JP2012167310A - Copper alloy for electric and electronic parts and copper alloy material with tin-plating - Google Patents

Copper alloy for electric and electronic parts and copper alloy material with tin-plating Download PDF

Info

Publication number
JP2012167310A
JP2012167310A JP2011027953A JP2011027953A JP2012167310A JP 2012167310 A JP2012167310 A JP 2012167310A JP 2011027953 A JP2011027953 A JP 2011027953A JP 2011027953 A JP2011027953 A JP 2011027953A JP 2012167310 A JP2012167310 A JP 2012167310A
Authority
JP
Japan
Prior art keywords
copper alloy
mass
alloy
plating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011027953A
Other languages
Japanese (ja)
Other versions
JP5950499B2 (en
Inventor
Yuya Sumino
裕也 隅野
Yosuke Miwa
洋介 三輪
Akira Fugono
章 畚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011027953A priority Critical patent/JP5950499B2/en
Publication of JP2012167310A publication Critical patent/JP2012167310A/en
Application granted granted Critical
Publication of JP5950499B2 publication Critical patent/JP5950499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy for electric and electronic parts having high electric conductivity and strength and excellent in a stress-relaxing characteristic and bending workability and excellent in a thermal peeling resistance of the tin-plating.SOLUTION: The copper alloy is composed, by mass%, of 0.01-0.2% Fe, 0.02-0.15% P, 0.05-0.2% Mg, 0.001-0.2% Sn and 0.05-1.0% Zn and the balance Cu with inevitable impurities, and further, S is ≤0.005 mass%, and contents of Fe, Mg and P satisfy the following formulas (1) and (2): (1) 2.5≤([Fe]+[Mg])/[P]≤8.0; and (2) [Mg]/[Fe]≥0.85 [Fe], wherein [Mg] and [P] represent respectively contents of Fe, Mg and P.

Description

本発明は、電気・電子部品の素材として用いられる銅合金、及び前記銅合金を母材とするSnめっき付き銅合金材に関するものである。   The present invention relates to a copper alloy used as a material for electric / electronic parts, and a copper alloy material with Sn plating using the copper alloy as a base material.

銅合金は、強度、導電性及び熱伝導性に優れることから、家電製品の部品、半導体装置用リードフレーム等の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、バスバー、端子・コネクタ等の機構部品や産業用機器などの各種用途に用いられる。
これらの各種用途に用いられる銅合金には、強度、導電性及び熱伝導性以外に、その用途に応じて、各種の特性が求められる。例えば、車載用ジャンクションボックス(以下、「JB」と略す)のバスバーとして、図1に示す接点構造を有するものが知られており、このバスバー1では、圧接部2a,2bを有するメス端子部3と、リレーやヒューズなどのオス端子4との電気的な接触を維持するために、応力の集中するメス端子部3の圧接部2a,2bの下部5は、強度、応力緩和特性等の特性に優れることが求められる。特に、応力緩和特性は、電気的接触を良好に保つために重要な特性である。また、バスバー1の板厚は、通常0.64〜0.8mmと厚く、薄板に比べて曲げが困難であるため、種々の加工に耐え得る曲げ加工性も重要な特性となる。
Copper alloys are excellent in strength, conductivity, and thermal conductivity, so they are used in home appliance parts, semiconductor parts such as lead frames for semiconductor devices, electrical / electronic parts materials such as printed wiring boards, switch parts, bus bars, and terminals. -Used in various applications such as mechanical parts such as connectors and industrial equipment.
In addition to strength, electrical conductivity, and thermal conductivity, various properties are required for the copper alloy used in these various applications depending on the application. For example, a bus bar having a contact structure shown in FIG. 1 is known as a bus bar of an in-vehicle junction box (hereinafter abbreviated as “JB”). In this bus bar 1, a female terminal portion 3 having press contact portions 2a and 2b is known. In order to maintain electrical contact with the male terminals 4 such as relays and fuses, the lower portions 5 of the pressure contact portions 2a and 2b of the female terminal portion 3 where stress is concentrated have characteristics such as strength and stress relaxation characteristics. It is required to be excellent. In particular, the stress relaxation characteristic is an important characteristic for maintaining good electrical contact. Further, the plate thickness of the bus bar 1 is usually as thick as 0.64 to 0.8 mm and is difficult to bend as compared to a thin plate. Therefore, bending workability that can withstand various kinds of processing is also an important characteristic.

また、近年の車載電装用部品における低コスト化、小型化及び軽量化の傾向から、車載JB用バスバーの材料には、従来から要望されている機械的特性に加えて、一段と高い導電率[具体的には、60%IACS以上〔IACS:万国標準軟銅(International Annealed Copper Standard)〕]であることが望まれている。
さらに、従来、バスバーは、耐食性を高めるためにSnめっきを施した状態で使用されている。ここで、前記のとおり、JBにおける近年の小型化および軽量化の要求に適応するため、バスバーに直接、半導体を実装するタイプが増加しており、耐食性だけでなく加熱後のめっき耐熱剥離性などの特性も重要になってきている。
In addition, due to the recent trend toward lower cost, smaller size, and lighter weight for in-vehicle electrical components, in-vehicle JB busbar materials have a much higher electrical conductivity in addition to the mechanical properties that have been conventionally demanded. Specifically, it is desired to be 60% IACS or more [IACS: International Annealed Copper Standard].
Furthermore, conventionally, the bus bar is used in a state where Sn plating is applied in order to improve the corrosion resistance. Here, as described above, in order to adapt to the recent demands for miniaturization and weight reduction in JB, the number of types in which a semiconductor is directly mounted on a bus bar is increasing, and not only corrosion resistance but also heat resistance of plating after heating, etc. The characteristics of are also becoming important.

そこで、これらの問題に対応するため、各種の銅合金が提案されている。例えば、特許文献1には、バスバー、自動車用コネクタ端子、電気・電子部品の端子等の通電部品用に適した銅合金として、質量%でFe:0.15〜0.7%、P:0.04〜0.5%、Mg:0.01〜0.5%、必要に応じてSn:0.5%以下を含み、Fe/P比、Mg/P比及びFe+Mg含有量を所定範囲に規制した銅合金が開示されている。特許文献2には、バスバー、端子、その他の電気・電子部品に用いる銅合金として、Fe:0.01〜3.0%、P:0.01〜0.4%、Mg:0.1〜1.0%、必要に応じてZn0.005〜3.0%、Sn:0.01〜5.0%を含む銅合金が開示されている。特許文献3には、同じく、Fe:0.02〜0.5%、P:0.01〜0.1%、Mg:0.1〜1.0%、Sn:0.1〜1.0%、Zn:0.3〜2.0%を含む銅合金が開示されている。   Therefore, various copper alloys have been proposed to cope with these problems. For example, in Patent Document 1, Fe: 0.15 to 0.7% in mass%, P: 0 as a copper alloy suitable for current-carrying parts such as bus bars, connector terminals for automobiles, and terminals for electric / electronic parts. 0.04 to 0.5%, Mg: 0.01 to 0.5%, Sn: 0.5% or less as required, Fe / P ratio, Mg / P ratio and Fe + Mg content within predetermined ranges A regulated copper alloy is disclosed. In Patent Document 2, as a copper alloy used for bus bars, terminals, and other electric / electronic components, Fe: 0.01 to 3.0%, P: 0.01 to 0.4%, Mg: 0.1 to 0.1% A copper alloy containing 1.0% Zn as necessary, 0.005 to 3.0% Zn, 0.01 to 5.0% is disclosed. Similarly, in Patent Document 3, Fe: 0.02 to 0.5%, P: 0.01 to 0.1%, Mg: 0.1 to 1.0%, Sn: 0.1 to 1.0 %, A copper alloy containing Zn: 0.3-2.0% is disclosed.

特開2007−291518号公報(請求項1,3)JP 2007-291518 A (Claims 1 and 3) 特開2007−177274号公報(請求項1,4,5)JP 2007-177274 A (Claims 1, 4 and 5) 特開平03−97816号公報(特許請求の範囲)Japanese Patent Laid-Open No. 03-97816 (Claims)

特許文献1では、導電性、強度、曲げ加工性及びプレス打ち抜き性を高いレベルでバランスよく兼ね備えた銅合金が得られたとされているが、応力緩和特性や高温長時間加熱後のめっき耐熱剥離性についての検討がなされていない。特許文献2では、高強度,高導電率及び優れた曲げ加工性が得られたとされているが、応力緩和特性や高温長時間加熱後のめっき耐熱剥離性についての検討がなされていない。特許文献3では、強度、応力緩和特性及び導電性に優れた銅合金が得られたとされているが、実施例をみると応力緩和特性については試験温度が低く現在の要求水準に達しているかどうか疑問がある。また、曲げ加工性についての検討がなされていない。   In Patent Document 1, it is said that a copper alloy having a high level of electrical conductivity, strength, bending workability and press punchability is obtained, but stress relaxation characteristics and plating heat-resistant peelability after high-temperature and long-time heating are obtained. No consideration has been made. In Patent Document 2, it is said that high strength, high electrical conductivity, and excellent bending workability have been obtained, but no examination has been made on stress relaxation characteristics and plating heat resistance peelability after high-temperature and long-time heating. In Patent Document 3, it is said that a copper alloy excellent in strength, stress relaxation characteristics, and conductivity was obtained. However, in the examples, whether the test temperature is low and the current required level is reached for the stress relaxation characteristics. It is doubtful. Further, bending workability has not been studied.

本発明は、従来技術の上記問題点に鑑みてなされたもので、高い導電率及び強度を有し、かつ応力緩和特性及び曲げ加工性に優れ、さらにSnめっきした場合に高温長時間加熱後の耐熱剥離性にも優れた電気・電子部品用銅合金を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, has high conductivity and strength, is excellent in stress relaxation characteristics and bending workability, and further after high-temperature and long-time heating when Sn plating is performed. An object of the present invention is to provide a copper alloy for electric and electronic parts which is excellent in heat peelability.

そこで、本発明者らは、Cu−Fe−Mg−P(−Sn−Zn)系銅合金について、強度や導電率の向上に有効なFe−P析出物及びMg−P析出物を形成するために必要なFe,Mg及びPの含有量について鋭意検討した。その結果、合金成分であるFe,Mg,P,Sn,Znの含有量が特定の範囲内にあり、不可避的不純物であるSの含有量が抑えられ、さらにFe,Mg,Pの含有量が特定の関係式を満たすとき、前記銅合金が高い強度及び導電率を有し、同時に応力緩和特性、曲げ加工性、及び高温長時間加熱後のSnめっき耐熱剥離性にも優れることを知見した。   Therefore, the present inventors have formed Fe—P precipitates and Mg—P precipitates effective for improving the strength and conductivity of Cu—Fe—Mg—P (—Sn—Zn) based copper alloys. The content of Fe, Mg, and P necessary for the study was intensively studied. As a result, the contents of Fe, Mg, P, Sn, and Zn as alloy components are within a specific range, the content of S as an inevitable impurity is suppressed, and the contents of Fe, Mg, and P are further reduced. When satisfy | filling a specific relational expression, it discovered that the said copper alloy had high intensity | strength and electrical conductivity, and also was excellent in the stress relaxation characteristic, bending workability, and Sn plating heat-resistant peeling after high-temperature long-time heating.

すなわち、本発明(請求項1)に係る電気・電子部品用銅合金は、Fe:0.01〜0.2質量%、P:0.02〜0.15質量%、Mg:0.05〜0.2質量%、Sn:0.001〜0.2質量%、及びZn:0.05〜1.0質量%を含み、残部がCu及び不可避的不純物からなり、S:0.005質量%以下であり、Fe,Mg及びP含有量が下記式(1)、(2)を満たすことを特徴とする。
2.5≦([Fe]+[Mg])/[P]≦8.0・・・・(1)
[Mg]/[Fe]≧0.85・・・・(2)
ここで[Fe]、[Mg]、[P]は、それぞれFe,Mg,Pの含有量を表す。
That is, the copper alloy for electrical / electronic parts according to the present invention (Claim 1) has Fe: 0.01 to 0.2% by mass, P: 0.02 to 0.15% by mass, Mg: 0.05 to 0.2% by mass, Sn: 0.001 to 0.2% by mass, and Zn: 0.05 to 1.0% by mass, with the balance being Cu and inevitable impurities, S: 0.005% by mass The Fe, Mg and P contents satisfy the following formulas (1) and (2).
2.5 ≦ ([Fe] + [Mg]) / [P] ≦ 8.0 (1)
[Mg] / [Fe] ≧ 0.85 (2)
Here, [Fe], [Mg], and [P] represent the contents of Fe, Mg, and P, respectively.

上記電気・電子部品用銅合金は、必要に応じて、Al:0.001〜0.030質量%とSi:0.001〜0.030質量%のいずれか1種又は2種を合計で0.001〜0.050質量%含み、又は/及び、(2)Mn,Ni,Co,Crの1種以上を総量で0.0005〜0.05質量%含む。   The above-mentioned copper alloy for electric / electronic parts is 0 in total in any one or two of Al: 0.001 to 0.030 mass% and Si: 0.001 to 0.030 mass% as necessary. 0.001 to 0.050% by mass or / and (2) one or more of Mn, Ni, Co, and Cr are included in a total amount of 0.0005 to 0.05% by mass.

本発明に係るSnめっき付き銅合金材(請求項7)は、前記電気・電子部品用銅合金からなる銅合金母材と、前記銅合金母材の表面に形成された厚さ1.0μm以下のCu−Sn合金層と、さらに前記Cu−Sn合金層の表面に形成された厚さ0.3〜1.0μmのSn又はSn合金層からなることを特徴とする。
また、本発明に係るSnめっき付き銅合金材(請求項8)は、電気・電子部品用銅合金からなる銅合金母材と、前記銅合金母材の表面に形成された厚さ1.0μm以下のCu−Sn合金層と、前記Cu−Sn合金層の表面に形成された厚さ0.3〜1.0μmのSn又はSn合金層からなり、前記Cu−Sn合金層及びSn又はSn合金層は、前記銅合金母材の表面に形成したSn又はSn合金めっき層をリフロー処理することにより形成されたものであることを特徴とする。
A copper alloy material with Sn plating according to the present invention (Claim 7) is a copper alloy base material made of the copper alloy for electric / electronic parts and a thickness of 1.0 μm or less formed on the surface of the copper alloy base material. A Cu-Sn alloy layer, and a Sn or Sn alloy layer having a thickness of 0.3 to 1.0 [mu] m formed on the surface of the Cu-Sn alloy layer.
The copper alloy material with Sn plating according to the present invention (Claim 8) is a copper alloy base material made of a copper alloy for electric / electronic parts and a thickness of 1.0 μm formed on the surface of the copper alloy base material. The following Cu-Sn alloy layer and a Sn or Sn alloy layer having a thickness of 0.3 to 1.0 [mu] m formed on the surface of the Cu-Sn alloy layer, the Cu-Sn alloy layer and the Sn or Sn alloy The layer is formed by reflowing an Sn or Sn alloy plating layer formed on the surface of the copper alloy base material.

本発明に係る電気・電子部品用銅合金は、高い導電率及び強度を有するとともに、応力緩和特性、曲げ加工性に優れ、さらにこの銅合金にSn又はSn合金めっきを行ったSnめっき付き銅合金材は、高温長時間加熱後のSn又はSn合金層の耐熱剥離性に優れている。具体的には、本発明に係る銅合金は、導電率が60%IACS以上、圧延方向に対し平行方向及び直角方向のいずれも耐力が400N/mm以上、ビッカース硬さが130Hv以上、圧延方向に対し平行方向及び直角方向のいずれも180℃×24時間加熱後の応力緩和率が30%以下、曲げ軸が圧延方向に対し平行方向及び直角方向のいずれもR/t=0.5(R:曲げ半径、t:板厚)で割れ無しの曲げ加工性、150℃×1000時間加熱後の180°曲げ−曲げ戻しでSn層の剥離なし、という特性を達成できる。 The copper alloy for electric / electronic parts according to the present invention has high conductivity and strength, is excellent in stress relaxation characteristics and bending workability, and further, Sn or Sn alloy plated copper alloy obtained by performing Sn or Sn alloy plating on this copper alloy The material is excellent in the heat-resistant peelability of the Sn or Sn alloy layer after being heated for a long time at a high temperature. Specifically, the copper alloy according to the present invention has a conductivity of 60% IACS or more, a proof stress of 400 N / mm 2 or more in both the parallel direction and the perpendicular direction to the rolling direction, a Vickers hardness of 130 Hv or more, and the rolling direction. The stress relaxation rate after heating at 180 ° C. for 24 hours is 30% or less in both the parallel and perpendicular directions, and the bending axis is R / t = 0.5 (R : Bending radius, t: plate thickness) and bending workability without cracking, and 180 ° bending after heating at 150 ° C. for 1000 hours-no bending of Sn layer by bending back can be achieved.

また、Snめっき付き銅合金材の場合、表面にSn又はSn合金層が存在するため、製作した端子をPbレスはんだや一般のはんだを用いて基板等にはんだ付けする際のはんだ広がり性が優れ、良好なはんだ接合強度が得られる。さらに、リフロー処理したものについては、Sn又はSn合金層に発生する応力が低減され、Snのウィスカーが発生せず、狭ピッチの端子に用いても短絡が発生せず、電子部品の信頼性が向上する。
本発明の銅合金及びSnめっき付き銅合金材は、家電、産業用機器、及び自動車用等の電気・電子部品用材料として、幅広く有効に活用できる。特に、車載用JBのバスバーを構成する素材として用いた場合には、バスバーの小型化及び軽量化を図ることができる。また、本発明に係る電気・電子部品用銅合金は、一般的な銅合金の製造方法によって製造することができるために、バスバーの低コスト化にも寄与する。
In addition, in the case of a copper alloy material with Sn plating, since Sn or Sn alloy layer exists on the surface, the solder spreadability when soldering the manufactured terminal to a substrate using Pb-less solder or general solder is excellent. Good solder joint strength can be obtained. Furthermore, for the reflow-treated material, the stress generated in the Sn or Sn alloy layer is reduced, Sn whiskers are not generated, short circuits are not generated even when used for narrow pitch terminals, and the reliability of electronic components is improved. improves.
The copper alloy material and the copper alloy material with Sn plating of the present invention can be effectively used widely as materials for electric and electronic parts such as home appliances, industrial equipment, and automobiles. In particular, when it is used as a material constituting a bus bar for in-vehicle JB, the bus bar can be reduced in size and weight. Moreover, since the copper alloy for electrical / electronic parts according to the present invention can be manufactured by a general copper alloy manufacturing method, it contributes to cost reduction of the bus bar.

バスバーの構造例を示す概略図である。It is the schematic which shows the structural example of a bus bar.

以下、本発明に係る電気・電子部品用銅合金(以下、「本発明の銅合金」という),及び本発明の銅合金を用いてなるSnめっき付き銅合金材について詳細に説明する。
本発明の銅合金は、Fe,P,Mg,Sn及びZnを特定の量含有し、残部がCu及び不可避的不純物で構成される成分組成を有するとともに、Fe,Mg及びPの含有量が特定の関係を有する。また、必要に応じて、Al,Si,Mn,Ni,Co,Crの1種又は2種以上を特定の量含有する。
以下、本発明の銅合金を構成する各成分の含有量の数値範囲、及びその数値範囲の限定理由、さらにFe,Mg及びPの含有量の関係式について説明する。
Hereinafter, the copper alloy for electrical and electronic parts according to the present invention (hereinafter referred to as “the copper alloy of the present invention”) and the copper alloy material with Sn plating using the copper alloy of the present invention will be described in detail.
The copper alloy of the present invention contains a specific amount of Fe, P, Mg, Sn, and Zn, and the balance is composed of Cu and inevitable impurities, and the content of Fe, Mg, and P is specified. Have the relationship. If necessary, a specific amount of one or more of Al, Si, Mn, Ni, Co, and Cr is contained.
Hereinafter, the numerical range of the content of each component constituting the copper alloy of the present invention, the reason for limiting the numerical range, and the relational expression of the contents of Fe, Mg, and P will be described.

(Feの含有量:0.01〜0.2質量%)
Feは、Fe−P系の微細な析出物を形成して、析出硬化によって強度を向上させるとともに、Pと析出することによりFe及びP固溶量を減少させ導電率を向上させるために有効な元素である。Feの含有量が0.01質量%未満では、十分な析出による強度の向上効果を得ることができず、導電率も向上しない。また、0.2質量%を超えると、導電率の低下を招くとともに、析出物粗大化の原因となり応力緩和特性及び曲げ加工性の低下を引き起こす。従って、Feの含有量は0.01〜0.2質量%の範囲とする。Feの含有量は、0.02〜0.17質量%が好ましく、さらに好ましくは0.05〜0.16質量%である。
(Fe content: 0.01 to 0.2% by mass)
Fe is effective for forming Fe-P-based fine precipitates and improving the strength by precipitation hardening, and by reducing the amount of Fe and P solid solution by precipitating with P and improving the conductivity. It is an element. When the Fe content is less than 0.01% by mass, the effect of improving the strength due to sufficient precipitation cannot be obtained, and the electrical conductivity is not improved. Moreover, when it exceeds 0.2 mass%, while causing the fall of electrical conductivity, it will cause the coarsening of a precipitate and will cause the fall of a stress relaxation characteristic and bending workability. Therefore, the Fe content is in the range of 0.01 to 0.2% by mass. The content of Fe is preferably 0.02 to 0.17% by mass, and more preferably 0.05 to 0.16% by mass.

(Pの含有量:0.02〜0.15質量%)
Pは、FeやMgと析出物を形成して、析出硬化によって強度を向上させるとともに、P,Fe,Mg固溶量を減少させ導電率を向上させるために有効な元素である。Pの含有量が0.02質量%未満では、FeやMgとの析出物が十分に形成されないため強度の向上効果を得ることができず、またFeやMgの固溶量が増加して導電率の低下を招く。一方、Pの含有量が0.15質量%を越えると、Mg固溶量が減少して応力緩和特性が低下し、またPの固溶量が増加して導電率の低下を招く。従って、Pの含有量は0.02〜0.15質量%の範囲とする。Pの含有量は、0.03〜0.15質量%が好ましく、さらに好ましくは、0.05〜0.12質量%である。
(P content: 0.02-0.15 mass%)
P is an effective element for forming precipitates with Fe and Mg and improving the strength by precipitation hardening and reducing the amount of solid solution of P, Fe and Mg and improving the conductivity. If the P content is less than 0.02% by mass, precipitates with Fe and Mg are not sufficiently formed, so that the effect of improving the strength cannot be obtained, and the solid solution amount of Fe and Mg is increased, resulting in increased conductivity. The rate drops. On the other hand, if the P content exceeds 0.15% by mass, the Mg solid solution amount decreases and the stress relaxation characteristics decrease, and the P solid solution amount increases and the conductivity decreases. Therefore, the P content is in the range of 0.02 to 0.15 mass%. The content of P is preferably 0.03 to 0.15% by mass, and more preferably 0.05 to 0.12% by mass.

(Mgの含有量:0.05〜0.2質量%)
Mgは、Mg−P系の微細な析出物を形成して、析出硬化によって強度を向上させるとともに、Pと析出することによりMg及びP固溶量を減少させ導電率を向上させるために有効な元素である。また、析出せず固溶したままのMgは、固溶による強度の向上と耐応力緩和特性の向上に有効である。Mgの含有量が0.05質量%未満では、Mg−P析出物の析出による強度の向上と、固溶Mgによる固溶強化及び耐応力緩和特性の向上を十分に得ることができない。一方、0.2質量%を超えると、析出物粗大化の原因となり曲げ加工性の低下を引き起こし、また固溶Mgが増加し導電率の低下を招く。従って、Mgの含有量は0.05〜0.2質量%の範囲とする。Mgの含有量は、0.08〜0.19質量%が好ましく、さらに好ましくは0.10〜0.18質量%である。
なお、Mg含有量が多い場合、溶解炉の炉壁にMg酸化物であるノロが多く付着し、次の鋳造品質の低下を招く恐れがあり、炉洗い増加などによる生産効率低下という問題も生じる。
(Mg content: 0.05 to 0.2% by mass)
Mg is effective for forming Mg-P-based fine precipitates and improving the strength by precipitation hardening, and by reducing the Mg and P solid solution amount by precipitation with P, thereby improving the conductivity. It is an element. Further, Mg that does not precipitate and remains in solid solution is effective in improving strength and improving stress relaxation resistance due to solid solution. When the Mg content is less than 0.05% by mass, it is not possible to sufficiently obtain an improvement in strength due to precipitation of Mg—P precipitates and an improvement in solid solution strengthening and stress relaxation resistance due to solid solution Mg. On the other hand, if it exceeds 0.2% by mass, the precipitate becomes coarse and causes a decrease in bending workability, and solid solution Mg increases, leading to a decrease in conductivity. Therefore, the Mg content is in the range of 0.05 to 0.2 mass%. The content of Mg is preferably 0.08 to 0.19% by mass, and more preferably 0.10 to 0.18% by mass.
If the Mg content is high, a large amount of Mg oxide may adhere to the furnace wall of the melting furnace, which may lead to a reduction in the quality of the next casting, and there is a problem of a decrease in production efficiency due to an increase in furnace washing. .

(Fe、Mg及びPの含有量の関係)
本発明の銅合金において、Fe,Mg及びPの含有量は、前記関係式(1)のとおり、2.5≦(Fe+Mg)/P≦8.0の関係にあることが必須である。(Fe+Mg)/Pが2.5未満では、Fe,Mg固溶量が減少し応力緩和特性が低下する.一方,8.0を超えるとMg−P析出物及びFe−P析出物が粗大化して曲げ加工性が低下し、また、Fe,Mg固溶量が増え、導電率の低下を招く。応力緩和特性向上のため、3.0≦(Fe+Mg)/P≦5.0の範囲が望ましい。また、応力緩和特性を向上させるには、Fe及びMg量の含有量は,前記関係式(2)のとおり、Mg/Fe≧0.85の関係になくてはならない。
(Relationship of Fe, Mg and P contents)
In the copper alloy of the present invention, it is essential that the contents of Fe, Mg, and P are in a relationship of 2.5 ≦ (Fe + Mg) /P≦8.0 as shown in the relational expression (1). If (Fe + Mg) / P is less than 2.5, the amount of Fe, Mg solid solution decreases and the stress relaxation characteristics deteriorate. On the other hand, if it exceeds 8.0, Mg—P precipitates and Fe—P precipitates are coarsened to lower the bending workability, and the Fe and Mg solid solution amounts are increased, leading to a decrease in conductivity. In order to improve stress relaxation characteristics, a range of 3.0 ≦ (Fe + Mg) /P≦5.0 is desirable. Further, in order to improve the stress relaxation characteristics, the content of Fe and Mg must be in the relationship of Mg / Fe ≧ 0.85 as shown in the relational expression (2).

(Snの含有量:0.01〜0.2質量%)
Snは、固溶による強度の向上と耐応力緩和特性の向上に有効な元素である。Snの含有量が0.001質量%未満では、固溶による強度の向上と耐応力緩和特性の向上が十分に得られず、また、0.2質量%を超えると、導電率が低下する。従って、Snの含有量は0.001〜0.2質量%の範囲とする。Snの含有量は、0.005〜0.15質量%が好ましい。
(Sn content: 0.01 to 0.2% by mass)
Sn is an element effective for improving the strength by solid solution and improving the stress relaxation resistance. If the Sn content is less than 0.001% by mass, the strength and the stress relaxation resistance cannot be sufficiently improved by solid solution, and if it exceeds 0.2% by mass, the electrical conductivity decreases. Therefore, the Sn content is in the range of 0.001 to 0.2 mass%. The content of Sn is preferably 0.005 to 0.15% by mass.

(Znの含有量:0.05〜1.0質量%)
Znは、電子部品の接合に用いるSnめっきやはんだの耐熱剥離性を改善し、熱剥離を抑制するために有効な元素である。Znの含有量が0.05質量%未満では、Snめっきやはんだの耐熱剥離性の向上に十分な効果が得られない。また、1.0質量%を超えると、導電率が低下する。従って、Znの含有量は、0.05〜1.0質量%の範囲とする。このZnの含有量は、0.07〜0.40質量%が好ましく、さらに好ましくは0.10〜0.30質量%である。
(Zn content: 0.05 to 1.0 mass%)
Zn is an element effective for improving the heat-resistant peelability of Sn plating and solder used for joining electronic components and suppressing thermal peeling. When the Zn content is less than 0.05% by mass, a sufficient effect for improving the Sn plating and the heat-resistant peelability of the solder cannot be obtained. Moreover, when it exceeds 1.0 mass%, electrical conductivity will fall. Therefore, the Zn content is in the range of 0.05 to 1.0 mass%. The Zn content is preferably 0.07 to 0.40 mass%, more preferably 0.10 to 0.30 mass%.

(Sの含有量:0.005質量%以下)
原料に工場内の銅屑やスタンピング後の回収スクラップ屑を使用する場合、Sは不可避的不純物として銅合金中に含まれ、添加したMgなどの元素と結合し、固溶Mg量を低下させ耐応力緩和特性を劣化させる。また、その化合物は割れの起点となり曲げ加工性が低下する。Sを0.005質量%以下に制御することによって耐応力緩和特性と曲げ加工性が保持される。なお、Sを0.005%以下に低減するには、Mgを添加した後発生するノロ引きを行い、その後炉中Mg濃度が規定範囲になっていることを確認して鋳造すればよい。
(S content: 0.005 mass% or less)
When copper scrap in the factory or recovered scrap scrap after stamping is used as a raw material, S is included in the copper alloy as an unavoidable impurity, and combines with added elements such as Mg to reduce the amount of solid solution Mg and reduce resistance. Degrading stress relaxation characteristics. Moreover, the compound becomes a starting point of a crack and bending workability falls. By controlling S to 0.005 mass% or less, stress relaxation resistance and bending workability are maintained. In order to reduce S to 0.005% or less, it is possible to perform casting after adding Mg and then casting after confirming that the Mg concentration in the furnace is within the specified range.

(Alの含有量:0.001〜0.030質量%)
(Siの含有量:0.001〜0.030質量%)
Al,Siは、炉中の脱硫に効果的であり、さらに銅中に固溶し、強度及び応力緩和特性を向上させるのに有効な元素であり、必要に応じて1種又は2種が添加される。
Alを単独で添加する場合、Alの含有量が0.001質量%未満では、所望の効果が得られず、0.030質量%を超えると導電率の低下を引き起こす。このAlの含有量は、0.001〜0.020質量%が好ましく、さらに好ましくは0.005〜0.015質量%である。また、Siを単独で添加する場合、Siの含有量が0.001質量%未満では所望の効果が得られず、0.030質量%を超えると導電率の低下を招く恐れがあり、さらに晶出物を形成し、曲げ性低下を引き起こす可能性がある。このSiの含有量は、0.001〜0.015質量%が好ましく、さらに好ましくは0.005〜0.010質量%である。
AlとSiを同時に添加する場合、Al:0.001〜0.030質量%、Si:0.001〜0.030質量%の範囲内で、合計の含有量は0.001〜0.050質量%とする。この場合のAl、Siの好ましい含有量は上記範囲と同じである。
(Al content: 0.001 to 0.030 mass%)
(Si content: 0.001 to 0.030 mass%)
Al and Si are effective elements for desulfurization in the furnace, and are effective elements for improving the strength and stress relaxation characteristics by solid solution in copper. One or two elements are added as required. Is done.
When Al is added alone, if the Al content is less than 0.001% by mass, the desired effect cannot be obtained, and if it exceeds 0.030% by mass, the conductivity is lowered. The Al content is preferably 0.001 to 0.020 mass%, more preferably 0.005 to 0.015 mass%. Further, when Si is added alone, the desired effect cannot be obtained if the Si content is less than 0.001% by mass, and if it exceeds 0.030% by mass, the conductivity may be lowered, and further, Forms exudates and may cause a decrease in bendability. The content of Si is preferably 0.001 to 0.015 mass%, more preferably 0.005 to 0.010 mass%.
When Al and Si are added simultaneously, the total content is 0.001 to 0.050 mass within the range of Al: 0.001 to 0.030 mass% and Si: 0.001 to 0.030 mass%. %. In this case, preferable contents of Al and Si are the same as the above ranges.

(Mn,Ni,Co,Cr)
Mn,Ni,Co,Crは、Mgと同様に銅合金中にPと微細な化合物を形成し、強度や導電率を増加させるため、必要に応じて1種又は2種以上が添加される。これらの効果を有効に発揮させるには、1種又は2種以上の合計の含有量で0.0005質量%以上必要である。しかし、1種又は2種以上の合計の含有量が0.05質量%を超えると、Mg,Fe固溶量が増加し導電率を低下させる恐れがある。また、析出粒子の粗大化を招き,曲げ加工性の低下の原因となる。このため、これらの元素の含有量は1種又は2種以上の合計で0.0005〜0.05質量%とする。
(Mn, Ni, Co, Cr)
Like Mg, Mn, Ni, Co, and Cr form a fine compound with P in the copper alloy and increase the strength and conductivity. Therefore, one or more of Mn, Ni, Co, and Cr are added as necessary. In order to exhibit these effects effectively, 0.0005 mass% or more is required by the total content of 1 type, or 2 or more types. However, when the total content of one kind or two or more kinds exceeds 0.05% by mass, the Mg, Fe solid solution amount may increase and the conductivity may be lowered. Further, the coarsening of the precipitated particles is caused and the bending workability is lowered. For this reason, content of these elements shall be 0.0005-0.05 mass% by the total of 1 type or 2 types or more.

(その他の不可避的不純物)
前記S,Al,Si,Mn,Ni,Co,Crのほか、本発明の銅合金には不可避不純物としてAs,Sb,B,Pb,Ti,V,Zr,Mo,Hf,Ta,B,Bi,C,Ag,In等が含まれる。これらの不可避不純物元素は導電率60%IACS以上が得られる範囲で含有されるのであれば、本発明の銅合金の他の特性が大きく阻害されることはない。また、Cu−Fe−Mg−P系銅合金において、これらの成分は特に添加しない限り通常下記許容量の範囲内にある。
(Other inevitable impurities)
In addition to S, Al, Si, Mn, Ni, Co, and Cr, the copper alloy of the present invention has As, Sb, B, Pb, Ti, V, Zr, Mo, Hf, Ta, B, and Bi as inevitable impurities. , C, Ag, In, and the like. As long as these inevitable impurity elements are contained within a range in which an electrical conductivity of 60% IACS or higher is obtained, other characteristics of the copper alloy of the present invention are not significantly hindered. Moreover, in a Cu-Fe-Mg-P-type copper alloy, these components are usually within the following allowable ranges unless particularly added.

As,Sb,B,Pb,Ti,V,Zr,Mo,Hf,Ta,B,Bi,Cは、銅に対して著しく固容量が少ないので、総量0.1質量%を超えて含有すると、粒界偏析又は晶出物を形成し強度特性や曲げ加工性を劣化させる。従って、許容量は総量で0.1質量%である。
Ag,Inは、銅に対して固溶することがよく知られており、導電率低下の要因となる。このため、許容量は総量で0.1質量%以下である。
As, Sb, B, Pb, Ti, V, Zr, Mo, Hf, Ta, B, Bi, and C have a remarkably small solid capacity with respect to copper, so when the total amount exceeds 0.1% by mass, Grain boundary segregation or crystallized matter is formed to deteriorate the strength characteristics and bending workability. Therefore, the allowable amount is 0.1% by mass in total.
Ag and In are well known to dissolve in copper, which causes a decrease in conductivity. For this reason, the allowable amount is 0.1% by mass or less in total.

(Snめっき付き銅合金材)
本発明の銅合金は、その用途に応じて、各種の形態、形状に成形される。例えば、本発明の銅合金からなる板材、板材を幅方向にスリットしてなる条や、条をコイル化した形態、線材等の各種の形態、形状に成形される。そして、本発明の銅合金からなる板材、条等からなる母材(銅合金母材)を電気・電子部品用素材として用いる場合は、その銅合金母材の表面に、Cu−Sn合金層とSn又はSn合金層とが形成されたSnめっき付き銅合金材とすることが好ましい。
(Copper alloy material with Sn plating)
The copper alloy of the present invention is formed into various forms and shapes depending on the application. For example, the sheet material made of the copper alloy of the present invention, a strip formed by slitting the plate member in the width direction, a form obtained by coiling the strip, and various forms and shapes such as a wire rod are formed. And when using the base material (copper alloy base material) which consists of the board | plate material which consists of the copper alloy of this invention, a stripe | line, etc. as a raw material for electrical / electronic components, on the surface of the copper alloy base material, a Cu-Sn alloy layer and It is preferable to use a copper alloy material with Sn plating on which an Sn or Sn alloy layer is formed.

Cu−Sn合金層は、銅合金母材の表面にSn又はSn合金めっき層を形成することによって、銅合金母材とSn又はSn合金めっき層の界面に、CuとSnの合金化によって形成される層である。Cu−Sn合金層は、銅合金母材のCuがSn又はSn合金層表面に拡散、酸化するのを防止し(バリアー効果)、これによりめっき付き銅合金材の接触信頼性が低下するのを防止する。この作用のためには、Cu−Sn合金層の厚さは0.1μm以上であることが望ましい。一方、Cu−Sn合金層は脆く、Snめっき付き銅合金材の曲げ加工性を低下させるため、厚さは1.0μm以下とする必要がある。従って、Cu−Sn合金層の厚さは1.0μm以下とし、望ましくは0.1〜1.0μmとする。より望ましくは、接触信頼性確保のために0.2μm以上、曲げ加工性のために0.8μm以下、さらに0.5μm以下が望ましい。   The Cu-Sn alloy layer is formed by alloying Cu and Sn at the interface between the copper alloy base material and the Sn or Sn alloy plating layer by forming the Sn or Sn alloy plating layer on the surface of the copper alloy base material. Layer. The Cu-Sn alloy layer prevents Cu in the copper alloy base material from diffusing and oxidizing on the surface of the Sn or Sn alloy layer (barrier effect), thereby reducing the contact reliability of the plated copper alloy material. To prevent. For this function, the thickness of the Cu—Sn alloy layer is desirably 0.1 μm or more. On the other hand, the Cu—Sn alloy layer is brittle and the thickness needs to be 1.0 μm or less in order to reduce the bending workability of the Sn-plated copper alloy material. Therefore, the thickness of the Cu—Sn alloy layer is 1.0 μm or less, preferably 0.1 to 1.0 μm. More preferably, it is 0.2 μm or more for ensuring contact reliability, 0.8 μm or less for bending workability, and further 0.5 μm or less.

Sn又はSn合金層は、はんだ付け性の向上、耐腐食性等の向上を目的として、銅合金母材の表面に形成されるもので、Cu−Sn合金層の形成に消費されなかったSn又はSn合金めっき層であり、結果的に、銅合金母材の表面に形成されるCu−Sn合金層上に形成されることとなる。Sn又はSn合金層の厚さは、0.3〜1.0μmであることが好ましい。Sn又はSn合金層の厚さが0.3μm未満であると、はんだ付け時のはんだ濡れ性が低下し、はんだ接合強度が低下する。また、1.0μmより厚いと、端子挿入時に、表面に堆積するSn又はSn合金の削れカスが酸化し、めっき最表面の応力分布が不均一となりウィスカーの発生を促進する。さらに、堆積する削れカスが多いと、振動などを生じた場合、回路中に落下し通電不良を引き起こす可能性がある。望ましくは0.8μm以下、より望ましくは0.7μm以下である。
Sn合金層の場合、Sn以外の構成成分としては、Cu、Ag、Biなどが挙げられる。これらはいずれも10質量%未満が望ましい。
The Sn or Sn alloy layer is formed on the surface of the copper alloy base material for the purpose of improving solderability, corrosion resistance, etc., and has not been consumed by the formation of the Cu-Sn alloy layer. It is a Sn alloy plating layer, and as a result, it will be formed on the Cu-Sn alloy layer formed on the surface of the copper alloy base material. The thickness of the Sn or Sn alloy layer is preferably 0.3 to 1.0 μm. When the thickness of the Sn or Sn alloy layer is less than 0.3 μm, the solder wettability at the time of soldering is lowered, and the solder joint strength is lowered. On the other hand, if it is thicker than 1.0 μm, the scrap of Sn or Sn alloy deposited on the surface is oxidized when the terminal is inserted, and the stress distribution on the plating outermost surface becomes non-uniform, thereby promoting the generation of whiskers. Furthermore, if there are many scraps that accumulate, if vibration or the like occurs, it may fall into the circuit and cause a conduction failure. The thickness is desirably 0.8 μm or less, and more desirably 0.7 μm or less.
In the case of a Sn alloy layer, Cu, Ag, Bi, etc. are mentioned as structural components other than Sn. These are all desirably less than 10% by mass.

銅合金母材の表面にSn又はSn合金めっき層を形成したSnめっき銅合金材に、リフロー処理を施すことが好ましい。これにより、銅合金母材の表面に、Cu−Sn合金層と、Sn又はSn合金めっき層が溶融したSn又はSn合金層とが形成されたSnめっき銅合金材が得られる。
リフロー処理後のSnめっき銅合金材においても、Cu−Sn合金層の厚さは、同じく1.0μm以下であることが好ましい。一方、バリアー効果(銅合金素材からSn又はSn合金層へのCuの拡散あるいはその逆)を出すには、Cu−Sn合金層の厚さは0.1μm以上であることが望ましい。Cu−Sn合金層の厚さは、リフロー処理で0.1〜1.0μmに調整するのが望ましい。また、Sn層についても、はんだ付け性を確保するため、厚さが0.3〜1.0μmであることが好ましい。
It is preferable to perform a reflow process on the Sn-plated copper alloy material in which the Sn or Sn alloy plating layer is formed on the surface of the copper alloy base material. Thereby, the Sn plating copper alloy material by which the Cu-Sn alloy layer and the Sn or Sn alloy layer which the Sn or Sn alloy plating layer fuse | melted was formed in the surface of a copper alloy base material is obtained.
Also in the Sn-plated copper alloy material after the reflow treatment, the thickness of the Cu—Sn alloy layer is preferably 1.0 μm or less. On the other hand, in order to produce a barrier effect (diffusion of Cu from a copper alloy material into Sn or Sn alloy layer or vice versa), the thickness of the Cu—Sn alloy layer is preferably 0.1 μm or more. The thickness of the Cu—Sn alloy layer is desirably adjusted to 0.1 to 1.0 μm by reflow treatment. Moreover, also about Sn layer, in order to ensure solderability, it is preferable that thickness is 0.3-1.0 micrometer.

(銅合金の製造方法)
本発明の銅合金の製造方法は、特に制限されるものではないが、鋳造、熱間圧延、冷間圧延、焼鈍、仕上げ圧延及び低温焼鈍の各工程を順に行う通常の方法で製造することができる。
鋳造は、Cuと、Fe,P,Mg,Sn,Zn及びSを、前記成分組成に調製した銅合金溶湯を鋳造して行うことができる。溶湯の成分組成分析にてSが多い場合は、Mgで脱硫し、その後再度Fe,P,Mg,Sn,Zn及びSが規定範囲になっているか確認し、規定内であれば鋳造するという手順をとることができる。
(Copper alloy manufacturing method)
Although the manufacturing method of the copper alloy of the present invention is not particularly limited, it may be manufactured by an ordinary method in which each step of casting, hot rolling, cold rolling, annealing, finish rolling, and low temperature annealing is sequentially performed. it can.
Casting can be performed by casting a copper alloy melt prepared by mixing Cu, Fe, P, Mg, Sn, Zn, and S with the above component composition. If there is a lot of S in the component composition analysis of the molten metal, desulfurize with Mg, then check again whether Fe, P, Mg, Sn, Zn and S are within the specified range, and if within the specified range, cast Can be taken.

熱間圧延は、鋳造によって得られた鋳塊を850〜950℃で30分〜3時間均熱処理した後、引き続き所定の厚さまで圧延し、さらに700℃以上で焼き入れ処理することによって行うことができる。この熱間圧延において、圧延温度が低過ぎると、再結晶が不完全となり不均一な組織となる虞がある。圧延温度が高過ぎると、表面酸化が激しく起こり、面削量の増加を引き起こし歩留まりが低下する。そして、熱間圧延後は水冷する。   Hot rolling can be performed by soaking the ingot obtained by casting at 850 to 950 ° C. for 30 minutes to 3 hours, subsequently rolling to a predetermined thickness, and further quenching at 700 ° C. or higher. it can. In this hot rolling, if the rolling temperature is too low, recrystallization may be incomplete and a non-uniform structure may be formed. If the rolling temperature is too high, surface oxidation occurs vigorously, causing an increase in the amount of chamfering and reducing the yield. And after hot rolling, it water-cools.

次に、冷間圧延は、次工程の焼鈍及び仕上げ圧延前に、熱間圧延された圧延板を通常圧下率70%以上で圧延する工程である。この冷間圧延によって、続く焼鈍後の結晶粒径及びそのばらつきを調整することができる。
焼鈍は、再結晶及びP化合物(Fe−P析出物、Mg−P析出物)の析出処理を行って微細な析出物を形成させ、銅合金板の強度と導電率を向上(回復)させるための工程である。この焼鈍は、450〜600℃で15分〜10時間加熱して行うことができる。
Next, cold rolling is a step of rolling a hot-rolled rolled sheet at a normal reduction of 70% or more before annealing and finish rolling in the next step. By this cold rolling, the crystal grain size and its variation after the subsequent annealing can be adjusted.
In order to improve (recover) the strength and conductivity of the copper alloy sheet, annealing is performed by recrystallization and precipitation treatment of P compounds (Fe—P precipitates, Mg—P precipitates) to form fine precipitates. It is this process. This annealing can be performed by heating at 450 to 600 ° C. for 15 minutes to 10 hours.

仕上げ圧延は、所期の厚さに圧延する工程である。この仕上げ圧延では、本発明の銅合金又はSnめっき付き銅合金材が、特に曲げ加工性を必要とする場合は加工率50%以下とすることが好ましい。
また、低温焼鈍は、仕上げ圧延による歪を除去し、応力緩和特性及びばね限界値を増加させることを目的として行う。この低温焼鈍は、通常、250〜500℃で5秒〜10時間加熱処理することによって行うことができる。
なお、最終的な平均結晶粒サイズは、JISH0501に記載されている切断法により測定した場合、2〜10μm程度となるように調整することが望ましい。
Finish rolling is a process of rolling to a desired thickness. In this finish rolling, when the copper alloy or Sn-plated copper alloy material of the present invention requires bending workability, it is preferable to set the processing rate to 50% or less.
The low-temperature annealing is performed for the purpose of removing the strain due to finish rolling and increasing the stress relaxation characteristics and the spring limit value. This low-temperature annealing can be usually performed by heat treatment at 250 to 500 ° C. for 5 seconds to 10 hours.
The final average crystal grain size is desirably adjusted to be about 2 to 10 μm when measured by the cutting method described in JISH0501.

本発明の銅合金を母材(銅合金母材)とするSnめっき付き銅合金材は、前記の低温焼鈍に続いて、Sn又はSn合金めっきを行うことによって製造することができる。これによって、銅合金母材と、銅合金母材とSn又はSn合金めっきとの合金からなるCu−Sn合金層と、Sn又はSn合金層(Cu−Sn合金層上に残存するSn又はSn合金めっき層)とを有するSnめっき銅合金材を得ることができる。
リフロー処理を行わない場合、光沢Snめっきを行うことが望ましく、例えば、硫酸第1錫を40g/l、硫酸を100g/l、クレゾールスルフォン酸を30g/l、分散剤を20g/l、光沢剤を10ml/l、ホルマリンを5ml/l等を含むめっき浴中で、浴温度:20℃、対極としてSn板を用い、電流密度:2.5A/dm2のめっき条件で行うことができる。Sn合金めっきとしては、Sn−Cuめっき、Sn−Agめっき、Sn−Biめっきなどが挙げられる。Cu,Ag,Biの含有量は10質量%以下程度が望ましい。
The copper alloy material with Sn plating using the copper alloy of the present invention as a base material (copper alloy base material) can be manufactured by performing Sn or Sn alloy plating following the low temperature annealing. Thus, a copper alloy base material, a Cu—Sn alloy layer made of an alloy of the copper alloy base material and Sn or Sn alloy plating, and a Sn or Sn alloy layer (Sn or Sn alloy remaining on the Cu—Sn alloy layer). Sn plating copper alloy material which has a plating layer) can be obtained.
When reflow treatment is not performed, it is desirable to perform bright Sn plating, for example, stannous sulfate 40 g / l, sulfuric acid 100 g / l, cresol sulfonic acid 30 g / l, dispersant 20 g / l, brightener In a plating bath containing 10 ml / l of formalin, 5 ml / l of formalin, and the like, using a Sn plate as the counter electrode with a bath temperature of 20 ° C. and a current density of 2.5 A / dm 2. Examples of the Sn alloy plating include Sn—Cu plating, Sn—Ag plating, and Sn—Bi plating. The content of Cu, Ag, and Bi is preferably about 10% by mass or less.

また、リフロー処理を行う場合は、Snめっきとして、例えば、硫酸第1錫を50g/l、硫酸を80g/l、クレゾールスルフォン酸を30g/l、光沢剤を10g/l等を含むめっき浴中で、浴温度:30℃、対極としてSn板を用い、電流密度:3A/dm2のめっき条件で行うことができる。続いて、Snめっきした銅合金材をリフロー処理する。このリフロー処理により、Cu−Sn合金層を介して、銅合金母材とSn層とがより緊密に接合された構造とすることができる。リフロー処理は、Snめっきを施した後、通常、240〜600℃で3〜30秒加熱することによって行うことができる。Sn合金めっきとしては、光沢Snめっき等同様、Sn−Cuめっき、Sn−Agめっき、Sn−Biめっきなどが挙げられる。Cu,Ag,Biの含有量は同じく10質量%以下程度が望ましい。   In the case of performing reflow treatment, for example, Sn plating is performed in a plating bath containing 50 g / l stannous sulfate, 80 g / l sulfuric acid, 30 g / l cresolsulfonic acid, 10 g / l brightener, and the like. Then, the bath temperature is 30 ° C., an Sn plate is used as the counter electrode, and the current density is 3 A / dm 2. Subsequently, the Sn-plated copper alloy material is reflowed. By this reflow process, it can be set as the structure where the copper alloy base material and Sn layer were joined more closely through the Cu-Sn alloy layer. The reflow treatment can be usually performed by heating at 240 to 600 ° C. for 3 to 30 seconds after Sn plating. Examples of the Sn alloy plating include Sn-Cu plating, Sn-Ag plating, and Sn-Bi plating as well as bright Sn plating. Similarly, the content of Cu, Ag, and Bi is desirably about 10% by mass or less.

このようにして製造された銅合金は、60%IACS以上の高い導電率と、圧延方向に対し平行方向及び直角方向のいずれも耐力が400N/mm以上、ビッカース硬度130Hv以上の高い強度を有し、さらに、応力緩和特性(圧延方向に対し平行方向及び直角方向のいずれも180℃×24時間加熱後の応力緩和率が30%以下)、曲げ加工性(曲げ軸が圧延方向に対し平行方向及び直角方向のいずれもR/t=0.5で割れ無し)、及びSnめっき耐熱剥離特性(150℃で1000時間加熱後、180°曲げ−曲げ戻しによりSnめっきが剥離しない)に優れたものとなる。
本発明において導電率は65%IACS以上、さらに70%IACS以上が望ましい。このような高い導電率を得るには、析出に関係するFe、Mg、Pの含有量を(Fe+Mg)/P:2.5〜3.5、Mg/Fe:1.0〜1.5とし、その組成に対し、冷間圧延の加工率、その後の焼鈍条件(温度と時間)、低温焼鈍条件を前述の製造条件の範囲で試作し、その中から適正化可能熱処理条件を決めてやればよい。
The copper alloy produced in this way has a high conductivity of 60% IACS or higher, a high strength of 400 N / mm 2 or more in both the parallel and perpendicular directions to the rolling direction, and a Vickers hardness of 130 Hv or higher. Furthermore, stress relaxation characteristics (both parallel and perpendicular to the rolling direction are stress relaxation rates of 30% or less after heating at 180 ° C. for 24 hours), bending workability (bending axis is parallel to the rolling direction) Excellent in Sn plating heat-resistant peeling characteristics (Sn plating does not peel by 180 ° bending-bending after heating at 150 ° C. for 1000 hours) It becomes.
In the present invention, the conductivity is preferably 65% IACS or more, and more preferably 70% IACS or more. In order to obtain such high electrical conductivity, the contents of Fe, Mg, and P related to precipitation are set to (Fe + Mg) / P: 2.5 to 3.5, and Mg / Fe: 1.0 to 1.5. For that composition, if the processing rate of cold rolling, the subsequent annealing conditions (temperature and time), and the low-temperature annealing conditions are prototyped within the range of the above-mentioned manufacturing conditions, the heat treatment conditions that can be optimized can be determined from them. Good.

以下、本発明の実施例について、その比較例と比較して具体的に説明する。
表1,2のNo.1〜42に示す成分組成の銅合金を溶製した後、ブックモールドに鋳造して、厚さ45mmの鋳塊を得た。鋳塊を900℃で1時間均熱処理後、熱間圧延して厚さ15mmとし、700℃以上で焼き入れを行った。次に、焼き入れ後の熱間圧延板の両面を厚さ1mm程度研磨して、表面の酸化スケール及び傷を除去した。その後、厚さ1.07〜1.28mmに冷間圧延した。このとき、次の仕上げ圧延における加工率に応じて目標板厚を変更した。次に、500〜550℃で2時間再結晶及び析出焼鈍を行った後、仕上げ圧延して厚さ0.64mmとした。そして、350℃で20秒間低温焼鈍して、銅合金板の試料を得た。
Examples of the present invention will be specifically described below in comparison with comparative examples.
No. in Tables 1 and 2 After melting the copper alloy of the component composition shown to 1-42, it casted to the book mold, and obtained the ingot of thickness 45mm. The ingot was soaked at 900 ° C. for 1 hour, then hot rolled to a thickness of 15 mm, and quenched at 700 ° C. or higher. Next, both sides of the hot-rolled sheet after quenching were polished by about 1 mm in thickness to remove surface oxide scale and scratches. Then, it cold-rolled to thickness 1.07-1.28mm. At this time, the target plate thickness was changed according to the processing rate in the next finish rolling. Next, after recrystallization and precipitation annealing at 500 to 550 ° C. for 2 hours, finish rolling was performed to a thickness of 0.64 mm. And it annealed at 350 degreeC for 20 second low temperature, and obtained the sample of the copper alloy plate.

Figure 2012167310
Figure 2012167310

Figure 2012167310
Figure 2012167310

なお、表1のNo.1〜42のすべてにおいて残部組成はCuであり、表1に含有量が記載されていない元素は検出限界以下であり、As,Sb,B,Pb,Ti,V,Zr,Mo,Hf,Ta,B,Bi,Cの総量、及びAg,In,Alの総量もそれぞれ0.01質量%以下であった。   In Table 1, No. In all of 1-42, the balance composition is Cu, and the elements whose contents are not described in Table 1 are below the detection limit, and As, Sb, B, Pb, Ti, V, Zr, Mo, Hf, Ta , B, Bi, C, and Ag, In, Al were also 0.01% by mass or less, respectively.

No.1〜42の各試料について、下記の試験方法に従って、結晶粒径、導電率、ビッカース硬度、機械的特性(0.2%耐力)、及び応力緩和率測定、並びに曲げ加工性の評価を行った。その結果を表3,4に示す。
(結晶粒径の測定)
試料表面を研磨後、エッチングして光学顕微鏡による組織写真を撮影し、その組織写真から、JIS−H0501に規定されている切断法により、線分の向きを板幅方向、板幅方向に直角方向、及び板幅方向に45°傾斜した方向の3方向として測定し、それぞれ3箇所の平均値を結晶粒径とした。No.1〜42はいずれも平均結晶粒径が2〜10μmの範囲内であった。
No. For each of the samples 1-42, the crystal grain size, electrical conductivity, Vickers hardness, mechanical properties (0.2% proof stress), stress relaxation rate measurement, and bending workability were evaluated according to the following test methods. . The results are shown in Tables 3 and 4.
(Measurement of crystal grain size)
After polishing the sample surface, etching and taking a structure photograph with an optical microscope, the direction of the line segment is perpendicular to the sheet width direction and the sheet width direction from the structure photograph by the cutting method specified in JIS-H0501 , And three directions inclined by 45 ° in the plate width direction, and the average value of three locations was taken as the crystal grain size. No. 1 to 42 all had an average crystal grain size in the range of 2 to 10 μm.

(導電率の測定)
JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジを用いた四端子法で体積抵抗率を測定した。測定された体積抵抗率を、万国標準軟銅(International Annealed Copper Standard)の体積抵抗率1.7241×10−8Ωmで除し、百分率で表し、導電率(%IACS)を求めた。
(ビッカース硬さの測定)
JIS−Z2248に規定されている微小硬さ試験方法に準拠し、試験加重4.90N(=0.5kgf)でビッカース硬さを測定した。
(Measurement of conductivity)
The volume resistivity was measured by a four-terminal method using a double bridge in accordance with a nonferrous metal material conductivity measurement method defined in JIS-H0505. The measured volume resistivity was divided by the volume resistivity 1.7241 × 10 −8 Ωm of Universal Annealed Copper Standard and expressed as a percentage to obtain the conductivity (% IACS).
(Measurement of Vickers hardness)
In accordance with the microhardness test method defined in JIS-Z2248, the Vickers hardness was measured at a test load of 4.90 N (= 0.5 kgf).

(機械的特性の測定)
長手方向が圧延方向(L.D.:Longitudinal Direction)および垂直方向(T.D.:Transverse Direction)となるJIS5号引張り試験片を、機械加工にて作製した。2つの試験片(L.D.、T.D.)のそれぞれについて、JIS−Z2241に準拠して引張り試験を実施した。永久伸び0.2%に相当する引張強さを耐力として求めた。
(Measuring mechanical properties)
A JIS No. 5 tensile test piece having a longitudinal direction in the rolling direction (LD: Longitudinal Direction) and a vertical direction (TD: Transverse Direction) was produced by machining. Each of the two test pieces (LD, TD) was subjected to a tensile test according to JIS-Z2241. The tensile strength corresponding to the permanent elongation of 0.2% was determined as the proof stress.

(応力緩和率の測定)
応力緩和率は、片持ち梁方式によって測定した。すなわち、長さ方向が板材の圧延方向に対して平行方向(L.D.)及び直角方向(T.D.)になる幅10mmの短冊状試験片を切り出し、その一端を剛体試験台に固定する。固定端から一定距離の位置で試験片に10mmのたわみを与えたとき、固定端において、試験片の採取方向にあわせ、それぞれの方向における材料の0.2%耐力の80%に相当する表面応力を負荷する。たわみを与える位置の固定端からの距離は、日本伸銅協会技術標準(JCBA−T309:2004)の「銅及び銅合金薄板条の曲げによる応力緩和試験方法」により算出した。剛体試験台に固定し、たわみを与えた試験片を一定温度に加熱したオーブン中に保持した後に取り出し、たわみ量d(10mm)を取り去ったときの永久歪みδを測定し、応力緩和率RS=(δ/d)×100を計算する。加熱条件は、(社)自動車技術会のJASOで150℃で1000時間の加熱が規格されているが、本試験では加速試験を行うため温度と時間により換算可能なラーソンミラー換算法(L.M.P.=T(20+logt))を使い、150℃で1000時間に相当する180℃で24時間の加熱条件にて加速試験を実施した。なお、表1のNo.1及びNo.5を使用し、150℃で1000時間加熱した場合と180℃で24時間加熱した場合の値が同等になるのは確認済みである。
(Measurement of stress relaxation rate)
The stress relaxation rate was measured by the cantilever method. That is, a strip-shaped test piece having a width of 10 mm that has a length direction parallel to the rolling direction of the plate (LD) and a perpendicular direction (TD) is cut out, and one end thereof is fixed to the rigid body test stand. To do. When a 10 mm deflection is applied to the test piece at a fixed distance from the fixed end, the surface stress corresponding to 80% of the 0.2% proof stress of the material in each direction at the fixed end is aligned with the sampling direction of the test piece. To load. The distance from the fixed end of the position where the deflection is given was calculated according to the Japan Copper and Brass Association Technical Standard (JCBA-T309: 2004) "Stress Relaxation Test Method by Bending Copper and Copper Alloy Thin Sheet Strip". The test piece fixed to the rigid body test stand and subjected to bending is held after being held in an oven heated to a constant temperature and then taken out. The permanent distortion δ when the bending amount d (10 mm) is removed is measured, and the stress relaxation rate RS = Calculate (δ / d) × 100. Heating conditions are specified by JASO of the Japan Society of Automotive Engineers for 1000 hours of heating at 150 ° C. In this test, the Larson Miller conversion method (LM , P. = T (20 + logt)), and an accelerated test was performed under heating conditions at 180 ° C. for 24 hours corresponding to 1000 hours at 150 ° C. In Table 1, No. 1 and no. It is confirmed that the values obtained when using No. 5 and heating at 150 ° C. for 1000 hours and when heated at 180 ° C. for 24 hours are equivalent.

(曲げ加工性の評価)
曲げ加工性は、日本伸銅協会標準JBMA−T307に規定されるW曲げ試験方法に従って評価した。すなわち、銅合金板から幅10mm、長さ30mmの試験片を切り出し、Good Way(曲げ軸が圧延方向に垂直、以下、「G.W.」という)及びBad Way(曲げ軸が圧延方向に平行、以下、「B.W.」という)の曲げ試験を、R/t=0.5(R:曲げ半径、t:板厚)で行った。曲げ部における割れの有無を100倍の光学顕微鏡により目視観察し、下記の基準で評価した。本技術分野では、下記評価にて割れがないA〜C評価であればよい。
A:しわ無し、B:しわ小、C:しわ中〜大、D:割れ小、E:割れ大。
(Evaluation of bending workability)
The bending workability was evaluated according to the W-bending test method defined in Japan Copper and Brass Association Standard JBMA-T307. That is, a test piece having a width of 10 mm and a length of 30 mm was cut out from a copper alloy plate, and Good Way (bending axis was perpendicular to the rolling direction, hereinafter referred to as “GW”) and Bad Way (bending axis was parallel to the rolling direction). In the following, a bending test of “BW” was performed at R / t = 0.5 (R: bending radius, t: plate thickness). The presence or absence of cracks in the bent portion was visually observed with a 100 × optical microscope and evaluated according to the following criteria. In this technical field, it is sufficient that the evaluation is AC evaluation with no crack in the following evaluation.
A: No wrinkle, B: Small wrinkle, C: Medium to large wrinkle, D: Small crack, E: Large crack.

Figure 2012167310
Figure 2012167310

Figure 2012167310
Figure 2012167310

次に、No.1,10,34,35の銅合金を母材とし、母材表面に下記条件で光沢Snめっき及びリフローSnめっきを行って、Snめっき付き銅合金材の試料を得た。
(光沢Snめっき条件)
先に示した条件で、母材表面に光沢Snめっきを行った。
(リフローSnめっき条件)
先に示した条件で、母材表面にSnめっきを行った後、380℃で13秒間加熱するリフロー処理を行った。
Next, no. Using a copper alloy of 1, 10, 34, and 35 as a base material, the surface of the base material was subjected to bright Sn plating and reflow Sn plating under the following conditions to obtain a sample of a copper alloy material with Sn plating.
(Glossy Sn plating conditions)
Gloss Sn plating was performed on the surface of the base material under the conditions described above.
(Reflow Sn plating conditions)
Under the conditions described above, Sn plating was performed on the surface of the base material, and then reflow treatment was performed by heating at 380 ° C. for 13 seconds.

得られたSnめっき付き銅合金材の各試料について、下記方法に従ってSn層の厚さとCu−Sn合金層の厚さを測定し、下記試験方法に従ってSnめっきの耐熱剥離性試験、はんだ濡れ性試験を行った。その結果を表5に示す。
(Sn層の厚さ及びCu−Sn合金層の厚さの測定)
蛍光X線膜厚計(セイコー電子工業株式会社:SFT3200)を用いてSn層の厚さを測定した。その後Sn層のみを剥離しCu−Sn合金層の厚さを測定した。
(Snめっきの耐熱剥離性試験)
長さ30mm×幅10mmの寸法に切り出した試験片を、オーブン中、150℃で1000時間加熱した後、マンドレル180度曲げ治具にて、直径2mmで180度の曲げ戻し試験を行い、曲げ部内側にてテープの貼り付け・除去を行うことによりSn層の外観を観察して剥離の有無を調べた。
About each sample of the obtained copper alloy material with Sn plating, the thickness of the Sn layer and the thickness of the Cu-Sn alloy layer were measured according to the following method, and the heat-resistant peeling test and the solder wettability test of Sn plating were performed according to the following test methods. Went. The results are shown in Table 5.
(Measurement of Sn layer thickness and Cu-Sn alloy layer thickness)
The thickness of the Sn layer was measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .: SFT3200). Thereafter, only the Sn layer was peeled off, and the thickness of the Cu—Sn alloy layer was measured.
(Heat-resistant peel test of Sn plating)
A test piece cut to a size of 30 mm in length and 10 mm in width was heated in an oven at 150 ° C. for 1000 hours, and then subjected to a 180 ° bending return test with a diameter of 2 mm using a mandrel 180 ° bending jig. The appearance of the Sn layer was observed by attaching and removing the tape on the inner side, and the presence or absence of peeling was examined.

(はんだ濡れ性性試験)
市販のSn−3質量%Ag−0.5質量%Cuはんだを260±5℃に保持し溶融させ、各試験片を浸漬速度25mm/sec、浸漬深さ12mm、浸漬時間5secにて溶融はんだ中に浸漬させた。はんだ付け装置として、ソルダーチェッカー((株)レスカ製;SAT5100型)を用い、フラックスには非活性フラックス((株)日本アルファメタルズ;α100)を使用した。はんだ濡れ性は、濡れ時間2sec未満を○(良)、2sec以上を×(不良)を評価した。
(Solder wettability test)
Commercially available Sn-3 mass% Ag-0.5 mass% Cu solder is held at 260 ± 5 ° C. and melted, and each specimen is melted at a dipping speed of 25 mm / sec, a dipping depth of 12 mm, and a dipping time of 5 sec. Soaked. A solder checker (manufactured by Resuka Co., Ltd .; SAT5100 type) was used as a soldering apparatus, and an inactive flux (Nippon Alpha Metals Co., Ltd .; α100) was used as the flux. The solder wettability was evaluated as ○ (good) when the wetting time was less than 2 sec, and x (bad) when 2 sec or longer.

Figure 2012167310
Figure 2012167310

表3に示すように、Mg,Fe,P,Sn,Zn及びSの含有量が本発明の範囲にあり、Fe,Mg,Pの含有量が前記関係式(1)、(2)を満たすNo.1〜25の銅合金は、導電率、硬度、耐力(L.D./T.D.)、応力緩和特性(L.D./T.D.)、及び曲げ加工性(G.W./B.W.)がいずれも優れている。
また、表5に示すように、No.1,10の銅合金を母材とし、Sn層厚さ及びCu−Sn合金相厚さが本発明の範囲内にあるNo.43〜48は、光沢Snめっき材及びリフローSnめっき材とも、耐加熱後剥離性、はんだ濡れ性がいずれも優れている。
As shown in Table 3, the contents of Mg, Fe, P, Sn, Zn and S are within the scope of the present invention, and the contents of Fe, Mg and P satisfy the relational expressions (1) and (2). No. 1 to 25 copper alloys have electrical conductivity, hardness, proof stress (LD / TD), stress relaxation properties (LD / TD), and bending workability (GW). /B.W.) Are all excellent.
As shown in Table 5, No. No. 1 or 10 having a copper alloy as a base material and Sn layer thickness and Cu—Sn alloy phase thickness within the scope of the present invention. Nos. 43 to 48 are both excellent in peel resistance after heating and solder wettability with both the bright Sn plating material and the reflow Sn plating material.

これに対し、表4に示すように、No.26〜42の銅合金は、下記に述べるように、上記の特性のいずれかが劣っている。
No.26は、Feの含有量が過剰なため、Fe−P化合物の形成によりPが減少するが析出しないFe及びMgの固容量が多く、応力緩和特性が劣る。
No.27は、Feの含有量が不足するため、Fe−P化合物の形成が不足し強度が低い。
No.28は、Pの含有量が過剰なため、Mg固溶量が減少し、L.D./T.D.ともに応力緩和率が大きい。
No.29は、Pの含有量が不足するため、P化物の形成が不十分で強度が低く、Mg含有量が不足するため、応力緩和率が大きい。
On the other hand, as shown in Table 4, no. As described below, the copper alloys of 26 to 42 are inferior in any of the above characteristics.
No. In No. 26, since the Fe content is excessive, P decreases due to the formation of the Fe—P compound, but there are many solid capacities of Fe and Mg that do not precipitate, and the stress relaxation characteristics are inferior.
No. In No. 27, since the Fe content is insufficient, formation of the Fe—P compound is insufficient and the strength is low.
No. No. 28 has an excessive content of P, so that the Mg solid solution amount decreases. D. / T. D. Both have large stress relaxation rates.
No. In No. 29, the P content is insufficient, the formation of P compound is insufficient and the strength is low, and the Mg content is insufficient, so that the stress relaxation rate is large.

No.30は、Mgの含有量が過剰で、析出物が粗大化したため曲げ加工性が低下している。
No.31は、Mgの含有量が不足するためMg−P析出物及びMg固容量が少なく、強度が低く、L.D./T.D.ともに応力緩和率が大きい。
No.32は、Snの含有量が過剰なため、Sn固容量が多くなり、導電率が低い。
No.33は、Snの含有量が不足するため、応力緩和率が大きい。
No.34は、Znの含有量が過剰なため、Zn固溶量が多くなり、導電率が低い。
No.35は、導電率、強度、応力緩和特性及び曲げ加工性は優れるが、Znの含有量が不足し、後述するように、光沢Snめっき材及びリフローSnめっき材の両方でSnめっきの剥離が生じた。
No. In No. 30, the Mg content is excessive, and the precipitates are coarsened, so that the bending workability is lowered.
No. No. 31 has a low Mg content due to a lack of Mg content, resulting in a low Mg solid content and a low Mg solid volume. D. / T. D. Both have large stress relaxation rates.
No. No. 32 has an excessive Sn content, resulting in an increased Sn solid capacity and a low electrical conductivity.
No. No. 33 has a large stress relaxation rate because the Sn content is insufficient.
No. No. 34 has an excessive Zn content, so the amount of Zn solid solution increases and the conductivity is low.
No. 35 is excellent in electrical conductivity, strength, stress relaxation characteristics and bending workability, but the Zn content is insufficient and, as will be described later, peeling of Sn plating occurs in both the bright Sn plating material and the reflow Sn plating material. It was.

No.36は、Sの含有量が許容値を越え、親和力の強いMgと結合し、Mg固容量が減少して、T.D.の応力緩和率が大きい。曲げ加工性も低下している。
No.37は、AlとSiの合計含有量が過剰で、Al、Siの固溶量が増加し、導電率が低い。
No.38は、(Fe+Mg)/Pの値が過大なため、化合物が粗大化し曲げ加工性が低下している。
No.39は、(Fe+Mg)/Pの値が過少のため、Fe及びMg固容量が減少し、L.D./T.D.ともに応力緩和率が大きい。
No.40は、(Fe+Mg)/Pの値が過大でかつSnとZnの含有量が過剰であり、曲げ加工性が低下し、SnとZnの固溶量が増加して導電率も低い。
No.41は、(Fe+Mg)/Pの値が過大でかつAlとSiの合計含有量が過剰であり、曲げ加工性が低下し、AlとSiの固溶量が増加して導電率もかなり低い。
No.42は、Mg/Feの値が過少のため、Mg固容量が減少し、L.D./T.D.ともに応力緩和率が大きい。
No. 36, when the content of S exceeds the allowable value, it binds to Mg having a strong affinity, and the Mg solid capacity decreases. D. The stress relaxation rate is large. Bending workability is also reduced.
No. In No. 37, the total content of Al and Si is excessive, the solid solution amount of Al and Si is increased, and the electrical conductivity is low.
No. In No. 38, since the value of (Fe + Mg) / P is excessive, the compound is coarsened and bending workability is lowered.
No. No. 39 has a low value of (Fe + Mg) / P, so that the Fe and Mg solid volumes decrease. D. / T. D. Both have large stress relaxation rates.
No. In No. 40, the value of (Fe + Mg) / P is excessive and the contents of Sn and Zn are excessive, bending workability is lowered, the solid solution amount of Sn and Zn is increased, and the conductivity is also low.
No. No. 41 has an excessive value of (Fe + Mg) / P and an excessive total content of Al and Si, the bending workability is lowered, the solid solution amount of Al and Si is increased, and the conductivity is considerably low.
No. No. 42 has a Mg / Fe value that is too low, resulting in a decrease in Mg solid volume. D. / T. D. Both have large stress relaxation rates.

また、表5に示すように、Sn層厚さ及びCu−Sn合金層厚さが本発明の範囲内にあるNo.43〜52は、光沢Snめっき材及びリフローSnめっき材とも、はんだ濡れ性が優れている。しかし、Zn含有量が不足する銅合金(合金No.35)を母材とするNo.50,52はSnめっきの剥離が生じた。
Sn層厚さ及びCu−Sn合金相厚さが本発明の範囲外のNo.53〜58は、合金組成が本発明の規定を満たすか否かに関わらず、はんだ濡れ性が劣る。さらに、Zn含有量が不足する銅合金(合金No.35)を母材とするNo.57,58はSnめっきの剥離も生じた。
Moreover, as shown in Table 5, the Sn layer thickness and the Cu—Sn alloy layer thickness are within the scope of the present invention. Nos. 43 to 52 have excellent solder wettability with both the bright Sn plating material and the reflow Sn plating material. However, a copper alloy (alloy No. 35) with insufficient Zn content is used as a base material. As for 50 and 52, peeling of Sn plating arose.
No. Sn layer thickness and Cu—Sn alloy phase thickness are outside the scope of the present invention. Nos. 53 to 58 are inferior in solder wettability regardless of whether the alloy composition satisfies the provisions of the present invention. Furthermore, a copper alloy (alloy No. 35) whose Zn content is insufficient is used as a base material. 57 and 58 also caused Sn plating peeling.

1 バスバー
2a,2b 圧接部
3 メス端子部
4 オス端子
5 下部
1 Busbar
2a, 2b Pressure contact part 3 Female terminal part 4 Male terminal 5 Lower part

Claims (8)

Fe:0.01〜0.2質量%、P:0.02〜0.15質量%、Mg:0.05〜0.2質量%、Sn:0.001〜0.2質量%、及びZn:0.05〜1.0質量%を含み、残部がCu及び不可避的不純物からなり、S:0.005質量%以下であり、Fe,Mg及びP含有量が下記式(1)、(2)を満たすことを特徴とする電気・電子部品用銅合金。
2.5≦([Fe]+[Mg])/[P]≦8.0・・・・(1)
[Mg]/[Fe]≧0.85・・・・(2)
ここで[Fe]、[Mg]、[P]は、それぞれFe,Mg,P含有量を表す。
Fe: 0.01-0.2 mass%, P: 0.02-0.15 mass%, Mg: 0.05-0.2 mass%, Sn: 0.001-0.2 mass%, and Zn : 0.05-1.0% by mass, the balance is made of Cu and inevitable impurities, S: 0.005% by mass or less, and Fe, Mg and P contents are represented by the following formulas (1), (2 ), A copper alloy for electrical and electronic parts.
2.5 ≦ ([Fe] + [Mg]) / [P] ≦ 8.0 (1)
[Mg] / [Fe] ≧ 0.85 (2)
Here, [Fe], [Mg], and [P] represent Fe, Mg, and P contents, respectively.
さらに、Al:0.001〜0.030質量%、Si:0.001〜0.030質量%の1種又は2種を合計で0.001〜0.050質量%含むことを特徴とする請求項1に記載された電気・電子部品用銅合金。 Furthermore, Al: 0.001-0.030 mass%, Si: 0.001-0.030 mass% 1 type or 2 types are included in total 0.001-0.050 mass%, It is characterized by the above-mentioned. Item 4. A copper alloy for electrical and electronic parts according to item 1. Mn,Ni,Co及びCrのうち1種又は2種以上の合計で0.0005〜0.05質量%含むことを特徴とする請求項1又は2に記載された電気・電子部品用銅合金。 The copper alloy for electrical / electronic parts according to claim 1 or 2, characterized by containing 0.0005 to 0.05 mass% in total of one or more of Mn, Ni, Co and Cr. 導電率60%IACS以上、180℃で24時間加熱後の応力緩和率が30%以下であることを特徴とする請求項1〜3のいずれかに記載された電気・電子部品用銅合金。 The copper alloy for electric / electronic parts according to any one of claims 1 to 3, wherein the stress relaxation rate after heating at 180 ° C for 24 hours is 30% or less. 導電率65%IACS以上であることを特徴とする請求項1〜3のいずれかに記載された電気・電子部品用銅合金。 The copper alloy for electrical / electronic parts according to any one of claims 1 to 3, wherein the electrical conductivity is 65% IACS or more. 導電率70%IACS以上であることを特徴とする請求項1〜3のいずれかに記載された電気・電子部品用銅合金。 The copper alloy for electrical / electronic parts according to any one of claims 1 to 3, wherein the electrical conductivity is 70% IACS or more. 請求項1〜6のいずれかに記載された電気・電子部品用銅合金からなる銅合金母材と、前記銅合金母材の表面に形成された厚さ1.0μm以下のCu−Sn合金層と、前記Cu−Sn合金層の表面に形成された厚さ0.3〜1.0μmのSn又はSn合金層からなることを特徴とするSnめっき付き銅合金材。 A copper alloy base material comprising the copper alloy for electric / electronic parts according to any one of claims 1 to 6, and a Cu-Sn alloy layer having a thickness of 1.0 µm or less formed on a surface of the copper alloy base material And a Sn or Sn alloy layer having a thickness of 0.3 to 1.0 μm formed on the surface of the Cu—Sn alloy layer. 請求項1〜6のいずれかに記載された電気・電子部品用銅合金からなる銅合金母材と、前記銅合金母材の表面に形成された厚さ1.0μm以下のCu−Sn合金層と、前記Cu−Sn合金層の表面に形成された厚さ0.3〜1.0μmのSn又はSn合金層からなり、前記Cu−Sn合金層及びSn又はSn合金層は、前記銅合金母材の表面に形成したSn又はSn合金めっき層をリフロー処理することにより形成されたものであることを特徴とするSnめっき付き銅合金材。 A copper alloy base material comprising the copper alloy for electric / electronic parts according to any one of claims 1 to 6, and a Cu-Sn alloy layer having a thickness of 1.0 µm or less formed on a surface of the copper alloy base material And a Sn or Sn alloy layer having a thickness of 0.3 to 1.0 μm formed on the surface of the Cu—Sn alloy layer, and the Cu—Sn alloy layer and the Sn or Sn alloy layer are formed of the copper alloy mother layer. A copper alloy material with Sn plating, which is formed by reflowing an Sn or Sn alloy plating layer formed on the surface of the material.
JP2011027953A 2011-02-11 2011-02-11 Copper alloy for electrical and electronic parts and copper alloy material with Sn plating Expired - Fee Related JP5950499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011027953A JP5950499B2 (en) 2011-02-11 2011-02-11 Copper alloy for electrical and electronic parts and copper alloy material with Sn plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027953A JP5950499B2 (en) 2011-02-11 2011-02-11 Copper alloy for electrical and electronic parts and copper alloy material with Sn plating

Publications (2)

Publication Number Publication Date
JP2012167310A true JP2012167310A (en) 2012-09-06
JP5950499B2 JP5950499B2 (en) 2016-07-13

Family

ID=46971731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011027953A Expired - Fee Related JP5950499B2 (en) 2011-02-11 2011-02-11 Copper alloy for electrical and electronic parts and copper alloy material with Sn plating

Country Status (1)

Country Link
JP (1) JP5950499B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041865A1 (en) * 2012-09-12 2014-03-20 Jx日鉱日石金属株式会社 Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP2015048503A (en) * 2013-08-30 2015-03-16 Dowaメタルテック株式会社 Copper alloy sheet material and production method thereof, and current-carrying component
WO2016031654A1 (en) * 2014-08-25 2016-03-03 株式会社神戸製鋼所 Conductive material for connection parts which has excellent minute slide wear resistance
JP2016044346A (en) * 2014-08-25 2016-04-04 株式会社神戸製鋼所 Conductive material for connection part excellent in minute slide abrasion resistance
JP2016044358A (en) * 2014-08-27 2016-04-04 株式会社神戸製鋼所 Conductive material for connection part excellent in minute slide abrasion resistance
WO2016152495A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Electrically conductive material for connection component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287419A (en) * 1992-04-09 1993-11-02 Kobe Steel Ltd High tensile strength copper alloy excellent in hot workability and its manufacture
JPH05311288A (en) * 1991-11-06 1993-11-22 Nikko Kinzoku Kk Copper alloy improved in stress relaxation property
JPH1180863A (en) * 1997-09-10 1999-03-26 Kobe Steel Ltd Copper alloy excellent in stress relaxation resistance and spring property
JP2007039793A (en) * 2005-07-07 2007-02-15 Kobe Steel Ltd Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
JP2007291518A (en) * 2006-03-30 2007-11-08 Dowa Metaltech Kk Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
JP2007291519A (en) * 2006-03-31 2007-11-08 Jfe Steel Kk Electromagnetic bar steel and its production method
JP2010031339A (en) * 2008-07-30 2010-02-12 Kobe Steel Ltd COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311288A (en) * 1991-11-06 1993-11-22 Nikko Kinzoku Kk Copper alloy improved in stress relaxation property
JPH05287419A (en) * 1992-04-09 1993-11-02 Kobe Steel Ltd High tensile strength copper alloy excellent in hot workability and its manufacture
JPH1180863A (en) * 1997-09-10 1999-03-26 Kobe Steel Ltd Copper alloy excellent in stress relaxation resistance and spring property
JP2007039793A (en) * 2005-07-07 2007-02-15 Kobe Steel Ltd Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
JP2007291518A (en) * 2006-03-30 2007-11-08 Dowa Metaltech Kk Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
JP2007291519A (en) * 2006-03-31 2007-11-08 Jfe Steel Kk Electromagnetic bar steel and its production method
JP2010031339A (en) * 2008-07-30 2010-02-12 Kobe Steel Ltd COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041865A1 (en) * 2012-09-12 2014-03-20 Jx日鉱日石金属株式会社 Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP2015048503A (en) * 2013-08-30 2015-03-16 Dowaメタルテック株式会社 Copper alloy sheet material and production method thereof, and current-carrying component
WO2016031654A1 (en) * 2014-08-25 2016-03-03 株式会社神戸製鋼所 Conductive material for connection parts which has excellent minute slide wear resistance
JP2016044346A (en) * 2014-08-25 2016-04-04 株式会社神戸製鋼所 Conductive material for connection part excellent in minute slide abrasion resistance
JP2016044358A (en) * 2014-08-27 2016-04-04 株式会社神戸製鋼所 Conductive material for connection part excellent in minute slide abrasion resistance
WO2016152495A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Electrically conductive material for connection component
JP2016180128A (en) * 2015-03-23 2016-10-13 株式会社神戸製鋼所 Conductive material for connection component

Also Published As

Publication number Publication date
JP5950499B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP4934785B2 (en) Sn-plated copper alloy material and manufacturing method thereof
JP4413992B2 (en) Copper alloy sheet for electrical and electronic parts
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP4787986B2 (en) Copper alloy and manufacturing method thereof
KR20110038143A (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
US20090176125A1 (en) Sn-Plated Cu-Ni-Si Alloy Strip
JP4887851B2 (en) Ni-Sn-P copper alloy
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP2002088428A (en) Copper alloy for connector having excellent stress corrosion cracking resistance and its production method
KR20190077011A (en) Copper alloy sheet and manufacturing method thereof
JP2006307336A (en) Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP4987028B2 (en) Copper alloy tin plating material for printed circuit board terminals
JP2005226097A (en) Tinned copper alloy material for electrical/electronic component, and its production method
JP4699252B2 (en) Titanium copper
JP5140171B2 (en) Copper alloy strip used for battery tab material for charging
JP2007031795A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY
JPH06228684A (en) Connector for electric and electronic appliance made of cu alloy
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
KR100774225B1 (en) Cu-Ni-Si-Zn BASED ALLOY TIN PLATING BATH
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JP3470889B2 (en) Copper alloy for electric and electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5950499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees