JP2007291518A - Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT - Google Patents

Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT Download PDF

Info

Publication number
JP2007291518A
JP2007291518A JP2007094074A JP2007094074A JP2007291518A JP 2007291518 A JP2007291518 A JP 2007291518A JP 2007094074 A JP2007094074 A JP 2007094074A JP 2007094074 A JP2007094074 A JP 2007094074A JP 2007291518 A JP2007291518 A JP 2007291518A
Authority
JP
Japan
Prior art keywords
copper alloy
less
compound
cold rolling
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007094074A
Other languages
Japanese (ja)
Other versions
JP5075447B2 (en
Inventor
Takao Tomitani
隆夫 冨谷
Hiroto Narueda
宏人 成枝
Yasuo Inohana
康雄 猪鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2007094074A priority Critical patent/JP5075447B2/en
Publication of JP2007291518A publication Critical patent/JP2007291518A/en
Application granted granted Critical
Publication of JP5075447B2 publication Critical patent/JP5075447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy material for a conductive component combining electrical conductivity, strength, bending workability and press blanking property on high levels in a well balance. <P>SOLUTION: The copper alloy has a composition comprising, by mass, 0.15 to 0.7% Fe, 0.04 to 0.5% P and 0.01 to 0.5% Mg, and, if necessary, comprising ≤0.5% Sn, and the balance substantially Cu, and also satisfying 1.5≤Fe/P≤10, 0.5≤Mg/P≤7 and Fe+Mg≥0.25, and has a metallic structure with a mean crystal grain diameter of ≤20 μm, where an Fe-P based compound and an Mg-P based compound are present at a grain diameter of ≤1 μm in the matrix, also, the grains with a grain diameter of >0.2 to 1 μm in the Mg-P based compound are present by 0.3 to 10 pieces per 100 μm<SP>2</SP>, and, preferably, new recrystallization does not occur after final cold working. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バスバー、自動車用コネクタ端子、電気・電子部品の端子等の通電部品用に適した銅合金であって、特に導電性、強度、曲げ加工性、プレス打抜き性を高いレベルでバランスさせたCu−Fe−P−Mg系銅合金およびその製造法に関する。   The present invention is a copper alloy suitable for current-carrying parts such as bus bars, connector terminals for automobiles, terminals for electric / electronic parts, etc., and particularly balances conductivity, strength, bending workability and press punchability at a high level. Further, the present invention relates to a Cu—Fe—P—Mg based copper alloy and a method for producing the same.

従来、自動車用ジャンクションボックス(以下「J/B」)等、極間の狭いバスバーには、強度、プレス打抜き性、コストに優れる黄銅が使用されていた。ただし、J/Bの小型化・高密度化が進むに伴いバスバー通電部も細線化されるようになり、黄銅では導電率が低い(約28%IACS)ことによるジュール熱の発生等、諸問題が生じた。   Conventionally, brass having excellent strength, press punchability, and cost has been used for narrow bus bars such as a junction box for automobiles (hereinafter referred to as “J / B”). However, as the J / B becomes smaller and more dense, the current-carrying part of the bus bar becomes thinner, and brass has various problems such as generation of Joule heat due to low conductivity (about 28% IACS). Occurred.

このような問題に対応するため、導電率が45%IACS以上で、中強度を有する合金、例えば、Cu−1Ni−0.5Sn−0.05P(C19020合金)、Cu−0.7Mg−0.005P(C18605合金)、Cu−2.2Fe−0.13Zn−0.03P(C19400合金)等の銅合金が開発され、使用されている。この他にも、特許文献1〜10に示されるような高導電型の高強度銅合金が提案されている。   In order to cope with such a problem, an alloy having a conductivity of 45% IACS or more and a medium strength such as Cu-1Ni-0.5Sn-0.05P (C19020 alloy), Cu-0.7Mg-0. Copper alloys such as 005P (C18605 alloy) and Cu-2.2Fe-0.13Zn-0.03P (C19400 alloy) have been developed and used. In addition, high-conductivity type high-strength copper alloys as disclosed in Patent Documents 1 to 10 have been proposed.

特開平10−130755号公報Japanese Patent Laid-Open No. 10-130755 特開平11−343527号公報JP-A-11-343527 特開2000−54043号公報JP 2000-54043 A 特開2000−239812号公報JP 2000-239812 A 特開昭61−221344号公報JP 61-221344 A 特開昭61−67738公報JP 61-67738 A 第2956696号公報No. 2956696 特表2003−501554号公報Special table 2003-501554 gazette 特公平6−35633号公報Japanese Patent Publication No. 6-35633 特開平11−256255号公報JP 11-256255 A

しかしながら近年、自動車の軽量化・高性能化により電装品の回路数が増大する傾向が見られ、バスバーやコネクタには65%IACS以上好ましくは70%IACS以上の導電率を有する銅合金が望まれる。上記の既存銅合金(C19020合金、C18605合金、C19400合金)では導電率の面で昨今のニーズに対応できなくなってきた。   However, in recent years, there has been a tendency for the number of circuits of electrical components to increase due to the reduction in weight and performance of automobiles, and a copper alloy having a conductivity of 65% IACS or more, preferably 70% IACS or more is desired for bus bars and connectors. . The existing copper alloys (C19020 alloy, C18605 alloy, C19400 alloy) have become unable to meet recent needs in terms of conductivity.

また、バスバーの低コスト化・軽量化・小型化等の目的から、中継端子レス化の技術が主流となっている。中継端子レス化とは、従来バスバーとヒューズを接続させるために使用していた中継端子を無くし、新たにバスバー側に圧接方式のメス端子機能(音叉端子)を持たせたものである。つまりこの音叉端子は、バスバー側のプレスで打抜かれた端面を直接ヒューズに接触させて電気的な接続を維持するものであるため、バスバーに使用される材料には、プレスで打抜かれた端面の形状が安定して良好であることが望まれる。この点、上記既存銅合金や特許文献1〜5の銅合金では、プレス打抜き性(端面の形状)について十分な配慮がなされていない。   In addition, for the purpose of reducing the cost, weight, and size of bus bars, the technology of eliminating relay terminals has become the mainstream. The relay terminal-less means that the relay terminal that has been used to connect the bus bar and the fuse is eliminated, and a new press-fitting female terminal function (tuning fork terminal) is provided on the bus bar side. In other words, this tuning fork terminal maintains the electrical connection by directly contacting the end face punched by the bus bar side press with the fuse, so the material used for the bus bar has the end face punched by the press. It is desired that the shape is stable and good. In this regard, the existing copper alloy and the copper alloys of Patent Documents 1 to 5 do not give sufficient consideration to press punchability (end face shape).

さらに、バスバーやコネクタ等の通電部品には小型化等の要求に伴い、種々の形状に加工しうる優れた加工性が求められ、特に曲げ加工性に優れることが従来にも増して重要になってきた。特許文献6の銅合金は、Ni−P系析出物が生成する合金系により導電率向上、高強度化、および剪断加工性の改善を図ったものであるが、曲げ加工性に関しては必ずしも満足できるものではない。   Furthermore, due to demands for miniaturization and the like for current-carrying parts such as bus bars and connectors, excellent workability that can be processed into various shapes is required, and in particular, excellent bending workability is more important than ever. I came. The copper alloy of Patent Document 6 is intended to improve conductivity, increase strength, and improve shear workability by an alloy system in which Ni-P-based precipitates are produced, but it is not necessarily satisfactory with respect to bending workability. It is not a thing.

このように、導電性、強度、曲げ加工性、プレス打抜き性を高いレベルでバランス良く兼ね備えた通電部品用の銅合金材料を得ることは難しい。本発明はこれらの各特性を同時に改善した新たな銅合金材料を提供しようというものである。   Thus, it is difficult to obtain a copper alloy material for energized parts that has a high level of electrical conductivity, strength, bending workability, and press punchability. The present invention is to provide a new copper alloy material in which each of these characteristics is improved at the same time.

上記目的を達成するために本発明で提供される銅合金は、質量%で、Fe:0.15〜0.7%、P:0.04〜0.5%、Mg:0.01〜0.5%であり、必要に応じてSn:0.5%以下を含み、残部が実質的にCu、かつ1.5≦Fe/P≦10、0.5≦Mg/P≦7、Fe+Mg≧0.25を満たす組成を有し、マトリクス中にFe−P系化合物および粒径が0.2μmを超える粒子を含むMg−P系化合物がいずれも粒径1μm以下の範囲で存在する金属組織を有する。上記Mg−P系化合物の粒径0.2超え〜1.0μmの粒子が100μm2あたり0.3〜10個存在し、最後に受けた冷間加工後に新たな再結晶が生じていない平均結晶粒径30μm以下の金属組織を有するものが好適な対象となる。平均結晶粒径は20μm以下であることがより好ましい。また、導電率70%IACS以上の導電性、引張強さ400N/mm2以上の強度、板厚と等しい曲げ半径で90°曲げを行った際に割れが生じない曲げ加工性、プレス打抜きした際のエグレ率(後述)が5%以下となるプレス打抜き性を具備するものが好適な対象となる。この銅合金は、曲げ加工部とプレス打抜き部を有し、プレス打抜き端面を電気的接触に利用する通電部品に好適に使用される。 In order to achieve the above object, the copper alloy provided in the present invention is, in mass%, Fe: 0.15 to 0.7%, P: 0.04 to 0.5%, Mg: 0.01 to 0. 0.5%, if necessary, including Sn: 0.5% or less, with the balance being substantially Cu, and 1.5 ≦ Fe / P ≦ 10, 0.5 ≦ Mg / P ≦ 7, Fe + Mg ≧ A metal structure having a composition satisfying 0.25, and an Fe—P compound and a Mg—P compound containing particles having a particle size exceeding 0.2 μm in a matrix having a particle size of 1 μm or less. Have. Average crystal in which 0.3 to 10 particles having a particle diameter of more than 0.2 to 1.0 μm are present per 100 μm 2 and no new recrystallization has occurred after the last cold working. What has a metal structure with a particle size of 30 micrometers or less becomes a suitable object. The average crystal grain size is more preferably 20 μm or less. Also, electrical conductivity of 70% IACS or higher, tensile strength of 400 N / mm 2 or higher, bending workability that does not cause cracking when bending at a bending radius equal to the plate thickness, and press punching Those having a press punching property in which the aggression rate (described later) is 5% or less are suitable targets. This copper alloy has a bending process part and a press punching part, and is used suitably for the electricity supply components which use a press punching end surface for an electrical contact.

ここで、「残部が実質的にCu」とは、本発明の効果を阻害しない範囲で上記以外の元素の混入が許容されることを意味し、「残部Cuおよび不可避的不純物からなる」ものが含まれる。「プレス打抜き端面」はプレス打抜きにより形成された断面である。   Here, “the balance is substantially Cu” means that mixing of elements other than the above is allowed within a range that does not impair the effects of the present invention, and “consisting of the balance Cu and unavoidable impurities”. included. The “press punched end face” is a cross section formed by press punching.

Fe−P系化合物は原子割合でFeが最も多く含まれ、次いでPが多く含まれる析出相であり、組成式Fe3PまたはFe2Pの化合物を主体とするものである。Mg−P系化合物は原子割合でMgが最も多く含まれ、次いでPが多く含まれる析出相であり、組成式Mg32の化合物を主体とするものである。これらの化合物は例えば電子ビームを化合物粒子に当てる分析手法(EDX等)によって同定することができる。化合物の粒径は例えば電解研磨後にエッチングした断面内に存在する個々の粒子の径(最も長い部分)をSEM像の上で測定することにより定めることができる。SEM像の替わりにTEM像から求めることもできる。「化合物が粒径1μm以下の範囲で存在する」とは、当該化合物の個々の粒子の粒径が1μm以下の範囲に収まっていることをいう。 The Fe-P-based compound is a precipitated phase that contains the largest amount of Fe and then contains a large amount of P, and is mainly composed of a compound of the composition formula Fe 3 P or Fe 2 P. The Mg—P-based compound is a precipitated phase containing the largest amount of Mg and then containing a large amount of P, and is mainly composed of a compound of the composition formula Mg 3 P 2 . These compounds can be identified by, for example, an analytical method (such as EDX) in which an electron beam is applied to the compound particles. The particle diameter of the compound can be determined, for example, by measuring the diameter (longest part) of each particle existing in the cross section etched after electropolishing on an SEM image. It can also be obtained from a TEM image instead of the SEM image. “A compound is present in a particle size range of 1 μm or less” means that the particle size of individual particles of the compound is in a range of 1 μm or less.

このような銅合金の製造法として、鋳造時の冷却過程で700〜300℃域における鋳片の冷却速度を30〜200℃/min以上とする「鋳造工程」と、材料中心部が850〜950℃域に0.5h以上保持されるように鋳造材を加熱したのち熱間圧延を開始し、熱延最終パスを500〜700℃で終了させ、その後少なくとも500〜300℃域の平均冷却速度を5℃/sec以上として300℃以下の温度域まで急冷する「熱間圧延工程」と、加工率30%以上の冷間圧延を行ったのち400〜600℃で1h以上保持し、その後保持温度から300℃までの冷却速度を20〜200℃/hとして冷却する「冷間圧延→焼鈍工程」を有する製造法が提供される。特に、前記「冷間圧延→焼鈍工程」の後にさらに、加工率70%以下の範囲で冷間圧延を行ったのち250〜400℃域に加熱する「冷間圧延→歪取り焼鈍工程」を有する製造法を採用することができる。   As a method for producing such a copper alloy, a “casting process” in which a cooling rate of a cast slab in a 700 to 300 ° C. region is 30 to 200 ° C./min or more in a cooling process during casting, and a material center portion is 850 to 950. After the cast material is heated so that it is held in the ° C region for 0.5 h or more, hot rolling is started, the hot rolling final pass is terminated at 500 to 700 ° C, and then the average cooling rate in at least 500 to 300 ° C area is set. “Hot rolling process” that rapidly cools to a temperature range of 300 ° C. or less as 5 ° C./sec or more, and after cold rolling at a processing rate of 30% or more, hold at 400 to 600 ° C. for 1 h or more, and then from the holding temperature A manufacturing method having a “cold rolling → annealing step” for cooling at a cooling rate of up to 300 ° C. at 20 to 200 ° C./h is provided. In particular, after the “cold rolling → annealing step”, it further includes a “cold rolling → strain relief annealing step” of heating to a temperature range of 250 to 400 ° C. after performing cold rolling within a processing rate of 70% or less. Manufacturing methods can be employed.

本発明によれば、65%IACS以上、あるいは70%IACS以上の高い導電性と400N/mm2以上の高い強度を有し、かつ、曲げ加工性とプレス打抜き性を安定的に改善した銅合金が提供可能になった。したがって本発明は、J/Bに代表される自動車用バスバーや、端子など、各種電気・電子部品用通電材料として極めて優れたものである。 According to the present invention, a copper alloy having a high conductivity of 65% IACS or more, or 70% IACS or more, a high strength of 400 N / mm 2 or more, and stably improving bending workability and press punchability. Became available. Therefore, the present invention is extremely excellent as a current-carrying material for various electric / electronic parts such as automobile bus bars represented by J / B and terminals.

発明者らの検討によれば、本発明の目的は、Cuマトリクス中においてP化合物を形成する金属元素(Fe、Mg)を適量含有したCu−Fe−P−Mg系銅合金において達成できることがわかった。以下、本発明を特定するための事項について説明する。   According to the inventors' investigation, it has been found that the object of the present invention can be achieved in a Cu-Fe-P-Mg based copper alloy containing a proper amount of metal elements (Fe, Mg) forming a P compound in a Cu matrix. It was. Hereinafter, matters for specifying the present invention will be described.

〔化学組成〕
Feは、Pとの化合物を形成しマトリクス中へ析出することにより、強度向上に寄与する元素である。この効果を十分に発揮させるには0.15質量%以上のFe含有量を確保する必要がある。ただし過剰のFe含有はFe−P系化合物の粗大化による曲げ加工性の低下および導電率の低下を引き起こすので、Fe含有量の上限は0.7質量%に制限される。Fe含有量は0.2〜0.5質量%の範囲とすることがより好ましく、0.25〜0.45質量%が一層好ましい。
[Chemical composition]
Fe is an element that contributes to strength improvement by forming a compound with P and precipitating it into the matrix. In order to sufficiently exhibit this effect, it is necessary to secure an Fe content of 0.15% by mass or more. However, excessive Fe content causes a decrease in bending workability and a decrease in electrical conductivity due to the coarsening of the Fe-P-based compound, so the upper limit of the Fe content is limited to 0.7% by mass. The Fe content is more preferably in the range of 0.2 to 0.5% by mass, and even more preferably 0.25 to 0.45% by mass.

Pは、一般的に銅合金の脱酸剤として寄与するが、本発明ではFe−P系化合物およびMg−P系化合物の析出によって強度およびプレス打抜き性の向上をもたらす。P含有量が0.04質量%未満では強度や打抜き性の向上作用が十分発揮されない。一方0.5質量%を超えると熱間割れが生じやすくなる。したがってP含有量は0.04〜0.5質量%の範囲とする必要がある。上限は0.5質量%未満に規定することができる。P含有量は0.05〜0.3質量%の範囲とすることがより好ましく、0.06〜0.2質量%が一層好ましい。   P generally contributes as a deoxidizer for copper alloys, but in the present invention, precipitation of Fe—P compounds and Mg—P compounds improves strength and press punchability. When the P content is less than 0.04% by mass, the effect of improving strength and punchability is not sufficiently exhibited. On the other hand, if it exceeds 0.5 mass%, hot cracking tends to occur. Therefore, the P content needs to be in the range of 0.04 to 0.5 mass%. An upper limit can be prescribed | regulated to less than 0.5 mass%. The P content is more preferably in the range of 0.05 to 0.3% by mass, and even more preferably 0.06 to 0.2% by mass.

さらにFeとPの含有量に関しては、Fe/P比(質量%の比)が1.5〜10となるように組成調整することが重要である。Fe/P比が1.5未満ではPの固溶量が増加して導電率の向上が不十分となりやすく、またFe−P系化合物の形成に消費されるPが減少することに伴ってMg−P系化合物の粗大化を招きやすくなり曲げ加工性が低下しやすい。またFe/P比が10を超えると過剰な固溶Feが増加し導電率の低下を招きやすい。Fe/P比は1.5〜5の範囲がより好ましく、2〜5、あるいはさらに2〜4の範囲が一層好ましい。   Furthermore, regarding the Fe and P contents, it is important to adjust the composition so that the Fe / P ratio (ratio by mass%) is 1.5 to 10. If the Fe / P ratio is less than 1.5, the solid solution amount of P increases and the electrical conductivity is likely to be insufficiently improved, and Mg consumed as the P consumed for the formation of the Fe-P compound decreases. -P-based compounds are likely to be coarsened and bending workability is liable to be lowered. On the other hand, if the Fe / P ratio exceeds 10, excessive solid solution Fe increases and the electrical conductivity tends to decrease. The Fe / P ratio is more preferably in the range of 1.5-5, more preferably in the range of 2-5, or even 2-4.

Mgは、単体でも銅合金の強度向上に寄与する元素であるが、単体ではプレス打抜き性の向上効果を有しない。ところが、Pとの化合物を形成すると、プレス打抜き性の顕著な向上作用を発現することがわかった。Mg含有量が0.01質量%未満ではMg−P系化合物の生成量が少なく、プレス打抜き性の向上効果が十分に得られない。一方、過剰なMg添加は導電率の大幅な低下や曲げ加工性の低下を招き、また鋳造時に特別な雰囲気制御が必要となって製造コストの増大を招く。したがってMg含有量の上限は0.5質量%とする必要があり、0.5質量%未満に規定することがより望ましい。Mg含有量は0.05〜0.3質量%の範囲とすることがより好ましく、0.06〜0.25質量%が一層好ましい。   Mg alone is an element that contributes to improving the strength of the copper alloy, but it alone does not have an effect of improving the press punchability. However, it has been found that when a compound with P is formed, the press punching property is remarkably improved. When the Mg content is less than 0.01% by mass, the amount of Mg—P compound produced is small, and the effect of improving the press punchability cannot be obtained sufficiently. On the other hand, excessive addition of Mg causes a significant decrease in electrical conductivity and a decrease in bending workability, and a special atmosphere control is required during casting, resulting in an increase in manufacturing cost. Therefore, the upper limit of the Mg content needs to be 0.5% by mass, and more preferably less than 0.5% by mass. The Mg content is more preferably in the range of 0.05 to 0.3% by mass, and even more preferably 0.06 to 0.25% by mass.

さらにMgとPの含有量に関しては、Mg/P比(質量%の比)が0.5〜7となるように組成調整することが重要である。Mg/P比が0.5未満ではPの固溶量が増加して導電率が低下する。また、Mg/P比が大きくなりすぎるとMgの固溶量が増加して導電率が低下する。Mg/P比は0.5〜4の範囲がより好ましく、0.5〜4、あるいはさらに0.6〜2.5の範囲が一層好ましい。   Furthermore, regarding the contents of Mg and P, it is important to adjust the composition so that the Mg / P ratio (ratio by mass%) is 0.5 to 7. When the Mg / P ratio is less than 0.5, the solid solution amount of P increases and the conductivity decreases. On the other hand, if the Mg / P ratio becomes too large, the solid solution amount of Mg increases and the electrical conductivity decreases. The Mg / P ratio is more preferably in the range of 0.5-4, more preferably in the range of 0.5-4, or even more preferably in the range of 0.6-2.5.

FeとMgの総量に関しては、Fe+Mg≧0.25となるように組成調整することが重要である。これより少ないと析出するP化物の総量が少ないため、強度、打抜き性が低下しやすい。Fe+Mg≧0.3にコントロールすることが一層好ましい。   Regarding the total amount of Fe and Mg, it is important to adjust the composition so that Fe + Mg ≧ 0.25. If it is less than this, since the total amount of precipitated P precipitate is small, the strength and punchability tend to be lowered. It is more preferable to control to Fe + Mg ≧ 0.3.

Snは、マトリクス中に固溶し強度向上に寄与するため、必要に応じて添加することができる。ただし、0.5質量%を超えてSnを添加すると強度が上昇する反面、導電率の低下が著しくなる。したがってSnを添加する場合は0.5質量%以下の範囲で行う。0.5質量%未満に規定することもできる。Sn添加による強度向上作用を十分に引き出すには0.01質量%以上のSn含有量を確保することが望ましい。特に好ましいSnの含有量範囲は0.03〜0.3質量%である。   Sn dissolves in the matrix and contributes to improving the strength, and can be added as necessary. However, if Sn is added in excess of 0.5% by mass, the strength increases, but the electrical conductivity decreases remarkably. Therefore, when adding Sn, it carries out in the range of 0.5 mass% or less. It can also be specified to be less than 0.5% by mass. It is desirable to ensure an Sn content of 0.01% by mass or more in order to sufficiently bring out the strength improvement effect by the addition of Sn. The particularly preferred Sn content range is 0.03 to 0.3% by mass.

その他、Cuマトリクスに固溶する元素や、P化合物を形成する元素はできるだけ低減することが望ましい。具体的には、銅合金中に混入されうるZn、Ti、Al、Ni、Si、B、As、Sb、Ag、Pb、Be、Zr、Cr、Mn、Inなどは、個々の元素の含有量を0.1質量%以下好ましくは0.01質量%未満に抑え、かつこれらの合計含有量を0.2質量%以下好ましくは0.1質量%未満とすることが望ましい。このうちNiについては、Niの混入量が0.01%以上のときはMg/Ni≧20となるようにMg含有量を確保することが望ましい。そうしないとPがNi−P系化合物に消費され、本発明で必要とするMg−P系化合物の量を十分確保できない恐れがある。   In addition, it is desirable to reduce as much as possible the elements that dissolve in the Cu matrix and the elements that form the P compound. Specifically, Zn, Ti, Al, Ni, Si, B, As, Sb, Ag, Pb, Be, Zr, Cr, Mn, In, etc. that can be mixed in the copper alloy are the contents of individual elements. It is desirable to keep the content of 0.1% by mass or less, preferably less than 0.01% by mass, and the total content thereof is 0.2% by mass or less, preferably less than 0.1% by mass. Of these, regarding Ni, it is desirable to ensure the Mg content so that Mg / Ni ≧ 20 when the Ni content is 0.01% or more. Otherwise, P is consumed by the Ni—P-based compound, and there is a possibility that a sufficient amount of the Mg—P-based compound required in the present invention cannot be ensured.

〔金属組織〕
Fe−P系化合物は、マトリクス中に分散して存在することにより強度向上に寄与する。ただし、その粒子サイズのコントロールが重要である。種々検討の結果、鋳造―熱延工程の冷却速度、過熱条件を制御しなければ、粒径が1μmを超えるFe−P系化合物粒子が容易に生成し、曲げ加工性の大幅な低下が生じることが明らかになった。また、そのような粗大な粒子は強度向上にも寄与せず、Pの消費によりMg−Pの生成を抑制する。したがって、本発明の銅合金では粒径1μm以下の範囲でFe−P系化合物が分散していることが重要である。
[Metal structure]
Fe—P-based compounds contribute to strength improvement by being dispersed in the matrix. However, control of the particle size is important. As a result of various studies, if the cooling rate and superheating conditions of the casting-hot rolling process are not controlled, Fe-P compound particles having a particle size exceeding 1 μm are easily generated, resulting in a significant decrease in bending workability. Became clear. Moreover, such coarse particles do not contribute to the improvement of strength, and the production of Mg—P is suppressed by the consumption of P. Therefore, in the copper alloy of the present invention, it is important that the Fe—P-based compound is dispersed in a particle size range of 1 μm or less.

Mg−P系化合物は、本発明においてプレス打抜き性を向上させるために重要である。この化合物粒子がマトリクス中に分散していることにより、プレス打抜き面におけるエグレ率(後述)が低減され、当該部品は打ち抜かれた端面における電気的な接続が良好になる。Mg−P系化合物によりエグレ率が低減されるメカニズムについては現時点で十分解明されていないが、適度な大きさのMg−P系化合物粒子がプレス打抜き時の破断発生の起点や亀裂の伝播経路として機能し、結果的にプレス打抜き面の形状がフラットに近づくのではないかと推察される。上記のFe−P系化合物にはこのような機能は見出せない。   The Mg—P compound is important for improving the press punchability in the present invention. Dispersion of the compound particles in the matrix reduces the aggression rate (described later) on the press punched surface, and the electrical connection of the part on the punched end surface is improved. Although the mechanism by which Mg-P-based compounds reduce the aggression rate has not been fully elucidated at present, Mg-P-based compound particles of an appropriate size are used as the starting point of breakage and the propagation path of cracks during press punching. As a result, it is assumed that the shape of the press punched surface is close to flat. Such a function cannot be found in the above-described Fe-P compounds.

上記Fe−P系化合物と同様、Mg−P系化合物も、その粒子の粒径が1μm以下である必要がある。これより大きな粒子の存在は曲げ加工性の弊害となる。また、プレス打抜き性の向上効果を十分に発揮させるには、粒径0.2μmを超えるMg−P系化合物粒子が存在していることが極めて有効であることがわかった。ただし粒径0.2μm以下のMg−P系化合物粒子が混在していても構わない。Mg−P系化合物の析出量は、後述のエグレ率が5%以下となる量が確保されていれば良いが、65%IACS以上、あるいは75%IACS以上といった高い導電率を得るためには、以下の析出物サイズ・量が必要である。具体的には、Mg−P系化合物が粒径0.2超え〜1μmの粒子が100μm2あたり0.3〜10個存在する組織状態とすることにより、プレス打抜き性を顕著に改善することができる。0.3個未満ではプレス打抜き性の改善が不十分となりやすく、10個を超えると曲げ加工性が悪くなりやすい。100μm2あたり1〜10個の範囲で存在することがより好ましい。ここで、粒径0.2超え〜1μmのMg−P系化合物粒子の100μm2あたりの個数は、試料の表面を電子顕微鏡(SEM)により倍率10000倍にてフォーカスを固定した状態で観察することによって粒径0.2超え〜1.0μmのMg−P系化合物の個数をカウントし、その個数に「100μm2/観察視野のトータル面積」を乗じることによって算出される。観察される粒子がMg−P系化合物であるかどうかは倍率を高くして判定するか、SEMに付属の分析手段(EDXなど)によって判定することができる。粒径は観察される粒子の長径を読み取る。観察視野のトータル面積は250μm2以上となるようにする。 Similar to the Fe-P compound, the Mg-P compound needs to have a particle size of 1 μm or less. The presence of larger particles is an adverse effect of bending workability. Further, it has been found that the presence of Mg—P compound particles having a particle size exceeding 0.2 μm is extremely effective for sufficiently exerting the effect of improving the press punchability. However, Mg-P compound particles having a particle size of 0.2 μm or less may be mixed. The amount of precipitation of the Mg—P-based compound is not limited as long as the amount of precipitation described below is 5% or less, but in order to obtain a high conductivity such as 65% IACS or more, or 75% IACS or more, The following precipitate size and amount are required. Specifically, the press punching property can be remarkably improved by forming a structure state in which 0.3 to 10 particles of Mg-P compound having a particle size exceeding 0.2 to 1 μm exist per 100 μm 2. it can. If it is less than 0.3, improvement of the press punchability tends to be insufficient, and if it exceeds 10, the bending workability tends to deteriorate. More preferably, it exists in the range of 1 to 10 per 100 μm 2 . Here, the number of Mg-P compound particles having a particle size exceeding 0.2 to 1 μm per 100 μm 2 should be observed with the focus fixed at a magnification of 10,000 times by an electron microscope (SEM). Is calculated by counting the number of Mg-P compounds having a particle diameter of more than 0.2 to 1.0 μm and multiplying the number by “100 μm 2 / total area of observation field”. Whether the observed particles are Mg-P compounds can be determined by increasing the magnification or by an analysis means (such as EDX) attached to the SEM. For the particle size, the major axis of the observed particle is read. The total area of the observation field is set to 250 μm 2 or more.

マトリクスの平均結晶粒径は最後の再結晶を伴う焼鈍後の段階において30μm以下に調整されていることが望ましい。好ましくは20μm以下である。この段階の平均結晶粒径の値は、最終的に冷間圧延および歪取り焼鈍を行った後の平均結晶粒径の値にほぼそのまま反映される。平均結晶粒径が大きくなりすぎると曲げ加工性の低下を引き起こしやすい。また、冷間加工されたのち新たな再結晶が生じていない金属組織を呈するものは特に高い強度を兼備する。結晶粒が加工方向に伸びていることが光学顕微鏡観察によって確認できる場合は「冷間加工された金属組織」を呈すると判断される。後述する歪取り焼鈍の温度が高すぎた場合などは「冷間加工された金属組織」の中に新たな再結晶粒の生成が認められるか、全体が新たな再結晶組織となる。このような場合、軟化が生じて400N/mm2以上といった高強度化を達成することは難しい。 It is desirable that the average crystal grain size of the matrix is adjusted to 30 μm or less in the stage after annealing accompanied by the last recrystallization. Preferably it is 20 micrometers or less. The value of the average crystal grain size at this stage is reflected almost as it is in the value of the average crystal grain size after finally performing cold rolling and strain relief annealing. If the average crystal grain size becomes too large, the bending workability tends to be lowered. Further, those that exhibit a metal structure that has not been recrystallized after being cold worked have particularly high strength. When it can be confirmed by observation with an optical microscope that the crystal grains extend in the processing direction, it is determined to exhibit a “cold-worked metal structure”. When the temperature of the stress relief annealing described later is too high, generation of new recrystallized grains is recognized in the “cold-worked metal structure” or the whole becomes a new recrystallized structure. In such a case, it is difficult to achieve high strength such as 400 N / mm 2 or more due to softening.

〔製造法〕
本発明の銅合金は、例えば以下のような一般的な時効硬化型銅合金の製造プロセスを利用して製造できる。
「溶解→鋳造→熱間圧延→(冷間圧延→中間焼鈍)→冷間圧延→焼鈍→冷間圧延→歪取り焼鈍」
目標板厚やライン構成に応じて、「冷間圧延→中間焼鈍」の工程を1回または複数回挿入することができる。また、冷間圧延前には面削、酸洗、脱脂などの工程が必要に応じて実施される。
ただし、前述のような金属組織にコントロールするには、合金組成を上述のように調整した上で、製造条件を以下に示すように工夫する必要がある。
[Production method]
The copper alloy of the present invention can be produced using, for example, the following general age-hardening type copper alloy production process.
“Melting → Casting → Hot rolling → (Cold rolling → Intermediate annealing) → Cold rolling → Annealing → Cold rolling → Strain relief annealing”
Depending on the target plate thickness and line configuration, the process of “cold rolling → intermediate annealing” can be inserted once or a plurality of times. Further, before cold rolling, steps such as chamfering, pickling and degreasing are performed as necessary.
However, in order to control the metal structure as described above, it is necessary to devise the manufacturing conditions as shown below after adjusting the alloy composition as described above.

まず、「鋳造工程」において、鋳造された鋳片(スラブ、ビレット、インゴットなど種々の形態が含まれる)を冷却する際、700〜300℃域における鋳片の冷却速度を30〜200℃/min以上とする必要があり、30〜150℃/minとすることが望ましい。この段階での冷却速度が遅すぎると、特に粗大なFe−P系化合物が成長し、後の工程で粒径1μm以下の析出形態にコントロールすることが困難になる。その結果、曲げ加工性を安定して改善することが難しくなる。   First, in the “casting process”, when cooling the cast slab (including various forms such as slab, billet, ingot), the cooling rate of the slab in the 700 to 300 ° C. region is set to 30 to 200 ° C./min. It is necessary to set it as the above, and it is desirable to set it as 30-150 degrees C / min. If the cooling rate at this stage is too slow, a particularly coarse Fe—P-based compound grows, and it becomes difficult to control the precipitation form with a particle size of 1 μm or less in a later step. As a result, it becomes difficult to stably improve the bending workability.

「熱間圧延工程」では、熱延前の鋳造材(鋳片そのもの、または鋳片を所定サイズに切断したもの)を、その材料中心部が850〜950℃域好ましくは880〜950℃域に0.5h以上好ましくは1h以上保持されるように炉に入れて加熱保持する。これにより鋳造時に生じた析出相が再固溶し、組織が均質化される。この加熱が不十分であると鋳造で析出した粗大なFe−P系化合物が再固溶しないためPがFe−P系化合物に消費されたままとなり、打抜き性に寄与するMg−P系化合物の析出量が減少する。その後、材料を炉から取り出した後、熱間圧延を開始し、熱延最終パスを500〜700℃で終了させる。熱間圧延温度が500℃を下回ると、粒径1μmを超える粗大な化合物相の形成を招き好ましくない。また、700℃を超える温度で最終パスを終了させると、0.2〜1.0μmのMg−P化合物が得られず、十分な打抜き性が実現できない。熱延最終パス温度を500℃以上650℃未満とすることがより好ましい。パス間での材料温度の低下を防止するには、圧延途中の板を保温または加熱する設備をもつ熱間圧延機を使用することが有利である。熱延最終パスを終えた後、できるだけ早く材料を強制急冷することが望ましい。具体的にはローラーテーブル上で水冷するか、巻き取ったコイルを直ちに水中浸漬する方法が採用できる。このようにして少なくとも500〜300℃域の平均冷却速度を5℃/sec以上として300℃以下の温度域まで急冷することが重要である。この温度域での滞留時間が長くなると粒径1μmを超える粗大な化合物相が形成されてしまう。   In the “hot rolling step”, the cast material before hot rolling (the slab itself, or the slab cut into a predetermined size) has a material center in the range of 850 to 950 ° C., preferably in the range of 880 to 950 ° C. It is heated and held in a furnace so as to be held for 0.5 h or more, preferably 1 h or more. As a result, the precipitated phase generated during casting is re-dissolved and the structure is homogenized. If the heating is insufficient, the coarse Fe-P compound precipitated by casting does not re-dissolve, so P remains consumed in the Fe-P compound, and the Mg-P compound that contributes to punchability The amount of precipitation decreases. Then, after taking out material from a furnace, hot rolling is started and a hot rolling final pass is complete | finished at 500-700 degreeC. When the hot rolling temperature is lower than 500 ° C., formation of a coarse compound phase having a particle size exceeding 1 μm is not preferable. On the other hand, if the final pass is terminated at a temperature exceeding 700 ° C., a 0.2 to 1.0 μm Mg—P compound cannot be obtained, and sufficient punchability cannot be realized. More preferably, the hot rolling final pass temperature is 500 ° C. or higher and lower than 650 ° C. In order to prevent a decrease in material temperature between passes, it is advantageous to use a hot rolling mill having a facility for keeping or heating a plate being rolled. It is desirable to force quench the material as soon as possible after the final hot rolling pass. Specifically, a method of water-cooling on a roller table or immediately immersing the wound coil in water can be employed. Thus, it is important that the average cooling rate in the range of at least 500 to 300 ° C. is 5 ° C./sec or more and rapidly cooled to a temperature range of 300 ° C. or less. When the residence time in this temperature range becomes long, a coarse compound phase exceeding a particle size of 1 μm is formed.

熱間圧延後には、通常、面削や酸洗などにより表面の酸化スケールを除去する操作が入る。その後、必要に応じて「冷間圧延→中間焼鈍」の工程を1回または複数回行った後、時効処理を行う。ただし、一定以上の加工率で冷間圧延された材料に対して時効処理を施すことが、本発明で規定する金属組織を得る上で極めて効果的である。本明細書ではこの工程を「冷間圧延→焼鈍工程」と呼んでいる。   After hot rolling, an operation for removing the oxide scale on the surface is usually performed by chamfering or pickling. Then, after performing the process of "cold rolling-> intermediate annealing" once or several times as needed, an aging treatment is performed. However, applying an aging treatment to a material that has been cold-rolled at a processing rate of a certain level or more is extremely effective in obtaining a metal structure defined in the present invention. In this specification, this process is called “cold rolling → annealing process”.

「冷間圧延→焼鈍工程」では、まず材料に加工率30%以上の冷間圧延を施す。その後、400〜600℃で1h以上保持し、その後保持温度から300℃までの冷却速度を20〜200℃/hとして冷却する焼鈍を施して再結晶化および時効処理を行う。上記加工率が30%に満たないと再結晶化が十分に進行しない場合があり、マトリクスの結晶粒径が一部粗大化したまま残って不均一な結晶粒組織となりやすく、導電性、曲げ加工性、プレス打抜き性に悪影響を及ぼす場合がある。また、析出核の生成が起こりにくく、Fe−P系化合物およびMg−P系化合物を微細に分散させる上で不利となる。この冷間圧延での加工率の上限は特に規定する必要はないが、通常、85%以下の加工率範囲で良好な結果が得られる。過剰に高い加工率に設定することは圧延機等に対する負荷を増大させ、望ましくない。焼鈍においては、再結晶粒の平均結晶粒径が20μm以下になるような条件を採用することが重要である。保持温度が400℃未満であったり、保持時間が1hに満たないと、析出量の確保や再結晶化が不十分になりやすく、好ましくない。430℃を超える保持温度とすることが特にプレス打抜き性を改善するための上記Mg−P系化合物の析出形態を実現する上で有利となる。保持温度が600℃を超えて高い場合は、Fe−P系化合物およびMg−P系化合物が十分に析出し難く、また結晶粒の粗大化が生じやすいので、好ましくない。保持時間が過剰に長いと生産性が低下するので、24h以下とすればよい。通常は1〜6h程度の保持で良好な結果が得られる。また、加熱保持後の冷却速度が速すぎると必要な析出物の生成量を十分確保できなくなるので、少なくとも300℃までの冷却速度を200℃/h以下とすることが望ましく、150℃/h以下とすることがより好ましく、120℃/h以下が一層好ましい。ただし、冷却速度を過剰に遅くすることは製造性の低下を招くので、20℃/h以上、好ましくは50℃/h以上とすればよい。   In the “cold rolling → annealing process”, the material is first subjected to cold rolling with a processing rate of 30% or more. Then, it hold | maintains at 400-600 degreeC for 1 hour or more, and after that, it anneals by cooling with the cooling rate from a holding temperature to 300 degreeC being 20-200 degreeC / h, and performs recrystallization and an aging treatment. If the above processing rate is less than 30%, recrystallization may not proceed sufficiently, and the crystal grain size of the matrix remains partially coarsened and tends to become a non-uniform crystal grain structure. May adversely affect the pressability and press punchability. Further, the formation of precipitation nuclei hardly occurs, which is disadvantageous in finely dispersing the Fe-P compound and the Mg-P compound. The upper limit of the processing rate in this cold rolling need not be specified, but usually good results are obtained within a processing rate range of 85% or less. Setting an excessively high processing rate increases the load on the rolling mill and the like, which is not desirable. In annealing, it is important to employ conditions such that the average crystal grain size of recrystallized grains is 20 μm or less. If the holding temperature is less than 400 ° C. or the holding time is less than 1 h, it is not preferable because securing the amount of precipitation and recrystallization are likely to be insufficient. A holding temperature exceeding 430 ° C. is particularly advantageous in realizing the precipitation form of the Mg—P compound for improving the press punchability. When the holding temperature is higher than 600 ° C., it is not preferable because the Fe—P compound and the Mg—P compound are not sufficiently precipitated and the crystal grains are likely to be coarsened. If the holding time is excessively long, the productivity is lowered. Usually, good results can be obtained by holding for about 1 to 6 hours. Also, if the cooling rate after heating is too fast, it will not be possible to secure a sufficient amount of precipitates, so it is desirable to set the cooling rate to at least 300 ° C to 200 ° C / h or less, and 150 ° C / h or less. More preferably, it is 120 ° C./h or less. However, excessively slowing the cooling rate leads to a decrease in manufacturability, so it may be 20 ° C./h or more, preferably 50 ° C./h or more.

以上のような製造条件を採用することで所望の金属組織が得られるが、その後、最終的な板厚調整や更なる強度向上のために、冷間圧延を行うことができる。ただしその場合、最終的に歪取り焼鈍を行うことが望ましい。本明細書ではこの最終的な冷間圧延および歪取り焼鈍の工程を「冷間圧延→歪取り焼鈍工程」と呼んでいる。   By adopting the manufacturing conditions as described above, a desired metal structure can be obtained. Thereafter, cold rolling can be performed for final plate thickness adjustment and further strength improvement. However, in that case, it is desirable to finally perform strain relief annealing. In this specification, this final cold rolling and strain relief annealing process is referred to as “cold rolling → strain relief annealing process”.

「冷間圧延→歪取り焼鈍工程」では、冷間加工率を70%以下の範囲とすることが望ましい。過剰に高い加工率に設定すると材料中の歪量が増加し、曲げ加工性が低下する。ただし、強度向上効果を十分に得るには20%以上の加工率を確保することが好ましい。歪取り焼鈍は、一般に連続焼鈍炉またはバッチ焼鈍炉で行われる。いずれの場合も材料の物温が250〜400℃となるように保持する。保持温度が250℃より低い場合は、歪みの除去効果が十分に得られず、特に冷間加工率が高い場合には曲げ加工性の改善が難しい。保持温度が400℃を超えると材料の軟化が生じやすく、好ましくない。保持時間は、連続焼鈍の場合は3〜120sec、バッチ焼鈍の場合は1〜24h程度とすればよい。焼鈍後の冷却過程では特段の急冷を行う必要はなく、炉外で放冷して構わない。   In the “cold rolling → distortion annealing process”, it is desirable that the cold working rate is in the range of 70% or less. If an excessively high processing rate is set, the amount of strain in the material increases and bending workability decreases. However, it is preferable to secure a processing rate of 20% or more in order to obtain a sufficient strength improvement effect. The strain relief annealing is generally performed in a continuous annealing furnace or a batch annealing furnace. In either case, the material temperature is maintained at 250 to 400 ° C. When the holding temperature is lower than 250 ° C., the effect of removing the distortion cannot be obtained sufficiently, and it is difficult to improve the bending workability particularly when the cold working rate is high. If the holding temperature exceeds 400 ° C., the material tends to soften, which is not preferable. The holding time may be about 3 to 120 seconds in the case of continuous annealing and about 1 to 24 hours in the case of batch annealing. In the cooling process after annealing, it is not necessary to perform special quenching, and it may be cooled outside the furnace.

表1に示す各組成の銅合金を製造して、合金組成の影響を調べた。
各合金を高周波溶解炉を用いてAr雰囲気中で溶解し、カーボン鋳型中へ鋳込んだ。この場合、700〜300℃域におけるインゴット中心部の冷却速度が約50℃/minになることを別途実験により確かめてある。得られたインゴットから厚さ30mm、幅40mm、長さ40mmの鋳造材を切り出し、これを900℃×1h保持したのち抽出し、熱間圧延に供した。このサイズの鋳造材の場合、900℃×1hの保持により、材料中心部は少なくとも880℃以上で0.5h保持されていることになる。熱間圧延の最終パスを700〜500℃で終了して熱延板を得た。熱延後には、熱延板を直ちに水中浸漬した。このとき、少なくとも500〜300℃域を平均冷却速度5℃/sec以上で通過したことになる。熱延板表面の酸化物を除去した後、加工率74%で冷間圧延し、次いで500℃で2h保持したのち炉内において2hで300℃まで冷却を行い、炉から出した。さらに加工率47%の冷間圧延を行った後、300℃で1h保持する歪取り焼鈍を行い、板厚0.64mmの供試材とした。
Copper alloys having the respective compositions shown in Table 1 were produced, and the influence of the alloy composition was examined.
Each alloy was melted in an Ar atmosphere using a high frequency melting furnace and cast into a carbon mold. In this case, it has been confirmed by experiments that the cooling rate of the central portion of the ingot in the 700 to 300 ° C. region is about 50 ° C./min. A cast material having a thickness of 30 mm, a width of 40 mm, and a length of 40 mm was cut out from the obtained ingot, extracted after holding it at 900 ° C. for 1 h, and subjected to hot rolling. In the case of a cast material of this size, the center of the material is held at least at 880 ° C. or more for 0.5 h by holding at 900 ° C. × 1 h. The final pass of hot rolling was finished at 700 to 500 ° C. to obtain a hot rolled sheet. After hot rolling, the hot rolled sheet was immediately immersed in water. At this time, at least 500 to 300 ° C. was passed at an average cooling rate of 5 ° C./sec or more. After removing the oxide on the surface of the hot-rolled sheet, it was cold-rolled at a processing rate of 74%, held at 500 ° C. for 2 h, then cooled to 300 ° C. in 2 h in the furnace, and taken out of the furnace. Further, after cold rolling at a processing rate of 47%, strain relief annealing was performed at 300 ° C. for 1 h to obtain a specimen having a thickness of 0.64 mm.

各供試材から試験片を作製し、引張強さ、導電率、曲げ加工性、エグレ率を測定した。また、供試材の組織観察を行い、析出物のサイズを測定した。   Test pieces were prepared from the respective test materials, and the tensile strength, conductivity, bending workability, and egress rate were measured. Moreover, the structure of the test material was observed and the size of the precipitate was measured.

引張強さは、圧延方向に平行方向の引張試験片を用いてJIS Z2241に従って測定した。
導電率はJIS H0505に従って測定した。
曲げ加工性は、JBMA T307(日本伸銅協会規格)に準じたW曲げ試験方法によって、曲げ軸が圧延方向に対し平行方向(BW)となる曲げ試験を実施してMBR/t(tは板厚)により評価した。MBR/t値が1.0以下であれば通電部品用素材として良好な曲げ加工性を有していると評価され、0.5以下であれば厳しい加工にも耐えうる優れた曲げ加工性を有すると評価される。
The tensile strength was measured according to JIS Z2241 using a tensile test piece parallel to the rolling direction.
The conductivity was measured according to JIS H0505.
The bending workability is determined by MBR / t (t is a plate) by performing a bending test in which the bending axis is parallel to the rolling direction (BW) by a W bending test method according to JBMA T307 (Japan Copper and Brass Association Standard). Thickness). If the MBR / t value is 1.0 or less, it is evaluated as having good bending workability as a material for energized parts, and if it is 0.5 or less, excellent bending workability that can withstand severe processing is obtained. It is evaluated to have.

エグレ率は、プレス打抜き性を評価する指標である。図1にプレス打抜き部分の断面写真を例示する。エグレ率とは、プレス打抜き端面(図1の部品では左側の面)に形成された「破断面」に対応する部分の欠損の大きさ(深さ)Aを板厚tで除した値をパーセント表示したものである。この値を求めるためのプレス打抜き試験は、クリアランス3〜10%(例えば8%)の条件で打ち抜いた場合の値が採用できる。ただし、
クリアランス=(パンチとダイの隙間)/(材料の板厚)×100
である。
ここではクリアランス=8%とし、円パンチで打ち抜かれた打抜き面の圧延方向に対して垂直な方向と平行な方向の2箇所について各N=2で測定した計4箇所の平均値をエグレ率とした。このエグレ率が5%以下であれば、打抜き端面を電気的接触に利用する通電部品用素材として良好なプレス打抜き性を有すると評価され、3%以下であることが特に好ましい。
The aggression rate is an index for evaluating press punchability. FIG. 1 illustrates a cross-sectional photograph of a press punched portion. The “Egret rate” is a value obtained by dividing the size (depth) A of the portion corresponding to the “fracture surface” formed on the press punched end face (left face in the part of FIG. 1) by the thickness t. It is displayed. In the press punching test for obtaining this value, a value obtained by punching under the condition of a clearance of 3 to 10% (for example, 8%) can be adopted. However,
Clearance = (Gap between punch and die) / (Material thickness) x 100
It is.
Here, the clearance is set to 8%, and the average value of a total of four locations measured at N = 2 for each of two locations in the direction perpendicular to the rolling direction of the punched surface punched by the circular punch is defined as the egress rate. did. If this aggression rate is 5% or less, it is evaluated that it has a good press punching property as a material for a current-carrying part that uses the punched end face for electrical contact, and it is particularly preferably 3% or less.

平均結晶粒径は、加工率74%の冷間圧延を行った材料に対して付与した焼鈍(再結晶を伴う最終の焼鈍)後における試料表面について研磨およびエッチングを行った後、光学顕微鏡により組織観察を行って求めた。具体的には約15300μm2の観察視野をランダムに3視野を選択し、切断法により求め、その平均値を使用した。
析出物に関しては、歪取り焼鈍後の材料について、SEMに付属のEDXにより析出物の同定を行い、Fe−P系化合物とMg−P系化合物の存在有無を調べた。その結果、全ての実施例についてはFe−P系化合物およびMg−P系化合物が存在することが確認された。また、個々の粒子について、SEM画像から長径を測定してその値を当該粒子の粒径とし、粒径1μmを超える粒子の有無を調べた。約250μm2の観察視野をランダムに3視野を選択し、全ての視野において粒径1μmを超える粒子の存在が認められない場合は「無」と表示し、いずれかの視野に粒径1μmを超える粒子が存在している場合は「有」と表示した。Mg−P系化合物についてはさらに粒径0.2μm超え〜1μmの粒子が存在しているかどうかについても調べた。上記3視野のうち全ての視野に粒径0.2μm超え〜1μmのMg−P系化合物粒子が存在している場合は「有」と表示し、それ以外の場合を「無」と表示した。また、より詳細にMg−P系化合物の析出状態を調べるために、100μm2あたりに存在する粒径0.2μm超え〜1μmのMg−P系化合物の個数を測定した。具体的には、SEMにより倍率10000倍にて歪取り焼鈍後の材料の表面を観察した。任意の3視野について、フォーカスを固定した状態で粒径0.2超え〜1μmのMg−P系化合物の個数をカウントし、その合計個数に「単位面積100μm2/3視野のトータル観察面積256.92μm2」を乗じることによって100μm2あたりの個数を算出した。
これらの結果を表2に示す。
The average crystal grain size is determined by polishing and etching the sample surface after annealing (final annealing with recrystallization) applied to a material subjected to cold rolling with a processing rate of 74%, and then using an optical microscope. Obtained by observation. Specifically, three viewing fields of about 15300 μm 2 were randomly selected and obtained by a cutting method, and the average value was used.
Regarding the precipitate, the material after strain relief annealing was identified by the EDX attached to the SEM, and the presence or absence of the Fe-P compound and the Mg-P compound was examined. As a result, it was confirmed that Fe-P-based compounds and Mg-P-based compounds existed in all Examples. Further, for each particle, the major axis was measured from the SEM image, and the value was taken as the particle size of the particle, and the presence or absence of particles exceeding 1 μm was examined. Three viewing fields are selected at random from an observation field of about 250 μm 2 , and “None” is displayed when there is no particle having a particle diameter exceeding 1 μm in all fields of view, and the particle diameter exceeds 1 μm in any field of view. When particles exist, “present” is indicated. The Mg-P compounds were also examined for the presence of particles having a particle size exceeding 0.2 μm to 1 μm. When Mg—P compound particles having a particle size exceeding 0.2 μm to 1 μm are present in all of the three visual fields, “Yes” is displayed, and “None” is displayed in other cases. Further, in order to examine the precipitation state of the Mg—P compound in more detail, the number of Mg—P compounds having a particle size exceeding 0.2 μm to 1 μm per 100 μm 2 was measured. Specifically, the surface of the material after strain relief annealing was observed by SEM at a magnification of 10,000 times. For any three fields of views, counts the number of focus than the particle size of 0.2 in a state in which fixed the Mg-P compounds of ~1Myuemu, the total number of the "unit area 100 [mu] m 2/3-field total observation area 256. The number per 100 μm 2 was calculated by multiplying by “92 μm 2 ”.
These results are shown in Table 2.

表2からわかるように、本発明で規定する組成を有する実施例1〜9の銅合金では、引張強さ400N/mm2以上、導電率70%IACS以上、曲げ加工性MBR/t値0.5以下、エグレ率5%以下の特性が得られ、通電部品用素材として望まれる強度、導電性、曲げ加工性およびプレス打抜き性を高いレベルでバランス良く兼ね備えた銅合金が実現できた。 As can be seen from Table 2, in the copper alloys of Examples 1 to 9 having the composition defined in the present invention, the tensile strength is 400 N / mm 2 or more, the conductivity is 70% IACS or more, the bending workability MBR / t value is 0.00. A copper alloy having a strength of 5 or less and an egress rate of 5% or less and having a high level of balance between strength, conductivity, bending workability and press punching properties desired as a material for energized parts could be realized.

これに対し、比較例1はFe含有量が高すぎたことにより粗大なFe−P系化合物が析出し、曲げ加工性に劣った。比較例2はFe含有量が少なく、Fe/P比が小さくなりすぎたことにより粗大なMg−P系化合物が形成され、曲げ加工性が著しく低下した。比較例3はP含有量が低すぎたためP化合物の析出が不十分となり、過剰な固溶Feおよび固溶Mgの存在により導電率が低くなった。比較例4はFeが含有されていないためMg−P系化合物が粗大化し、曲げ加工性が著しく低下した。比較例5はMgが含有されていないためMg−P系化合物が存在せず、エグレ率が高くなってプレス打抜き性に劣った。比較例6はNi含有量が0.1%を超えて多かったため導電率が低く、また固溶量が増加したため、曲げ加工性が悪かった。比較例7はMg含有量が0.5%を超えて多かったため導電率が低く、また0.2超え〜1μmのMg−P系化合物の存在量が多くなって曲げ加工性に劣った。比較例8はMg+Feの総量が少ないため、強度が低く、エグレ率が高くなってプレス打抜き性に劣った。   On the other hand, in Comparative Example 1, since the Fe content was too high, a coarse Fe—P-based compound was precipitated and the bending workability was poor. In Comparative Example 2, the Fe content was small and the Fe / P ratio was too small, so that a coarse Mg-P compound was formed, and the bending workability was remarkably lowered. In Comparative Example 3, since the P content was too low, the precipitation of the P compound was insufficient, and the electrical conductivity was lowered due to the presence of excessive solid solution Fe and solid solution Mg. In Comparative Example 4, since Fe was not contained, the Mg-P compound was coarsened, and the bending workability was remarkably lowered. In Comparative Example 5, no Mg-P compound was present because Mg was not contained, and the aegle rate was high, resulting in poor press punchability. In Comparative Example 6, the Ni content was higher than 0.1%, so the conductivity was low, and the solid solution amount was increased, so that the bending workability was poor. In Comparative Example 7, the Mg content was higher than 0.5%, so the electrical conductivity was low, and the abundance of Mg—P compound of more than 0.2 to 1 μm was increased, resulting in poor bending workability. In Comparative Example 8, since the total amount of Mg + Fe was small, the strength was low, the aggression rate was high, and the press punchability was poor.

次に、上記実施例1と同じ組成の銅合金を用いて、製造条件の影響を調べた。なお、比較例18は、熱間圧延後に「加工率74%で冷間圧延→380℃で5h保持→所定の速度で冷却→炉から取り出す」という工程を2サイクルし、最後に「加工率47%の冷間圧延→300℃で1h保持する歪取り焼鈍」の工程にて板厚0.64mmの供試材としたものである。各合金の製造条件を表3に、また得られた材料の特性を表4に示す。   Next, the influence of manufacturing conditions was examined using a copper alloy having the same composition as in Example 1. In Comparative Example 18, after the hot rolling, a process of “cold rolling at a processing rate of 74% → maintained at 380 ° C. for 5 hours → cooling at a predetermined speed → removing from the furnace” was performed two cycles. % Cold rolling → strain removal annealing held at 300 ° C. for 1 h ”is used as a test material having a thickness of 0.64 mm. Table 3 shows the production conditions of each alloy, and Table 4 shows the characteristics of the obtained materials.

実施例1、実施例10、実施例11はいずれも本発明規定範囲の製造条件で製造したものであり、通電部品用素材として望まれる強度、導電性、曲げ加工性およびプレス打抜き性を高いレベルでバランス良く兼ね備えた銅合金が実現できた。   Examples 1, 10, and 11 are all manufactured under the manufacturing conditions within the scope of the present invention, and have high levels of strength, conductivity, bending workability, and press punchability that are desired as materials for current-carrying parts. A copper alloy with a good balance could be realized.

これに対し比較例9では「鋳造工程」において700〜300℃域のインゴットの冷却速度を10℃/minと遅くコントロールした。実験に用いた規模のインゴットでは普通に鋳込んだ場合に700〜300℃の冷却速度が30〜150℃/min(適正条件)になる。このため大量生産現場で特段の冷却を行わなかった場合の遅い冷却速度を模擬的に作り出す目的で、シリコニット炉を用いてインゴットを炉内で冷却することにより10℃/minの冷却速度にコントロールした。その結果、鋳造の段階で粒径1μmを超える粗大なFe−P系化合物が生成してしまい、曲げ加工性に劣った。比較例10は鋳造後水冷を行い700〜300℃の冷却速度を300℃/minとした。冷却が強かったため、熱衝撃によりインゴット表面及び断面に割れが確認され、鋳造以下の通板を中止した。比較例11は「熱間圧延工程」での加熱温度が800℃と低いため、粗大なFe−P系化合物が残留し、曲げ加工性が低下した。比較例12は「熱間圧延工程」での最終パス温度が800℃と高いことにより粒径が0.2μmを超え1μm以下のMg−P系化合物粒子が生成しなかったため、エグレ率が高くプレス加工性が低下した。比較例13は「熱間圧延工程」での冷却速度が1℃/secと遅いため、析出物が粗大化し、曲げ加工性が低下した。比較例14は「冷間圧延→焼鈍工程」での加工率が20%と低いことにより焼鈍時に再結晶が生じず、圧延組織が残留する混粒組織となったため、曲げ加工性及びプレス加工性が低下した。比較例15は「冷間圧延→焼鈍工程」での時効焼鈍における温度が700℃と高いことによりFe−P系化合物およびMg−P系化合物の析出が生じず、また結晶粒が粗大化したため、導電率が低く、曲げ加工性およびプレス加工性が低下した。比較例16は「冷間圧延→焼鈍工程」での時効焼鈍における温度が350℃と低いことによりFe−P系化合物およびMg−P系化合物の析出が十分ではなく、また再結晶が生じなかったため、導電率および曲げ加工性が低下した。比較例17は「冷間圧延→歪取り焼鈍工程」での歪取り焼鈍温度が500℃と高いことにより新たな再結晶が生じて材料が軟化し、強度が低くプレス打抜き性が低下した。比較例18は熱延終了温度が720℃と高いため0.2超え〜1.0μmのMg−P系化合物が得られておらず、プレス打抜き性が低下した。   On the other hand, in Comparative Example 9, the cooling rate of the ingot in the 700 to 300 ° C. region was controlled to be as low as 10 ° C./min in the “casting process”. When the ingot of the scale used in the experiment is normally cast, the cooling rate of 700 to 300 ° C. becomes 30 to 150 ° C./min (appropriate condition). Therefore, for the purpose of simulating a slow cooling rate when no special cooling was performed at the mass production site, the cooling rate was controlled to 10 ° C./min by cooling the ingot in the furnace using a siliconit furnace. . As a result, a coarse Fe—P compound having a particle size exceeding 1 μm was produced at the casting stage, and the bending workability was poor. In Comparative Example 10, water cooling was performed after casting, and the cooling rate at 700 to 300 ° C. was set to 300 ° C./min. Since the cooling was strong, cracks were confirmed on the surface and cross section of the ingot due to thermal shock, and the sheet passing after casting was stopped. In Comparative Example 11, the heating temperature in the “hot rolling process” was as low as 800 ° C., so that a coarse Fe—P-based compound remained and bending workability deteriorated. In Comparative Example 12, since the final pass temperature in the “hot rolling process” is as high as 800 ° C., Mg—P-based compound particles having a particle size of more than 0.2 μm and not more than 1 μm were not generated. Workability decreased. In Comparative Example 13, the cooling rate in the “hot rolling process” was as slow as 1 ° C./sec, so that the precipitates became coarse and the bending workability deteriorated. In Comparative Example 14, since the processing rate in the “cold rolling → annealing process” was as low as 20%, recrystallization did not occur during annealing, and a mixed grain structure in which the rolling structure remained was obtained. Decreased. In Comparative Example 15, since the temperature in aging annealing in “cold rolling → annealing process” is as high as 700 ° C., precipitation of Fe—P compounds and Mg—P compounds did not occur, and the crystal grains became coarse. The conductivity was low, and the bending workability and press workability were reduced. In Comparative Example 16, since the temperature in the aging annealing in the “cold rolling → annealing process” was as low as 350 ° C., precipitation of the Fe—P compound and the Mg—P compound was not sufficient, and recrystallization did not occur. , Conductivity and bending workability decreased. In Comparative Example 17, the relieving annealing temperature in the “cold rolling → distortion annealing process” was as high as 500 ° C., so that new recrystallization occurred, the material was softened, the strength was low, and the press punchability was lowered. In Comparative Example 18, since the hot rolling end temperature was as high as 720 ° C., an Mg—P compound of more than 0.2 to 1.0 μm was not obtained, and the press punching property was lowered.

エグレ率を説明するためにプレス打抜き部分の断面を示した図面代用写真。The drawing substitute photograph which showed the cross section of the press punching part in order to demonstrate an egress rate.

Claims (9)

質量%で、Fe:0.15〜0.7%、P:0.04〜0.5%、Mg:0.01〜0.5%、残部が実質的にCu、かつ1.5≦Fe/P≦10、0.5≦Mg/P≦7、Fe+Mg≧0.25を満たす組成を有し、マトリクス中にFe−P系化合物および粒径が0.2μmを超える粒子を含むMg−P系化合物がいずれも粒径1μm以下の範囲で存在する金属組織を有する銅合金。   In mass%, Fe: 0.15 to 0.7%, P: 0.04 to 0.5%, Mg: 0.01 to 0.5%, the balance being substantially Cu, and 1.5 ≦ Fe Mg-P having a composition satisfying / P ≦ 10, 0.5 ≦ Mg / P ≦ 7, and Fe + Mg ≧ 0.25, and including a Fe—P compound and particles having a particle size exceeding 0.2 μm in the matrix A copper alloy having a metallographic structure in which all of the compounds are present in a particle size of 1 μm or less. 質量%で、Fe:0.15〜0.7%、P:0.04〜0.5%、Mg:0.01〜0.5%、残部が実質的にCu、かつ1.5≦Fe/P≦10、0.5≦Mg/P≦7、Fe+Mg≧0.25を満たす組成を有し、マトリクス中にFe−P系化合物およびMg−P系化合物がいずれも粒径1μm以下の範囲で存在し、かつ前記Mg−P系化合物の粒径0.2超え〜1μmの粒子が100μm2あたり0.3〜10個存在し、最後に受けた冷間加工後に新たな再結晶が生じていない平均結晶粒径30μm以下の金属組織を有する銅合金。 In mass%, Fe: 0.15 to 0.7%, P: 0.04 to 0.5%, Mg: 0.01 to 0.5%, the balance being substantially Cu, and 1.5 ≦ Fe / P ≦ 10, 0.5 ≦ Mg / P ≦ 7, Fe + Mg ≧ 0.25, and the Fe-P compound and Mg—P compound both have a particle size of 1 μm or less in the matrix. In addition, 0.3 to 10 particles having a particle diameter of more than 0.2 to 1 μm of the Mg-P compound exist per 100 μm 2 , and new recrystallization has occurred after the last cold working. A copper alloy having a metal structure with no average crystal grain size of 30 μm or less. さらにSn:0.5%以下を含む組成を有する請求項1または2に記載の銅合金。   Furthermore, the copper alloy of Claim 1 or 2 which has a composition containing Sn: 0.5% or less. 冷間加工されたのち新たな再結晶が生じていない金属組織を有する請求項1〜3のいずれかに記載の銅合金。   The copper alloy according to any one of claims 1 to 3, which has a metal structure in which new recrystallization does not occur after being cold worked. 平均結晶粒径が20μm以下の金属組織を有する請求項1〜4のいずれかに記載の銅合金。   The copper alloy according to any one of claims 1 to 4, which has a metal structure having an average crystal grain size of 20 µm or less. 導電率70%IACS以上の導電性、引張強さ400N/mm2以上の強度、板厚と等しい曲げ半径で90°曲げを行った際に割れが生じない曲げ加工性、プレス打抜きした際のエグレ率が5%以下となるプレス打抜き性を具備する請求項1〜5のいずれかに記載の銅合金。 Conductivity of 70% IACS or more, tensile strength of 400 N / mm 2 or more, bending workability that does not cause cracking when bending at 90 ° with a bending radius equal to the plate thickness, The copper alloy according to any one of claims 1 to 5, which has press punchability at a rate of 5% or less. 鋳造時の冷却過程で700〜300℃域における鋳片の冷却速度を30〜200℃/min以上とする「鋳造工程」と、材料中心部が850〜950℃域に0.5h以上保持されるように鋳造材を加熱したのち熱間圧延を開始し、熱延最終パスを500〜700℃で終了させ、その後少なくとも500〜300℃域の平均冷却速度を5℃/sec以上として300℃以下の温度域まで急冷する「熱間圧延工程」と、加工率30%以上の冷間圧延を行ったのち400〜600℃で1h以上保持し、その後保持温度から300℃までの冷却速度を20〜200℃/hとして冷却する「冷間圧延→焼鈍工程」を有する請求項1〜6のいずれかに記載の銅合金の製造法。   “Casting process” in which the cooling rate of the slab in the 700 to 300 ° C. range is 30 to 200 ° C./min or higher in the cooling process during casting, and the material center is held in the 850 to 950 ° C. range for 0.5 h or more. After the cast material is heated, hot rolling is started, the final hot rolling pass is terminated at 500 to 700 ° C., and then the average cooling rate of at least 500 to 300 ° C. is set to 5 ° C./sec or more and 300 ° C. or less. “Hot rolling process” that rapidly cools to a temperature range and after cold rolling with a processing rate of 30% or more, hold at 400 to 600 ° C. for 1 h or more, and then set the cooling rate from the holding temperature to 300 ° C. to 20 to 200 The manufacturing method of the copper alloy in any one of Claims 1-6 which has a "cold rolling-> annealing process" cooled as deg. C / h. 前記「冷間圧延→焼鈍工程」の後にさらに、加工率70%以下の範囲で冷間圧延を行ったのち250〜400℃域に加熱する「冷間圧延→歪取り焼鈍工程」を有する請求項7に記載の銅合金の製造法。   After the "cold rolling-> annealing process", the steel sheet further includes a "cold rolling-> strain relief annealing process" in which a cold rolling is performed within a processing rate of 70% or less and then heated to a range of 250 to 400 ° C. 8. A method for producing a copper alloy according to 7. 請求項1〜6のいずれかに記載の銅合金からなり、曲げ加工部とプレス打抜き部を有し、プレス打抜き端面を電気的接触に利用する通電部品。   An energized component comprising the copper alloy according to claim 1, having a bent portion and a press punched portion, and utilizing the press punched end face for electrical contact.
JP2007094074A 2006-03-30 2007-03-30 Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component Active JP5075447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094074A JP5075447B2 (en) 2006-03-30 2007-03-30 Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006096141 2006-03-30
JP2006096141 2006-03-30
JP2007094074A JP5075447B2 (en) 2006-03-30 2007-03-30 Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component

Publications (2)

Publication Number Publication Date
JP2007291518A true JP2007291518A (en) 2007-11-08
JP5075447B2 JP5075447B2 (en) 2012-11-21

Family

ID=38762406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094074A Active JP5075447B2 (en) 2006-03-30 2007-03-30 Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component

Country Status (1)

Country Link
JP (1) JP5075447B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275286A (en) * 2008-04-16 2009-11-26 Kobe Steel Ltd Method for manufacturing copper alloy with high strength and excellent processability in bending and copper alloy sheet
JP2010031339A (en) * 2008-07-30 2010-02-12 Kobe Steel Ltd COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
WO2010071220A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
JP2012167310A (en) * 2011-02-11 2012-09-06 Kobe Steel Ltd Copper alloy for electric and electronic parts and copper alloy material with tin-plating
WO2013031841A1 (en) * 2011-08-29 2013-03-07 古河電気工業株式会社 Copper alloy material and manufacturing method thereof
JP2013185232A (en) * 2012-03-09 2013-09-19 Hitachi Cable Ltd Copper alloy material and method for manufacturing copper alloy material
KR101463092B1 (en) 2012-08-21 2014-11-21 한국철도기술연구원 Ccntact wire with high strength and high electrical conductivity for high-speed electric railway
WO2015029986A1 (en) 2013-08-30 2015-03-05 Dowaメタルテック株式会社 Copper alloy sheet material and method for producing same, and current-carrying component
JP5688178B1 (en) * 2014-06-27 2015-03-25 株式会社Shカッパープロダクツ Copper alloy material, copper alloy material manufacturing method, lead frame and connector
JP2016079472A (en) * 2014-10-17 2016-05-16 Dowaメタルテック株式会社 Manufacturing method of copper alloy sheet material, copper alloy sheet material, and electrification component
KR101798684B1 (en) 2012-02-24 2017-11-16 가부시키가이샤 고베 세이코쇼 Copper alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018077942A (en) * 2016-11-07 2018-05-17 住友電気工業株式会社 Coated electric wire, electric wire having terminal, copper alloy wire and copper alloy twisted wire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199835A (en) * 1982-05-19 1983-11-21 Sumitomo Electric Ind Ltd Copper alloy for electric or electronic apparatus
JPS6092439A (en) * 1983-10-25 1985-05-24 Nippon Mining Co Ltd Heat-resistant copper alloy with high strength and electric conductivity
JPS63111151A (en) * 1986-10-29 1988-05-16 Kobe Steel Ltd Copper alloy for electrical and electronic parts and production thereof
JPH02209441A (en) * 1989-02-10 1990-08-20 Mitsubishi Shindoh Co Ltd Cu alloy stock for lead frame of semiconductor device having excellent effect of suppressing wear in stamping die
JPH11256255A (en) * 1998-03-06 1999-09-21 Kobe Steel Ltd High strength and high conductivity copper alloy excellent in shearing workability
JP2002226929A (en) * 2001-01-30 2002-08-14 Nippon Mining & Metals Co Ltd Copper alloy foil for high frequency circuit
JP2006200036A (en) * 2004-12-24 2006-08-03 Kobe Steel Ltd Copper alloy having bendability and stress relaxation property

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199835A (en) * 1982-05-19 1983-11-21 Sumitomo Electric Ind Ltd Copper alloy for electric or electronic apparatus
JPS6092439A (en) * 1983-10-25 1985-05-24 Nippon Mining Co Ltd Heat-resistant copper alloy with high strength and electric conductivity
JPS63111151A (en) * 1986-10-29 1988-05-16 Kobe Steel Ltd Copper alloy for electrical and electronic parts and production thereof
JPH02209441A (en) * 1989-02-10 1990-08-20 Mitsubishi Shindoh Co Ltd Cu alloy stock for lead frame of semiconductor device having excellent effect of suppressing wear in stamping die
JPH11256255A (en) * 1998-03-06 1999-09-21 Kobe Steel Ltd High strength and high conductivity copper alloy excellent in shearing workability
JP2002226929A (en) * 2001-01-30 2002-08-14 Nippon Mining & Metals Co Ltd Copper alloy foil for high frequency circuit
JP2006200036A (en) * 2004-12-24 2006-08-03 Kobe Steel Ltd Copper alloy having bendability and stress relaxation property

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275286A (en) * 2008-04-16 2009-11-26 Kobe Steel Ltd Method for manufacturing copper alloy with high strength and excellent processability in bending and copper alloy sheet
JP2010031339A (en) * 2008-07-30 2010-02-12 Kobe Steel Ltd COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
WO2010071220A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
JP2012167310A (en) * 2011-02-11 2012-09-06 Kobe Steel Ltd Copper alloy for electric and electronic parts and copper alloy material with tin-plating
CN103534370B (en) * 2011-08-29 2015-11-25 古河电气工业株式会社 Cu alloy material and manufacture method thereof
WO2013031841A1 (en) * 2011-08-29 2013-03-07 古河電気工業株式会社 Copper alloy material and manufacturing method thereof
JP5307305B1 (en) * 2011-08-29 2013-10-02 古河電気工業株式会社 Copper alloy material and method of manufacturing the same
CN103534370A (en) * 2011-08-29 2014-01-22 古河电气工业株式会社 Copper alloy material and manufacturing method thereof
KR101798684B1 (en) 2012-02-24 2017-11-16 가부시키가이샤 고베 세이코쇼 Copper alloy
JP2013185232A (en) * 2012-03-09 2013-09-19 Hitachi Cable Ltd Copper alloy material and method for manufacturing copper alloy material
KR101463092B1 (en) 2012-08-21 2014-11-21 한국철도기술연구원 Ccntact wire with high strength and high electrical conductivity for high-speed electric railway
KR20160051818A (en) 2013-08-30 2016-05-11 도와 메탈테크 가부시키가이샤 Copper alloy sheet material and method for producing same, and current-carrying component
CN105518164A (en) * 2013-08-30 2016-04-20 同和金属技术有限公司 Copper alloy sheet material and method for producing same, and current-carrying component
JP2015048503A (en) * 2013-08-30 2015-03-16 Dowaメタルテック株式会社 Copper alloy sheet material and production method thereof, and current-carrying component
WO2015029986A1 (en) 2013-08-30 2015-03-05 Dowaメタルテック株式会社 Copper alloy sheet material and method for producing same, and current-carrying component
TWI631226B (en) * 2013-08-30 2018-08-01 同和金屬股份有限公司 Cuppor alloy plate and method for producing the same and conductive parts
US10844468B2 (en) 2013-08-30 2020-11-24 Dowa Metaltech Co., Ltd. Copper alloy sheet material and current-carrying component
JP5688178B1 (en) * 2014-06-27 2015-03-25 株式会社Shカッパープロダクツ Copper alloy material, copper alloy material manufacturing method, lead frame and connector
JP2016079472A (en) * 2014-10-17 2016-05-16 Dowaメタルテック株式会社 Manufacturing method of copper alloy sheet material, copper alloy sheet material, and electrification component

Also Published As

Publication number Publication date
JP5075447B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5075447B2 (en) Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
JP5158909B2 (en) Copper alloy sheet and manufacturing method thereof
JP5307305B1 (en) Copper alloy material and method of manufacturing the same
JP4303313B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5619389B2 (en) Copper alloy material
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
KR102545312B1 (en) Copper alloy sheet and its manufacturing method
JP3977376B2 (en) Copper alloy
JP2006265731A (en) Copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
EP2554691A1 (en) Cu-ni-si alloy for electronic material
US20110038753A1 (en) Copper alloy sheet material
JP2018070908A (en) Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER
WO2015182777A1 (en) Copper alloy sheet material, production method therefor, and electrical/electronic component comprising said copper alloy sheet material
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP2010215976A (en) Copper alloy sheet material
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5075447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250