having an LD length of 60 mm and a TD width of 10 mm was cut out from the test material, and this was cantilevered as shown in the Japan Electronic Materials Manufacturers Association Standard EMAS-1011. It calculated | required by performing the test based on the stress relaxation test of a beam block type. The test piece was set in a state where a load stress corresponding to 80% of 0.2% proof stress was applied so that the deflection displacement was in the plate thickness direction, and the deflection displacement after being held at 200 ° C. for 1000 hours was measured. The stress relaxation rate (%) was calculated from the change rate of the displacement.

(製造方法)
次に、本発明の銅合金板材の製造方法について説明する。
(Production method)
Next, the manufacturing method of the copper alloy sheet | seat material of this invention is demonstrated.

(溶解・鋳造)
連続鋳造、半連続鋳造等により上記成分組成を満足する銅合金の鋳片を製造すればよい。Tiなどの酸化を防止するためには、不活性ガス雰囲気または真空溶解炉で行うのが好ましい。
(Melting / Casting)
What is necessary is just to manufacture the slab of the copper alloy which satisfies the said component composition by continuous casting, semi-continuous casting, etc. In order to prevent oxidation of Ti or the like, it is preferably performed in an inert gas atmosphere or a vacuum melting furnace.

(熱間圧延工程)
上記成分組成を満足する銅合金の鋳片を、加熱炉に装入して850〜950℃に加熱し、保持時間(材料温度が前記温度範囲にある時間)を0.5h以上とした後に、加熱炉から鋳片を取り出して熱間圧延を開始する。熱間圧延の圧延開始温度は950〜850℃であり、最終圧延パス温度を750℃以上とし、熱間圧延の総圧延率は20〜95%であることが好ましく、30〜90%とするのがさらに好ましい。また、熱間圧延の総圧延率に対する800℃未満の温度域での圧延比率を50%以下とし、45%以下であることがより好ましい。なお、前記圧延比率を800℃未満の圧延比率又は800℃未満の温度域での圧延比率と称することがある。
なお、例えば熱間圧延開始前の銅合金板材の厚さが20mmであって、熱間圧延の総圧延率が70%、800℃未満の温度域での圧延比率が25%の場合、熱間圧延終了後(最終圧延パス後)の板厚は6mmであり、800℃未満の温度域で圧延した厚さは(20mm−6mm)×25/100=3.5mmである。
熱間圧延の圧延開始温度および最終圧延パス温度は、熱間圧延パス前に放射温度計もしくは接触式温度計等によりパス毎に測温することができる。
(Hot rolling process)
A slab of copper alloy satisfying the above component composition was charged into a heating furnace and heated to 850 to 950 ° C., and the holding time (time during which the material temperature was in the above temperature range) was 0.5 h or more, The slab is taken out from the heating furnace and hot rolling is started. The rolling start temperature of hot rolling is 950 to 850 ° C., the final rolling pass temperature is 750 ° C. or higher, and the total rolling rate of hot rolling is preferably 20 to 95%, preferably 30 to 90%. Is more preferable. Moreover, the rolling ratio in the temperature range below 800 ° C. with respect to the total rolling rate of hot rolling is set to 50% or less, and more preferably 45% or less. In addition, the said rolling ratio may be called the rolling ratio below 800 degreeC, or the rolling ratio in the temperature range below 800 degreeC.
For example, when the thickness of the copper alloy sheet before the start of hot rolling is 20 mm, the total rolling rate of hot rolling is 70%, and the rolling ratio in the temperature range below 800 ° C. is 25%, The plate thickness after the end of rolling (after the final rolling pass) is 6 mm, and the thickness rolled in the temperature range below 800 ° C. is (20 mm−6 mm) × 25/100 = 3.5 mm.
The rolling start temperature and the final rolling pass temperature of the hot rolling can be measured for each pass using a radiation thermometer or a contact thermometer before the hot rolling pass.

(冷間圧延工程)
前記熱間圧延工程の条件で得た熱延材に、中間焼鈍を実施しないか、または再結晶が生じない温度での1回以上の中間焼鈍を実施して、合計(トータル)圧延率88%以上、好ましくは90%以上の冷間圧延を施して冷延材を得る。中間焼鈍の加熱温度は例えば200〜500℃であることが好ましく、200〜350℃とすることがより望ましい。
(Cold rolling process)
The hot rolled material obtained under the conditions of the hot rolling step is not subjected to intermediate annealing or is subjected to one or more intermediate annealings at a temperature at which recrystallization does not occur, and a total (total) rolling ratio of 88% As described above, preferably, cold rolling of 90% or more is performed to obtain a cold rolled material. The heating temperature of the intermediate annealing is preferably 200 to 500 ° C, for example, and more preferably 200 to 350 ° C.

中間焼鈍を実施する場合も、冷間圧延工程でのトータル圧延率を88%以上とする。例えば中間焼鈍を1回実施して、圧下率75%の(中間)冷間圧延→中間焼鈍→圧下率80%の(仕上げ)冷間圧延の工程で板厚hからh1まで冷間圧延する場合、h=h×0.25×0.2=0.05hとなるから、トータル圧延率は(h−0.05h)/h×100=95%と求まる。製造コストの面からは、中間焼鈍を行わない冷間圧延工程を適用することが好ましい。 Also in the case where the intermediate annealing is performed, the total rolling ratio in the cold rolling process is set to 88% or more. For example the intermediate annealing was carried out once, cold rolled at a reduction rate of 75% (intermediate) cold rolling → annealing → reduction ratio of 80% (final) cold rolling step the thickness h 0 to h1 In this case, since h 1 = h 0 × 0.25 × 0.2 = 0.05h 0 , the total rolling ratio is (h 0 −0.05h 0 ) / h 0 × 100 = 95%. From the viewpoint of manufacturing cost, it is preferable to apply a cold rolling process in which intermediate annealing is not performed.

(時効処理工程)
前記冷間圧延工程の条件で得た冷延材に、少なくとも1回は350℃以上で2h以上の時効処理を施す。これにより、導電率70%IACS以上かつ引張強さ500MPa以上の時効材である、本発明の銅合金板材を製造することができる。以上より、成分および成分比の規定、均質化、熱延条件の調整のみの少ない工程数で、高導電、高耐熱、高強度を維持し曲げ加工性、プレス打抜き性が同時に改善された銅合金板材を得ることができる。
(Aging process)
The cold rolled material obtained under the conditions of the cold rolling step is subjected to an aging treatment at 350 ° C. or higher for 2 hours or longer. Thereby, the copper alloy plate material of the present invention, which is an aging material having an electrical conductivity of 70% IACS or more and a tensile strength of 500 MPa or more, can be produced. From the above, copper alloy with high conductivity, high heat resistance, high strength, bending workability and press punchability improved at the same time, with a small number of processes with only component, component ratio definition, homogenization, and adjustment of hot rolling conditions A plate material can be obtained.

表1に示す化学組成の銅合金を高周波真空溶解炉にて溶製し、鋳造した。得られた鋳片を厚さ20mmに切り出し、加熱炉に装入して表2に示す加熱温度および保持時間で加熱保持した。また、表1に下記(式1)、(式2)の右辺を計算した値を記した。
(式1) [Ti]<1.32[Cr]−6[Si]
ただし、[Ti]はTiの含有量(質量%)
[Cr]はCrの含有量(質量%)
[Si]はSiの含有量(質量%)
(式2) [Fe]>2.6[Ti]−0.143−0.5[Si]
ただし、[Fe]はFeの含有量(質量%)
[Ti]はTiの含有量(質量%)
[Si]はSiの含有量(質量%)
A copper alloy having the chemical composition shown in Table 1 was melted and cast in a high-frequency vacuum melting furnace. The obtained slab was cut out to a thickness of 20 mm, charged into a heating furnace, and heated and held at the heating temperature and holding time shown in Table 2. Table 1 shows the values calculated for the right side of the following (formula 1) and (formula 2).
(Formula 1) [Ti] <1.32 [Cr] -6 [Si]
However, [Ti] is the Ti content (mass%)
[Cr] is the Cr content (% by mass)
[Si] is the Si content (% by mass)
(Formula 2) [Fe]> 2.6 [Ti] -0.143-0.5 [Si]
However, [Fe] is the Fe content (mass%)
[Ti] is the Ti content (mass%)
[Si] is the Si content (% by mass)

Figure 2019178366
Figure 2019178366
Figure 2019178366
Figure 2019178366

加熱後の鋳片を炉から出し、熱間圧延機にて熱間圧延を表2の加熱温度で開始し、表2の最終圧延パス温度で終了した。表2に熱間圧延の総圧延率、最終圧延パス温度、800℃未満の圧延比率、熱間圧延後の銅合金板材の板厚を示してある。なお、各パスでの圧延温度は、熱間圧延機のワークロール入り側での材料表面温度を接触式温度計(熱電対)で測定することによりモニターした。熱間圧延後には面削を行って酸化スケールを除去し、次工程に供するための熱延材とした。   The heated slab was taken out of the furnace, and hot rolling was started at the heating temperature shown in Table 2 and finished at the final rolling pass temperature shown in Table 2. Table 2 shows the total rolling rate of hot rolling, the final rolling pass temperature, the rolling ratio of less than 800 ° C., and the thickness of the copper alloy sheet after hot rolling. The rolling temperature in each pass was monitored by measuring the material surface temperature on the work roll entering side of the hot rolling mill with a contact thermometer (thermocouple). After hot rolling, chamfering was performed to remove the oxide scale, and a hot rolled material for use in the next step was obtained.

上記の各熱延材に表2に示す圧延率で冷間圧延を施した。一部の例(本発明例No.4、比較例No.15)では冷間圧延工程の間に中間焼鈍を1回実施した。それ以外は中間焼鈍を実施せずに冷間圧延工程を終了した。中間焼鈍を実施した例については中間焼鈍後の金属組織を光学顕微鏡にて観察して再結晶粒の有無を確認した。   Each of the hot rolled materials was cold rolled at a rolling rate shown in Table 2. In some examples (Invention Example No. 4, Comparative Example No. 15), an intermediate annealing was performed once during the cold rolling process. Otherwise, the cold rolling process was completed without performing the intermediate annealing. About the example which implemented intermediate annealing, the metal structure after intermediate annealing was observed with the optical microscope, and the presence or absence of the recrystallized grain was confirmed.

次いで、各冷延材に表2に示す条件で時効処理を施した。ここでは、表2中に示す温度まで昇温後、その温度で表2中に示す時間の保持を行ったのち冷却するというヒートパターンを採用した。一部の例(本発明No.2、4〜6、8、比較例No.11、13、15、21)は2回時効処理(2段時効)を実施し、比較例No.15は2回の時効処理の間に冷間圧延を行った。加熱時の雰囲気は水素+窒素混合ガス雰囲気または不活性ガス雰囲気とした。時効処理後には酸洗を施し、得られた時効材を供試材とした。供試材の板厚を表2中に示す。   Subsequently, each cold-rolled material was subjected to an aging treatment under the conditions shown in Table 2. Here, a heat pattern was adopted in which the temperature was raised to the temperature shown in Table 2 and then the temperature was kept at that temperature for the time shown in Table 2 and then cooled. Some examples (Invention Nos. 2, 4 to 6, 8 and Comparative Examples No. 11, 13, 15, and 21) were subjected to twice aging treatment (two-stage aging). No. 15 was cold-rolled between two aging treatments. The atmosphere during heating was a hydrogen + nitrogen mixed gas atmosphere or an inert gas atmosphere. After the aging treatment, pickling was performed, and the obtained aging material was used as a test material. Table 2 shows the thickness of the test material.

各供試材について以下の調査を行った。
〔導電率〕
JIS H0505に従って各供試材の導電率を測定した。
〔引張強さ、0.2%耐力〕
各供試材からLDの引張試験片(JIS 5号)を採取し、試験数n=3でJIS Z2241の引張試験行い、n=3の平均値によって引張強さと0.2%耐力を定めた。また、0.2%耐力の値を後述の応力緩和率の評価試験に用いた。
〔曲げ加工性〕
JIS H3130に記載の方法で曲げ軸が圧延平行方向(B.W.)となる場合の90°W曲げ試験を行った。割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tを求めた。
〔応力緩和率〕
応力緩和率は、供試材からLD(圧延平行方向)の長さが60mm、TD(圧延平行方向および板厚方向に対して垂直な方向)の幅が10mmの試験片を切り出し、これを日本電子材料工業会標準規格EMAS−1011に示される片持ち梁ブロック式の応力緩和試験に準拠した試験を行うことによって求めた。試験片は長手方向一端側の部分を固定し、たわみ変位が板厚方向となるように、長手方向他端側の部分にたわみ変位を5mmとしたときに0.2%耐力の80%に相当する負荷応力となるようスパン長を変えて(たわみ変位調整ブロックにより)応力を負荷した状態でセット(固定)した。この試験片について200℃で1000時間保持後のたわみ変位を測定し、その変位の変化率から応力緩和率(%)を算出した。
[破断面の割合]
破断面の割合:40〜60%
前述の通り、本明細書では銅合金板材をプレス金型で打ち抜いたときに現れる切口(図1に示す)に関し、ポンチ軸方向およびせん断面法線方向に平行な断面において、板厚に対する破断面の占める比率を「破断面の割合」とし、下記式により求める。
破断面の割合(%)=破断面の厚さ(mm)/板厚(mm)×100
この破断面の割合を求めるプレス打ち抜き試験に際し、材質が使用分類V20(材種G3)であって、縦15mm、横15mmの正方形の4つの角部にR5のアールが形成された略正方形の形状に穴の開いたダイと、前記ダイに対してクリアランス/板厚の比が4%及び9%になるように設計された略正方形のポンチとで構成される金型を用いた。
このダイの開口部の縦の辺が銅合金板材のLD(圧延平行方向)、横の辺が銅合金板材のTD(圧延平行方向と板厚方向に垂直な方向)となるように銅合金板材を載せ、35tプレス機を用いてプレス速度50spm(shots per minute)で銅合金板材の打ち抜き加工を行った。
打ち抜き加工後の銅合金板材の略正方形の開口部(切口)の4辺の中央部の断面を観察し、この4か所の破断面の厚さを測定し、前述の通り破断面の割合を算出した。また、得られた4か所の破断面の割合を平均しては破断面の割合の平均値を算出した。
破断面の割合がいずれも40%〜60%であるのが好ましい。
〔Siを含む析出物の個数密度〕
銅合金板材の圧延面を、EPMA(日本電子製 JXA−8100)を用い加速電圧15kV、電流5×10−8A(50nA)として1000倍に拡大して元素マッピングすることにより析出元素の同定を行った。Siマッピングは、分光結晶PETJを用いて測定し、その観察エリア(視野)内におけるSiの最大検出強度の10%以上Siが検出された領域を白色、その他領域を黒色と画像処理により2値化し、1ピクセル以上の白色領域を、Siを含有する析出物1個と判定して数をカウントした。なお、観察エリアの総ピクセル数は1280×1024ピクセルである。このSiを含有する析出物が400μm内に何個あるかをカウントし、Siを含む析出物の個数密度とした。
これらの結果を表3に示す。
The following investigation was conducted for each specimen.
〔conductivity〕
The electrical conductivity of each test material was measured according to JIS H0505.
[Tensile strength, 0.2% yield strength]
LD tensile specimens (JIS No. 5) were collected from each test material, JIS Z2241 tensile test was performed with the number of tests n = 3, and the tensile strength and 0.2% proof stress were determined by the average value of n = 3. . Moreover, the value of 0.2% proof stress was used for the stress relaxation rate evaluation test described later.
[Bending workability]
A 90 ° W bending test was performed when the bending axis was in the rolling parallel direction (BW) by the method described in JIS H3130. The ratio MBR / t between the minimum bending radius MBR and the thickness t where no cracks occurred was determined.
[Stress relaxation rate]
As for the stress relaxation rate, a test piece having a length of LD (parallel to the rolling direction) of 60 mm and a width of TD (direction perpendicular to the rolling parallel direction and the plate thickness direction) of 10 mm was cut out from the specimen. It calculated | required by performing the test based on the stress relaxation test of the cantilever block type | formula shown by the electronic material industry association standard EMAS-1011. Equivalent to 80% of 0.2% proof stress when the test piece is fixed at one end in the longitudinal direction and the deflection at the other end in the longitudinal direction is 5 mm so that the deflection is in the thickness direction. The span length was changed (by the deflection displacement adjustment block) so as to obtain a load stress to be set (fixed) with the stress applied. With respect to this test piece, the deflection displacement after holding at 200 ° C. for 1000 hours was measured, and the stress relaxation rate (%) was calculated from the change rate of the displacement.
[Rate of fracture surface]
Fracture surface ratio: 40-60%
As described above, in this specification, regarding the cut surface (shown in FIG. 1) that appears when a copper alloy sheet material is punched with a press die, the fracture surface relative to the sheet thickness in the section parallel to the punch axis direction and the shear plane normal direction. The ratio occupied by is defined as “ratio of fractured surface” and is obtained by the following formula.
Fracture surface ratio (%) = fracture surface thickness (mm) / plate thickness (mm) × 100
In the press punching test for determining the ratio of the fracture surface, the material is a use classification V20 (material type G3), and a substantially square shape in which R are rounded at four corners of a square of 15 mm length and 15 mm width. A die composed of a die having a perforated hole and a substantially square punch designed to have a clearance / thickness ratio of 4% and 9% with respect to the die was used.
Copper alloy sheet material so that the vertical side of the opening of this die is the LD (parallel direction of rolling) of the copper alloy sheet, and the horizontal side is TD (direction perpendicular to the parallel direction of rolling and the thickness direction) of the copper alloy sheet The copper alloy sheet was punched using a 35 t press at a press speed of 50 spm (shots per minute).
Observe the cross section of the central part of the four sides of the substantially square opening (cut) of the punched copper alloy sheet, measure the thickness of the four fracture surfaces, and determine the ratio of the fracture surface as described above. Calculated. Moreover, the average value of the ratio of the fracture surface was calculated by averaging the ratios of the four fracture surfaces obtained.
It is preferable that the ratio of the fracture surface is 40% to 60%.
[Number density of precipitates containing Si]
The rolling surface of the copper alloy sheet is identified as an element by mapping the element with a magnification of 1000 times using EPMA (JXA-8100 manufactured by JEOL Ltd.) with an acceleration voltage of 15 kV and a current of 5 × 10 −8 A (50 nA). went. Si mapping is measured using spectral crystal PETJ, and the area where Si is detected at 10% or more of the maximum detection intensity of Si in the observation area (field of view) is binarized by white and the other areas are binarized by black. A white area of 1 pixel or more was determined as one precipitate containing Si, and the number was counted. Note that the total number of pixels in the observation area is 1280 × 1024 pixels. The number of precipitates containing Si within 400 μm 2 was counted to obtain the number density of precipitates containing Si.
These results are shown in Table 3.

Figure 2019178366
Figure 2019178366

本発明例では、導電率75%IACS以上、圧延平行方向の引張強さが500MPa以上、0.2%耐力が450MPa以上、200℃×1000時間の応力緩和率20%以下、90°W曲げ試験によるB.W.でのMBR/tが0.5以下の特性を有し、かつプレス加工性は破断面の割合が40〜60%の良好なプレス特性を有する銅合金板材を得ることができた。なお、No.4の冷間圧延工程における中間焼鈍後に再結晶は生じていなかった。   In the example of the present invention, the electrical conductivity is 75% IACS or more, the tensile strength in the rolling parallel direction is 500 MPa or more, the 0.2% proof stress is 450 MPa or more, the stress relaxation rate of 200 ° C. × 1000 hours is 20% or less, and the 90 ° W bending test. A copper alloy sheet having an MBR / t of BW of 0.5 or less and good press properties with a fracture surface ratio of 40 to 60% can be obtained. It was. No recrystallization occurred after the intermediate annealing in the No. 4 cold rolling process.

比較例であるNo.11は鋳片の加熱温度が1000℃と高く、No.12は鋳片の加熱時間が短く、Siを含む析出物の個数密度が50個/400μmと未満であり小さかった。このためプレス打ち抜き性が劣り、曲げ加工性も悪かった。
No.13は熱間圧延の最終圧延パスの温度が低すぎ、No.14は熱間圧延の800℃未満の圧延比率が50%を超えていた。そのため引張強さが小さく、耐応力緩和特性が悪かった。
No.15は冷間圧延の途中に高温で中間焼鈍を行ったため再結晶していた。また、一次時効処理と二次時効処理の間に冷間圧延を施した。そのため、Siを含む析出物の個数密度が50個/400μmと未満であり小さかった。このため耐応力緩和特性、プレス打ち抜き性が劣った。
No.17はCrの含有量が少なすぎたため、Siを含む析出物の個数密度が50個/400μmと未満であり小さかった。そのため引張り強さが小さく、耐応力緩和特性、プレス打ち抜き性が悪かった。
No.18はCrの含有量が多すぎたため、導電率が悪かった。
No.19はTiの含有量が少なすぎたため、引張り強さが小さく、耐応力緩和特性も悪かった。
No.20はSiの含有量が少なすぎたため、Siを含む析出物の個数密度が50個/400μmと未満であり小さかった。そのため導電率が小さく、プレス打ち抜き性および曲げ加工性が悪かった。
No.21はFeの含有量が少なすぎたため、導電率が小さく、曲げ加工性が悪かった。
No.22はFeの含有量が多すぎたため、耐応力緩和特性が悪かった。
No.23は組成が(式1)の関係を満たさなかったため、導電率が低く、耐応力緩和特性が悪かった。
No.24はFeの含有量が少なすぎ、鋳片の加熱温度が高かったため、Siを含む析出物の個数密度が50個/400μmと未満であり小さかった。このため導電率が低く、引張強さが小さく、耐応力緩和特性、プレス打ち抜き性が悪かった。
No.25はTiの含有量が多すぎ、組成が(式1)、(式2)の関係を満たさなかったため、導電率が低く、曲げ加工性が悪かった。
No.26はSiの含有量が多すぎ、組成が(式1)の関係を満たさなかったため、導電率が小さく、引張強さも小さかった。
Is a comparative example No.11 heating temperature of the slab as high as 1000 ° C., No.12 short heating time of the slab, the number density of the precipitates containing Si is located less than 50/400 [mu] m 2 Doo small It was. For this reason, press punchability was inferior and bending workability was also poor.
In No. 13, the temperature of the final rolling pass of hot rolling is too low. No. 14 had a rolling ratio of less than 800 ° C. in hot rolling exceeding 50%. Therefore, the tensile strength was small and the stress relaxation resistance was poor.
No. 15 was recrystallized because it was subjected to intermediate annealing at a high temperature during cold rolling. Further, cold rolling was performed between the primary aging treatment and the secondary aging treatment. Therefore, the number density of precipitates containing Si was less than 50/400 μm 2 and was small. For this reason, the stress relaxation resistance and press punchability were inferior.
In No. 17, since the Cr content was too small, the number density of precipitates containing Si was less than 50 pieces / 400 μm 2 and was small. Therefore, the tensile strength was small, and the stress relaxation resistance and press punchability were poor.
No. No. 18 had a poor conductivity because it contained too much Cr.
No. 19 had too little Ti content, so the tensile strength was small and the stress relaxation resistance was poor.
In No. 20, since the content of Si was too small, the number density of precipitates containing Si was less than 50/400 μm 2 and was small. Therefore, the electrical conductivity was small, and the press punchability and bending workability were poor.
Since No. 21 had too little Fe content, the electrical conductivity was small and the bending workability was poor.
Since No. 22 had too much Fe content, the stress relaxation resistance was poor.
No. 23 did not satisfy the relationship of (Equation 1), so its conductivity was low and its stress relaxation resistance was poor.
In No. 24, since the Fe content was too small and the heating temperature of the slab was high, the number density of precipitates containing Si was less than 50 pieces / 400 μm 2 and was small. For this reason, the electrical conductivity was low, the tensile strength was small, the stress relaxation resistance and the press punchability were poor.
In No. 25, the Ti content was too high and the composition did not satisfy the relationship of (Formula 1) and (Formula 2), so the electrical conductivity was low and the bending workability was poor.
No. 26 had too much Si content and the composition did not satisfy the relationship of (Equation 1), so the conductivity was small and the tensile strength was also small.

Claims (9)

質量%で、
Cr:0.3〜0.7%、
Ti:0.03〜0.15%、
Si:0.03〜0.15%、
Fe:0.03〜0.20%、
Mg、P、Mn、Co、Ag、Ni、Zn、Ca、Bの合計含有量:0〜0.50%、
残部がCuおよび不可避不純物からなり、
且つ下記(式1)を満足し、
圧延面を観察した際に、400μm内にSiを含む析出物が50個以上であり、
500MPa以上の引張強さを有する、銅合金板材。
(式1) [Ti]<1.32[Cr]−6[Si]
ただし、[Ti]はTiの含有量(質量%)
[Cr]はCrの含有量(質量%)
[Si]はSiの含有量(質量%)
% By mass
Cr: 0.3 to 0.7%,
Ti: 0.03-0.15%,
Si: 0.03 to 0.15%,
Fe: 0.03 to 0.20%,
Total content of Mg, P, Mn, Co, Ag, Ni, Zn, Ca, B: 0 to 0.50%,
The balance consists of Cu and inevitable impurities,
And the following (Formula 1) is satisfied,
When observing the rolled surface, there are 50 or more precipitates containing Si in 400 μm 2 ,
A copper alloy sheet having a tensile strength of 500 MPa or more.
(Formula 1) [Ti] <1.32 [Cr] -6 [Si]
However, [Ti] is the Ti content (mass%)
[Cr] is the Cr content (% by mass)
[Si] is the Si content (% by mass)
導電率が75%IACS以上である、請求項1に記載の銅合金板材。   The copper alloy sheet according to claim 1, wherein the conductivity is 75% IACS or more. プレスした際のプレス面に占める破断面の割合が40%〜60%である、請求項1または2のいずれか一項に記載の銅合金板材。   The copper alloy sheet material according to any one of claims 1 and 2, wherein a ratio of a fracture surface to a press surface when pressed is 40% to 60%. B.W.方向の90°W曲げで最小曲げ半径MBRと板厚tとの比MBR/t≦0.5である、請求項1〜3のいずれか一項に記載の銅合金板材。   B. W. The copper alloy sheet according to any one of claims 1 to 3, wherein a ratio MBR / t ≦ 0.5 of a minimum bending radius MBR and a sheet thickness t is obtained by 90 ° W bending in a direction. 200℃×1000h保持後の応力緩和率が20%以下である、請求項1〜4のいずれか一項に記載の銅合金板材。   The copper alloy sheet material according to any one of claims 1 to 4, wherein a stress relaxation rate after being held at 200 ° C for 1000 hours is 20% or less. 下記(式2)を満足する、請求項1〜5のいずれか一項に記載の銅合金板材。
(式2) [Fe]>2.6[Ti]−0.143−0.5[Si]
ただし、[Fe]はFeの含有量(質量%)
[Ti]はTiの含有量(質量%)
[Si]はSiの含有量(質量%)
The copper alloy sheet material according to any one of claims 1 to 5, which satisfies the following (Formula 2).
(Formula 2) [Fe]> 2.6 [Ti] -0.143-0.5 [Si]
However, [Fe] is the Fe content (mass%)
[Ti] is the Ti content (mass%)
[Si] is the Si content (% by mass)
質量%で、
Cr:0.3〜0.7%、
Ti:0.03〜0.15%、
Si:0.03〜0.15%、
Fe:0.03〜0.20%、
Mg、P、Mn、Co、Ag、Ni、Zn、Ca、Bの合計含有量:0〜0.50%、
残部がCuおよび不可避不純物からなり、
且つ下記(式1)を満足する銅合金の鋳片を、
850〜950℃に加熱し、0.5h以上保持した後に熱間圧延を開始し、最終圧延パス温度を750℃以上とし、熱間圧延の総圧延率に対する800℃未満の温度域での圧延比率を50%以下とする条件で熱延材を得る熱間圧延工程と、
前記熱延材に合計圧延率88%以上の冷間圧延を施して冷延材を得る冷間圧延工程と、
前記冷延材に350℃以上で2h以上の時効処理を施す時効処理工程を有する、銅合金板材の製造方法。
(式1) [Ti]<1.32[Cr]−6[Si]
ただし、[Ti]はTiの含有量(質量%)
[Cr]はCrの含有量(質量%)
[Si]はSiの含有量(質量%)
% By mass
Cr: 0.3 to 0.7%,
Ti: 0.03-0.15%,
Si: 0.03 to 0.15%,
Fe: 0.03 to 0.20%,
Total content of Mg, P, Mn, Co, Ag, Ni, Zn, Ca, B: 0 to 0.50%,
The balance consists of Cu and inevitable impurities,
And a slab of copper alloy satisfying the following (formula 1),
Heating to 850 to 950 ° C., holding hot for 0.5 h or more, then starting hot rolling, setting the final rolling pass temperature to 750 ° C. or more, and rolling ratio in a temperature range of less than 800 ° C. with respect to the total rolling rate of hot rolling A hot rolling step of obtaining a hot-rolled material under the condition of 50% or less,
A cold rolling step of obtaining a cold rolled material by subjecting the hot rolled material to a cold rolling with a total rolling rate of 88% or more;
The manufacturing method of a copper alloy board | plate material which has an aging treatment process which performs the aging treatment for 2 hours or more at 350 degreeC or more to the said cold-rolled material.
(Formula 1) [Ti] <1.32 [Cr] -6 [Si]
However, [Ti] is the Ti content (mass%)
[Cr] is the Cr content (% by mass)
[Si] is the Si content (% by mass)
前記熱間圧延工程と冷間圧延工程との間に、中間圧延と再結晶が生じない温度、時間で中間焼鈍を有する、請求項7に記載の銅合金材の製造方法。   The method for producing a copper alloy material according to claim 7, wherein intermediate annealing is performed between the hot rolling process and the cold rolling process at a temperature and time at which intermediate rolling and recrystallization do not occur. 下記(式2)を満足する、請求項7または8のいずれか一項に記載の銅合金板材の製造方法。
(式2) [Fe]>2.6[Ti]−0.143−0.5[Si]
ただし、[Fe]はFeの含有量(質量%)
[Ti]はTiの含有量(質量%)
[Si]はSiの含有量(質量%)
The manufacturing method of the copper alloy sheet | seat material as described in any one of Claim 7 or 8 which satisfies the following (Formula 2).
(Formula 2) [Fe]> 2.6 [Ti] -0.143-0.5 [Si]
However, [Fe] is the Fe content (mass%)
[Ti] is the Ti content (mass%)
[Si] is the Si content (% by mass)
JP2018067776A 2018-03-30 2018-03-30 Copper alloy sheet material and manufacturing method therefor Pending JP2019178366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067776A JP2019178366A (en) 2018-03-30 2018-03-30 Copper alloy sheet material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067776A JP2019178366A (en) 2018-03-30 2018-03-30 Copper alloy sheet material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2019178366A true JP2019178366A (en) 2019-10-17

Family

ID=68277957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067776A Pending JP2019178366A (en) 2018-03-30 2018-03-30 Copper alloy sheet material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2019178366A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020277A (en) * 2019-12-11 2020-04-17 江西理工大学 Cu-Fe-Co-Ti alloy with high-strength conductivity, softening resistance and stress relaxation resistance
CN112281023A (en) * 2020-11-23 2021-01-29 宁波博威合金材料股份有限公司 Copper alloy material with excellent bending property and preparation method and application thereof
CN113913642A (en) * 2021-09-26 2022-01-11 宁波博威合金板带有限公司 Copper alloy strip and preparation method thereof
CN115418521A (en) * 2022-07-11 2022-12-02 大连理工大学 High-temperature-resistant copper alloy and preparation method thereof
CN115491540A (en) * 2022-08-03 2022-12-20 上海万生合金材料有限公司 High-reliability copper alloy material and preparation method thereof
WO2022270195A1 (en) * 2021-06-22 2022-12-29 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214882A (en) * 2011-03-29 2012-11-08 Kobe Steel Ltd Copper alloy material for electric and electronic parts, and copper alloy material for plated electric and electronic parts
JP2013194268A (en) * 2012-03-16 2013-09-30 Furukawa Electric Co Ltd:The Copper alloy material excellent in die wear resistance during press, and method of manufacturing the same
JP2015052143A (en) * 2013-09-06 2015-03-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214882A (en) * 2011-03-29 2012-11-08 Kobe Steel Ltd Copper alloy material for electric and electronic parts, and copper alloy material for plated electric and electronic parts
JP2013194268A (en) * 2012-03-16 2013-09-30 Furukawa Electric Co Ltd:The Copper alloy material excellent in die wear resistance during press, and method of manufacturing the same
JP2015052143A (en) * 2013-09-06 2015-03-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020277A (en) * 2019-12-11 2020-04-17 江西理工大学 Cu-Fe-Co-Ti alloy with high-strength conductivity, softening resistance and stress relaxation resistance
CN111020277B (en) * 2019-12-11 2021-02-26 江西理工大学 Cu-Fe-Co-Ti alloy with high-strength conductivity, softening resistance and stress relaxation resistance
CN112281023A (en) * 2020-11-23 2021-01-29 宁波博威合金材料股份有限公司 Copper alloy material with excellent bending property and preparation method and application thereof
CN112281023B (en) * 2020-11-23 2021-08-31 宁波博威合金材料股份有限公司 Copper alloy material with excellent bending property and preparation method and application thereof
WO2022270195A1 (en) * 2021-06-22 2022-12-29 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor
CN113913642A (en) * 2021-09-26 2022-01-11 宁波博威合金板带有限公司 Copper alloy strip and preparation method thereof
CN115418521A (en) * 2022-07-11 2022-12-02 大连理工大学 High-temperature-resistant copper alloy and preparation method thereof
CN115491540A (en) * 2022-08-03 2022-12-20 上海万生合金材料有限公司 High-reliability copper alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
US10844468B2 (en) Copper alloy sheet material and current-carrying component
JP2019178366A (en) Copper alloy sheet material and manufacturing method therefor
KR102327539B1 (en) Copper alloy for electronic and electric equipment, copper alloy plate for electronic and electric equipment, electronic and electric equipment parts, terminal, bus bar, and movable piece for relay
EP2957646B1 (en) High-strength cu-ni-co-si base copper alloy sheet, process for producing same, and current-carrying component
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6712168B2 (en) Cu-Zr-based copper alloy sheet having good press punchability and method for producing
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
KR20140056003A (en) Cu-ni-co-si based copper alloy sheet materal and method for producing the same
JP6162910B2 (en) Copper alloy sheet and manufacturing method thereof
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
JP2007291518A (en) Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
WO2017170733A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP2010059543A (en) Copper alloy material
JP2008208466A (en) Copper alloy for connector, and method for producing the same
JP4804266B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP5544316B2 (en) Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
KR102499442B1 (en) Copper alloy sheet and its manufacturing method
JP2007138234A (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6762453B1 (en) Copper alloy plate material and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307