JP2007291519A - Electromagnetic bar steel and its production method - Google Patents

Electromagnetic bar steel and its production method Download PDF

Info

Publication number
JP2007291519A
JP2007291519A JP2007095277A JP2007095277A JP2007291519A JP 2007291519 A JP2007291519 A JP 2007291519A JP 2007095277 A JP2007095277 A JP 2007095277A JP 2007095277 A JP2007095277 A JP 2007095277A JP 2007291519 A JP2007291519 A JP 2007291519A
Authority
JP
Japan
Prior art keywords
less
ferrite
steel
low
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007095277A
Other languages
Japanese (ja)
Other versions
JP5085963B2 (en
Inventor
Masayuki Kasai
正之 笠井
Kunikazu Tomita
邦和 冨田
Takaaki Toyooka
高明 豊岡
Kazuaki Fukuoka
和明 福岡
Tetsuo Shiragami
哲夫 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Priority to JP2007095277A priority Critical patent/JP5085963B2/en
Publication of JP2007291519A publication Critical patent/JP2007291519A/en
Application granted granted Critical
Publication of JP5085963B2 publication Critical patent/JP5085963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic bar steel having sufficient magnetic properties and high yield strength as a rotor core material, and further having excellent machinability. <P>SOLUTION: The electromagnetic bar steel has a componential composition comprising, by mass, 0.04 to 0.12% C, ≤0.5% Si, 0.5 to 3.0% Mn, ≤0.1% Al, 0.03 to 0.35% Ti and 0.05 to 0.8% Mo, and the balance Fe with inevitable impurities, and has a structure of a ferrite single phase with the average crystal grain size of 30 to 80 μm; wherein the area ratio of the ferrite with a grain size of ≤10 μm is controlled to ≤20%, and also, fine precipitates with a grain size of <10 nm are dispersed into the ferrite. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、降伏強度が高くかつ磁気特性に優れ、しかも被削性にも優れた電磁棒鋼とその製造方法に関する。本発明にかかる電磁棒鋼は、切削加工や鍛造に供する加工用素材としても有用である。   The present invention relates to an electromagnetic steel bar having high yield strength, excellent magnetic properties, and excellent machinability, and a method for producing the same. The electromagnetic bar according to the present invention is also useful as a processing material used for cutting and forging.

電気自動車やハイブリッド型電気自動車のメインモータに代表されるように、近年、モータには省エネルギー化や高効率化が強く求められている。
省エネルギー化や高効率化を図るには、高周波化が有効な手段の一つとして挙げられるが、周波数が上がるとモータの回転速度も増大する。モータの回転数が増大すると、ローターを構成するコアに加わる遠心力も増大するため、コア材には高い降伏強度が要求される。即ち、コア材の降伏強度が不十分な場合は、遠心力によってコア材が塑性変形を起こし、ローターコアとステーターコア間のエアギャップが設計値から変化することでモータ性能が劣化したり、更には、回転中にローターとステーターが接触しモータを破損する結果となる。このため、高周波化によりモータの省エネルギー化や高効率化を図るには、ローターコア材の高強度化が不可欠となる。
As represented by main motors of electric vehicles and hybrid electric vehicles, in recent years, motors are strongly required to save energy and improve efficiency.
In order to save energy and increase efficiency, high frequency can be cited as one of the effective means, but as the frequency increases, the rotational speed of the motor also increases. When the number of rotations of the motor increases, the centrifugal force applied to the core constituting the rotor also increases, so that a high yield strength is required for the core material. That is, when the yield strength of the core material is insufficient, the core material undergoes plastic deformation due to centrifugal force, and the air gap between the rotor core and the stator core changes from the design value, and the motor performance deteriorates. Results in damage to the motor due to contact between the rotor and stator during rotation. For this reason, it is indispensable to increase the strength of the rotor core material in order to save energy and increase the efficiency of the motor by increasing the frequency.

ところで、ローターコアの製造方法としては、これまでは板厚0.35〜0.5mm程度の電磁鋼板を積層するのが一般的であったが、所定のコア形状に電磁鋼板を一枚一枚打抜き、これを数百枚積層するのに多大な費用を要するため、電磁鋼板に替えて、積層が不要な電磁棒鋼を用いてローターを作製するモータが実用化され始めている。   By the way, as a manufacturing method of a rotor core, until now, it was common to laminate electromagnetic steel sheets having a thickness of about 0.35 to 0.5 mm, but the electromagnetic steel sheets are punched one by one into a predetermined core shape. Since it takes a great deal of money to stack several hundred sheets, a motor that uses a magnetic bar steel that does not require lamination instead of a magnetic steel sheet has been put into practical use.

しかしながら、現状の電磁棒鋼は電磁鋼板と同様に低炭素鋼若しくは珪素鋼からなり、フェライトの固溶強化を主な強化機構としているため、強度は必ずしも高くない。例えば、3%Si鋼の場合でも降伏強度は350MPa程度であり、また、電磁鋼板の例ではあるが、特許文献1に開示されているように、高強度化を目的としたものでも降伏強度は概略300〜450MPa程度であり、十分な降伏強度が得られていない。   However, the current electromagnetic bar steel is made of low carbon steel or silicon steel like the electromagnetic steel sheet, and the strength is not necessarily high because the main strengthening mechanism is the solid solution strengthening of ferrite. For example, even in the case of 3% Si steel, the yield strength is about 350 MPa, and although it is an example of a magnetic steel sheet, as disclosed in Patent Document 1, the yield strength is also intended for high strength. It is approximately 300 to 450 MPa, and sufficient yield strength is not obtained.

また、特許文献2には、フェライトの組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物を分散析出させることによって、高位の磁束密度および高強度を併せ持つ回転鉄心用の熱延鋼板について記載されている。   Patent Document 2 discloses a hot-rolled steel sheet for a rotating core having both high magnetic flux density and high strength by dispersing and precipitating a carbide of less than 10 nm containing Ti, at least one of Mo and W in a ferrite structure. Is described.

この特許文献2に記載の熱延鋼板では、磁気特性に関して、成分を規定した上で、組織をフェライトとし、フェライト中に微細析出物を分散析出させること、炭化物の長辺と短辺の長さの比を規定することが述ベられているが、磁気特性上重要な磁壁移動については何ら配慮されておらず、従って実用上十分な磁気特性を有するとは言えない。事実、特許文献2の実施例においては、30000A/mと励磁電流が極端に高く、ほぼ成分(特にFe)によってのみ決まる飽和磁束密度近傍の磁束密度B300の値のみが示されている。しかし、モーター等の性質にとっては、5000A/mでの磁束密度B50に代表されるような、より低磁場領域での磁束密度が重要であり、特許文献2に記載の技術では高いB50が得られ
ない。
In the hot-rolled steel sheet described in Patent Document 2, with respect to magnetic properties, the composition is defined, the structure is ferrite, fine precipitates are dispersed and precipitated in the ferrite, and the lengths of the long side and the short side of the carbide. However, no consideration is given to domain wall motion which is important in terms of magnetic characteristics, and it cannot be said that the magnetic characteristics are practically sufficient. In fact, in the example of Patent Document 2, the exciting current is extremely high as 30000 A / m, and only the value of the magnetic flux density B 300 in the vicinity of the saturation magnetic flux density determined only by the component (particularly Fe) is shown. However, for the nature of the motor or the like, as typified by the magnetic flux density B 50 in the 5000A / m, it is important to the magnetic flux density at a lower magnetic field region, high B 50 in the technique described in Patent Document 2 I can't get it.

また、モーター等の効率を支配する鉄損については、一切考慮されておらず、鉄損値も高いため、実用上十分な磁気特性を具備するに至っていない。さらに、棒鋼に必要とされる特性の内、被削性には特段の配慮がなされていないため、工具寿命の点からは必ずしも良好な特性を示さないという問題も残されていた。
特開2002−371340号公報 特開2003−288509号公報
Further, no consideration is given to the iron loss that governs the efficiency of the motor and the like, and since the iron loss value is high, it does not have practically sufficient magnetic properties. Furthermore, since no special consideration has been given to machinability among the properties required for steel bars, there remains a problem that the properties are not necessarily good in terms of tool life.
JP 2002-371340 A JP 2003-288509 A

そこで、本発明は、ローターコア材として十分な磁気特性と共に、高い降伏強度を有し、しかも被削性に優れる電磁棒鋼とその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic steel bar having high yield strength and excellent machinability as well as sufficient magnetic properties as a rotor core material and a method for producing the same.

発明者らは、フェライト単相組織中に粒径10nm未満の微細析出物を分散析出させてフェライトを析出強化すると、著しい高強度化が図れることを見出した。また、従来、析出物は磁気特性に有害と考えられていたが、析出物が10nm未満と微細な場合には、磁気特性に悪影響を及ぼさないことを新たに見出した。
さらに、10nm未満と極めて微細な析出物でフェライトを強化した、上記鋼の被削性について検討を行った結果、フェライトの結晶粒径を所定の範囲に制御し、組織の均一細粒化を図ることによって、磁気特性並びに被削性を兼備した電磁棒鋼が得られることも知見した。
The inventors have found that when a fine precipitate having a particle size of less than 10 nm is dispersed and precipitated in a ferrite single-phase structure to enhance the precipitation of ferrite, the strength can be significantly increased. Conventionally, the precipitates were considered to be harmful to the magnetic properties, but it was newly found that when the precipitates are as fine as less than 10 nm, the magnetic properties are not adversely affected.
Furthermore, as a result of investigating the machinability of the above steel, in which ferrite was strengthened with very fine precipitates of less than 10 nm, the ferrite grain size was controlled within a predetermined range to achieve a uniform fine grain structure. It has also been found that an electromagnetic steel bar having both magnetic properties and machinability can be obtained.

本発明は以上の知見に基づきなされたものであり、その要旨構成は次の通りである。
1.質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Feおよび不可避的不純物の成分組成を有し、平均結晶粒径が30μm以上80μm以下のフェライト単相の組織に成り、粒径が10μm以下のフェライトの面積率が20%以下であり、かつフェライト中に粒径10nm未満の微細析出物が分散していることを特徴とする電磁棒鋼。
The present invention has been made based on the above knowledge, and the gist of the present invention is as follows.
1. % By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
And the composition of the remaining Fe and inevitable impurities, the average crystal grain size is a ferrite single phase structure of 30μm to 80μm, the area ratio of ferrite with a particle size of 10μm or less is 20% or less An electromagnetic steel bar characterized by fine precipitates having a particle size of less than 10 nm dispersed in ferrite.

2.前記成分組成は、下記(1)式を満たすことを特徴とする前記1に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 …(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
2. 2. The electromagnetic bar steel according to 1 above, wherein the component composition satisfies the following expression (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
However, the chemical component display indicates the content (% by mass) of the component.

3.前記微細析出物は、TiおよびMoの炭化物であることを特徴とする前記1または2に記載の電磁棒鋼。 3. 3. The electromagnetic steel bar according to 1 or 2 above, wherein the fine precipitate is a carbide of Ti and Mo.

4.前記成分組成は、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする前記1に記載の電磁棒鋼。
4). The component composition is further mass%.
Nb: 0.08% or less,
The electromagnetic bar steel according to 1 above, comprising one or more of V: 0.15% or less and W: 1.5% or less.

5.前記成分組成は、下記(2)式を満たすことを特徴とする前記4に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184))≦1.50…(2)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
5). The electromagnetic bar steel according to 4, wherein the component composition satisfies the following formula (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)) ≦ 1.50… (2)
However, the chemical component display indicates the content (% by mass) of the component.

6.前記微細析出物は、TiおよびMoを含み、かつNb、VおよびWのうちの少なくとも1種を含む炭化物であることを特徴とする前記4または5に記載の電磁棒鋼。 6). 6. The electromagnetic bar steel according to 4 or 5, wherein the fine precipitate is a carbide containing Ti and Mo and containing at least one of Nb, V and W.

7.前記成分組成は、更に質量%で
S:0.01〜0.1%を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含有することを特徴とする前記1ないし6のいずれかに記載の電磁棒鋼。
7). The component composition further includes S: 0.01 to 0.1% by mass%, and
Pb: 0.2% or less,
Ca: 0.005% or less,
The electromagnetic bar steel according to any one of 1 to 6 above, containing one or more of Bi: 0.1% or less and B: 0.02% or less.

8.前記粒径が10μm以下のフェライトの面積率は5%以下であることを特徴とする前記1ないし7に記載の電磁棒鋼。 8). The electromagnetic bar steel according to any one of 1 to 7 above, wherein an area ratio of the ferrite having a particle size of 10 μm or less is 5% or less.

9.質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Feおよび不可避的不純物の成分組成を有する鋼素材を、1100℃以上に加熱した後、熱間圧延を、開始パスにおける減面率が25%以上、最終パスにおける減面率が15%以上35%以下および仕上温度880℃以上で施し、次いで1.0℃/s以下の冷却速度で冷却することを特徴とする電磁棒鋼の製造方法。
ここで、減面率(%)は、
((各パスにおける圧延前の断面積−(各パスにおける圧延後の断面積))/(各パスにおける圧延前の断面積)×100
にて求めることができる。
9. % By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
The steel material having the component composition of the remaining Fe and unavoidable impurities is heated to 1100 ° C. or higher, and then hot rolling is performed.The area reduction rate in the start pass is 25% or more, and the area reduction rate in the final pass is 15%. % To 35% and a finishing temperature of 880 ° C. or higher, and then cooling at a cooling rate of 1.0 ° C./s or lower.
Here, the area reduction rate (%) is
((Cross-sectional area before rolling in each pass− (cross-sectional area after rolling in each pass)) / (cross-sectional area before rolling in each pass) × 100
It can ask for.

10.前記鋼素材は、下記(1)式を満たすことを特徴とする前記9に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 …(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
10. 10. The electromagnetic bar steel according to 9, wherein the steel material satisfies the following expression (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
However, the chemical component display indicates the content (% by mass) of the component.

11.前記鋼素材は、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする前記9に記載の電磁棒鋼。
11. The steel material is further mass%.
Nb: 0.08% or less,
10. The electromagnetic bar steel as described in 9 above, comprising one or more of V: 0.15% or less and W: 1.5% or less.

12.前記鋼素材は、下記(2)式を満たすことを特徴とする前記11に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50…(2)
ただし、化学成分は当該成分の含有量(質量%)を示す。
12 The electromagnetic bar steel according to 11, wherein the steel material satisfies the following expression (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50… (2)
However, a chemical component shows content (mass%) of the said component.

13.前記鋼素材は、更に質量%で
S:0.01〜0.1%を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含有することを特徴とする前記9ないし12のいずれかに記載の電磁棒鋼の製造方法。
13. The steel material further includes S: 0.01 to 0.1% by mass%, and
Pb: 0.2% or less,
Ca: 0.005% or less,
The method for producing electromagnetic bar steel according to any one of 9 to 12 above, wherein one or more of Bi: 0.1% or less and B: 0.02% or less are contained.

14.前記熱間圧延を、開始パスにおける減面率を30%以上として前記9ないし13に記載の方法で製造された棒鋼に対し、下記温度域Tにて焼鈍することを特徴とする電磁棒鋼の製造方法。

Mn含有量が1.7%以下のとき:600℃≦T≦800℃
Mn含有量が1.7%超のとき:600℃≦T≦750℃
14 Production of an electromagnetic steel bar characterized in that the hot rolling is annealed in the following temperature range T with respect to the steel bar produced by the method according to 9 to 13 with a reduction in area at the start pass of 30% or more. Method.
Record
When the Mn content is 1.7% or less: 600 ° C. ≦ T ≦ 800 ° C.
When Mn content exceeds 1.7%: 600 ℃ ≦ T ≦ 750 ℃

本発明によれば、十分な磁気特性を有すると共に、降伏強度の高い電磁棒鋼が提供されることから、モータの回転速度を増大しても上述した不具合を回避することができる。従って、モータにおける周波数の一層の増加が可能となり、モータの省エネルギー化ならびに高効率化が実現されるため、本発明は産業上極めて有用といえる。
さらに、棒鋼に必要とされる被削性についても、工具寿命の延長を実現するに足る良好な被削性を与えることができる。
According to the present invention, an electromagnetic steel bar having sufficient magnetic properties and high yield strength is provided, so that the above-described problems can be avoided even if the rotational speed of the motor is increased. Therefore, the frequency in the motor can be further increased, and the energy saving and high efficiency of the motor can be realized. Therefore, the present invention is extremely useful industrially.
Furthermore, the machinability required for the steel bar can be given good machinability sufficient to realize the extension of the tool life.

本発明の成分組成、ミクロ組織および製造条件について以下に詳述する。なお、成分組成に関する「%」表示は、特に断らない限りは「質量%」を意味する。
[成分組成]
C:0.04〜0.12%
Cが0.04%未満であると、微細析出物の析出量が不足し、高い降伏強度が得られないため、Cは0.04%以上とする必要がある。一方、Cは0.12%を超えて含有すると析出物が粗大化し、やはり高い降伏強度が得られないため、Cの上限は0.12%とする必要がある。
The component composition, microstructure and production conditions of the present invention are described in detail below. In addition, unless otherwise indicated, the "%" display regarding a component composition means "mass%".
[Ingredient composition]
C: 0.04-0.12%
If C is less than 0.04%, the amount of fine precipitates is insufficient and high yield strength cannot be obtained, so C needs to be 0.04% or more. On the other hand, if the content of C exceeds 0.12%, the precipitates become coarse and high yield strength cannot be obtained, so the upper limit of C needs to be 0.12%.

Si:0.5%以下
Siは冷間加工性を低下させるため、添加量は0.5%以下とする。より好ましくは、0.15%以下である。
Si: 0.5% or less
Since Si decreases the cold workability, the addition amount should be 0.5% or less. More preferably, it is 0.15% or less.

Mn:0.5〜3.0%、
本発明では、析出物の析出挙動がオーステナイトからフェライトへの変態(以降、フェライト変態という)の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度との差が小さく、フェライト変態と析出が競合する場合に、析出物がフェライト中に微細に分散析出する。すなわち、Mnは、フェライト変態温度を下げ、フェライト変態の変態開始温度と析出物の析出開始温度との差を減少させることで、フェライト変態と析出を競合させることに寄与する。そのためには、Mnを0.5%以上添加する必要がある。一方、Mn量が3.0%を超えると、フェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による強化が不足し、また低温変態相が生成すると磁束密度も低下するため、Mnの上限は3.0%とする。より好ましくは、
Mn: 0.5-3.0%
In the present invention, the precipitation behavior of the precipitate is closely related to the progress of the transformation from austenite to ferrite (hereinafter referred to as ferrite transformation), and the transformation start temperature of the ferrite transformation that occurs during cooling after rolling and the precipitate When the difference from the precipitation start temperature is small and the ferrite transformation and precipitation compete with each other, the precipitate is finely dispersed and precipitated in the ferrite. That is, Mn contributes to competing ferrite transformation and precipitation by lowering the ferrite transformation temperature and reducing the difference between the transformation initiation temperature of the ferrite transformation and the precipitation initiation temperature of the precipitate. For that purpose, it is necessary to add 0.5% or more of Mn. On the other hand, when the amount of Mn exceeds 3.0%, a low-temperature transformation phase such as bainite is generated in addition to ferrite, and strengthening by fine precipitates is insufficient, and when a low-temperature transformation phase is generated, the magnetic flux density is also reduced. The upper limit of Mn is 3.0%. More preferably,

なお、Mn量が1.7%以下で、特に高い磁束密度B50が得られるため、高い磁気特性を得ようとする場合には、1.7%以下とすることが好ましい。より好ましくは0.6〜1.65%である。一方、Mn量を1.7%超で添加することにより、Mnの固溶強化による高強度化の効果が顕著になる。よって、特に高強度化を指向する場合は1.7%超とすることが好ましい。より好ましくは、1.75〜2.85%である。 In addition, since especially high magnetic flux density B50 is obtained when the amount of Mn is 1.7% or less, it is preferable to make it 1.7% or less in order to obtain high magnetic characteristics. More preferably, it is 0.6 to 1.65%. On the other hand, by adding Mn in an amount exceeding 1.7%, the effect of increasing the strength by solid solution strengthening of Mn becomes remarkable. Therefore, it is preferable to exceed 1.7% particularly when increasing the strength is desired. More preferably, it is 1.75 to 2.85%.

Al:0.1%以上
Alは、脱酸元素として添加しても良く、この場合は0.01%以上で添加する必要がある。しかし、過剰に添加するとその効果が飽和するだけでなく、Nとの析出物であるAlNの量が増え、AlNは10nm未満の径で析出することがないため、磁気特性を劣化させることになる。これを避けるために、Alの添加量は0.1%以下とする。より好ましくは、0.05%以下である。
Al: 0.1% or more
Al may be added as a deoxidizing element. In this case, it is necessary to add at 0.01% or more. However, if it is added excessively, not only will the effect be saturated, but the amount of AlN that is a precipitate with N will increase, and AlN will not precipitate with a diameter of less than 10 nm, which will degrade the magnetic properties. . In order to avoid this, the amount of Al added is 0.1% or less. More preferably, it is 0.05% or less.

Ti:0.03〜0.35%
Tiは、Ti系炭化物やTi−Mo系炭化物を含む析出物を微細に析出させ硬度を上昇させる。高い降伏強度を確保するためには、0.03%以上が必要であり、一方0.35%を超えて添加すると析出物が粗大化し、却って強度が低下するため、Tiは0.03〜0.35%とする。より好ましくは、0.03〜0.30%である。
Ti: 0.03-0.35%
Ti precipitates finely including Ti-based carbides and Ti-Mo-based carbides to increase the hardness. In order to ensure a high yield strength, 0.03% or more is necessary. On the other hand, if added over 0.35%, the precipitates become coarse and the strength decreases, so Ti is made 0.03 to 0.35%. More preferably, it is 0.03 to 0.30%.

Mo:0.05〜0.8%
Moは、Mo系炭化物やTi-Mo系炭化物を含む析出物を微細に析出させ、強度を向上させるために添加する。また、Moは拡散速度が遅く、Tiと共に析出する場合、析出物の成長速度が低下し、微細な析出物が得られ易いという利点も有する。ここで、高い降伏強度を確保するためには、0.05%以上のMo添加が必要であり、一方、0.8%を超えて添加すると、フェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による析出強化が不足し強度が低下すると共に磁気特性が劣化する。このため、Moは0.05〜0.8%とする。より好ましくは、0.15〜0.50%である。
Mo: 0.05-0.8%
Mo is added to finely precipitate precipitates including Mo-based carbides and Ti-Mo-based carbides, and improve strength. Further, Mo has a slow diffusion rate, and when it precipitates together with Ti, it has an advantage that the growth rate of the precipitate is reduced and a fine precipitate is easily obtained. Here, in order to ensure high yield strength, it is necessary to add 0.05% or more of Mo. On the other hand, when adding over 0.8%, a low-temperature transformation phase such as bainite is generated in addition to ferrite. Precipitation strengthening due to fine precipitates is insufficient, resulting in a decrease in strength and a deterioration in magnetic properties. For this reason, Mo is made 0.05 to 0.8%. More preferably, it is 0.15-0.50%.

上記成分組成において、特にC、TiおよびMo量の原子比に関し、下記(1)式を満足させると析出物の微細化に有利となる。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50・・・(1)
本パラメーターは、析出物の大きさに影響を与えるもので0.50以上1.50以下とした場合、粒径10nm未満の微細析出物の形成が容易となり好ましい。
In the above component composition, particularly regarding the atomic ratio of the amounts of C, Ti, and Mo, satisfying the following formula (1) is advantageous for refinement of precipitates.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
This parameter affects the size of the precipitate, and when it is 0.50 or more and 1.50 or less, formation of fine precipitates having a particle size of less than 10 nm is facilitated, which is preferable.

尚、微細なTi-Mo系炭化物では、炭化物中のTiおよびMoは原子比でTi/Moが0.2〜2.0、更に微細な炭化物では0.7〜1.5であることが観察された。   In addition, it was observed that fine Ti—Mo-based carbides have Ti / Mo in the carbide in an atomic ratio of Ti / Mo of 0.2 to 2.0, and finer carbides of 0.7 to 1.5.

以上必須成分について説明したが、本発明では強度や靭性等の一層の向上を図るため、Nb、VおよびWの1種または2種以上を添加することができる。
Nb:0.08%以下、
Nbは、TiやMoと共に微細析出物を形成して強度上昇に寄与する。また、フェライトを整粒化することで延性および靭性を向上させる。これらの効果を得るには、0.005%以上添加することが好ましい。但し、0.08%を超えて含有するとフェライトが微細化し、微細析出物が磁気特性に悪影響をおよぼすことになるため、添加量は0.08%以下とする。より好ましくは、0.04%以下である。
Although the essential components have been described above, in the present invention, one or more of Nb, V and W can be added in order to further improve the strength and toughness.
Nb: 0.08% or less,
Nb contributes to the strength increase by forming fine precipitates together with Ti and Mo. Moreover, ductility and toughness are improved by adjusting the grain size of ferrite. In order to obtain these effects, 0.005% or more is preferably added. However, if the content exceeds 0.08%, the ferrite becomes finer and fine precipitates adversely affect the magnetic properties, so the addition amount should be 0.08% or less. More preferably, it is 0.04% or less.

V:0.15%以下
VもTiやMoと共に微細析出物を形成して強度上昇に寄与することから、好ましくは0.005%以上添加するが、0.15%を超えて含有すると析出物が粗大化するため、添加量は0.15%以下とする。より好ましくは、0.10%以下とする。
V: 0.15% or less V also forms fine precipitates together with Ti and Mo and contributes to the increase in strength. Therefore, 0.005% or more is preferably added, but if the content exceeds 0.15%, the precipitates become coarse. Addition amount is 0.15% or less. More preferably, it is 0.10% or less.

W:1.5%以下
WもTiやMoと共に微細析出物を形成して強度上昇に寄与することから、好ましくは0.01%以上添加するが、1.5%を超えて含有すると析出物が粗大化するため、添加量は1.5%以下とする。より好ましくは、1.0%以下である。
W: 1.5% or less W also contributes to strength increase by forming fine precipitates with Ti and Mo, so preferably 0.01% or more is added, but if the content exceeds 1.5%, the precipitates become coarse. Addition amount is 1.5% or less. More preferably, it is 1.0% or less.

これらの元素を添加した場合、これらの元素とC、TiおよびMo量の原子比を下記(2)式のように規定すると析出物の微細化に有利となる。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50…(2)
本パラメーターは、析出物の大きさに影響を与えるもので、0.50以上1.50以下とした場合、粒径10nm未満の微細析出物の形成が容易となる。
When these elements are added, the atomic ratio of these elements and the amounts of C, Ti, and Mo is defined as the following formula (2), which is advantageous for the refinement of precipitates.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50… (2)
This parameter affects the size of the precipitate, and when it is set to 0.50 or more and 1.50 or less, it becomes easy to form a fine precipitate having a particle size of less than 10 nm.

尚、Nb、VおよびWの1種または2種以上を含む微細な炭化物では、炭化物中のTi、Mo、Nb、VおよびWの原子比(Ti+Nb+V)/(Mo+W)が0.2〜2.0、更に微細な炭化物では0.7〜1.5であることが観察された。   In addition, in the fine carbide | carbonized_material containing 1 type, or 2 or more types of Nb, V, and W, atomic ratio (Ti + Nb + V) / (Mo + W) of Ti, Mo, Nb, V, and W in carbide is 0.2- 2.0, and for finer carbides it was observed to be 0.7-1.5.

更に、本発明では、部品加工時の被削性を向上させるため、S:0.01〜0.1%とした上で、Pb≦0.2%、Ca≦0.005%、Bi≦0.1%およびB≦0.02%の1種または2種以上を添加することができる。
ここで、S量を0.01〜0.1%としたのは、S量が0.01%未満であると、被削性の向上が図られないためであり、0.1%を超えると延性や靭性が低下するためである。なお、Sは0.01%未満で不純物として含有されるものである。本発明において、0.1%以下の含有量では強度ならびに磁気特性には影響を及ぼさない。そのため、積極的に添加して0.01〜0.1%の含有量とすることができる。
Further, in the present invention, in order to improve the machinability at the time of machining the part, S: 0.01 to 0.1%, Pb ≦ 0.2%, Ca ≦ 0.005%, Bi ≦ 0.1% and B ≦ 0.02% Seeds or two or more can be added.
Here, the reason why the S content is 0.01 to 0.1% is that if the S content is less than 0.01%, the machinability cannot be improved, and if it exceeds 0.1%, the ductility and toughness decrease. It is. S is less than 0.01% and is contained as an impurity. In the present invention, when the content is 0.1% or less, the strength and magnetic properties are not affected. Therefore, it can add actively and can be made into 0.01 to 0.1% of content.

また、Pb、Ca、BiおよびBについても、添加量がそれぞれの上限を超えると延性や靭性が低下するため、その添加量は、Pb≦0.2%、Ca≦0.005%、Bi≦0.1%、B≦0.02%とする必要がある。
その他、延性および靭性を向上させる目的で、Cr、NiおよびCuの1種または2種以上をCr≦0.5%、Ni≦0.5%およびCu≦0.5%の範囲で添加しても構わない。
Also, for Pb, Ca, Bi and B, when the addition amount exceeds the respective upper limit, ductility and toughness are lowered. Therefore, the addition amount is Pb ≦ 0.2%, Ca ≦ 0.005%, Bi ≦ 0.1%, B ≦ 0.02% is necessary.
In addition, for the purpose of improving ductility and toughness, one or more of Cr, Ni and Cu may be added in the range of Cr ≦ 0.5%, Ni ≦ 0.5% and Cu ≦ 0.5%.

不可避的不純物であるPとNは、磁気特性にとって好ましくない元素であるため、できるだけ低減することが望ましい。具体的には、Pについては0.03%以下に規制することが好ましい。Nについては0.01%以下に規制することが好ましく、0.005%以下に規制することが更に好ましい。
尚、これら元素の添加の有無や含有量により、本発明の効果が損なわれることは無い。
The inevitable impurities P and N are elements that are not preferable for the magnetic properties, so it is desirable to reduce them as much as possible. Specifically, it is preferable to restrict P to 0.03% or less. N is preferably regulated to 0.01% or less, more preferably 0.005% or less.
In addition, the effect of this invention is not impaired by the presence or absence and content of these elements.

[ミクロ組織]
本発明では、ミクロ組織を、平均結晶粒径が30μm以上80μm以下のフェライト単相で、粒径10μm以下のフェライト粒の圧延方向断面での面積率が20%以下であり、10nm未満の微細析出物が分散析出した組織に規定する。以下に、組織の限定理由について説明する。
まず、フェライト単相とするのは、フェライト単相が磁気特性にとって最も好ましい組織であるからである。なお、本発明におけるフェライト単相組織とは、断面組織観察(200倍の光学顕微鏡組織観察)でフェライトの面積率が95%以上好ましくは98%以上であることを指す。
[Microstructure]
In the present invention, the microstructure is a ferrite single phase with an average crystal grain size of 30 μm or more and 80 μm or less, and the area ratio in the rolling direction cross section of ferrite grains with a grain size of 10 μm or less is 20% or less, and fine precipitation of less than 10 nm It is defined as the structure in which the material is dispersed and precipitated. Below, the reason for limitation of the organization will be described.
First, the ferrite single phase is used because the ferrite single phase is the most preferable structure for magnetic properties. The ferrite single phase structure in the present invention means that the area ratio of ferrite is 95% or more, preferably 98% or more in cross-sectional structure observation (observation with 200 times optical microscope structure).

そして、本発明では、フェライトの平均結晶粒径30μm以上80μm以下のフェライト単相で、かつ粒径10μm以下の微細なフェライトの面積率を20%以下とする。すなわち、フェライトの平均粒径を30μm以上としたのは、従来磁気特性にとって有害と考えられてきた析出物であっても、その析出物が10nm以下と微細な場合には、フェライトの平均結晶粒径を30μm以上として、結晶粒径を均一に、さらに微細なフェライトを含まない組織とすることによって、磁気特性への悪影響を防止できるためである。   In the present invention, the area ratio of a ferrite single phase having an average crystal grain size of 30 μm or more and 80 μm or less and a fine ferrite having a grain size of 10 μm or less is 20% or less. In other words, the average grain size of ferrite is set to 30 μm or more, even if the precipitate is considered to be harmful to the magnetic properties, if the precipitate is as fine as 10 nm or less, the average grain size of ferrite This is because the adverse effect on the magnetic properties can be prevented by setting the diameter to 30 μm or more, making the crystal grain size uniform and not containing fine ferrite.

かような磁気特性の観点からは、フェライトの平均粒径は30μm以上とする必要があるが、粒径が過度に増大すると機械加工時の被削性が劣化するため、フェライトの平均粒径の上限は80μmとする。すなわち、フェライトの粒径を均一にかつ適正化することによって、機械加工での被削性が向上することを新たに見出した。   From the viewpoint of such magnetic properties, the average grain size of ferrite needs to be 30 μm or more. However, if the grain size is excessively increased, the machinability during machining deteriorates. The upper limit is 80 μm. That is, it has been newly found that machinability in machining is improved by making the ferrite grain size uniform and appropriate.

以下に、上記組織の特徴を決定するために行った実験について詳述する.
本発明の成分組成範囲に従う、C:0.072%、Si:0.07%、Mn:1.41%、Ti:0.19%、Mo:0.25%、P:0.011%、S:0.020%、Al:0.039%およびN:0.0028%を含み、残部がFeおよび不可避的不純物からなる鋼を溶製し、これを1120℃に加熱後、直径100mmの棒鋼に熱間圧延し、その後、500℃までの平均冷却速度が0.18℃/sで室温まで冷却した。その際、組織を変化させるため、熱間圧延における圧延パススケジュール(各圧下パスの温度および減面率)を種々に変化させた。
かくして得られた棒鋼について、組織観察を行うと共に、引張試験値と磁気特性を測定した。
The experiments conducted to determine the characteristics of the tissue are described in detail below.
According to the component composition range of the present invention, C: 0.072%, Si: 0.07%, Mn: 1.41%, Ti: 0.19%, Mo: 0.25%, P: 0.011%, S: 0.020%, Al: 0.039% and N: A steel containing 0.0028%, the remainder consisting of Fe and inevitable impurities is melted, heated to 1120 ° C, hot rolled to a 100mm diameter steel bar, and then the average cooling rate to 500 ° C is 0.18 ° C Cooled to room temperature at / s. At that time, in order to change the structure, the rolling pass schedule (temperature of each reduction pass and the area reduction ratio) in the hot rolling was variously changed.
The steel bar thus obtained was subjected to a structure observation and a tensile test value and a magnetic property were measured.

ここで、引張試験値については、棒鋼の1/4D(D:棒鋼の直径100mm)の位置から、平行部の直径6mmおよび平行部長さ40mmの試験片を棒鋼の長手方向に採取し、各測定に供した。
また、磁気特性については、得られた棒鋼の中央部から内径33mm、外径45mmおよび厚み5mmのリング状試験片を、リング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流5000A/mでの磁束密度B50並びに、交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。
Here, with respect to the tensile test value, a test piece having a diameter of 6 mm and a length of 40 mm in the parallel part was taken from the position of 1/4 D of the steel bar (D: diameter of the steel bar 100 mm) in the longitudinal direction of the steel bar, and each measurement It was used for.
Regarding magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the obtained steel bar so that the ring plate surface was parallel to the steel bar cross section, and the primary winding 100 times and 100 secondary windings were performed, and the magnetic flux density B 50 at a direct current excitation current of 5000 A / m and the iron loss W 10/50 when excited at a magnetic flux density of 1.0 T at an alternating current of 50 Hz were measured.

さらに、組織観察として、棒鋼の任意の位置、計20箇所から組織観察用試験片を採取して組織の同定を行った。それぞれの試験片について、各100個の粒を任意に選び、これらの断面積を画像処理によって求め、これと等価な断面積を持つ相当円の直径として計2000個の結晶粒の粒径を個別に算出すると共に、これらの平均値を求めることによって、棒鋼全体の平均結晶粒径を求めた。更にまた、後に詳述する電子顕微鏡観察により析出物の大きさを評価した。   Furthermore, as a structure observation, a structure observation test piece was collected from an arbitrary position of the steel bar, a total of 20 locations, and the structure was identified. For each test piece, select 100 grains each, and obtain the cross-sectional area of these by image processing. And the average crystal grain size of the whole steel bar was determined by calculating the average value of these. Furthermore, the size of the precipitate was evaluated by electron microscope observation described in detail later.

上記組織観察の結果、圧延条件を問わず組織はフェライト単相となっていたが、結晶粒径を変えるために熱間圧延でのパススケジュール並びに焼鈍温度を種々変化させたため、個々のフェライト粒径は2μm程度から100μm程度まで変化していた。また、析出物の大きさに関しては、圧延条件を問わず、ほぼ5nm程度と微細になっていた。   As a result of the above structure observation, regardless of the rolling conditions, the structure was a ferrite single phase, but in order to change the crystal grain size, the pass schedule and annealing temperature in the hot rolling were changed variously, so that the individual ferrite grain size Changed from about 2 μm to about 100 μm. Moreover, regarding the size of the precipitate, it was as fine as about 5 nm regardless of the rolling conditions.

また、これらの棒鋼の引張試験値を測定したところ、最低でも500MPaと高い降伏強度が得られたが、磁気特性はフェライトの平均結晶粒径と微細フェライト粒の分率に依存して変化していた。ここに、図1に、磁束密度B50、鉄損W10/50の値を、フェライトの平均粒径および粒径10μm以下のフェライトの面積率にて区分した結果を示す。尚、粒径10μm以下のフェライトの面積率は、前記したフェライト2000個の内、粒径10μm以下であるフェライト粒の断面積の和を求め、これをフェライト2000個の断面積の総和で除することで算出した。 Moreover, when the tensile test values of these steel bars were measured, a yield strength as high as 500 MPa was obtained at the minimum, but the magnetic properties varied depending on the average crystal grain size of ferrite and the fraction of fine ferrite grains. It was. FIG. 1 shows the result of dividing the values of magnetic flux density B 50 and iron loss W 10/50 by the average grain size of ferrite and the area ratio of ferrite having a grain size of 10 μm or less. The area ratio of ferrite having a particle size of 10 μm or less is obtained by calculating the sum of the cross-sectional areas of ferrite grains having a particle size of 10 μm or less among the 2000 ferrites described above, and dividing this by the sum of the cross-sectional areas of 2000 ferrites. Was calculated.

図1から判るように、フェライトの平均粒径が30μm以上の場合、粒径10μm以下のフェライトの占める面積率が25%以下では、磁束密度は1.61T以上および鉄損は38W/kg以下となり、優れた磁気特性が得られる。ところが、粒径10μm以下のフェライト面積率が25%を超えると、磁束密度が1.56〜1.59Tと低くなり、または鉄損が42〜44W/kgと高くなり、磁束密度および鉄損の少なくとも一方が劣っている。また、フェライトの平均粒径が30μm未満と微細な場合には、粒径10μm以下のフェライト面積率が25%以下であっても、磁束密度が1.56〜1.59Tと低くなり、鉄損も42〜46W/kgと高くなり、低位な磁気特性しか得られない。   As can be seen from FIG. 1, when the average particle diameter of ferrite is 30 μm or more, the area ratio occupied by ferrite having a particle diameter of 10 μm or less is 25% or less, the magnetic flux density is 1.61 T or more, and the iron loss is 38 W / kg or less. Excellent magnetic properties can be obtained. However, when the ferrite area ratio with a grain size of 10 μm or less exceeds 25%, the magnetic flux density is lowered to 1.56 to 1.59 T, or the iron loss is increased to 42 to 44 W / kg, and at least one of the magnetic flux density and the iron loss is increased. Inferior. In addition, when the average particle diameter of ferrite is as fine as less than 30 μm, the magnetic flux density is as low as 1.56 to 1.59 T even if the ferrite area ratio with a particle diameter of 10 μm or less is 25% or less, and the iron loss is 42 to As high as 46W / kg, only low magnetic properties can be obtained.

このように、析出物が5nmと微細な場合、フェライトの平均粒径を30μm以上とし、更に粒径10μm以下の微細フェライトの分率を低減すれば、磁気特性にとって有害と考えられてきた析出物の影響は防止され、優れた磁気特性を得ることができる。   In this way, when the precipitate is as fine as 5 nm, if the average particle diameter of the ferrite is set to 30 μm or more and the fraction of fine ferrite having a particle diameter of 10 μm or less is reduced, the precipitate has been considered harmful to the magnetic properties. Can be prevented, and excellent magnetic properties can be obtained.

この点を確認するために、さらに同様の検討を、成分組成、析出物径及びフェライト粒径が種々変化した鋼について行ったところ、析出物の大きさが10nm未満の場合、フェライトの平均粒径を30μm以上とすると共に、粒径10μm以下のフェライトの面積率を25%以下とすれば、高い磁束密度B50と低い鉄損W10/50が得られることが明らかとなった。従って、磁気特性の点からは、フェライトの平均粒径を30μm以上、粒径が10μm以下のフェライトの面積率を25%以下とする必要がある。 In order to confirm this point, a similar study was performed on steel with various changes in the component composition, precipitate diameter, and ferrite particle size. When the precipitate size was less than 10 nm, the average particle diameter of ferrite was It has been clarified that a high magnetic flux density B 50 and a low iron loss W 10/50 can be obtained if the area ratio of ferrite having a grain size of 10 μm or less is 25% or less. Therefore, from the viewpoint of magnetic properties, it is necessary that the average particle diameter of ferrite is 30 μm or more and the area ratio of ferrite having a particle diameter of 10 μm or less is 25% or less.

ここで、粒径10μm以下の微細なフェライトが少ない場合には、磁気特性に対する析出物の悪影響が抑制される理由については必ずしも明らかではないが、磁壁移動に対する抑止力と結晶粒径との関係が示唆される。   Here, when there are few fine ferrites with a grain size of 10 μm or less, the reason why the adverse effect of precipitates on magnetic properties is suppressed is not necessarily clear, but there is a relationship between the deterring force against domain wall motion and the crystal grain size. It is suggested.

一般に、磁気特性は、磁壁移動が容易な程好ましく、析出物は、この磁壁移動を妨げることで磁気特性に悪影響をおよぼすとされている。ところで、フェライト粒径が増大すると磁区の大きさも増大し、磁区の境界である磁壁の長さも増大する。ここで、磁壁長さが十分に長く、析出物が十分に微細な場合は、析出物による磁壁移動の抑止力と磁壁移動の駆動力との相対関係から、磁壁移動に対する析出物の影響が事実上無視できるようになると推察される。このため、フェライト粒径は大きい程磁気特性上有利となるが、鋼材全体を考えると、フェライト粒径は必ずしも同一ではなく、フェライト粒径にはある程度バラツキがあることに配慮する必要がある。   In general, it is preferable that the magnetic properties are such that the domain wall movement is easy, and the precipitates are considered to adversely affect the magnetic properties by preventing the domain wall migration. By the way, when the ferrite grain size increases, the size of the magnetic domain also increases, and the length of the domain wall that is the boundary of the magnetic domain also increases. Here, if the domain wall length is sufficiently long and the precipitates are sufficiently fine, the influence of the precipitates on the domain wall movement is a fact from the relative relationship between the domain wall movement deterring force due to the precipitates and the driving force of the domain wall movement. It is assumed that it will be negligible. For this reason, the larger the ferrite particle size, the more advantageous in terms of magnetic properties. However, considering the entire steel material, it is necessary to consider that the ferrite particle size is not necessarily the same, and the ferrite particle size varies to some extent.

フェライト粒径にバラツキがあると、フェライトの大きな部分では磁壁は析出物の影響を受けず容易に移動できるが、フェライトの小さな部分では磁壁移動が析出物によって妨げられるため、これが磁壁の移動をある程度律速することになる。
従って、フェライトの平均的な大きさを増大させることに加えて、磁壁移動の律速となる微細なフェライトが占める割合を低減することが磁気特性上重要となる。このため、粒径10μm以下の微細なフェライトの割合を減じると、磁気特性に対する析出物の悪影響を防止するためのフェライトの平均粒径が、微細なフェライトの割合を特段考慮しない場合より低下するものと考えられる。
If the ferrite grain size varies, the domain wall can move easily without being affected by precipitates in a large part of ferrite, but the domain wall movement is hindered by precipitates in a small part of ferrite. It will be rate-limiting.
Therefore, in addition to increasing the average size of the ferrite, it is important in terms of magnetic properties to reduce the proportion of fine ferrite that is the rate-determining domain wall motion. For this reason, if the proportion of fine ferrite with a particle size of 10 μm or less is reduced, the average particle size of ferrite to prevent the adverse effects of precipitates on the magnetic properties will be lower than when the proportion of fine ferrite is not specifically considered it is conceivable that.

上記のように、磁気特性の点からは、フェライトの平均粒径は30μm以上とする必要があるが、粒径が過度に増大すると被削性が劣化するため、平均粒径の上限は80μmとする。以下、この点を説明する。   As described above, from the viewpoint of magnetic properties, the average grain size of ferrite needs to be 30 μm or more, but since the machinability deteriorates when the grain size increases excessively, the upper limit of the average grain size is 80 μm. To do. Hereinafter, this point will be described.

図1に結果を示した実験にて用いた鋼を、1220℃に加熱後、直径120mmの棒鋼に熱間圧延し、その後、500℃までの平均冷却速度:0.15℃/sで室温まで冷却した。その結晶粒径を変化させるため、熱間圧延における圧延パススケジュールを種々に変化させた。   The steel used in the experiment whose results are shown in FIG. 1 is heated to 1220 ° C., hot rolled to a 120 mm diameter steel bar, and then cooled to room temperature at an average cooling rate of up to 500 ° C .: 0.15 ° C./s. . In order to change the crystal grain size, the rolling pass schedule in the hot rolling was variously changed.

得られた棒鋼の組織を観察した結果、圧延条件を問わず棒鋼の組織はフェライト単相となっていたが、結晶粒径を変えるために熱間圧延でのパススケジュールを種々変化させたため、個々のフェライト粒径は4μm程度から160μm程度まで変化していた。析出物の大きさに関しては、圧延条件を問わず、ほぼ5nm程度と微細になっていた。また、降伏強度も500MPa以上と十分高い値を示した。   As a result of observing the structure of the obtained steel bar, the steel bar structure was a ferrite single phase regardless of the rolling conditions, but various changes were made to the hot rolling pass schedule in order to change the crystal grain size. The ferrite grain size of the steel changed from about 4 μm to about 160 μm. As for the size of the precipitate, it was as fine as about 5 nm regardless of the rolling conditions. Moreover, the yield strength was a sufficiently high value of 500 MPa or more.

これらの棒鋼を用いて被削性を調査した。被削性は、超硬工具P10を用い、切削速度200m/min、無潤滑の条件により棒鋼の外周切削を行い、工具の逃げ面磨耗が0.2mmに達した時間を工具寿命とした。
図2に、フェライト粒径と被削性との関係を示す。同図から、フェライトの平均粒径が80μm以下の場合、粒径10μm以下のフェライトの占める面積率が20%以下であれば、工具寿命は15min以上と良好な値を示す。ところが、粒径10μm以下のフェライト面積率が20%を超えると、工具寿命は5min未満となる。更に、フェライトの平均粒径が80μm超と粗大な場合には、粒径10μm以下のフェライト面積率が20%以下であっても、5min未満の工具寿命しか得られない。
The machinability was investigated using these steel bars. For machinability, the tool life was defined as the time when the flank wear of the tool reached 0.2 mm after cutting the outer circumference of the bar steel using a carbide tool P10 at a cutting speed of 200 m / min and no lubrication.
FIG. 2 shows the relationship between the ferrite grain size and machinability. From the figure, when the average particle diameter of ferrite is 80 μm or less, the tool life is 15 min or more and a good value when the area ratio of ferrite having a particle diameter of 10 μm or less is 20% or less. However, when the ferrite area ratio with a grain size of 10 μm or less exceeds 20%, the tool life becomes less than 5 min. Furthermore, when the average grain size of ferrite is as large as more than 80 μm, a tool life of less than 5 minutes can be obtained even if the ferrite area ratio with a grain size of 10 μm or less is 20% or less.

以上のように、フェライトの平均粒径が80μm以下であり、粒径10μm以下の微細フェライトが少ない場合に優れた被削性を得ることができる。この点を確認するために、同様の検討を化学組成、析出物径及びフェライト粒径が種々変化した鋼について行ったところ、析出物の大きさが10nm未満の場合、フェライトの平均粒径を80μm以下とすると共に、粒径10μm以下のフェライトの面積率を20%以下とすれば、これらを満たさないものに比べて工具寿命が大幅に延びることを確認した。これより、被削性の点からは、フェライトの平均粒径を80μm以下、粒径が10μm以下のフェライトの面積率を20%以下と規定する。   As described above, excellent machinability can be obtained when the average particle diameter of ferrite is 80 μm or less and there are few fine ferrites having a particle diameter of 10 μm or less. In order to confirm this point, the same study was conducted on steels with various chemical compositions, precipitate diameters, and ferrite particle sizes. When the precipitate size was less than 10 nm, the average particle size of ferrite was 80 μm. In addition to the following, it was confirmed that if the area ratio of ferrite having a particle size of 10 μm or less was 20% or less, the tool life was greatly extended as compared with those not satisfying these. Thus, from the viewpoint of machinability, the average grain size of ferrite is defined as 80 μm or less, and the area ratio of ferrite having a grain size of 10 μm or less is defined as 20% or less.

ここで、フェライトの平均粒径が80μmを超えると被削性が劣化するのは、フェライトが過度に粗大になる場合に、粒径の粗大化に伴って切り屑が大きな単位で形成され、切削面が荒れるためと考えられる。また、粒径10μm以下のフェライトの面積率を増大すると、フェライト粒径の差に起因した硬度差の影響が顕在化し、この硬度の不均一性が被削性を劣化させるものと推察される。   Here, when the average grain size of ferrite exceeds 80 μm, the machinability deteriorates when the ferrite becomes excessively coarse, as the grain size increases, chips are formed in large units. This is probably because the surface is rough. Further, when the area ratio of ferrite having a particle size of 10 μm or less is increased, the influence of the hardness difference due to the difference in ferrite particle size becomes obvious, and it is assumed that this non-uniformity in hardness deteriorates the machinability.

以上、本発明の磁気特性と被削性に関する検討結果を纏めると、以下のようになる。
磁気特性の観点からは、フェライトの平均粒径を30μm以上、粒径が10μm以下のフェライトの面積率を25%以下とする必要がある。また、被削性の観点からは、フェライトの平均粒径を80μm以下、粒径が10μm以下のフェライトの面積率を20%以下とする必要がある。
As described above, the results of studies on the magnetic characteristics and machinability of the present invention are summarized as follows.
From the viewpoint of magnetic properties, it is necessary that the average particle size of ferrite is 30 μm or more and the area ratio of ferrite having a particle size of 10 μm or less is 25% or less. From the viewpoint of machinability, it is necessary that the average particle size of ferrite is 80 μm or less and the area ratio of ferrite having a particle size of 10 μm or less is 20% or less.

本発明では、優れた磁気特性および被削性の両者を具備させることを目的としており、磁気特性及び被削性に対するフェライト粒径の要件が同時に満たされるように、フェライトの平均粒径を30μm以上80μm以下、粒径10μm以下のフェライトの面積率を20%以下と規定する。   The present invention aims to provide both excellent magnetic properties and machinability, and the average particle size of ferrite is 30 μm or more so that the requirements of ferrite particle size for magnetic properties and machinability are simultaneously satisfied. The area ratio of ferrite having a particle size of 80 μm or less and a particle size of 10 μm or less is defined as 20% or less.

次いで、本発明では微細析出物の粒径は10nm未満とする。析出物の粒径が10nm以上の場合、析出強化能が不足する。
微細析出物の粒径は小さい程強度上昇に有効であり、望ましくは5nm、更に望ましくは3nm以下とし、そのような微細析出物としてTiおよびMoを複合含有した炭化物、またそれらに更にNb、VおよびWの1種または2種以上を含む炭化物が好ましい。
Next, in the present invention, the particle size of the fine precipitate is less than 10 nm. When the particle size of the precipitate is 10 nm or more, the precipitation strengthening ability is insufficient.
The smaller the particle size of the fine precipitates, the more effective the strength increase. Desirably, the fine precipitates are 5 nm, more preferably 3 nm or less. As such fine precipitates, carbides containing a composite of Ti and Mo, and further Nb, V And a carbide containing one or more of W is preferred.

なお、微細析出物の個数については、1000個/μm3以上、更に望ましくは5000個/μm3以上あると、高い降伏強度が得易く好適である。 The number of fine precipitates is 1000 / μm 3 or more, more desirably 5000 / μm 3 or more, and it is preferable that high yield strength is easily obtained.

これらの微細析出物は、母相中に均一に分散析出することが望ましい。また、本発明において、析出物の大きさは、全析出物の90%以上が満足すれば高い降伏強度が得られる。
但し、10nm以上の大きさの析出物は析出物形成元素を徒に消費し、強度に悪影響を与えるため、その大きさは50nm以下に抑えることが好ましい。
These fine precipitates are desirably dispersed and precipitated uniformly in the matrix phase. In the present invention, if the size of the precipitate satisfies 90% or more of the total precipitate, a high yield strength can be obtained.
However, since the precipitate having a size of 10 nm or more consumes the precipitate-forming elements and adversely affects the strength, the size is preferably suppressed to 50 nm or less.

上述した析出物とは別に、少量のFe炭化物を含有しても本発明の効果は損なわれないが、平均粒径が1μm以上のFe炭化物を多量に含むと磁気特性を阻害するため、本発明においては、含有されるFe炭化物の大きさの上限は1μm、含有率は析出物全体の1%以下とすることが望ましい。   In addition to the precipitates described above, the effect of the present invention is not impaired even if a small amount of Fe carbide is contained. However, if a large amount of Fe carbide having an average particle size of 1 μm or more is contained, the magnetic properties are hindered. In this case, the upper limit of the size of the Fe carbide contained is preferably 1 μm, and the content is preferably 1% or less of the entire precipitate.

ここに、析出物の大きさおよび微細析出物の全析出物に占める割合は以下の方法により求める。
電子顕微鏡試料として、ツインジェット法を用いた電解研磨法で作製し、加速電圧200kVで観察する。その際、析出物が母相に対して計測可能なコントラストになるように母相の結晶方位を制御し、析出物の数え落としを最低限に抑えるため、焦点を正焦点からずらしたデフォーカス法で観察を行う。また、析出物粒子の計測を行った領域の試料厚さは、電子エネルギー損失分光法を用いて、弾性散乱ピークと非弾性散乱ピーク強度とを測定することで評価する。
Here, the size of the precipitate and the ratio of the fine precipitate to the total precipitate are obtained by the following method.
An electron microscope sample is prepared by electropolishing using a twin jet method and observed at an acceleration voltage of 200 kV. At that time, the defocus method is used to control the crystal orientation of the parent phase so that the precipitate has a measurable contrast with respect to the parent phase, and to minimize the counting of the precipitates. Observe at. Moreover, the sample thickness of the area | region which measured the deposit particle | grains is evaluated by measuring an elastic scattering peak and an inelastic scattering peak intensity | strength using an electron energy loss spectroscopy.

この方法により、粒子径および粒子数の計測と試料厚さの計測を同じ領域について実行することができる。粒子径および粒子数の測定は、試料の0.5μm×0.5μmの領域4箇所について行い、1μm2当りに分布する析出物を粒径ごとの個数として算出する。次いで、この値と試料の厚さから析出物の1μm3当りに分布する粒子径ごとの個数を算出する。これにより、析出物の大きさと、全析出物に占める粒径が10nm未満の析出物の割合を求める。 By this method, the measurement of the particle diameter and the number of particles and the measurement of the sample thickness can be executed for the same region. The particle diameter and the number of particles are measured at four locations of a 0.5 μm × 0.5 μm region of the sample, and the precipitates distributed per 1 μm 2 are calculated as the number for each particle diameter. Next, from this value and the thickness of the sample, the number of precipitates per particle diameter distributed per 1 μm 3 is calculated. Thereby, the size of the precipitate and the proportion of the precipitate having a particle size of less than 10 nm in the total precipitate are obtained.

[製造条件]
以下に、望ましい製造条件について説明する。
加熱温度
本発明では、熱間圧延後の冷却中に析出物を微細に析出させるために、熱間圧延前の鋳片に析出している析出物を、加熱炉にて一旦固溶させる必要がある。その際、加熱温度が1100℃未満であると、Ti-Mo系炭化物等が十分に固溶しないため、加熱温度は1100℃以上とする。
[Production conditions]
Hereinafter, desirable manufacturing conditions will be described.
Heating temperature In the present invention, in order to precipitate precipitates finely during cooling after hot rolling, it is necessary to once dissolve the precipitates precipitated on the slab before hot rolling in a heating furnace. is there. At that time, if the heating temperature is less than 1100 ° C., Ti—Mo-based carbides and the like are not sufficiently dissolved, so the heating temperature is set to 1100 ° C. or higher.

減面率
本発明では優れた磁気特性と被削性を得るために、フェライトの平均粒径を30μm以上80μm以下、粒径10μm以下のフェライトの面積率を20%以下とする必要がある。このうち、粒径10μm以下のフェライトの面積率を20%以下とするには、圧延初期に減面率25%以上の強圧下を施し、再結晶核を十分に導入することで圧延初期にオーステナイト粒径を均一化することが重要である。こうすることによって、最終的に得られるフェライト組織も均一化し、微細フェライトの生成を一定量以下に抑制することができる。ここで、粒径10μm以下のフェライトの面積率を20%以下とするには、25%以上の減面率が必要となるため、本発明では、熱間圧延の開始パスにおける減面率を25%以上と規定する。
In the present invention, in order to obtain excellent magnetic properties and machinability, it is necessary that the average grain size of ferrite is 30 μm or more and 80 μm or less and the area ratio of ferrite having a grain size of 10 μm or less is 20% or less. Among these, in order to reduce the area ratio of ferrite having a grain size of 10 μm or less to 20% or less, a strong reduction with a reduction in area of 25% or more was performed at the beginning of rolling, and austenite was introduced at the beginning of rolling by sufficiently introducing recrystallization nuclei. It is important to make the particle size uniform. By doing so, the ferrite structure finally obtained can be made uniform, and the production of fine ferrite can be suppressed to a certain amount or less. Here, in order to reduce the area ratio of ferrite having a grain size of 10 μm or less to 20% or less, a reduction in area of 25% or more is required.In the present invention, the reduction in area in the hot rolling start pass is 25 It is specified as% or more.

フェライトの結晶粒径を30μm以上80μm以下とするには、熱間圧延の最終パスにおける減面率を制御することが有効である。具体的には、減面率を15%以上35%以下にすると、粒径30μm以上80μm以下のフェライトが得られるため、熱間圧延の最終パスにおける減面率については、減面率の範囲を15%以上35%以下とする。   In order to make the crystal grain size of ferrite 30 μm or more and 80 μm or less, it is effective to control the area reduction rate in the final pass of hot rolling. Specifically, if the area reduction rate is 15% or more and 35% or less, ferrite with a grain size of 30 μm or more and 80 μm or less is obtained. Therefore, the area reduction rate in the final pass of hot rolling is within the range of the area reduction rate. 15% to 35%.

仕上温度
本発明では、析出物の析出挙動がフェライト変態の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度との差が小さく、フェライト変態と析出とが競合する場合に、析出物がフェライト中に微細に分散析出する。フェライト変態と析出とを競合させるには、フェライト変態の開始温度を下げる必要があるが、熱間圧延おける仕上温度が低い場合には、圧延で導入される歪がフェライト変態の開始温度を上昇させ、析出物の微細化を阻害する。これを避けるためには、仕上温度を歪の影響が現れない高温にすれば良く、この点から仕上温度は880℃以上とする。
Finishing temperature In the present invention, the precipitation behavior of the precipitate is closely related to the progress of the ferrite transformation, and the difference between the transformation start temperature of the ferrite transformation that occurs during cooling after rolling and the precipitation start temperature of the precipitate is small, When the ferrite transformation and precipitation compete, the precipitate is finely dispersed and precipitated in the ferrite. In order to compete with ferrite transformation and precipitation, it is necessary to lower the start temperature of ferrite transformation, but when the finishing temperature in hot rolling is low, the strain introduced by rolling increases the start temperature of ferrite transformation. Inhibits refinement of precipitates. In order to avoid this, the finishing temperature may be set to a high temperature at which the influence of distortion does not appear. From this point, the finishing temperature is set to 880 ° C. or higher.

冷却速度
本発明では、熱間圧延後の冷却中に微細析出物を析出させる。その際、熱間圧延後の冷却速度が1.0℃/sを超えると低温変態相が生成し、析出が十分に進行せず、高い降伏強度が得られなくなる。そこで、熱間圧延後の冷却速度は1.0℃/s以下とする必要がある。また、冷却速度が1.0℃/s以下であれば、本発明鋼は低Cであることから、フェライト単相組織が得られる。尚、析出は500℃までで実質上終了するため、熱間圧延後から500℃までを1.0℃/s以下の冷却速度で冷却すれば良い。
Cooling rate In the present invention, fine precipitates are deposited during cooling after hot rolling. At that time, if the cooling rate after hot rolling exceeds 1.0 ° C./s, a low-temperature transformation phase is generated, precipitation does not proceed sufficiently, and high yield strength cannot be obtained. Therefore, the cooling rate after hot rolling needs to be 1.0 ° C./s or less. If the cooling rate is 1.0 ° C./s or less, the steel of the present invention has a low C, and thus a ferrite single phase structure can be obtained. In addition, since precipitation is substantially complete | finished by 500 degreeC, what is necessary is just to cool to 500 degreeC after a hot rolling with the cooling rate of 1.0 degrees C / s or less.

なお、以上説明した製造方法で得られた本発明の棒鋼に対して、さらに焼鈍を施してもよい。熱間圧延の後に焼鈍を施すことにより、微細析出物を十分に析出させ、さらに組織を均一化でき、高い強度、磁気特性並びに被削性を一層高いレベルで兼備させることが可能となる。特に、焼鈍条件の適正化により微細なフェライト粒の面積率をさらに低減することが可能となり、被削性をさらに向上させることが可能となる。
以下、焼鈍を行った場合について、検討した結果を説明する。
In addition, you may anneal further with respect to the steel bar of this invention obtained with the manufacturing method demonstrated above. By annealing after hot rolling, fine precipitates can be sufficiently precipitated, the structure can be made uniform, and high strength, magnetic properties and machinability can be combined at a higher level. In particular, the area ratio of fine ferrite grains can be further reduced by optimizing the annealing conditions, and the machinability can be further improved.
In the following, the results of investigations on the case of annealing will be described.

本発明の成分組成範囲に従う、C:0.072%、Si:0.07%、Mn:1.41%、Ti:0.19%、Mo:0.38%、P:0.011%、S:0.020%、Al:0.025%およびN:0.0028%を含み、残部がFeおよび不可避的不純物からなる鋼を溶製し、これを1220℃に加熱後、直径100mmの棒鋼に熱間圧延し、その後、500℃までの平均冷却速度が0.18℃/sで室温まで冷却した。その際、組織を変化させるため、熱間圧延における圧延パススケジュール(各圧下パスの温度および減面率)並びに、その後の焼鈍温度を種々に変化させた。
かくして得られた棒鋼について、組織観察を行うと共に、引張試験値と磁気特性を測定した。組織観察、引張試験、磁気特性の測定方法は、前述した方法と同様とした。
According to the component composition range of the present invention, C: 0.072%, Si: 0.07%, Mn: 1.41%, Ti: 0.19%, Mo: 0.38%, P: 0.011%, S: 0.020%, Al: 0.025% and N: A steel containing 0.0028%, the balance being Fe and inevitable impurities, is melted, heated to 1220 ° C, hot-rolled to a steel bar with a diameter of 100mm, and then the average cooling rate to 500 ° C is 0.18 ° C Cooled to room temperature at / s. At that time, in order to change the structure, the rolling pass schedule (temperature of each reduction pass and the area reduction rate) in hot rolling and the subsequent annealing temperature were changed variously.
The steel bar thus obtained was subjected to a structure observation and a tensile test value and a magnetic property were measured. The structure observation, tensile test, and magnetic property measurement method were the same as those described above.

組織観察の結果、圧延条件を問わず組織はフェライト単相となっていたが、結晶粒径を変えるために熱間圧延でのパススケジュール並びに焼鈍温度を種々変化させたため、個々のフェライト粒径は3μm程度から110μm程度まで変化していた。また、析出物の大きさに関しては、圧延条件を問わず、ほぼ5nm程度と微細になっていた。   As a result of the structure observation, the structure was a ferrite single phase regardless of the rolling conditions, but in order to change the crystal grain size, the hot rolling pass schedule and the annealing temperature were variously changed. It changed from about 3 μm to about 110 μm. Moreover, regarding the size of the precipitate, it was as fine as about 5 nm regardless of the rolling conditions.

また、これらの棒鋼の引張試験値を測定したところ、最低でも520MPaと高い降伏強度が得られたが、磁気特性はフェライトの平均結晶粒径と微細フェライト粒の分率に依存していた。ここに、図3に、磁束密度B50、鉄損W10/50の値を、フェライトの平均粒径および粒径10μm以下のフェライトの面積率にて区分した結果を示す。尚、粒径10μm以下のフェライトの面積率は、前記したフェライト2000個の内、粒径10μm以下であるフェライト粒の断面積の和を求め、これをフェライト2000個の断面積の総和で除することで算出した。 When the tensile test values of these steel bars were measured, a yield strength as high as 520 MPa was obtained at the minimum, but the magnetic properties depended on the average crystal grain size of ferrite and the fraction of fine ferrite grains. FIG. 3 shows the result of dividing the values of magnetic flux density B 50 and iron loss W 10/50 by the average grain size of ferrite and the area ratio of ferrite having a grain size of 10 μm or less. The area ratio of ferrite having a particle size of 10 μm or less is obtained by calculating the sum of the cross-sectional areas of ferrite grains having a particle size of 10 μm or less among the 2000 ferrites described above, and dividing this by the sum of the cross-sectional areas of 2000 ferrites. Was calculated.

図3から明らかなように、フェライトの平均粒径が30μm以上の場合、粒径10μm以下のフェライトの占める面積率を10%以下とすることによって、磁束密度が1.65T以上および鉄損が36W/kg以下というさらに高い磁気特性を得ることができる。この場合も、フェライトの平均粒径が30μm未満と微細な場合や粒径10μm以下のフェライトの面積率が10%を超える場合には、磁束密度が1.65T未満となるか、あるいは鉄損が36W/kg超えとなり、磁束密度が低いか鉄損が高くなっていた。   As can be seen from FIG. 3, when the average grain size of ferrite is 30 μm or more, the area ratio occupied by ferrite having a grain size of 10 μm or less is 10% or less, so that the magnetic flux density is 1.65 T or more and the iron loss is 36 W / Higher magnetic properties of kg or less can be obtained. Also in this case, when the average particle diameter of the ferrite is as fine as less than 30 μm, or when the area ratio of ferrite having a particle diameter of 10 μm or less exceeds 10%, the magnetic flux density is less than 1.65 T or the iron loss is 36 W. / kg was exceeded, and the magnetic flux density was low or the iron loss was high.

このように、析出物が5nmと微細な場合、フェライトの平均粒径を30μm以上とし、更に粒径10μm以下の微細フェライトの分率を、さらに10%以下にまで低減すれば、磁気特性にとって有害と考えられてきた析出物の影響は防止され、優れた磁気特性を得ることができる。   In this way, when the precipitate is as fine as 5 nm, it is harmful to the magnetic properties if the average particle diameter of ferrite is set to 30 μm or more and the fraction of fine ferrite having a particle diameter of 10 μm or less is further reduced to 10% or less. It is possible to prevent the influence of precipitates that have been considered to be excellent, and to obtain excellent magnetic properties.

この点を確認するために、さらに同様の検討を、成分組成、析出物径及びフェライト粒径が種々変化した鋼について行ったところ、析出物の大きさが10nm未満の場合、フェライトの平均粒径を30μm以上とすると共に、粒径10μm以下のフェライトの面積率を10%以下とすれば、高い磁束密度B50と低い鉄損W10/50が得られることが明らかとなった。従って、磁気特性の点からは、フェライトの平均粒径を30μm以上、粒径が10μm以下のフェライトの面積率を10%以下とすることが特に好ましい。
また、焼鈍を行うことによって、粒径10μm以下のフェライトの占める面積率をさらに低減することは、被削性の向上に対しても有効であることもわかった。以下、この点を説明する。
In order to confirm this point, a similar study was performed on steel with various changes in the component composition, precipitate diameter, and ferrite particle size. When the precipitate size was less than 10 nm, the average particle diameter of ferrite was It is clear that a high magnetic flux density B 50 and a low iron loss W 10/50 can be obtained by setting the area ratio of ferrite having a grain size of 10 μm or less to 10% or less. Therefore, from the viewpoint of magnetic characteristics, it is particularly preferable that the average particle size of ferrite is 30 μm or more and the area ratio of ferrite having a particle size of 10 μm or less is 10% or less.
It has also been found that further reducing the area ratio of ferrite having a grain size of 10 μm or less by annealing is effective in improving machinability. Hereinafter, this point will be described.

図3に結果を示した実験にて用いた鋼を、1230℃に加熱後、直径120mmの棒鋼に熱間圧延し、その後、500℃までの平均冷却速度:0.15℃/sで室温まで冷却した。その結晶粒径を変化させるため、熱間圧延における圧延パススケジュールならびにその後の焼鈍温度を種々に変化させた。   The steel used in the experiment whose results are shown in FIG. 3 is heated to 1230 ° C., hot rolled to a 120 mm diameter steel bar, and then cooled to room temperature at an average cooling rate of up to 500 ° C .: 0.15 ° C./s. . In order to change the crystal grain size, the rolling pass schedule in the hot rolling and the subsequent annealing temperature were variously changed.

得られた棒鋼の組織を観察した結果、圧延条件を問わず棒鋼の組織はフェライト単相となっていたが、結晶粒径を変えるために熱間圧延でのパススケジュール並びに焼鈍温度を種々変化させたため、個々のフェライト粒径は4μm程度から140μm程度まで変化していた。析出物の大きさに関しては、圧延条件を問わず、ほぼ5nm程度と微細になっていた。また、降伏強度も520MPa以上と十分高い値を示した。   As a result of observing the structure of the obtained steel bar, the steel bar structure was a ferrite single phase regardless of the rolling conditions, but in order to change the crystal grain size, the hot rolling pass schedule and the annealing temperature were variously changed. Therefore, the particle diameter of each ferrite changed from about 4 μm to about 140 μm. As for the size of the precipitate, it was as fine as about 5 nm regardless of the rolling conditions. Moreover, the yield strength was a sufficiently high value of 520 MPa or more.

これらの棒鋼を用いて被削性を調査した。被削性は、超硬工具P10を用い、切削速度200m/min、無潤滑の条件により棒鋼の外周切削を行い、工具の逃げ面磨耗が0.2mmに達した時間を工具寿命とした。
図4に、フェライト粒径と被削性との関係を示す。同図から、フェライトの平均粒径が80μm以下の場合、粒径10μm以下のフェライトの占める面積率が5%以下であれば、工具寿命は30min以上と特に良好な値を示す。ここでも、フェライトの平均粒径が80μm超と粗大な場合には、粒径10μm以下のフェライト面積率が5%以下であっても、30min以上の工具寿命は向上しない。
The machinability was investigated using these steel bars. For machinability, the tool life was defined as the time when the flank wear of the tool reached 0.2 mm after cutting the outer circumference of the steel bar using a carbide tool P10 under cutting conditions of 200 m / min and no lubrication.
FIG. 4 shows the relationship between the ferrite grain size and machinability. From the figure, when the average particle diameter of ferrite is 80 μm or less, the tool life is 30 minutes or more and particularly good when the area ratio of ferrite having a particle diameter of 10 μm or less is 5% or less. Here, too, when the average grain size of ferrite is as large as more than 80 μm, the tool life of 30 min or more is not improved even if the ferrite area ratio having a grain size of 10 μm or less is 5% or less.

以上のように、フェライトの平均粒径が80μm以下である場合には、粒径10μm以下の微細フェライトをさらに減少させることで被削性をより向上させることができる。この点を確認するために、同様の検討を化学組成、析出物径及びフェライト粒径が種々変化した鋼について行ったところ、析出物の大きさが10nm未満の場合、フェライトの平均粒径を80μm以下とすると共に、粒径10μm以下のフェライトの面積率を5%以下とすれば、これらを満たさないものに比べて工具寿命が大幅に延びることを確認した。これより、被削性の点からは、粒径が10μm以下のフェライトの面積率を5%以下にまで低減することが特に好ましい。   As described above, when the average particle diameter of the ferrite is 80 μm or less, the machinability can be further improved by further reducing the fine ferrite having a particle diameter of 10 μm or less. In order to confirm this point, the same study was conducted on steels with various chemical compositions, precipitate diameters, and ferrite particle sizes. When the precipitate size was less than 10 nm, the average particle size of ferrite was 80 μm. In addition to the following, it was confirmed that if the area ratio of ferrite having a particle size of 10 μm or less is 5% or less, the tool life is greatly extended as compared with those not satisfying these. Thus, from the viewpoint of machinability, it is particularly preferable to reduce the area ratio of ferrite having a particle size of 10 μm or less to 5% or less.

図5、図6は他の成分組成について同様の調査を行った例である。すなわち、C:0.075%、Si:0.09%、Mn:2.15%、Ti:0.24%、Mo:0.48%、P:0.018%、S:0.023%、Al:0.029%およびN:0.0041%を含み、残部がFeおよび不可避的不純物からなる鋼について、フェライトの平均粒径および粒径10μm以下のフェライトの面積率と、磁束密度B50、鉄損W10/50との関係を調査した結果を、図5に示す。 FIG. 5 and FIG. 6 are examples in which similar investigations were performed for other component compositions. That is, C: 0.075%, Si: 0.09%, Mn: 2.15%, Ti: 0.24%, Mo: 0.48%, P: 0.018%, S: 0.023%, Al: 0.029% and N: 0.0041%, the balance FIG. 5 shows the results of investigating the relationship between the average grain size of ferrite and the area ratio of ferrite having a grain size of 10 μm or less, the magnetic flux density B 50 , and the iron loss W 10/50 for steels that contain Fe and inevitable impurities. Shown in

ここで、圧延条件を問わず組織はフェライト単相となっていたが、結晶粒径を変えるために熱間圧延でのパススケジュール並びに焼鈍温度を種々変化させたため、個々のフェライト粒径は2μm程度から100μm程度まで変化していた。また、析出物の大きさに関しては、圧延条件を問わず、ほぼ5nm程度と微細になっていた。また、これらの棒鋼の引張試験値を測定したところ、最低でも550MPaと高い降伏強度が得られたが、磁気特性はフェライトの平均結晶粒径と微細フェライト粒の分率に依存していた。   Here, the structure was a ferrite single phase regardless of the rolling conditions, but in order to change the crystal grain size, the pass schedule and the annealing temperature in the hot rolling were changed variously, so the individual ferrite grain size was about 2 μm. It changed to about 100μm. Moreover, regarding the size of the precipitate, it was as fine as about 5 nm regardless of the rolling conditions. Further, when the tensile test values of these steel bars were measured, a yield strength as high as 550 MPa was obtained at a minimum, but the magnetic properties depended on the average crystal grain size of ferrite and the fraction of fine ferrite grains.

図5から明らかなように、この鋼の場合には、フェライトの平均粒径が30μm以上、かつ、粒径10μm以下のフェライトの占める面積率を10%以下とすることによって、磁束密度が1.63T以上および鉄損が38W/kg以下となる。ところが、フェライトの平均粒径が30μm未満と微細な場合や粒径10μm以下のフェライトの面積率が10%を超える場合には、磁束密度が1.65T未満となるか、あるいは鉄損が38W/kg超えとなり、磁束密度が低いか鉄損が高くなっていた。   As is apparent from FIG. 5, in this steel, the magnetic flux density is 1.63 T by setting the area ratio of ferrite having an average grain size of 30 μm or more and 10 μm or less to 10% or less. As described above, the iron loss is 38 W / kg or less. However, when the average grain size of ferrite is as small as less than 30 μm, or when the area ratio of ferrite with a grain size of 10 μm or less exceeds 10%, the magnetic flux density is less than 1.65 T or the iron loss is 38 W / kg. The magnetic flux density was low or the iron loss was high.

さらに、フェライトの平均粒径および粒径10μm以下のフェライトの面積率と被削性との関係を調査した結果を図6に示す。同図から、フェライトの平均粒径が80μm以下の場合、粒径10μm以下のフェライトの占める面積率が5%以下であれば、工具寿命は30min以上と良好な値を示す。ところが、粒径10μm以下のフェライト面積率が5%を超えると、工具寿命は30min未満となる。更に、フェライトの平均粒径が80μm超と粗大な場合には、粒径10μm以下のフェライト面積率が5%以下であっても、30min未満の工具寿命しか得られないことがわかる。   Further, FIG. 6 shows the results of investigating the relationship between the average grain size of ferrite and the area ratio of ferrite having a grain size of 10 μm or less and machinability. From the figure, when the average grain size of ferrite is 80 μm or less, if the area ratio of ferrite having a grain size of 10 μm or less is 5% or less, the tool life is as good as 30 min or more. However, when the ferrite area ratio with a grain size of 10 μm or less exceeds 5%, the tool life becomes less than 30 min. Furthermore, it can be seen that when the average grain size of ferrite is as large as more than 80 μm, only a tool life of less than 30 min can be obtained even if the ferrite area ratio with a grain size of 10 μm or less is 5% or less.

以上、本発明の磁気特性と被削性に関する検討結果から、特に好ましい範囲について纏めると、以下のようになる。
磁気特性の観点からは、フェライトの平均粒径を30μm以上、粒径が10μm以下のフェライトの面積率を10%以下とする必要がある。また、被削性の観点からは、フェライトの平均粒径を80μm以下、粒径が10μm以下のフェライトの面積率を5%以下とする必要がある。
As described above, a particularly preferable range can be summarized from the examination results on the magnetic characteristics and machinability of the present invention as follows.
From the viewpoint of magnetic properties, it is necessary that the average particle size of ferrite is 30 μm or more and the area ratio of ferrite having a particle size of 10 μm or less is 10% or less. From the viewpoint of machinability, it is necessary that the average particle size of ferrite is 80 μm or less and the area ratio of ferrite having a particle size of 10 μm or less is 5% or less.

したがって、磁気特性及び被削性に対するフェライト粒径の要件が同時に満たされるように、フェライトの平均粒径を30μm以上80μm以下、粒径10μm以下のフェライトの面積率を5%以下とすることが特に好ましい。   Therefore, it is particularly preferable that the ferrite average particle size is 30 μm or more and 80 μm or less, and the area ratio of ferrite having a particle size of 10 μm or less is 5% or less so that the requirements of the ferrite particle size for magnetic properties and machinability are simultaneously satisfied. preferable.

粒径10μm以下のフェライトの面積率を5%以下とするには、上述の製造方法に加えて、以下に示す焼鈍条件を適用することで可能である。
焼鈍温度
本発明では、熱間圧延後の焼鈍によって微細析出物を十分に析出させ、さらに組織を均一化させることによって、高い強度、磁気特性並びに被削性をさらに高いレベルで兼備させることができる。この際、焼鈍温度が600℃未満では、微細析出物を析出させることができないため、高強度化が十分に図れない。加えて、粒径10μm以下のフェライトの面積率を5%以下とすることができず、磁気特性と被削性の改善が図れない。したがって、焼鈍温度は600℃以上とすることが好ましい。また、焼鈍温度が高すぎると微細析出物が粗大化するとともに、焼鈍後の冷却中に第2相が析出することで磁気特性が低下する。鋼中のMn含有量が1.7%以下の場合には、焼鈍温度を800℃以下とすれば良好な磁気特性が確保でき、また、鋼中のMn含有量が1.7%超の場合には、焼鈍温度を750℃以下とすれば良好な磁気特性が確保できることがわかった。
以上のような検討の結果、焼鈍を行う場合の焼鈍温度は、下記の温度域Tとする。

Mn含有量が1.7%以下のとき:600℃≦T≦800℃
Mn含有量が1.7%超のとき:600℃≦T≦750℃
In order to make the area ratio of ferrite having a particle diameter of 10 μm or less 5% or less, it is possible to apply the annealing conditions shown below in addition to the above-described manufacturing method.
Annealing temperature In the present invention, high strength, magnetic properties and machinability can be combined at a higher level by sufficiently depositing fine precipitates by annealing after hot rolling and further homogenizing the structure. . At this time, if the annealing temperature is less than 600 ° C., fine precipitates cannot be precipitated, so that the strength cannot be sufficiently increased. In addition, the area ratio of ferrite having a particle size of 10 μm or less cannot be reduced to 5% or less, and the magnetic properties and machinability cannot be improved. Accordingly, the annealing temperature is preferably 600 ° C. or higher. On the other hand, if the annealing temperature is too high, fine precipitates are coarsened, and the second phase is precipitated during cooling after annealing, thereby degrading the magnetic properties. If the Mn content in the steel is 1.7% or less, good magnetic properties can be secured by setting the annealing temperature to 800 ° C or less, and if the Mn content in the steel exceeds 1.7%, annealing is performed. It was found that good magnetic properties can be secured if the temperature is 750 ° C. or lower.
As a result of the above examination, the annealing temperature when annealing is set to the following temperature range T.
Record
When the Mn content is 1.7% or less: 600 ° C. ≦ T ≦ 800 ° C.
When Mn content exceeds 1.7%: 600 ℃ ≦ T ≦ 750 ℃

[実施例1]
表1に示す組成の鋼を溶製し、これらを表2および表3に記載の条件に従って、所定寸法の棒鋼に熱間圧延した。 熱間圧延においては、加熱温度、パススケジュール、仕上温度および圧延後から500℃までの冷却速度を変化させた。ここで、圧延仕上寸法を変え、この圧延後に空冷することによって、冷却速度を変化させた。
[Example 1]
Steels having the compositions shown in Table 1 were melted, and these were hot-rolled into steel bars having predetermined dimensions in accordance with the conditions described in Tables 2 and 3. In hot rolling, the heating temperature, pass schedule, finishing temperature, and cooling rate to 500 ° C. after rolling were changed. Here, the cooling finish was changed, and the cooling rate was changed by air cooling after the rolling.

かくして得られた棒鋼について、組織観察および引張試験を行うと共に、磁気特性ならびに工具寿命を測定した。
組織観察は、棒鋼の任意の位置計20箇所から組織観察用試験片を採取して組織の同定を行うと共に、それぞれの試験片について各100個の粒を任意に選び、これらの断面積を画像処理によって求め、これと等価な断面積を持つ相当円の直径として計2000個の結晶粒の粒径を個別に算出し、これらの平均値を求めて棒鋼全体の平均結晶粒径を求めた。また、計2000個の結晶粒の内、粒径10μm以下のフェライトの断面積の和を求め、これを結晶粒2000個の断面積の総和で除することで粒径10μm以下のフェライトの面積率を算出した。
The steel bar thus obtained was subjected to a structure observation and a tensile test, and magnetic characteristics and tool life were measured.
In the structure observation, specimens for tissue observation were collected from 20 arbitrary position gauges of the steel bar to identify the structure, and 100 grains for each specimen were arbitrarily selected, and their cross-sectional areas were imaged. The total grain size of 2000 crystal grains was calculated individually as the diameter of an equivalent circle having a cross-sectional area equivalent to this, and the average value of these was obtained to determine the average grain size of the entire steel bar. Also, the sum of the cross-sectional areas of ferrite with a grain size of 10 μm or less out of a total of 2000 crystal grains, and dividing this by the sum of the cross-sectional areas of 2000 crystal grains, the area ratio of ferrite with a grain size of 10 μm or less Was calculated.

更に、電解研磨にて薄膜試料を作製し、前記した方法に従い透過型電子顕微鏡(TEM)観察することで析出物の粒子径を測定すると共に、エネルギー分散型X線分光装置(EDX)を併用して析出物の同定を行った。   Furthermore, a thin film sample was prepared by electrolytic polishing, and the particle size of the precipitate was measured by observation with a transmission electron microscope (TEM) according to the method described above, and an energy dispersive X-ray spectrometer (EDX) was used in combination. Thus, the precipitate was identified.

引張試験は、棒鋼の任意の1/4D位置より、平行部の直径が6mmおよび平行部長さが40mmの試験片を棒鋼の長手方向に採取し、降伏応力YSを測定した。
磁気特性については、得られた棒鋼の中央部から内径33mm、外径45mmおよび厚み5mmのリング状試験片をリング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流5000A/mでの磁束密度B50ならびに、交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。
被削性は、超硬工具P10を用い、切削速度200m/min、無潤滑の条件により棒鋼の外周切削を行い、工具の逃げ面磨耗が0.2mmに達した時間を工具寿命とした。
In the tensile test, a specimen having a parallel part diameter of 6 mm and a parallel part length of 40 mm was sampled in the longitudinal direction of the steel bar from any 1 / 4D position of the steel bar, and the yield stress YS was measured.
Regarding magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the obtained steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times. The secondary winding was applied 100 times, and the magnetic flux density B 50 at a direct current excitation current of 5000 A / m and the iron loss W 10/50 when excited to a magnetic flux density of 1.0 T at an alternating current of 50 Hz were measured.
For machinability, the tool life was defined as the time when the flank wear of the tool reached 0.2 mm after cutting the outer circumference of the bar steel using a carbide tool P10 at a cutting speed of 200 m / min and no lubrication.

上記した組織観察、引張試験、磁気測定ならびに工具寿命の測定結果を、表2および表3に示す。
表中のNo.は個々の結果を区分するためのものであり、供試鋼と熱延条件の組合せが明示されるように、鋼番と熱延条件を組み合せて起番した。例えば、鋼番1を条件Aで熱間圧延した場合は1-Aと起番した。
組織については、フェライトはF、ベイナイトやマルテンサイト等の低温変態相が生成し、その体積分率が5%を超える場合をTと略記した。析出物については平均粒子径を記載した。尚、粒子径のばらつきは、10nm未満の析出物で最大でも±1nm、それ以上の大きさの析出物では±3nmから±5nmであった。尚、組織に低温変態相が生成した場合については、結晶粒径と析出物の粒子径の測定は割愛した。
Tables 2 and 3 show the results of the above-described structure observation, tensile test, magnetic measurement, and tool life measurement.
The numbers in the table are for classifying the individual results, and the steel numbers and hot rolling conditions were combined to indicate the combination of the test steel and hot rolling conditions. For example, when steel No. 1 was hot-rolled under condition A, it started as 1-A.
Regarding the structure, ferrite is abbreviated as T when a low temperature transformation phase such as F, bainite or martensite is generated and its volume fraction exceeds 5%. The average particle size is described for the precipitate. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where a low temperature transformation phase was generated in the structure, the measurement of the crystal grain size and the particle size of the precipitate was omitted.

Figure 2007291519
Figure 2007291519

Figure 2007291519
Figure 2007291519

Figure 2007291519
Figure 2007291519

表2は、熱間圧延条件は本発明範囲とし、鋼組成の影響を示したものであるが、同表から明らかなように、鋼組成および熱間圧延条件とも本発明範囲を満たす発明例では500MPa以上の降伏強度(降伏応力)が得られており、磁気特性についても、励磁電流5000A/mにおける磁束密度B50が1.60T以上、鉄損W10/50が38W/kg以下と高位の磁気特性を示す。また、切削時の工具寿命も15min以上の値を示している。 Table 2 shows the hot rolling conditions within the scope of the present invention and shows the influence of the steel composition. As is apparent from the table, in the invention examples in which both the steel composition and the hot rolling conditions satisfy the scope of the present invention. Yield strength (yield stress) of 500 MPa or more has been obtained, and the magnetic properties are also high, with a magnetic flux density B 50 of 1.60 T or more and an iron loss W 10/50 of 38 W / kg or less at an excitation current of 5000 A / m. Show the characteristics. Moreover, the tool life at the time of cutting also shows a value of 15 min or more.

これに対して、鋼組成が本発明範囲を外れた比較例では、降伏強度と磁気特性の少なくとも一つが低位の値を示す。
No.17-Aは、Cが低く、微細析出物の析出量が不足しており、降伏強度が低い。
No.18-Aは、Cが高く、析出物が粗大化しており、降伏強度が低い。析出物が粗大な場合には、上述したように、析出物が磁気特性に悪影響を及ぼすため、磁束密度B50は1.57Tおよび鉄損W10/50は43W/kg程度となっており、磁気特性に劣る。
On the other hand, in the comparative example in which the steel composition is out of the range of the present invention, at least one of the yield strength and the magnetic property shows a low value.
No. 17-A has low C, the amount of fine precipitates is insufficient, and the yield strength is low.
No. 18-A has high C, coarse precipitates, and low yield strength. When the precipitate is coarse, as described above, the precipitate adversely affects the magnetic properties, so the magnetic flux density B 50 is 1.57 T and the iron loss W 10/50 is about 43 W / kg. Inferior in characteristics.

No.19-Aは、Mnが低いためフェライト変態と析出とが十分に競合せず、析出物が粗大に析出する結果、降伏強度が低くなった。また、析出物の粗大化に起因して、磁束密度B50が1.59Tと低く、鉄損W10/50が46W/kgと高い。
Mnの高いNo.20-Aは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低い。また、低温変態相の生成に起因すると思われるが、磁束密度B50が1.55Tと低い。
No.21-Aは、Tiが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Tiが高いNo.22-Aは、析出物が粗大化しており、降伏強度が低く、磁束密度B50並びに鉄損W10/50とも劣っている。
No.23-Aは、Moが低いために微細析出物の析出量が不足し、降伏強度が低い。一方、Moが高いNo.24-Aは、低温変態相が生成しており、微細析出物による析出強化が不足するため降伏強度が低い。また、Mnが高く、同じく低温変態相を生成したNo.20-Aと同様、磁束密度B50が1.56Tと低くなっている。
In No. 19-A, since the Mn was low, the ferrite transformation and precipitation did not sufficiently compete with each other, and as a result of coarse precipitation, the yield strength was low. Further, due to the coarsening of the precipitates, the magnetic flux density B 50 is as low as 1.59 T, and the iron loss W 10/50 is as high as 46 W / kg.
No. 20-A having a high Mn has a low yield strength because a low-temperature transformation phase is generated and precipitation strengthening due to fine precipitates is insufficient. In addition, the magnetic flux density B 50 is as low as 1.55 T, which is probably due to the generation of the low temperature transformation phase.
No. 21-A has a low yield strength due to a low amount of fine precipitates because Ti is low. On the other hand, No. 22-A with high Ti has coarse precipitates, low yield strength, and is inferior in both magnetic flux density B 50 and iron loss W 10/50 .
No. 23-A has a low yield strength because Mo is low, resulting in an insufficient amount of fine precipitates. On the other hand, No. 24-A, which has a high Mo, has a low-temperature transformation phase and a low yield strength due to insufficient precipitation strengthening by fine precipitates. In addition, the magnetic flux density B 50 is as low as 1.56 T, as in No. 20-A, which has a high Mn and also produced a low-temperature transformation phase.

表3は、本発明鋼である鋼番2を種々の条件で熱間圧した結果を示したものであるが、同表から明らかなように、本発明鋼である鋼番2を本発明範囲の条件で熱間圧延した発明例では、500MPa以上と高い降伏強度が得られており、磁気特性についても、磁束密度B50が1.60T以上、鉄損W10/50が概略38W/kg以下と優れた値を示している。また、切削時の工具寿命も15min以上の値を示している。 Table 3 shows the results of hot pressing steel No. 2 which is the steel of the present invention under various conditions. As is apparent from the table, Steel No. 2 which is the steel of the present invention is within the scope of the present invention. In the invention example that was hot-rolled under the above conditions, a yield strength as high as 500 MPa or higher was obtained, and the magnetic properties were also such that the magnetic flux density B 50 was 1.60 T or more and the iron loss W 10/50 was approximately 38 W / kg or less. Excellent value. Moreover, the tool life at the time of cutting also shows a value of 15 min or more.

一方、熱間圧延条件が本発明範囲を外れた比較例では、降伏強度、磁気特性、工具寿命の少なくとも一つが低位である。
すなわち、No.2-GおよびNo.2-Mは、熱間圧延における圧延開始パスの減面率が低く、粒径10μm以下のフェライトの面積率が本発明の上限である20%を超えており、析出物が磁気特性に悪影響を及ぼす結果、磁束密度B50と鉄損W10/50の何れか一方が劣っている。
No.2-HとNo.2-Nは熱間圧延における圧延最終パスの減面率が低く、フェライトの平均粒径が本発明の上限である80μmを超えており、工具寿命が短い。
No.2-IとNo.2-Oでは熱間圧延における圧延最終パスの減面率が高く、フェライトの平均粒径が本発明の下限である30μmを下回っており、析出物が磁気特性に悪影響を及ぼす結果、磁束密度B50及び鉄損W10/50が劣っている。
On the other hand, in the comparative example in which the hot rolling conditions are out of the scope of the present invention, at least one of yield strength, magnetic characteristics, and tool life is low.
That is, No. 2-G and No. 2-M have a low area reduction rate of the rolling start pass in hot rolling, and the area ratio of ferrite having a grain size of 10 μm or less exceeds the upper limit of 20% of the present invention. As a result, the precipitate adversely affects the magnetic properties, and as a result, either the magnetic flux density B 50 or the iron loss W 10/50 is inferior.
No.2-H and No.2-N have a low area reduction rate in the final rolling pass in hot rolling, the average grain size of ferrite exceeds the upper limit of 80 μm of the present invention, and the tool life is short.
In No.2-I and No.2-O, the area reduction rate of the final rolling pass in hot rolling is high, the average grain size of ferrite is below the lower limit of 30 μm of the present invention, and the precipitates have magnetic properties. As a result of adverse effects, the magnetic flux density B 50 and the iron loss W 10/50 are inferior.

熱間圧延における減面率に加えて、加熱温度、仕上温度及び冷却速度についても適正化が必要であり、これらが本発明範囲を外れた比較例では、降伏強度が低く500MPa以下となる。
すなわち、No.2-Pは、加熱温度が低く、熱間圧延前の鋳片に析出している析出物が加熱炉にて十分に固溶しないため、析出物の微細析出が阻害される結果、降伏強度が低く、加えて磁気特性も低位である。析出物に関しては、圧延後の冷却中に微細に析出したと思われるものと、鋳片で析出した析出物の溶け残りと思われるものが混在しており、析出物の平均粒子径は100nm以上となっていた。
No.2-Tは、仕上温度が低く、圧延で導入される歪がフェライト変態の開始温度を上昇させ、フェライト変態と析出との競合を妨げる結果、析出物が粗大化し、降伏強度が低下すると共に磁気特性が劣化している。
No.2-Uは、熱間圧延後の冷却速度が過大な例であるが、これのみ冷却速度を増加させるため、圧延後ミスト冷却を行った。冷却速度が速いと低温変態相が生成し、微細析出物の析出を妨げるため、降伏強度が低下することが判る。
In addition to the area reduction ratio in the hot rolling, it is necessary to optimize the heating temperature, the finishing temperature, and the cooling rate, and in these comparative examples that are outside the scope of the present invention, the yield strength is low and is 500 MPa or less.
In other words, No.2-P has a low heating temperature, and the precipitate deposited on the slab before hot rolling does not sufficiently dissolve in the heating furnace, so that the fine precipitation of the precipitate is hindered. The yield strength is low, and the magnetic properties are also low. As for the precipitate, there are a mixture of what appears to be finely precipitated during cooling after rolling and what is considered to be the undissolved residue of the precipitate deposited on the slab, and the average particle size of the precipitate is 100 nm or more. It was.
In No.2-T, the finishing temperature is low, and the strain introduced by rolling increases the starting temperature of the ferrite transformation, preventing the competition between the ferrite transformation and precipitation, resulting in coarse precipitates and reduced yield strength. At the same time, the magnetic properties have deteriorated.
No. 2-U is an example in which the cooling rate after hot rolling is excessive, but in order to increase the cooling rate only for this, mist cooling after rolling was performed. It can be seen that when the cooling rate is high, a low-temperature transformation phase is generated and the precipitation of fine precipitates is prevented, so that the yield strength decreases.

[実施例2]
表4に示す組成の鋼を溶製し、これらを表5および表6に記載の条件に従って、所定寸法の棒鋼に熱間圧延した。
熱間圧延においては、加熱温度、パススケジュール、仕上温度および圧延後から500℃までの冷却速度を変化させた。ここで、圧延仕上寸法を変え、この圧延後に空冷することによって、冷却速度を変化させた。さらに、圧延後に、0〜850℃の温度での焼鈍を施した。
[Example 2]
Steels having the compositions shown in Table 4 were melted, and these were hot-rolled into steel bars having predetermined dimensions in accordance with the conditions described in Tables 5 and 6.
In hot rolling, the heating temperature, pass schedule, finishing temperature, and cooling rate to 500 ° C. after rolling were changed. Here, the cooling finish was changed, and the cooling rate was changed by air cooling after the rolling. Further, after rolling, annealing was performed at a temperature of 0 to 850 ° C.

かくして得られた棒鋼について、組織観察および引張試験を行うと共に、磁気特性ならびに工具寿命を測定した。
組織観察は、棒鋼の任意の位置より、各々20個の組織観察用試験片を採取し、組織の同定を行った。それぞれの試験片について、JIS G 0552の切断法で結晶粒の平均断面積を求め、これより相当円の直径として各試験片の結晶粒径を算出し、更に各々20個の平均値を算出することによって、各位置の平均結晶粒径D並びに粒径10μm以下の圧延方向断面での面積率をそれぞれ求めた。
The steel bar thus obtained was subjected to a structure observation and a tensile test, and magnetic characteristics and tool life were measured.
Tissue observation was carried out by collecting 20 tissue observation specimens from arbitrary positions of the steel bar and identifying the structure. For each test piece, obtain the average cross-sectional area of the crystal grains by the cutting method of JIS G 0552, calculate the crystal grain size of each test piece as the diameter of the equivalent circle, and then calculate the average value of 20 pieces each. Thus, the average crystal grain size D at each position and the area ratio in the cross section in the rolling direction with a grain size of 10 μm or less were obtained.

更に、電解研磨にて薄膜試料を作製し、前記した方法に従い透過型電子顕微鏡(TEM)観察することによって、析出物の粒子径を測定するとともに、エネルギー分散型X線分光装置(EDX)を併用し、析出物の同定を行った。   Furthermore, by preparing a thin film sample by electropolishing and observing it with a transmission electron microscope (TEM) according to the method described above, the particle size of the precipitate is measured and an energy dispersive X-ray spectrometer (EDX) is used in combination. Then, the precipitate was identified.

引張試験は、棒鋼の任意の1/4D位置より、平行部の直径が6mmおよび平行部長さが40mmの試験片を棒鋼の長手方向に採取し、降伏応力YSを測定した。
磁気特性については、得られた棒鋼の中央部から内径33mm、外径45mmおよび厚み5mmのリング状試験片をリング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流1000および5000A/mでの磁束密度B10、B50ならびに、交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。
工具寿命は、超硬工具P10を用い、切削速度200m/min、無潤滑の条件により棒鋼の外周切削を行い、工具の逃げ面磨耗が0.2mmに達した時間を工具寿命とした。
In the tensile test, a specimen having a parallel part diameter of 6 mm and a parallel part length of 40 mm was sampled in the longitudinal direction of the steel bar from any 1 / 4D position of the steel bar, and the yield stress YS was measured.
Regarding magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the obtained steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times. Measured the iron loss W 10/50 when the secondary winding was applied 100 times and the magnetic flux density B 10 , B 50 at DC excitation current 1000 and 5000 A / m and the magnetic flux density 1.0 T at 50 Hz AC were excited. .
The tool life was defined as the tool life when the peripheral surface of the steel bar was cut with a carbide tool P10 at a cutting speed of 200 m / min and no lubrication, and the flank wear of the tool reached 0.2 mm.

上記した組織観察、引張試験、磁気測定ならびに工具寿命の測定結果を、表5および表6に示す。
表中のNo.は個々の結果を区分するためのものであり、供試鋼と熱延条件の組合せが明示されるように、鋼番と熱延条件を組み合せて起番した。例えば、鋼番1を条件Aで熱間圧延した場合は1-Aと起番した。
組織については、フェライトはF、ベイナイトやマルテンサイト等の低温変態相が生成し、その体積分率が5%を超える場合をTと略記した。析出物については平均粒子径を記載した。尚、粒子径のばらつきは、10nm未満の析出物で最大でも±1nm、それ以上の大きさの析出物では±3nmから±5nmであった。尚、組織に低温変態相が生成した場合については、結晶粒径と析出物の粒子径の測定は割愛した。
Tables 5 and 6 show the results of the above-described structure observation, tensile test, magnetic measurement, and tool life measurement.
The numbers in the table are for classifying the individual results, and the steel numbers and hot rolling conditions were combined to indicate the combination of the test steel and hot rolling conditions. For example, when steel No. 1 was hot-rolled under condition A, it started as 1-A.
Regarding the structure, ferrite is abbreviated as T when a low temperature transformation phase such as F, bainite or martensite is generated and its volume fraction exceeds 5%. The average particle size is described for the precipitate. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where a low temperature transformation phase was generated in the structure, the measurement of the crystal grain size and the particle size of the precipitate was omitted.

Figure 2007291519
Figure 2007291519

Figure 2007291519
Figure 2007291519

Figure 2007291519
Figure 2007291519

表5は、熱間圧延条件は本発明範囲とし、鋼組成の影響を示したものであるが、同表から明らかなように、鋼組成および熱間圧延条件とも本発明範囲を満たす発明例では500MPa以上の降伏強度(降伏応力)が得られており、磁気特性についても、励磁電流1000 A/m における磁束密度B10が1.0T以上、5000A/mにおける磁束密度B50が1.65T以上、周波数50Hzで磁束密度1.0Tまで励磁した際の鉄損W10/50が36W/kg以下と優れた磁気特性を示す。また、切削時の工具寿命も30min以上の値を示している。 Table 5 shows hot rolling conditions within the scope of the present invention and shows the influence of the steel composition. As is apparent from the table, in the invention examples in which both the steel composition and hot rolling conditions satisfy the scope of the present invention. Yield strength (yield stress) of 500 MPa or more has been obtained, and the magnetic properties of magnetic flux density B 10 at an excitation current of 1000 A / m are 1.0 T or more, magnetic flux density B 50 at 5000 A / m is 1.65 T or more, and frequency. The iron loss W 10/50 when excited to a magnetic flux density of 1.0T at 50Hz is 36W / kg or less, showing excellent magnetic properties. Moreover, the tool life at the time of cutting also shows a value of 30 min or more.

これに対して、鋼組成が本発明範囲を外れた比較例では、降伏強度と磁気特性の少なくとも一つが低位の値を示す。
No.13-Aは、Cが低く微細析出物の析出量が不足しており、降伏強度が低い。
No.14-Aは、Cが高く析出物が粗大化しており、降伏強度が低い。析出物が粗大な場合には、前述したように析出物が磁気特性に悪影響をおよぼすため、磁束密度B10が0.87T、B50は1.57Tと低く、鉄損W10/50は40W/kg以上となっており、磁気特性が劣っている。
No.15-Aは、Mnが低いためにフェライト変態と析出が十分競合せず、析出物が粗大に析出する結果、降伏強度が低く、磁気特性が劣る結果となった。一方、Mnの高いNo.16-Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低い。また、低温変態相の生成に起因すると思われるが、磁束密度B10が0.91Tと低い。
On the other hand, in the comparative example in which the steel composition is out of the range of the present invention, at least one of the yield strength and the magnetic property shows a low value.
No. 13-A has a low C and a small amount of fine precipitates, resulting in a low yield strength.
No. 14-A is high in C, the precipitates are coarsened, and the yield strength is low. If precipitate coarse, since an adverse effect on precipitate magnetic properties as described above, the magnetic flux density B 10 is 0.87T, B 50 is as low as 1.57T, iron loss W 10/50 is 40W / kg Thus, the magnetic properties are inferior.
In No. 15-A, since Mn was low, ferrite transformation and precipitation did not compete sufficiently, and as a result of precipitation of coarse precipitates, yield strength was low and magnetic properties were inferior. On the other hand, in No. 16-A having a high Mn, a low-temperature transformation phase is generated and the yield strength is low because precipitation strengthening due to fine precipitates is insufficient. Although seems to be due to formation of the low-temperature transformation phase, the magnetic flux density B 10 is 0.91T and low.

No.17-Aは、Tiが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Tiが高いNo.18-Aでは、析出物が粗大化しており、降伏強度が低く、磁束密度B50が低く、鉄損W10/50も劣っている。
No.19-Aは、Moが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Moが高いNo.20-Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低く、かつ磁気特性も劣っている。
No. 17-A has a low yield strength due to a low amount of fine precipitates because Ti is low. On the other hand, in No. 18-A where Ti is high, precipitates are coarsened, yield strength is low, magnetic flux density B 50 is low, and iron loss W 10/50 is also inferior.
No. 19-A has a low Mo, so the amount of fine precipitates is insufficient and the yield strength is low. On the other hand, in No. 20-A with high Mo, a low-temperature transformation phase is generated, and precipitation strengthening due to fine precipitates is insufficient, resulting in low yield strength and poor magnetic properties.

表6は、本発明鋼である鋼番4を種々の条件で熱間圧延したのち焼鈍した結果であるが、同表から明らかなように、発明例では500MPa以上と高い降伏強度が得られており、磁気特性についても、磁束密度B10が0.93以上、B50が1.61T以上、鉄損W10/50が40W/kg以下と優れた値を示している。また、工具寿命も25min以上と優れた被削性を有している。発明例のうち、No.4-H鋼およびNo.4-N鋼は、焼鈍を行わないため、粒径10μm以下のフェライトの面積率が高く、焼鈍した鋼に比して磁束密度B10が低位である。
一方、熱間圧延条件あるいは焼鈍条件が本発明範囲を外れた比較例では、降伏強度、磁気特性および被削性の少なくとも一つが低位の値を示す。
Table 6 shows the result of annealing after hot rolling steel No. 4 which is the steel of the present invention under various conditions. As is clear from the table, in the inventive example, a high yield strength of 500 MPa or more was obtained. As for the magnetic characteristics, the magnetic flux density B 10 is 0.93 or more, B 50 is 1.61 T or more, and the iron loss W 10/50 is 40 W / kg or less. The tool life is also excellent machinability of 25 min or more. Among the inventive examples, No. 4-H steel and No. 4-N steel are not annealed, so the area ratio of ferrite having a particle size of 10 μm or less is high, and the magnetic flux density B 10 is higher than that of the annealed steel. Low level.
On the other hand, in a comparative example in which the hot rolling condition or the annealing condition is out of the range of the present invention, at least one of yield strength, magnetic characteristics, and machinability shows a low value.

No.4-G鋼は、焼鈍温度が高いため、析出物が固溶し、冷却中に第2相が析出する。その結果、強度が低く、磁気特性が劣っている。
No.4-I鋼およびNo.4-O鋼は、熱間圧延における圧延開始パスの減面率が低いため、粒径10μm以下の微細なフェライトの面積率が大きく、磁束密度B10が低位である。
No.4-J鋼は、熱間圧延における圧延最終パスの減面率が低く、フェライトの平均結晶粒径が本発明の上限である80μmを上回っているため、被削性が劣っている。
No.4-P鋼は、熱間圧延における圧延最終パスの減面率が高く、フェライトの平均結晶粒径が本発明の下限である30μmを下回っており、かつ10μm以下のフェライトの面積率も高いため、磁気特性が低位にある。
Since No. 4-G steel has a high annealing temperature, precipitates are dissolved, and the second phase is precipitated during cooling. As a result, the strength is low and the magnetic properties are inferior.
No. 4-I steel and No. 4-O steel have a low area reduction ratio of fine ferrite with a grain size of 10 μm or less and a low magnetic flux density B 10 because the reduction in area of the rolling start path in hot rolling is low. It is.
No. 4-J steel has a low reduction in area in the final rolling pass in hot rolling, and the average crystal grain size of ferrite exceeds the upper limit of 80 μm of the present invention, so that the machinability is inferior.
No. 4-P steel has a high area reduction rate in the final rolling pass in hot rolling, the average crystal grain size of ferrite is below the lower limit of 30 μm of the present invention, and the area ratio of ferrite of 10 μm or less is also low. Since it is high, the magnetic properties are low.

熱間圧延における減面率に加えて、加熱温度、仕上げ温度および冷却速度についても適正化する必要がある。これらの製造条件が本発明範囲を外れた比較例では、降伏強度が低く、磁気特性が低位である。
No.4-Q鋼は、加熱温度が低いため、熱間圧延前の鋳片の析出物が加熱炉で十分に固溶せず、析出物が粗大化する。その結果、降伏強度が低いことに加え、磁気特性も劣っている。
No.4-U鋼は、仕上げ温度が低く、圧延で導入される歪がフェライト変態の開始温度を上昇させ、フェライト変態と析出の競合を阻害する。その結果、析出物が粗大化し降伏強度が低下することに加え、磁気特性が劣化する。
No.4-V鋼は、熱間圧延後の冷却速度が過大な例であり、冷却速度を増大させるために圧延後にミスト冷却を行った。この冷却速度が速いと低温変態相が生成し、焼鈍を行っても微細析出物が十分に析出しないため、降伏強度が低下する。また、磁気特性も低位となった。
In addition to the area reduction ratio in hot rolling, it is necessary to optimize heating temperature, finishing temperature, and cooling rate. In the comparative example in which these manufacturing conditions are outside the scope of the present invention, the yield strength is low and the magnetic properties are low.
Since No. 4-Q steel has a low heating temperature, the slab precipitate before hot rolling does not sufficiently dissolve in the heating furnace, and the precipitate becomes coarse. As a result, in addition to the low yield strength, the magnetic properties are inferior.
In No. 4-U steel, the finishing temperature is low, and the strain introduced by rolling increases the starting temperature of the ferrite transformation and inhibits the competition between the ferrite transformation and precipitation. As a result, the precipitates become coarse and the yield strength decreases, and the magnetic properties deteriorate.
No. 4-V steel is an example in which the cooling rate after hot rolling is excessive, and mist cooling was performed after rolling in order to increase the cooling rate. When this cooling rate is fast, a low-temperature transformation phase is generated, and fine precipitates are not sufficiently precipitated even after annealing, so that the yield strength is lowered. Also, the magnetic properties were low.

[実施例3]
表7に示す組成の鋼を溶製し、これらを表8および表9に記載の条件に従って、所定寸法の棒鋼に熱間圧延した。
熱間圧延においては、加熱温度、パススケジュール、仕上温度および圧延後から500℃までの冷却速度を変化させた。ここで、圧延仕上寸法を変え、この圧延後に空冷することによって、冷却速度を変化させた。さらに、圧延後に、0〜850℃の温度での焼鈍を施した。
[Example 3]
Steels having the compositions shown in Table 7 were melted, and these were hot-rolled into steel bars having predetermined dimensions in accordance with the conditions described in Tables 8 and 9.
In hot rolling, the heating temperature, pass schedule, finishing temperature, and cooling rate to 500 ° C. after rolling were changed. Here, the cooling finish was changed, and the cooling rate was changed by air cooling after the rolling. Further, after rolling, annealing was performed at a temperature of 0 to 850 ° C.

かくして得られた棒鋼について、組織観察および引張試験を行うと共に、磁気特性ならびに工具寿命を測定した。
組織観察は、棒鋼の任意の位置より、各々20個の組織観察用試験片を採取し、組織の同定を行った。それぞれの試験片について、JIS G 0552の切断法で結晶粒の平均断面積を求め、これより相当円の直径として各試験片の結晶粒径を算出し、更に各々20個の平均値を算出することによって、各位置の平均結晶粒径D並びに粒径10μm以下の圧延方向断面での面積率をそれぞれ求めた。
The steel bar thus obtained was subjected to a structure observation and a tensile test, and magnetic characteristics and tool life were measured.
Tissue observation was carried out by collecting 20 tissue observation specimens from arbitrary positions of the steel bar and identifying the structure. For each test piece, obtain the average cross-sectional area of the crystal grains by the cutting method of JIS G 0552, calculate the crystal grain size of each test piece as the diameter of the equivalent circle, and then calculate the average value of 20 pieces each. Thus, the average crystal grain size D at each position and the area ratio in the cross section in the rolling direction with a grain size of 10 μm or less were obtained.

更に、電解研磨にて薄膜試料を作製し、前記した方法に従い透過型電子顕微鏡(TEM)観察することによって、析出物の粒子径を測定するとともに、エネルギー分散型X線分光装置(EDX)を併用し、析出物の同定を行った。   Furthermore, by preparing a thin film sample by electropolishing and observing it with a transmission electron microscope (TEM) according to the method described above, the particle size of the precipitate is measured and an energy dispersive X-ray spectrometer (EDX) is used in combination. Then, the precipitate was identified.

引張試験は、棒鋼の任意の1/4D位置より、平行部の直径が6mmおよび平行部長さが40mmの試験片を棒鋼の長手方向に採取し、降伏応力YSを測定した。
磁気特性については、得られた棒鋼の中央部から内径33mm、外径45mmおよび厚み5mmのリング状試験片をリング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流1000および5000A/mでの磁束密度B10、B50ならびに、交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。
被削性は、超硬工具P10を用い、切削速度200m/min、無潤滑の条件により棒鋼の外周切削を行い、工具の逃げ面磨耗が0.2mmに達した時間を工具寿命とした。
In the tensile test, a specimen having a parallel part diameter of 6 mm and a parallel part length of 40 mm was sampled in the longitudinal direction of the steel bar from any 1 / 4D position of the steel bar, and the yield stress YS was measured.
Regarding magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the obtained steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times. Measured the iron loss W 10/50 when the secondary winding was applied 100 times and the magnetic flux density B 10 , B 50 at DC excitation current 1000 and 5000 A / m and the magnetic flux density 1.0 T at 50 Hz AC were excited. .
For machinability, the tool life was defined as the time when the flank wear of the tool reached 0.2 mm after cutting the outer circumference of the bar steel using a carbide tool P10 at a cutting speed of 200 m / min and no lubrication.

上記した組織観察、引張試験、磁気測定ならびに工具寿命の測定結果を、表8および表9に示す。
表中のNo.は個々の結果を区分するためのものであり、供試鋼と熱延条件の組合せが明示されるように、鋼番と熱延条件を組み合せて起番した。例えば、鋼番1を条件Aで熱間圧延した場合は1-Aと起番した。
組織については、フェライトはF、ベイナイトやマルテンサイト等の低温変態相が生成し、その体積分率が5%を超える場合をTと略記した。析出物については平均粒子径を記載した。尚、粒子径のばらつきは、10nm未満の析出物で最大でも±1nm、それ以上の大きさの析出物では±3nmから±5nmであった。尚、組織に低温変態相が生成した場合については、結晶粒径と析出物の粒子径の測定は割愛した。
Tables 8 and 9 show the results of the above-described structure observation, tensile test, magnetic measurement, and tool life measurement.
The numbers in the table are for classifying the individual results, and the steel numbers and hot rolling conditions were combined to indicate the combination of the test steel and hot rolling conditions. For example, when steel No. 1 was hot-rolled under condition A, it started as 1-A.
Regarding the structure, ferrite is abbreviated as T when a low temperature transformation phase such as F, bainite or martensite is generated and its volume fraction exceeds 5%. The average particle size is described for the precipitate. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where a low temperature transformation phase was generated in the structure, the measurement of the crystal grain size and the particle size of the precipitate was omitted.

Figure 2007291519
Figure 2007291519

Figure 2007291519
Figure 2007291519

Figure 2007291519
Figure 2007291519

表8は、熱間圧延条件は本発明範囲とし、鋼組成の影響を示したものであるが、同表から明らかなように、鋼組成および熱間圧延条件とも本発明範囲を満たす発明例では550MPa以上の降伏強度(降伏応力)が得られており、磁気特性についても、励磁電流1000 A/m における磁束密度B10が1.0T以上、5000A/mにおける磁束密度B50が1.65T以上、周波数50Hzで磁束密度1.0Tまで励磁した際の鉄損W10/50が36W/kg以下と優れた磁気特性を示す。また、切削時の工具寿命も30min以上の値を示している。 Table 8 shows the influence of the steel composition on the hot rolling conditions within the scope of the present invention, and as is clear from the table, in the invention examples in which both the steel composition and the hot rolling conditions satisfy the scope of the present invention. Yield strength (yield stress) of 550 MPa or more has been obtained, and the magnetic properties of magnetic flux density B 10 at an excitation current of 1000 A / m are 1.0 T or more, magnetic flux density B 50 at 5000 A / m is 1.65 T or more, and frequency. The iron loss W 10/50 when excited to a magnetic flux density of 1.0T at 50Hz is 36W / kg or less, showing excellent magnetic properties. Moreover, the tool life at the time of cutting also shows a value of 30 min or more.

これに対して、鋼組成が本発明範囲を外れた比較例では、降伏強度と磁気特性の少なくとも一つが低位の値を示す。
No.13-Aは、Cが低く微細析出物の析出量が不足しており、降伏強度が低い。
No.14-Aは、Cが高く析出物が粗大化しており、降伏強度が低い。析出物が粗大な場合には、前述したように析出物が磁気特性に悪影響をおよぼすため、磁束密度B10が0.86T、B50は1.56Tと低く、鉄損W10/50は40W/kg以上となっており、磁気特性が劣っている。
No.15-Aは、Mnが低いためにフェライト変態と析出が十分競合せず、析出物が粗大に析出する結果、降伏強度が低く、磁気特性が劣る結果となった。一方、Mnの高いNo.16-Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低い。また、低温変態相の生成に起因すると思われるが、磁束密度B10が0.94T、B50は1.55Tと低い。
On the other hand, in the comparative example in which the steel composition is out of the range of the present invention, at least one of the yield strength and the magnetic property shows a low value.
No. 13-A has a low C and a small amount of fine precipitates, resulting in a low yield strength.
No. 14-A is high in C, the precipitates are coarsened, and the yield strength is low. When the precipitate is coarse, the precipitate adversely affects the magnetic properties as described above. Therefore, the magnetic flux density B 10 is as low as 0.86 T, B 50 is as low as 1.56 T, and the iron loss W 10/50 is 40 W / kg. Thus, the magnetic properties are inferior.
In No. 15-A, since Mn was low, ferrite transformation and precipitation did not compete sufficiently, and as a result of precipitation of coarse precipitates, yield strength was low and magnetic properties were inferior. On the other hand, in No. 16-A having a high Mn, a low-temperature transformation phase is generated and the yield strength is low because precipitation strengthening due to fine precipitates is insufficient. Although seems to be due to formation of the low-temperature transformation phase, the magnetic flux density B 10 is 0.94T, B 50 is 1.55T and low.

No.17-Aは、Tiが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Tiが高いNo.18-Aでは、析出物が粗大化しており、降伏強度が低く、磁束密度B50が低く、鉄損W10/50も劣っている。
No.19-Aは、Moが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Moが高いNo.20-Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低く、かつ磁気特性も劣っている。
No. 17-A has a low yield strength due to a low amount of fine precipitates because Ti is low. On the other hand, in No. 18-A where Ti is high, precipitates are coarsened, yield strength is low, magnetic flux density B 50 is low, and iron loss W 10/50 is also inferior.
No. 19-A has a low Mo, so the amount of fine precipitates is insufficient and the yield strength is low. On the other hand, in No. 20-A with high Mo, a low-temperature transformation phase is generated, and precipitation strengthening due to fine precipitates is insufficient, resulting in low yield strength and poor magnetic properties.

表9は、本発明鋼である鋼番2を種々の条件で熱間圧延したのち焼鈍した結果であるが、同表から明らかなように、発明例では600MPa以上と高い降伏強度が得られており、磁気特性についても、磁束密度B10が0.90T以上、B50が1.60T以上、鉄損W10/50が40W/kg以下と優れた値を示している。また、工具寿命も25min以上と優れた被削性を有している。発明例のうち、No.2-H鋼およびNo.2−N鋼は、焼鈍を行わないため、粒径10μm以下のフェライトの面積率が高く、焼鈍した鋼に比してB10が低位である。
一方、熱間圧延条件あるいは焼鈍条件が本発明範囲を外れた比較例では、降伏強度、
磁気特性および被削性の少なくとも一つが低位の値を示す。
Table 9 shows the results of annealing after hot rolling steel No. 2 which is the steel of the present invention under various conditions. As is clear from the table, in the inventive examples, a high yield strength of 600 MPa or more was obtained. As for magnetic characteristics, the magnetic flux density B 10 is 0.90 T or more, B 50 is 1.60 T or more, and the iron loss W 10/50 is 40 W / kg or less. The tool life is also excellent machinability of 25 min or more. Among the inventive examples, No. 2-H steel and No. 2-N steel are not annealed, so the area ratio of ferrite with a grain size of 10 μm or less is high, and B 10 is lower than annealed steel. is there.
On the other hand, in the comparative example where the hot rolling conditions or annealing conditions are out of the scope of the present invention, the yield strength,
At least one of magnetic properties and machinability exhibits a low value.

No.2-G鋼は、焼鈍温度が高いため、析出物が固溶し、冷却中に第2相が析出する。その結果、強度が低く、磁気特性が劣っている。
No.2-I鋼およびNo.2-O鋼は、熱間圧延における圧延開始パスの減面率が低いため、粒径10μm以下の微細なフェライトの面積率が大きく、磁気密度性B10が低位である。
No.2-J鋼は、熱間圧延における圧延最終パスの減面率が低く、フェライトの平均結晶粒径が本発明の上限である80μmを上回っているため、被削性が劣っている。
No.2-P鋼は、熱間圧延における圧延最終パスの減面率が高く、フェライトの平均結晶粒径が本発明の下限である30μmを下回っており、かつ10μm以下のフェライトの面積率も高いため、磁気特性が低位にある。
Since No. 2-G steel has a high annealing temperature, precipitates are dissolved, and the second phase is precipitated during cooling. As a result, the strength is low and the magnetic properties are inferior.
No. 2-I steel and No. 2-O steel have a low area reduction ratio of the rolling start path in hot rolling, so the area ratio of fine ferrite with a grain size of 10 μm or less is large, and magnetic density B 10 is high. Low level.
No. 2-J steel has a low reduction in area in the final rolling pass in hot rolling, and the average crystal grain size of ferrite exceeds the upper limit of 80 μm of the present invention, so that the machinability is inferior.
No. 2-P steel has a high area reduction ratio in the final rolling pass in hot rolling, the average grain size of ferrite is below the lower limit of 30 μm of the present invention, and the area ratio of ferrite of 10 μm or less is also low. Since it is high, the magnetic properties are low.

熱間圧延における減面率に加えて、加熱温度、仕上げ温度および冷却速度についても適正化する必要がある。これらの製造条件が本発明範囲を外れた比較例では、降伏強度が低く、磁気特性が低位である。
No.2-Q鋼は、加熱温度が低いため、熱間圧延前の鋳片の析出物が加熱炉で十分に固溶せず、析出物が粗大化する。その結果、降伏強度が低いことに加え、磁気特性も劣っている。
No.2-U鋼は、仕上げ温度が低く、圧延で導入される歪がフェライト変態の開始温度を上昇させ、フェライト変態と析出の競合を阻害する。その結果、析出物が粗大化し降伏強度が低下することに加え、磁気特性が劣化する。
No.2-V鋼は、熱間圧延後の冷却速度が過大な例であり、冷却速度を増大させるために圧延後にミスト冷却を行った。この冷却速度が速いと低温変態相が生成し、焼鈍を行っても微細析出物が十分に析出しないため、降伏強度が低下する。また、磁気特性も低位となった。
In addition to the area reduction ratio in hot rolling, it is necessary to optimize heating temperature, finishing temperature, and cooling rate. In the comparative example in which these manufacturing conditions are outside the scope of the present invention, the yield strength is low and the magnetic properties are low.
Since No. 2-Q steel has a low heating temperature, the slab precipitate before hot rolling does not sufficiently dissolve in the heating furnace, and the precipitate becomes coarse. As a result, in addition to the low yield strength, the magnetic properties are inferior.
In No. 2-U steel, the finishing temperature is low, and the strain introduced by rolling increases the starting temperature of the ferrite transformation and inhibits the competition between ferrite transformation and precipitation. As a result, the precipitates become coarse and the yield strength decreases, and the magnetic properties deteriorate.
No. 2-V steel is an example in which the cooling rate after hot rolling is excessive, and mist cooling was performed after rolling in order to increase the cooling rate. When this cooling rate is fast, a low-temperature transformation phase is generated, and fine precipitates are not sufficiently precipitated even after annealing, so that the yield strength is lowered. Also, the magnetic properties were low.

フェライトの平均粒径および粒径10μm以下のフェライトの面積率と磁束密度B50および鉄損W10/50との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a ferrite, the area ratio of a ferrite with a particle size of 10 micrometers or less, magnetic flux density B50 , and iron loss W10 / 50 . フェライトの平均粒径および粒径10μm以下のフェライトの面積率と切削工具寿命との関係を示す図である。FIG. 3 is a diagram showing the relationship between the average particle diameter of ferrite and the area ratio of ferrite having a particle diameter of 10 μm or less and the cutting tool life. フェライトの平均粒径および粒径10μm以下のフェライトの面積率と磁束密度B50および鉄損W10/50との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a ferrite, the area ratio of a ferrite with a particle size of 10 micrometers or less, magnetic flux density B50 , and iron loss W10 / 50 . フェライトの平均粒径および粒径10μm以下のフェライトの面積率と切削工具寿命との関係を示す図である。FIG. 3 is a diagram showing the relationship between the average particle diameter of ferrite and the area ratio of ferrite having a particle diameter of 10 μm or less and the cutting tool life. フェライトの平均粒径および粒径10μm以下のフェライトの面積率と磁束密度B50および鉄損W10/50との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a ferrite, the area ratio of a ferrite with a particle size of 10 micrometers or less, magnetic flux density B50 , and iron loss W10 / 50 . フェライトの平均粒径および粒径10μm以下のフェライトの面積率と切削工具寿命との関係を示す図である。FIG. 3 is a diagram showing the relationship between the average particle diameter of ferrite and the area ratio of ferrite having a particle diameter of 10 μm or less and the cutting tool life.

Claims (14)

質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Feおよび不可避的不純物の成分組成を有し、平均結晶粒径が30μm以上80μm以下のフェライト単相の組織に成り、粒径が10μm以下のフェライトの面積率が20%以下であり、かつフェライト中に粒径10nm未満の微細析出物が分散していることを特徴とする電磁棒鋼。
% By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
And the composition of the remaining Fe and inevitable impurities, the average crystal grain size is a ferrite single phase structure of 30μm to 80μm, the area ratio of ferrite with a particle size of 10μm or less is 20% or less An electromagnetic steel bar characterized by fine precipitates having a particle size of less than 10 nm dispersed in ferrite.
前記成分組成は、下記(1)式を満たすことを特徴とする請求項1に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 …(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
The electromagnetic bar steel according to claim 1, wherein the component composition satisfies the following formula (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
However, the chemical component display indicates the content (% by mass) of the component.
前記微細析出物は、TiおよびMoの炭化物であることを特徴とする請求項1または2に記載の電磁棒鋼。   The electromagnetic bar steel according to claim 1 or 2, wherein the fine precipitate is a carbide of Ti and Mo. 前記成分組成は、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする請求項1に記載の電磁棒鋼。
The component composition is further mass%.
Nb: 0.08% or less,
The electromagnetic bar steel according to claim 1, comprising one or more of V: 0.15% or less and W: 1.5% or less.
前記成分組成は、下記(2)式を満たすことを特徴とする請求項4に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50…(2)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
The electromagnetic bar steel according to claim 4, wherein the component composition satisfies the following formula (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50… (2)
However, the chemical component display indicates the content (% by mass) of the component.
前記微細析出物は、TiおよびMoを含み、かつNb、VおよびWのうちの少なくとも1種を含む炭化物であることを特徴とする請求項4または5に記載の電磁棒鋼。   The electromagnetic bar steel according to claim 4 or 5, wherein the fine precipitate is a carbide containing Ti and Mo and containing at least one of Nb, V and W. 前記成分組成は、更に質量%で
S:0.01〜0.1%を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含有することを特徴とする請求項1ないし6のいずれかに記載の電磁棒鋼。
The component composition further includes S: 0.01 to 0.1% by mass%, and
Pb: 0.2% or less,
Ca: 0.005% or less,
The electromagnetic bar steel according to any one of claims 1 to 6, comprising one or more of Bi: 0.1% or less and B: 0.02% or less.
前記粒径が10μm以下のフェライトの面積率は5%以下であることを特徴とする請求項1ないし7に記載の電磁棒鋼。   The electromagnetic bar steel according to claim 1, wherein an area ratio of the ferrite having a particle size of 10 μm or less is 5% or less. 質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Feおよび不可避的不純物の成分組成を有する鋼素材を、1100℃以上に加熱した後、熱間圧延を、開始パスにおける減面率が25%以上、最終パスにおける減面率が15%以上35%以下および仕上温度880℃以上で施し、次いで1.0℃/s以下の冷却速度で冷却することを特徴とする電磁棒鋼の製造方法。
% By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
The steel material having the component composition of the remaining Fe and unavoidable impurities is heated to 1100 ° C. or higher, and then hot rolling is performed.The area reduction rate in the start pass is 25% or more, and the area reduction rate in the final pass is 15%. % To 35% and a finishing temperature of 880 ° C. or higher, and then cooling at a cooling rate of 1.0 ° C./s or lower.
前記鋼素材は、下記(1)式を満たすことを特徴とする請求項9に記載の電磁棒鋼の製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 …(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
The said steel raw material satisfy | fills following (1) Formula, The manufacturing method of the electromagnetic bar steel of Claim 9 characterized by the above-mentioned.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
However, the chemical component display indicates the content (% by mass) of the component.
前記鋼素材は、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする請求項9に記載の電磁棒鋼の製造方法。
The steel material is further mass%.
Nb: 0.08% or less,
The method for producing an electromagnetic steel bar according to claim 9, comprising one or more of V: 0.15% or less and W: 1.5% or less.
前記鋼素材は、下記(2)式を満たすことを特徴とする請求項11に記載の電磁棒鋼の製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50…(2)
ただし、化学成分は当該成分の含有量(質量%)を示す。
The said steel raw material satisfy | fills following (2) Formula, The manufacturing method of the electromagnetic bar steel of Claim 11 characterized by the above-mentioned.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50… (2)
However, a chemical component shows content (mass%) of the said component.
前記鋼素材は、更に質量%で
S:0.01〜0.1%を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含有することを特徴とする請求項9ないし12のいずれかに記載の電磁棒鋼の製造方法。
The steel material further includes S: 0.01 to 0.1% by mass%, and
Pb: 0.2% or less,
Ca: 0.005% or less,
The method for producing an electromagnetic steel bar according to any one of claims 9 to 12, comprising one or more of Bi: 0.1% or less and B: 0.02% or less.
前記熱間圧延を、開始パスにおける減面率を30%以上として、請求項9ないし13のいずれかに記載の方法にて製造された棒鋼に対し、下記温度域Tにて焼鈍することを特徴とする電磁棒鋼の製造方法。

Mn含有量が1.7%以下のとき:600℃≦T≦800℃
Mn含有量が1.7%超のとき:600℃≦T≦750℃
The hot rolling is performed in the following temperature range T with respect to the steel bar manufactured by the method according to any one of claims 9 to 13, with a reduction in area in the start pass being 30% or more. A method for producing electromagnetic steel bars.
Record
When the Mn content is 1.7% or less: 600 ° C. ≦ T ≦ 800 ° C.
When Mn content exceeds 1.7%: 600 ℃ ≦ T ≦ 750 ℃
JP2007095277A 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method Expired - Fee Related JP5085963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095277A JP5085963B2 (en) 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2006098123 2006-03-31
JP2006098571 2006-03-31
JP2006098571 2006-03-31
JP2006098716 2006-03-31
JP2006098716 2006-03-31
JP2006098123 2006-03-31
JP2007095277A JP5085963B2 (en) 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007291519A true JP2007291519A (en) 2007-11-08
JP5085963B2 JP5085963B2 (en) 2012-11-28

Family

ID=38762407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095277A Expired - Fee Related JP5085963B2 (en) 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5085963B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167310A (en) * 2011-02-11 2012-09-06 Kobe Steel Ltd Copper alloy for electric and electronic parts and copper alloy material with tin-plating
JP2013133485A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
WO2018105698A1 (en) * 2016-12-08 2018-06-14 新日鐵住金株式会社 Steel material for soft magnetic component, soft magnetic component, and method for manufacturing soft magnetic component
CN115537667A (en) * 2022-10-31 2022-12-30 清华大学 Nano precipitated ferrite steel and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003009A (en) * 2002-04-26 2004-01-08 Nkk Bars & Shapes Co Ltd Bar steel for cold forging, cold-forged product, and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003009A (en) * 2002-04-26 2004-01-08 Nkk Bars & Shapes Co Ltd Bar steel for cold forging, cold-forged product, and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167310A (en) * 2011-02-11 2012-09-06 Kobe Steel Ltd Copper alloy for electric and electronic parts and copper alloy material with tin-plating
JP2013133485A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
WO2018105698A1 (en) * 2016-12-08 2018-06-14 新日鐵住金株式会社 Steel material for soft magnetic component, soft magnetic component, and method for manufacturing soft magnetic component
JPWO2018105698A1 (en) * 2016-12-08 2019-10-31 日本製鉄株式会社 Steel material for soft magnetic parts, soft magnetic parts, and method for producing soft magnetic parts
CN115537667A (en) * 2022-10-31 2022-12-30 清华大学 Nano precipitated ferrite steel and preparation method thereof

Also Published As

Publication number Publication date
JP5085963B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP6891682B2 (en) Electrical steel sheet and its manufacturing method, rotor motor core and its manufacturing method, stator motor core and its manufacturing method, and motor core manufacturing method
JP4329538B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
JPWO2018164185A1 (en) Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP6842546B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPWO2020090160A1 (en) Manufacturing method of non-oriented electrical steel sheet
JP2007039721A (en) Method for producing non-oriented electrical steel sheet for rotor
JP6825758B1 (en) Non-oriented electrical steel sheet, its manufacturing method and motor core
CN111511948A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102530720B1 (en) Non-oriented electrical steel sheet
EP2883975A1 (en) High-strength electromagnetic steel sheet and method for producing same
JP2023507594A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7180700B2 (en) Non-oriented electrical steel sheet
JP5971404B2 (en) High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and method for producing the same
JP5085963B2 (en) Electromagnetic bar and its manufacturing method
CN112840041B (en) Method for producing an electrical NO tape with intermediate thickness
JP2007023351A (en) Method for producing non-oriented magnetic steel sheet for rotor
JP5085964B2 (en) Electromagnetic bar and its manufacturing method
JP4273768B2 (en) Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof
WO2011027697A1 (en) Non-oriented electromagnetic steel sheet
JP4974603B2 (en) Rotor core of motor and manufacturing method thereof
JP2008308704A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP7231116B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR102328127B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees