JP4804266B2 - Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same - Google Patents

Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same Download PDF

Info

Publication number
JP4804266B2
JP4804266B2 JP2006222586A JP2006222586A JP4804266B2 JP 4804266 B2 JP4804266 B2 JP 4804266B2 JP 2006222586 A JP2006222586 A JP 2006222586A JP 2006222586 A JP2006222586 A JP 2006222586A JP 4804266 B2 JP4804266 B2 JP 4804266B2
Authority
JP
Japan
Prior art keywords
mass
alloy
concentration
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006222586A
Other languages
Japanese (ja)
Other versions
JP2007084920A (en
Inventor
隆紹 波多野
泰靖 石川
壽宏 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2006222586A priority Critical patent/JP4804266B2/en
Publication of JP2007084920A publication Critical patent/JP2007084920A/en
Application granted granted Critical
Publication of JP4804266B2 publication Critical patent/JP4804266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、優れた強度、導電率、曲げ加工性及びプレス打ち抜き加工性を兼ね備え、端子、コネクタ、スイッチ、リレーなどの電気電子部品に好適な銅合金に関するものである。   The present invention relates to a copper alloy having excellent strength, electrical conductivity, bending workability and press punching workability, and suitable for electrical and electronic parts such as terminals, connectors, switches and relays.

電気電子機器の各種端子、コネクタ、リレー又はスイッチ等には、製造コストを重視する用途では低廉な黄銅が使用されている。また、ばね性が重視される用途ではりん青銅が使用され、ばね性及び耐食性が重視される用途では洋白が使用されている。これら銅合金は固溶強化型合金であり、合金元素の作用により強度やばね性が向上する反面、導電率や熱伝導率が低下する。
近年、固溶強化型合金に替わり、析出強化型銅合金の使用量が増加している。析出強化型合金は、合金元素をCu母地中に微細化合物粒子として析出させることを特徴とする。合金元素が析出する際に、強度が上昇し、同時に導電率も上昇する。したがって、析出硬化合金では、固溶強化型合金に対し、同じ強度でより高い導電率が得られる。析出強化型銅合金としては、Cu−Ni−Si系合金、Cu−Be系合金、Cu−Ti系合金、Cu−Zr系合金等がある。
しかし、析出強化型合金では、合金元素をCu中に一旦固溶させるための高温・短時間の熱処理(溶体化処理)及び合金元素を析出させるための低温・長時間の熱処理(時効処理)が必要であり、その製造プロセスは複雑である。また、合金元素として、Si、Ti、Zr、Be等の活性元素を含有しているため、インゴット品質の作りこみが難しい。したがって、析出強化型合金の製造コストは、固溶強化型合金の製造コストと比べ非常に高い。
Inexpensive brass is used for various terminals, connectors, relays, switches, and the like of electrical and electronic equipment in applications where production costs are important. Further, phosphor bronze is used in applications where springiness is important, and white is used in applications where spring properties and corrosion resistance are important. These copper alloys are solid solution strengthened alloys, and the strength and spring property are improved by the action of the alloy elements, but the conductivity and thermal conductivity are lowered.
In recent years, the amount of precipitation-strengthened copper alloys used has increased in place of solid solution strengthened alloys. The precipitation-strengthened alloy is characterized in that an alloy element is precipitated as fine compound particles in a Cu matrix. As the alloying elements precipitate, the strength increases and at the same time the conductivity increases. Therefore, the precipitation hardened alloy can obtain higher conductivity with the same strength as the solid solution strengthened alloy. Examples of the precipitation strengthening type copper alloy include a Cu—Ni—Si alloy, a Cu—Be alloy, a Cu—Ti alloy, a Cu—Zr alloy, and the like.
However, in precipitation-strengthened alloys, there are high-temperature and short-time heat treatment (solution treatment) for once dissolving the alloy elements in Cu and low-temperature and long-time heat treatment (aging treatment) for precipitating the alloy elements. It is necessary and its manufacturing process is complicated. Moreover, since an active element such as Si, Ti, Zr, or Be is contained as an alloy element, it is difficult to build ingot quality. Therefore, the manufacturing cost of the precipitation strengthening type alloy is very high compared with the manufacturing cost of the solid solution strengthening type alloy.

一方、固溶強化型合金を改良することにより、必要充分な導電率と強度を有する、低廉な銅合金の開発が進められている。黄銅に代表されるCu−Zn系合金は、製造が容易であり、Znが安価なことも相まって、特に低コストで製造できる合金である。本発明者らは、以前Cu−Zn系合金のZn量を調整した上で少量のSnを添加し、更に金属組織を調整することにより、各種端子等材料として必要充分な導電率、強度及び曲げ加工性を有する合金を開発した(特許文献1)。一般的に必要充分な導電率、強度及び曲げ加工性を下記に記載する。
(A)導電率:35%IACS以上。この導電率は析出強化型合金であるCu−Ni−Si系合金(コルソン合金)の導電率に匹敵する。なお、黄銅(C2600)の導電率は28%IACS、りん青銅(C5210)の導電率は13%IACSである。
(B)引張強さ:410MPa以上。この引張強さは、JIS規格(JISH3100)により規定された黄銅(C2600)の質別Hの引張強さに相当する。
(C)曲げ性:曲げ半径R/板厚t=0.1の条件で、Good Way(曲げ軸が圧延方向と直行する方向)及びBad Way(曲げ軸が圧延方向と平行な方向)ともに、W曲げが可能なこと。この曲げ試験において割れが発生しなければ、コネクタに施される最も厳しいレベルの曲げ加工が可能となる。
On the other hand, by improving a solid solution strengthened alloy, development of an inexpensive copper alloy having necessary and sufficient electrical conductivity and strength is in progress. A Cu—Zn-based alloy typified by brass is an alloy that can be manufactured at a particularly low cost because it is easy to manufacture and coupled with the fact that Zn is inexpensive. The present inventors previously adjusted the amount of Zn in the Cu-Zn alloy, added a small amount of Sn, and further adjusted the metal structure, so that the necessary and sufficient conductivity, strength and bending as materials for various terminals and the like were obtained. An alloy having workability was developed (Patent Document 1). In general, necessary and sufficient electrical conductivity, strength and bending workability are described below.
(A) Conductivity: 35% IACS or higher. This conductivity is comparable to the conductivity of a Cu—Ni—Si alloy (Corson alloy), which is a precipitation strengthening type alloy. The conductivity of brass (C2600) is 28% IACS, and the conductivity of phosphor bronze (C5210) is 13% IACS.
(B) Tensile strength: 410 MPa or more. This tensile strength corresponds to the tensile strength of grade H of brass (C2600) defined by the JIS standard (JIS 3100).
(C) Bendability: Under the condition of bending radius R / sheet thickness t = 0.1, both Good Way (direction in which the bending axis is perpendicular to the rolling direction) and Bad Way (direction in which the bending axis is parallel to the rolling direction) W bending is possible. If cracks do not occur in this bending test, the most severe level of bending applied to the connector is possible.

近年の電子機器部品の小型化に伴ない、端子、コネクタ、スイッチ、リレーなども小型化している。この動向に対応し、導電率、強度及び曲げ加工性を、より高いレベルでバランスさせた銅合金素材が求められている。本発明者らが以前開発したCu−Zn−Sn系合金は、黄銅の強度、コルソン合金の導電率、黄銅やコルソン合金と同等以上の曲げ加工性を併せ持ち、その特性のバランスは従来のCu−Zn−Sn系合金(特許文献2〜4)と比較して著しく優れるものである。この合金は小型化が進行する電子機器部品の素材として好適な銅合金といえる。
特願2005−207556号明細書 特開平1−162737号公報 特開平2−170954号公報 特開平7−258777号公報
With recent miniaturization of electronic equipment components, terminals, connectors, switches, relays, and the like are also miniaturized. In response to this trend, there is a need for a copper alloy material that balances conductivity, strength, and bending workability at a higher level. The Cu-Zn-Sn alloy previously developed by the present inventors has the strength of brass, the electrical conductivity of the Corson alloy, and the bending workability equivalent to or better than that of brass and Corson alloy, and the balance of the characteristics is the same as that of the conventional Cu- Compared with Zn-Sn alloy (Patent Documents 2 to 4), it is remarkably superior. This alloy can be said to be a copper alloy that is suitable as a material for electronic device parts that are becoming smaller in size.
Japanese Patent Application No. 2005-207556 JP-A-1-162737 JP-A-2-170954 JP 7-258777 A

銅合金条を電子部品に加工する際には、まずプレスによる打ち抜き加工が行われる。端子、コネクタ、スイッチ、リレーなどの小型化に伴い、プレス打ち抜き加工後の寸法精度に対する要求が厳しくなっている。即ち、プレス打ち抜き加工においてバリやダレが発生しにくい銅合金条が求められている。特許文献2〜4等に開示されている従来のCu−Zn−Sn系合金においては、プレス打ち抜き性を考慮した合金設計が行われておらず、昨今求められているプレス精度に対応することが難しくなっていた。
本発明の目的は、プレス打ち抜き加工性を改善したCu−Zn−Sn系合金条を提供することである。
When processing a copper alloy strip into an electronic component, first, punching by a press is performed. With the miniaturization of terminals, connectors, switches, relays, etc., the demand for dimensional accuracy after press punching has become strict. That is, there is a demand for a copper alloy strip that is less likely to generate burrs and sagging during press punching. In the conventional Cu—Zn—Sn alloys disclosed in Patent Documents 2 to 4 and the like, the alloy design considering press punchability is not performed, and it is possible to cope with the press accuracy demanded recently. It was getting harder.
An object of the present invention is to provide a Cu—Zn—Sn alloy strip having improved press punching workability.

本発明者は、Cu−Zn−Sn系合金条のプレス打ち抜き加工性を改善する方策を鋭意研究した。その結果、析出物、非金属介在物等の化合物粒子を、その寸法に応じて、適正な頻度で合金中に分布させれば、プレス打ち抜き加工性が向上することを見出した。そして、Cu−Zn−Sn系合金における、化合物粒子の最適な分布状態を明らかにし、この分布状態を得るための方法を明らかにした。   The present inventor has intensively studied measures for improving the press punching workability of Cu—Zn—Sn alloy strips. As a result, it has been found that press punching processability is improved if compound particles such as precipitates and non-metallic inclusions are distributed in the alloy at an appropriate frequency according to the dimensions. And the optimal distribution state of the compound particle in a Cu-Zn-Sn type alloy was clarified, and the method for obtaining this distribution state was clarified.

本発明は、この発見に基づき成されたものであり、
(1) 2〜12質量%のZn、0.1〜1.0質量%Snを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.5≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され残部が銅及びその不可避的不純物から構成される銅合金であり、圧延面に平行な断面において、直径0.1μm以上5μm以下の化合物粒子の頻度が500〜50000個/mm2であり、直径5μm超の化合物粒子の頻度が10個/mm2以下であることを特徴とする電気電子機器用銅合金、
(2) 2〜12質量%のZn、0.1〜1.0質量%のSnを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.5≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され、
更に、Ni、Fe、Mn、Mg、Co、Ti、Cr、Zr、Al、P、Si及びAgの群から選ばれた少なくとも一種を0.005〜0.5質量%の範囲で含有し、残部が銅及びその不可避的不純物から構成される銅合金であり、
圧延面に平行な断面において、直径0.1μm以上5μm以下の化合物粒子の頻度が500〜50000個/mm2であり、直径5μm超の化合物粒子の頻度が10個/mm2以下であることを特徴とする電気電子機器用銅合金、
(3)S及びOを合計で15〜60質量ppm含有することを特徴とする上記(1)又は(2)の電気電子機器用銅合金、
(4)溶解鋳造によりインゴットを製造し、このインゴットを熱間圧延し、その後、冷間圧延と再結晶焼鈍を繰り返し、最後に冷間圧延で所定の製品厚み仕上げる工程で製造する工程において、熱間圧延を次の条件で行うことを特徴とする上記(1)〜(3)の電気電子機器用銅合金の製造方法、
(イ)インゴットを800〜900℃で1〜5時間加熱する。
(ロ)熱間圧延終了時の材料温度を600〜700℃とする。
(ハ)熱間圧延中に、加工度が30%以上の通板を2回以上行う。
に関するものである。
The present invention has been made based on this discovery,
(1) It contains 2 to 12% by mass of Zn and 0.1 to 1.0% by mass of Sn, and includes the Sn mass% concentration ([% Sn]) and the Zn mass% concentration ([% Zn]). Relationship
0.5 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
The balance is a copper alloy composed of copper and its inevitable impurities, and the frequency of compound particles having a diameter of 0.1 μm or more and 5 μm or less is 500 to 50,000 / mm 2. A copper alloy for electrical and electronic equipment, wherein the frequency of compound particles having a diameter of more than 5 μm is 10 / mm 2 or less,
(2) 2 to 12% by mass of Zn, 0.1 to 1.0% by mass of Sn, Sn mass% concentration ([% Sn]) and Zn mass% concentration ([% Zn]) Relationship
0.5 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
Adjusted to the range of
Furthermore, it contains at least one selected from the group of Ni, Fe, Mn, Mg, Co, Ti, Cr, Zr, Al, P, Si and Ag in a range of 0.005 to 0.5% by mass, and the balance Is a copper alloy composed of copper and its inevitable impurities,
In a cross section parallel to the rolling surface, the frequency of compound particles having a diameter of 0.1 μm or more and 5 μm or less is 500 to 50000 pieces / mm 2 , and the frequency of compound particles having a diameter of more than 5 μm is 10 pieces / mm 2 or less. Features copper alloy for electrical and electronic equipment,
(3) The copper alloy for electrical and electronic equipment according to (1) or (2) above, which contains 15 to 60 ppm by mass of S and O in total.
(4) Ingot is manufactured by melt casting, this ingot is hot-rolled, then cold rolling and recrystallization annealing are repeated, and finally in the process of manufacturing in a process of finishing a predetermined product thickness by cold rolling, The method for producing a copper alloy for electrical and electronic equipment according to the above (1) to (3), wherein the hot rolling is performed under the following conditions:
(A) The ingot is heated at 800 to 900 ° C. for 1 to 5 hours.
(B) The material temperature at the end of hot rolling is 600 to 700 ° C.
(C) During hot rolling, a sheet having a processing degree of 30% or more is performed twice or more.
It is about.

(イ)Zn及びSn濃度
本発明の銅合金は、ZnとSnを基本成分とし、両元素の作用により機械的特性と導電率を作りこむ。Zn濃度の範囲は2〜12質量%、好ましくは5〜10重量%、Sn濃度の範囲は0.1〜1.0質量%、好ましくは0.1〜0.5重量%とする。Znが2質量%未満であると、強度が不足するとともに、Cu−Zn合金の特徴である良好な製造性が失われる。Znが12質量%を超えると、Sn濃度を調整しても35%IACS以上の導電率が得られなくなる。Snは圧延の際の加工硬化を促進する作用を持ち、Snが0.1質量%未満であると強度が不足する。一方、Snが1.0質量%を超えると、合金の製造性が低下する。
SnとZnの合計濃度(T)は、次のように調整する。
0.5≦T≦2.0
T=[%Sn]+0.16[%Zn]
ここで、[%Sn]及び[%Zn]はそれぞれSn及びZnの質量%濃度である。Tを2.0以下にすれば35%IACS以上の導電率が得られる。また、Tを0.5以上にすれば、金属組織を適切に調整することにより、410MPa以上の引張強さが得られる。そこで、Tを0.5〜2.0、好ましくは0.6〜1.7に規定する。この範囲に調整することにより、35%IACS以上の導電率と410MPa以上の引張強さがより安定して得られる。
(A) Zn and Sn concentrations The copper alloy of the present invention contains Zn and Sn as basic components, and creates mechanical properties and electrical conductivity by the action of both elements. The Zn concentration range is 2 to 12% by mass, preferably 5 to 10% by mass, and the Sn concentration range is 0.1 to 1.0% by mass, preferably 0.1 to 0.5% by mass. When Zn is less than 2% by mass, the strength is insufficient and good manufacturability that is characteristic of the Cu—Zn alloy is lost. When Zn exceeds 12% by mass, a conductivity of 35% IACS or more cannot be obtained even if the Sn concentration is adjusted. Sn has the effect | action which accelerates | stimulates the work hardening in the case of rolling, and intensity | strength will be insufficient when Sn is less than 0.1 mass%. On the other hand, when Sn exceeds 1.0 mass%, the productivity of an alloy will fall.
The total concentration (T) of Sn and Zn is adjusted as follows.
0.5 ≦ T ≦ 2.0
T = [% Sn] +0.16 [% Zn]
Here, [% Sn] and [% Zn] are the mass% concentrations of Sn and Zn, respectively. If T is 2.0 or less, a conductivity of 35% IACS or more can be obtained. Further, if T is 0.5 or more, a tensile strength of 410 MPa or more can be obtained by appropriately adjusting the metal structure. Therefore, T is specified to be 0.5 to 2.0, preferably 0.6 to 1.7. By adjusting to this range, a conductivity of 35% IACS or more and a tensile strength of 410 MPa or more can be obtained more stably.

(ロ)Ni、Fe、Mn、Mg、Co、Ti、Cr、Zr、Al、P、Si及びAg
本発明の合金には、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、Ni、Fe、Mn、Mg、Co、Ti、Cr、Zr、Al、P、Si及びAgの群から選ばれた少なくとも一種を合計で0.005〜0.5質量%添加することができる。ただし、合金元素の追加は、導電率の低下、製造性の低下、原料コストの増加等を招くことがあるので、この点への配慮は必要である。
上記元素の合計量が0.005質量%未満であると、特性向上の効果が発現しない。一方、上記元素の合計量が0.5質量%を超えると、導電率低下が著しくなる。そこで、合計量を0.005〜0.5質量%に規定する。
(B) Ni, Fe, Mn, Mg, Co, Ti, Cr, Zr, Al, P, Si, and Ag
The alloy of the present invention includes a group of Ni, Fe, Mn, Mg, Co, Ti, Cr, Zr, Al, P, Si and Ag for the purpose of improving the strength, heat resistance and stress relaxation resistance of the alloy. 0.005 to 0.5 mass% in total can be added at least one selected from However, the addition of the alloy element may cause a decrease in conductivity, a decrease in manufacturability, an increase in raw material cost, and the like, and thus this point needs to be taken into consideration.
When the total amount of the above elements is less than 0.005% by mass, the effect of improving the characteristics is not exhibited. On the other hand, when the total amount of the above elements exceeds 0.5% by mass, the decrease in conductivity becomes significant. Therefore, the total amount is specified to be 0.005 to 0.5 mass%.

(ハ)化合物粒子
直径0.1μm以上5μm以下の化合物粒子(以下、微細粒子とする)を、圧延面に平行な断面において500個/mm2以上の頻度で含有すると、プレス打ち抜き加工後のバリが小さくなる。一方、微細粒子の化合物粒子の頻度が、50000個/mm2を超えると曲げ加工性が低下する。そこで、微細粒子の化合物粒子の頻度を、500〜50000個/mm2に規定する。より好ましい頻度は1000〜10000個/mm2であり、良好な打ち抜き加工性と曲げ加工性が、より安定して両立する。上記化合物粒子の構成成分については下記(ニ)に記載する。
直径5μm超の化合物粒子(以下、粗大粒子とする)は、曲げ加工性を顕著に劣化させる。そこで、粗大粒子の頻度を、圧延面に平行な断面において10個/mm2以下に規定する。10個/mm2以下であれば、曲げ加工性への影響は無視できる。
なお、直径が0.1μm未満である化合物粒子は、打ち抜き加工性や曲げ加工性に影響を及ぼさない。そこで、直径が0.1μm未満である化合物粒子の頻度については特に規定しない。
(C) Compound particles When compound particles having a diameter of 0.1 μm or more and 5 μm or less (hereinafter referred to as fine particles) are contained at a frequency of 500 particles / mm 2 or more in a cross-section parallel to the rolling surface, burrs after press punching are processed. Becomes smaller. On the other hand, if the frequency of the compound particles of fine particles exceeds 50000 / mm 2 , bending workability deteriorates. Therefore, the frequency of compound particles of fine particles is defined to be 500 to 50000 pieces / mm 2 . A more preferable frequency is 1000 to 10,000 pieces / mm 2 , and good punching workability and bending workability are more stably achieved. Constituent components of the compound particles are described in (d) below.
Compound particles having a diameter of more than 5 μm (hereinafter referred to as coarse particles) significantly deteriorate the bending workability. Therefore, the frequency of coarse particles is regulated to 10 particles / mm 2 or less in a cross section parallel to the rolling surface. If it is 10 pieces / mm 2 or less, the influence on bending workability can be ignored.
The compound particles having a diameter of less than 0.1 μm do not affect the punching workability and bending workability. Therefore, the frequency of compound particles having a diameter of less than 0.1 μm is not particularly specified.

(ニ)S濃度、O濃度
Cu−Zn−Sn系合金における化合物粒子としては、ZnO、ZnS、Cu2S、CaO、CaS、MgS、MgO、SiO2等がある。Zn及びCuの化合物は合金成分に由来するものであり、Ca、Mg及びSiの化合物は溶解炉の炉材成分等に由来するものである。
化合物粒子成分は酸化物及び硫化物が多いので、S濃度及びO濃度を調整することにより、化合物粒子の頻度を調整することができる。
S及びOは、好ましくは合計で15〜60質量ppmに調整する。S及びOの合計が15質量ppm未満であると、微細粒子の頻度を500個/mm2以上に調整することが困難になる。一方、S及びOの合計が60質量ppmを超えると、微細粒子が50000個/mm2を超えたり、粗大粒子の頻度が10個/mm2を超えることがある。
(D) S concentration, O concentration As compound particles in the Cu—Zn—Sn alloy, there are ZnO, ZnS, Cu 2 S, CaO, CaS, MgS, MgO, SiO 2 and the like. The compounds of Zn and Cu are derived from the alloy components, and the compounds of Ca, Mg and Si are derived from the furnace material components of the melting furnace.
Since compound particle components are mostly oxides and sulfides, the frequency of compound particles can be adjusted by adjusting the S concentration and the O concentration.
S and O are preferably adjusted to a total of 15 to 60 ppm by mass. If the total of S and O is less than 15 ppm by mass, it is difficult to adjust the frequency of fine particles to 500 particles / mm 2 or more. On the other hand, when the total of S and O exceeds 60 mass ppm, the fine particles may exceed 50000 / mm 2 or the frequency of coarse particles may exceed 10 / mm 2 .

(ホ)製造方法
本発明のCu−Zn−Sn系合金の製造では、まず溶解鋳造によりインゴットを製造し、このインゴットを熱間圧延し、その後、冷間圧延と再結晶焼鈍を繰り返し、最後に冷間圧延で所定の製品厚みに仕上げる。ばね限界値、応力腐食割れ感受性、耐応力緩和性等を改善する目的で、仕上冷間圧延の後に歪取焼鈍を行なうこともある。また、製品の表面に、リフローすずめっき等のめっきを施すこともある。これら一連の工程において、化合物粒子調整のために重要な工程は、熱間圧延(以下、熱延)である。
インゴットの金属組織は樹枝状晶より構成されており、樹枝状晶の間隙に硫化物や酸化物等の化合物が分布する。インゴット中の化合物は粗大であり、このままの形態では打ち抜き加工性向上への効果が少ない。そこで、熱延において粗大な化合物を一旦母地に溶解し、微細な化合物粒子として再析出させること、及び熱延中に粗大な化合物を破砕し微細化すること、が必要である。
化合物を母地に溶解するために、インゴットを800〜950℃の温度で1〜5時間加熱する。温度が800℃未満である場合は、化合物の溶解が不充分になる。一方、温度が950℃を超えると熱延で割れが発生する。インゴットの加熱時間が1時間未満の場合は、化合物の溶解が不充分になる。一方、5時間を超える加熱を行っても、化合物が更に溶解することは無く、コストが増加し不経済である。
一旦母地に溶解した化合物粒子を再析出させるために、熱延終了時の材料温度を600〜700℃とする。化合物の母地への溶解度は低温ほど少ないので、材料温度が熱延開始温度(800〜950℃)から600〜700℃に低下する間に、化合物粒子が再析出する。熱延終了時の材料温度が700℃を超えると化合物粒子の再析出が不充分となる。熱延終了時の材料温度が600℃未満であると加工性が低下し熱延割れが発生する。
熱延の圧延加工では、材料を複数回、圧延機に通板し、所定の厚みに仕上げる。粗大な化合物を効果的に破砕するには、加工度を30%以上に調整した通板を、熱延中に合計で2回以上行う必要がある。ここで、加工度Rは次式で定義する。
R=(t0−t)/t0(t0:圧延前の厚み、t:圧延後の厚み)
(E) Manufacturing method In the manufacture of the Cu-Zn-Sn alloy of the present invention, an ingot is first manufactured by melt casting, this ingot is hot-rolled, and then cold rolling and recrystallization annealing are repeated. Finish to a predetermined product thickness by cold rolling. For the purpose of improving the spring limit value, stress corrosion cracking susceptibility, stress relaxation resistance, etc., strain relief annealing may be performed after finish cold rolling. In addition, the surface of the product may be subjected to plating such as reflow tin plating. In these series of steps, an important step for adjusting the compound particles is hot rolling (hereinafter, hot rolling).
The metal structure of the ingot is composed of dendritic crystals, and compounds such as sulfides and oxides are distributed in the gaps between the dendritic crystals. The compound in the ingot is coarse, and in this form, the effect for improving the punching workability is small. Therefore, it is necessary to dissolve a coarse compound once in hot rolling and reprecipitate it as fine compound particles, and to crush and refine the coarse compound during hot rolling.
The ingot is heated at a temperature of 800 to 950 ° C. for 1 to 5 hours in order to dissolve the compound in the matrix. When the temperature is less than 800 ° C., the compound is not sufficiently dissolved. On the other hand, when the temperature exceeds 950 ° C., cracks occur due to hot rolling. When the heating time of the ingot is less than 1 hour, the compound is not sufficiently dissolved. On the other hand, even if heating is performed for more than 5 hours, the compound is not further dissolved, which increases costs and is uneconomical.
In order to reprecipitate the compound particles once dissolved in the matrix, the material temperature at the end of hot rolling is set to 600 to 700 ° C. Since the solubility of the compound in the matrix is lower as the temperature is lower, the compound particles are reprecipitated while the material temperature is lowered from the hot rolling start temperature (800 to 950 ° C.) to 600 to 700 ° C. When the material temperature at the end of hot rolling exceeds 700 ° C., reprecipitation of the compound particles becomes insufficient. If the material temperature at the end of hot rolling is less than 600 ° C., the workability is lowered and hot rolling cracks occur.
In the hot rolling process, the material is passed through a rolling mill a plurality of times and finished to a predetermined thickness. In order to effectively crush a coarse compound, it is necessary to perform a total of 2 or more passes during hot-rolling through a sheet having a degree of processing adjusted to 30% or more. Here, the processing degree R is defined by the following equation.
R = (t 0 -t) / t 0 (t 0 : thickness before rolling, t: thickness after rolling)

高周波誘導炉を用い、内径60mm、深さ200mmの黒鉛るつぼ中で2kgの電気銅を溶解した。溶銅表面を木炭片で覆った後、Zn及びSnを添加した。また、S濃度の調整のために必要に応じCuSを添加し、O濃度の調整のために必要に応じCuOを添加した。溶銅温度を1200℃に調整した後、金型に鋳込み、幅60mm、厚み30mmのインゴットを製造し、以下の工程を標準工程とし、厚み0.3mmまで加工した。
(工程1)熱間圧延(熱延)により厚さを6mmにする。
(工程2)熱間圧延板の表面の酸化スケールをグラインダーで研削、除去する。
(工程3)板厚1.5mmまで冷間圧延(素圧延)する。
(工程4)再結晶焼鈍(中間焼鈍)として、大気中、400℃で30分間加熱し、結晶粒径を約3μmに調整する。
(工程5)10質量%硫酸−1質量%過酸化水素溶液による酸洗及び#1200エメリー紙による機械研磨を順次行ない、焼鈍で生成した表面酸化膜を除去する。
(工程6)冷間圧延(中間圧延)により、厚み0.43mmまで加工度71%で圧延する。
(工程7)再結晶焼鈍(最終焼鈍)として、大気中、400℃で30分間加熱し、結晶粒径を約3μmに調整する。
(工程8)10質量%硫酸−1質量%過酸化水素溶液による酸洗及び#1200エメリー紙による機械研磨を順次行ない、焼鈍で生成した表面酸化膜を除去する。
(工程9)冷間圧延(仕上圧延)で0.3mmまで加工度30%で圧延する。
得られた試料につき、以下の評価を行った。
Using a high frequency induction furnace, 2 kg of electrolytic copper was dissolved in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the molten copper surface with charcoal pieces, Zn and Sn were added. Further, CuS was added as necessary for adjusting the S concentration, and CuO was added as necessary for adjusting the O concentration. After adjusting the molten copper temperature to 1200 ° C., it was cast into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm, and the following steps were taken as a standard process and processed to a thickness of 0.3 mm.
(Step 1) The thickness is reduced to 6 mm by hot rolling (hot rolling).
(Step 2) The oxidized scale on the surface of the hot rolled plate is ground and removed with a grinder.
(Step 3) Cold rolling (primary rolling) to a plate thickness of 1.5 mm.
(Process 4) As recrystallization annealing (intermediate annealing), it heats in air | atmosphere for 30 minutes at 400 degreeC, and adjusts a crystal grain diameter to about 3 micrometers.
(Step 5) Pickling with a 10% by mass sulfuric acid-1% by mass hydrogen peroxide solution and mechanical polishing with # 1200 emery paper are sequentially performed to remove the surface oxide film formed by annealing.
(Step 6) By cold rolling (intermediate rolling), the steel sheet is rolled to a thickness of 0.43 mm at a workability of 71%.
(Step 7) As recrystallization annealing (final annealing), heating is performed in the atmosphere at 400 ° C. for 30 minutes to adjust the crystal grain size to about 3 μm.
(Step 8) Pickling with 10% by mass sulfuric acid-1% by mass hydrogen peroxide solution and mechanical polishing with # 1200 emery paper are sequentially performed to remove the surface oxide film formed by annealing.
(Step 9) Cold rolling (finish rolling) is performed at a workability of 30% to 0.3 mm.
The following evaluation was performed about the obtained sample.

化合物粒子の測定:
圧延面を機械研磨と電解研磨により鏡面に仕上げた。電解研磨では、電解液として燐酸125mL、蒸留水250mL、エタノール125mL、プロパノール25mL、尿酸2.5gを混合した溶液を用い、試料をアノードとして通電を行った。
電解研磨後の表面をFE−SEM(電界放出型走査電子顕微鏡)を用いて観察し、化合物粒子の個数を測定した。直径0.1μm以上5μm以下の化合物粒子については、一万倍の倍率で0.01mm2の面積を観察し、得られた粒子個数を1mm2あたりの個数に換算した。直径5μm超の化合物粒子については、千倍の倍率で1mm2の面積を観察し、粒子個数を測定した。
なお、化合物粒子の形が楕円状、棒状、線状などの場合には、図1に示すように、短軸(L1)と長軸(L2)の平均値を直径とした。また、圧延方向に連なった粒子から構成される粒子群(例えば、JISG0555におけるB系介在物)については、粒子群の直径及び個数を測定するのではなく、粒子群を構成する個々の粒子の直径と個数を測定した。
Compound particle measurement:
The rolled surface was finished to a mirror surface by mechanical polishing and electrolytic polishing. In the electrolytic polishing, a solution obtained by mixing 125 mL of phosphoric acid, 250 mL of distilled water, 125 mL of ethanol, 25 mL of propanol, and 2.5 g of uric acid was used as an electrolytic solution, and energization was performed using the sample as an anode.
The surface after electropolishing was observed using an FE-SEM (field emission scanning electron microscope), and the number of compound particles was measured. For compound particles having a diameter of 0.1 μm or more and 5 μm or less, an area of 0.01 mm 2 was observed at a magnification of 10,000, and the number of particles obtained was converted to the number per 1 mm 2 . For compound particles having a diameter of more than 5 μm, an area of 1 mm 2 was observed at a magnification of 1,000 times, and the number of particles was measured.
In the case where the shape of the compound particles is elliptical, rod-like, linear, etc., the average value of the minor axis (L1) and the major axis (L2) is taken as the diameter, as shown in FIG. In addition, for a particle group composed of particles continuous in the rolling direction (for example, B-based inclusions in JISG0555), the diameter and number of the particle group are not measured, but the diameter of each particle constituting the particle group. And the number was measured.

プレス打ち抜き加工性:
プレス打ち抜き加工により、試料に丸孔を形成した。ポンチは直径9.96mmの円筒形状とし、ダイス側の孔径は10.00mmとした(クリアランス0.02mm)。打ち抜き速度は10mm/minとし、材料押さえは行わなかった。
丸孔の破面を断面から観察し、図2に示すバリの高さを測定した。測定位置は、圧延方向に平行な破面部位とした。各試料につき10回の測定を行い、その平均値を求めた。バリ高さが10μm以下の場合に良好な打ち抜き加工性が得られたと判断した。
Press punching workability:
A round hole was formed in the sample by press punching. The punch had a cylindrical shape with a diameter of 9.96 mm, and the hole diameter on the die side was 10.00 mm (clearance 0.02 mm). The punching speed was 10 mm / min, and no material pressing was performed.
The fracture surface of the round hole was observed from the cross section, and the height of the burr shown in FIG. 2 was measured. The measurement position was a fracture surface portion parallel to the rolling direction. Each sample was measured 10 times, and the average value was obtained. It was judged that good punching workability was obtained when the burr height was 10 μm or less.

曲げ加工性:
幅10mmの短冊形試料を用い、JISH3110に規定されたW曲げ試験を実施した。曲げ方向はGood Way及びBad Wayとし、曲げ半径は0.03mm(曲げ半径R/板厚t=0.1)とした。
曲げ後の試料につき、曲げ部の表面及び断面から、割れの有無を観察し、Good Way及びBad Wayともに割れが発生しなかった場合を○、Good Way及びBad Wayの両方又は片方で割れが発生した場合を×と評価した。なお、深さが10μmを超える亀裂を割れとみなした。
Bending workability:
A W-bending test defined in JISH3110 was performed using a strip-shaped sample having a width of 10 mm. The bending direction was set to Good Way and Bad Way, and the bending radius was set to 0.03 mm (bending radius R / plate thickness t = 0.1).
For the sample after bending, the presence or absence of cracks was observed from the surface and cross section of the bent part. When no cracks occurred on Good Way and Bad Way, cracks occurred on both, Good Way and Bad Way, or on one side. The case was evaluated as x. A crack having a depth exceeding 10 μm was regarded as a crack.

導電率:
JIS H 0505に準拠し、4端子法で測定した。
引張強さ:
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行い、引張強さを求めた。
conductivity:
According to JIS H 0505, the measurement was performed by the 4-terminal method.
Tensile strength:
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The tensile test of this test piece was performed according to JIS-Z2241, and the tensile strength was determined.

(実施例1)
表2に示す成分のCu−Zn−Sn系合金インゴットを製造し、上記標準工程に従い厚み0.3mmまで加工した。いずれの試料においても、熱間圧延では、インゴットを850℃で3時間加熱した。その後、熱間圧延での加工パターンを示す表1中のパターンAに従って加工度が30%以上の通板を2回行い、厚みを6mmに仕上げた。熱間圧延を終えた直後の材料温度(熱間圧延終了温度)は、約630℃であった。
Zn濃度及びSn濃度並びに化合物粒子がプレス打ち抜き性に及ぼす影響を表2に示す。
発明例1〜21では、SとOの合計濃度を15〜60質量ppmに調整した結果、微細粒子の頻度が500〜50000個/mm2に収まり、粗大粒子は10個/mm2以下となった。このため、バリ高さは10μm以下であり、R/t=0.1のW曲げで割れが発生しなかった。また、合金成分の濃度を適正範囲に調整したため、35%IACS以上の導電率及び410MPa以上の引張強さが得られた。
発明例1〜5、比較例22〜24では、Cu−8質量%Zn−0.3質量%Sn合金に対し、SとOの合計濃度を変化させている。SとOの合計濃度が増えるに従い、微細粒子が増え、バリが小さくなることが分かる。これらのうち比較例22では、SとOの合計濃度が15質量ppmに満たないため、微細粒子が規定範囲未満であり、10μmを超えるバリが発生した。比較例23、24では、SとOの合計濃度が60質量ppmを超えた。このため比較例23では微細粒子が規定範囲を超え、R/t=0.1のW曲げで割れが発生した。同様に、比較例24では微細粒子及び粗大粒子が規定範囲を超え、R/t=0.1のW曲げで割れが発生した。
比較例25〜28は、合金成分の濃度が不適切であったため、バリは小さくW曲げが可能であったものの、目標とする導電率又は引張強さが得られなかった例である。比較例25はZn濃度が低いため、比較例26はSn濃度が低いため、引張強さが410MPaに満たなかった。比較例27はZnとSn濃度が高いため、比較例28はAlとSi濃度が高いため、導電率が35%IACSに満たなかった。
比較例29は、Ni濃度が高すぎるため導電率が低く、W曲げで割れが発生した。更にSとOの合計濃度が15質量ppmに満たなかったため、バリ高さが10μmを超えた。
Example 1
Cu-Zn-Sn alloy ingots having the components shown in Table 2 were produced and processed to a thickness of 0.3 mm according to the standard process. In any sample, in the hot rolling, the ingot was heated at 850 ° C. for 3 hours. Thereafter, a plate having a degree of processing of 30% or more was passed twice according to pattern A in Table 1 showing a processing pattern in hot rolling, and the thickness was finished to 6 mm. The material temperature (hot rolling end temperature) immediately after finishing hot rolling was about 630 ° C.
Table 2 shows the influence of the Zn concentration and the Sn concentration and the compound particles on the press punchability.
In Invention Examples 1 to 21, as a result of adjusting the total concentration of S and O to 15 to 60 ppm by mass, the frequency of fine particles falls within 500 to 50000 particles / mm 2 and coarse particles become 10 particles / mm 2 or less. It was. For this reason, the burr height was 10 μm or less, and no crack was generated by the W bending of R / t = 0.1. Moreover, since the density | concentration of the alloy component was adjusted to the appropriate range, the electrical conductivity of 35% IACS or more and the tensile strength of 410 Mpa or more were obtained.
In Invention Examples 1 to 5 and Comparative Examples 22 to 24, the total concentration of S and O is changed with respect to the Cu-8 mass% Zn-0.3 mass% Sn alloy. It can be seen that as the total concentration of S and O increases, fine particles increase and burrs become smaller. Among these, in Comparative Example 22, since the total concentration of S and O was less than 15 ppm by mass, the fine particles were less than the specified range, and burrs exceeding 10 μm were generated. In Comparative Examples 23 and 24, the total concentration of S and O exceeded 60 mass ppm. For this reason, in Comparative Example 23, the fine particles exceeded the specified range, and cracking occurred in the W bending of R / t = 0.1. Similarly, in Comparative Example 24, fine particles and coarse particles exceeded the specified range, and cracking occurred in the W-bending with R / t = 0.1.
Comparative Examples 25 to 28 are examples in which the target conductivity or tensile strength was not obtained although the burrs were small and W-bending was possible because the concentration of the alloy component was inappropriate. Since Comparative Example 25 had a low Zn concentration, Comparative Example 26 had a low Sn concentration, so the tensile strength was less than 410 MPa. Since Comparative Example 27 had high Zn and Sn concentrations, Comparative Example 28 had high Al and Si concentrations, so the conductivity was less than 35% IACS.
In Comparative Example 29, since the Ni concentration was too high, the conductivity was low, and cracking occurred in W bending. Furthermore, since the total concentration of S and O was less than 15 ppm by mass, the burr height exceeded 10 μm.

Figure 0004804266
Figure 0004804266

Figure 0004804266
Figure 0004804266

(実施例2)
熱間圧延条件が化合物粒子及びプレス打ち抜き性に及ぼす影響を表3に示す。
Zn濃度が8質量%、Sn濃度が0.3質量%、([%Sn]+0.16[%Zn])が1.58、S濃度が15質量ppm、O濃度が20質量ppmのインゴットを上記標準工程に従い板厚0.3mmまで加工した。熱間圧延では、インゴットの加熱温度と時間を変化させ、また加工パターンを表1のA〜Fの7種類で変化させた。更に、各通板間で材料を空冷するなどし、熱間圧延終了温度を変化させた。
発明例30〜46では、本発明の条件で熱間圧延が行われた結果、微細粒子の頻度が500〜50000個/mm2に収まり、粗大粒子は10個/mm2以下となった。このため、バリ高さは10μm以下であり、R/t=0.1のW曲げで割れが発生しなかった。
発明例30〜33、比較例47〜49では、インゴットの加熱時間を3時間、加工パターンをB(加工度30%以上の通板2回)、熱延終了温度を約650℃とし、インゴットの加熱温度を変化させている。加熱温度が高いほど、粗大粒子が減って微細粒子が増え、バリが小さくなることが分かる。これらのうち比較例47は加熱温度が800℃より低かっため、粗大粒子が10個/mm2を超え、W曲げで割れが発生した。比較例48は加熱温度が更に低かったため、粗大粒子が10個/mm2を超えるとともに微細粒子が500個/mm2未満であり、W曲げで割れが発生し10μmを超えるバリが発生した。比較例49は、インゴットの加熱温度が900℃を超えたため、熱延中に割れが発生し、板厚0.3mmまで加工できなかった。
発明例31、34〜38、比較例50では、インゴットの加熱温度を830℃、加工パターンをB(加工度30%以上の通板2回)、熱延終了温度を約650℃とし、インゴットの加熱時間を変化させている。加熱時間が長いほど、粗大粒子が減って微細粒子が増え、バリが小さくなることが分かる。比較例50は、加熱時間が1時間より短いため、粗大粒子が10個/mm2を超え、W曲げで割れが発生した。発明例38の加熱時間は6時間と、加熱時間5hの発明例37より長いにもかかわらず、微細粒子及び粗大粒子の数は発明例34と同等であり、加熱時間を長くした効果は認められない。
発明例35、39〜42、比較例51〜53では、インゴットの加熱温度を830℃、加熱時間を2時間、加工パターンをB(加工度30%以上の通板2回)とし、熱延終了時の材料温度を変化させている。熱間圧延終了時の材料温度が低いほど微細粒子が増え、バリが小さくなることが分かる。比較例52、53は熱延終了温度が700℃を超えたために、微細粒子の再析出が不充分であり、微細粒子の個数が500個/mm2未満であり、バリ高さが10μmを超えた。比較例51は、熱延後半において600℃未満である温度で加工を行った際に材料に割れが発生し、0.3mmまで加工できなかった。
発明例40、43〜46、比較例54〜56では、インゴットの加熱温度を830℃、加熱時間を2時間、熱延終了温度を約650℃とし、熱延での加工パターンを変化させている。加工度30%以上の通板回数を多くすることで、粗大化合物の破砕が進んで粗大粒子の個数が減り、微細粒子の個数が増えることが分かる。比較例54〜56は、加工度30%以上の通板が2回未満のため、粗大粒子の個数が10個/mm2を超え、W曲げで割れが発生した。
(Example 2)
Table 3 shows the influence of the hot rolling conditions on the compound particles and press punchability.
An ingot having a Zn concentration of 8% by mass, an Sn concentration of 0.3% by mass, ([% Sn] +0.16 [% Zn]) of 1.58, an S concentration of 15 ppm by mass, and an O concentration of 20 ppm by mass. According to the standard process, the plate was processed to a thickness of 0.3 mm. In the hot rolling, the heating temperature and time of the ingot were changed, and the processing patterns were changed in seven types A to F in Table 1. Furthermore, the hot rolling end temperature was changed by, for example, air-cooling the material between the plates.
In Invention Examples 30 to 46, as a result of hot rolling under the conditions of the present invention, the frequency of fine particles was within 500 to 50000 particles / mm 2 and the coarse particles were 10 particles / mm 2 or less. For this reason, the burr height was 10 μm or less, and no crack was generated by the W bending of R / t = 0.1.
In Invention Examples 30 to 33 and Comparative Examples 47 to 49, the heating time of the ingot was 3 hours, the processing pattern was B (twice of the processing plate of 30% or more), the hot rolling end temperature was about 650 ° C., The heating temperature is changed. It can be seen that the higher the heating temperature, the smaller the coarse particles, the more fine particles, and the smaller the burrs. Of these, since Comparative Example 47 had a heating temperature lower than 800 ° C., coarse particles exceeded 10 particles / mm 2 , and cracking occurred in W bending. In Comparative Example 48, since the heating temperature was further lower, the coarse particles exceeded 10 particles / mm 2 and the fine particles were less than 500 particles / mm 2 , cracks were generated by W bending, and burrs exceeding 10 μm were generated. In Comparative Example 49, since the heating temperature of the ingot exceeded 900 ° C., cracking occurred during hot rolling, and processing was not possible up to a plate thickness of 0.3 mm.
In invention examples 31, 34 to 38, and comparative example 50, the heating temperature of the ingot was 830 ° C., the processing pattern was B (twice through the processing degree 30% or more), the hot rolling end temperature was about 650 ° C., The heating time is changed. It can be seen that as the heating time is longer, coarse particles are reduced, fine particles are increased, and burrs are reduced. In Comparative Example 50, since the heating time was shorter than 1 hour, the coarse particles exceeded 10 particles / mm 2 , and cracking occurred in W bending. Although the heating time of Invention Example 38 is 6 hours, which is longer than that of Invention Example 37 with a heating time of 5 hours, the number of fine particles and coarse particles is equal to that of Invention Example 34, and the effect of increasing the heating time is recognized. Absent.
In Invention Examples 35, 39 to 42, and Comparative Examples 51 to 53, the heating temperature of the ingot is 830 ° C., the heating time is 2 hours, the processing pattern is B (twice passing plate with a processing degree of 30% or more), and the hot rolling is finished. The material temperature at the time is changed. It can be seen that the lower the material temperature at the end of hot rolling, the more fine particles increase and the burr becomes smaller. In Comparative Examples 52 and 53, since the hot rolling end temperature exceeded 700 ° C., the reprecipitation of fine particles was insufficient, the number of fine particles was less than 500 particles / mm 2 , and the burr height exceeded 10 μm. It was. In Comparative Example 51, when processing was performed at a temperature lower than 600 ° C. in the second half of hot rolling, the material was cracked and could not be processed to 0.3 mm.
In Invention Examples 40, 43 to 46, and Comparative Examples 54 to 56, the heating temperature of the ingot was 830 ° C., the heating time was 2 hours, the hot rolling end temperature was about 650 ° C., and the processing pattern in hot rolling was changed. . It can be seen that by increasing the number of passing plates with a processing degree of 30% or more, the coarse compound is crushed, the number of coarse particles is reduced, and the number of fine particles is increased. In Comparative Examples 54 to 56, the number of coarse particles exceeded 10 particles / mm 2 because the number of pass plates having a workability of 30% or more was less than twice, and cracking occurred in W bending.

Figure 0004804266
Figure 0004804266

化合物粒子の形が楕円状、棒状、線状などの場合の、短軸(L1)と長軸(L2)を示す概略図である。It is the schematic which shows the short axis (L1) and the long axis (L2) in the case where the shape of a compound particle is an ellipse shape, rod shape, a linear shape. プレス打ち抜き加工性測定においてプレス破面断面(圧延方向は図に垂直)のバリの高さを示す概略図である。It is the schematic which shows the height of the burr | flash of a press fracture surface cross section (a rolling direction is perpendicular | vertical to a figure) in press punching workability measurement.

Claims (4)

2〜12質量%のZn、0.1〜1.0質量%のSnを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.5≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され残部が銅及びその不可避的不純物から構成される銅合金であり、圧延面に平行な断面において、直径0.1μm以上5μm以下の化合物粒子の頻度が500〜50000個/mm2であり、直径5μm超の化合物粒子の頻度が10個/mm2以下であることを特徴とする電気電子機器用銅合金。
2 to 12% by mass of Zn, 0.1 to 1.0% by mass of Sn, and the relationship between the Sn mass% concentration ([% Sn]) and the Zn mass% concentration ([% Zn]) ,
0.5 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
The balance is a copper alloy composed of copper and its inevitable impurities, and the frequency of compound particles having a diameter of 0.1 μm or more and 5 μm or less is 500 to 50,000 / mm 2. The frequency of compound particles having a diameter of more than 5 μm is 10 / mm 2 or less.
2〜12質量%のZn、0.1〜1.0質量%のSnを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.5≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され、
更に、Ni、Fe、Mn、Mg、Co、Ti、Cr、Zr、Al、P、Si及びAgの群から選ばれた少なくとも一種を0.005〜0.5質量%の範囲で含有し、残部が銅及びその不可避的不純物から構成される銅合金であり、
圧延面に平行な断面において、直径0.1μm以上5μm以下の化合物粒子の頻度が500〜50000個/mm2であり、直径5μm超の化合物粒子の頻度が10個/mm2以下であることを特徴とする電気電子機器用銅合金。
2 to 12% by mass of Zn, 0.1 to 1.0% by mass of Sn, and the relationship between the Sn mass% concentration ([% Sn]) and the Zn mass% concentration ([% Zn]) ,
0.5 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
Adjusted to the range of
Furthermore, it contains at least one selected from the group of Ni, Fe, Mn, Mg, Co, Ti, Cr, Zr, Al, P, Si and Ag in a range of 0.005 to 0.5% by mass, and the balance Is a copper alloy composed of copper and its inevitable impurities,
In a cross section parallel to the rolling surface, the frequency of compound particles having a diameter of 0.1 μm or more and 5 μm or less is 500 to 50000 pieces / mm 2 , and the frequency of compound particles having a diameter of more than 5 μm is 10 pieces / mm 2 or less. A copper alloy for electrical and electronic equipment.
更に、S及びOを合計で15〜60質量ppm含有することを特徴とする請求項1又は2の電気電子機器用銅合金。   Furthermore, S and O are contained 15 to 60 mass ppm in total, The copper alloy for electrical and electronic equipment of Claim 1 or 2 characterized by the above-mentioned. 溶解鋳造によりインゴットを製造し、このインゴットを熱間圧延し、その後、冷間圧延と再結晶焼鈍を繰り返し、最後に冷間圧延で所定の製品厚みに仕上げる工程で製造する工程において、熱間圧延を次の条件で行うことを特徴とする請求項1〜3いずれか1項記載の電気電子機器用銅合金の製造方法:
(1)インゴットを800〜900℃で1〜5時間加熱する。
(2)熱間圧延終了時の材料温度を600〜700℃とする。
(3)熱間圧延中に、加工度が30%以上の通板を2回以上行う。
Ingot is manufactured by melt casting, this ingot is hot-rolled, then cold rolling and recrystallization annealing are repeated, and finally, in the process of manufacturing in the process of finishing to a predetermined product thickness by cold rolling, hot rolling The method for producing a copper alloy for electrical and electronic equipment according to any one of claims 1 to 3, wherein:
(1) The ingot is heated at 800 to 900 ° C. for 1 to 5 hours.
(2) The material temperature at the end of hot rolling is 600 to 700 ° C.
(3) During hot rolling, a sheet having a processing degree of 30% or more is performed twice or more.
JP2006222586A 2005-08-24 2006-08-17 Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same Active JP4804266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222586A JP4804266B2 (en) 2005-08-24 2006-08-17 Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005242549 2005-08-24
JP2005242549 2005-08-24
JP2006222586A JP4804266B2 (en) 2005-08-24 2006-08-17 Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007084920A JP2007084920A (en) 2007-04-05
JP4804266B2 true JP4804266B2 (en) 2011-11-02

Family

ID=37972193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222586A Active JP4804266B2 (en) 2005-08-24 2006-08-17 Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same

Country Status (1)

Country Link
JP (1) JP4804266B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140171B2 (en) * 2011-03-18 2013-02-06 Jx日鉱日石金属株式会社 Copper alloy strip used for battery tab material for charging
JP5303678B1 (en) 2012-01-06 2013-10-02 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP6029296B2 (en) * 2012-03-08 2016-11-24 Jx金属株式会社 Cu-Zn-Sn-Ca alloy for electrical and electronic equipment
JP5572754B2 (en) 2012-12-28 2014-08-13 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
EP2944703A1 (en) * 2013-01-09 2015-11-18 Mitsubishi Materials Corporation Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
JP5417539B1 (en) 2013-01-28 2014-02-19 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5501495B1 (en) * 2013-03-18 2014-05-21 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268834A (en) * 1988-04-19 1989-10-26 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JP3323472B2 (en) * 1994-03-18 2002-09-09 同和鉱業株式会社 Manufacturing method of copper base alloy for connector
JP2000087158A (en) * 1998-09-11 2000-03-28 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead frame

Also Published As

Publication number Publication date
JP2007084920A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
KR101207250B1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6696769B2 (en) Copper alloy plate and connector
JP4444245B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment
JP4804266B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same
JPWO2008123433A1 (en) Cu-Ni-Si alloy for electronic materials
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
KR101715532B1 (en) Copper alloy and production method thereof
JP4781145B2 (en) Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP6029296B2 (en) Cu-Zn-Sn-Ca alloy for electrical and electronic equipment
JP4177221B2 (en) Copper alloy for electronic equipment
KR102421870B1 (en) Cu-Ni-Si-Mn-Sn based Copper alloy material with excellent strength, electrical conductivity and bendability, and method for preparing the same
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP2503793B2 (en) Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies
JP2011046970A (en) Copper alloy material and method for producing the same
JP2013064175A (en) Cu-Ni-Si-BASED COPPER ALLOY SHEET WITH GOOD SHEARING PROPERTIES THAT HAS EXCELLENT SPRING DEFLECTION LIMIT AND STRESS RELAXATION RESISTANCE
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2013147687A (en) Titanium copper excellent in bendability
JP2009084594A (en) Copper alloy sheet having excellent stress relaxation resistance property and press punchability
JP2005133186A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250