JP4273768B2 - Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof - Google Patents

Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof Download PDF

Info

Publication number
JP4273768B2
JP4273768B2 JP2003000659A JP2003000659A JP4273768B2 JP 4273768 B2 JP4273768 B2 JP 4273768B2 JP 2003000659 A JP2003000659 A JP 2003000659A JP 2003000659 A JP2003000659 A JP 2003000659A JP 4273768 B2 JP4273768 B2 JP 4273768B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
iron core
rolled steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000659A
Other languages
Japanese (ja)
Other versions
JP2003268509A (en
Inventor
義正 船川
毅 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003000659A priority Critical patent/JP4273768B2/en
Publication of JP2003268509A publication Critical patent/JP2003268509A/en
Application granted granted Critical
Publication of JP4273768B2 publication Critical patent/JP4273768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大型発電機のロータ等の回転機鉄芯に用いられる590MPa級以上の強度を有する熱延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
近年、電気機器用構造部材に用いられる鋼板には、電気機器の高性能化を目的に機械特性に加えて磁気特性、すなわち、高い透磁率と磁束密度が要求されるようになってきた。特に大型発電機のロータ等の回転機鉄芯用の鋼板は、大きな遠心力を受けることから、高強度であり、かつ高い磁束密度を有することが要求される。
【0003】
上記磁気特性のうち、透磁率は鋼中の粗大な炭化物量が少ないほど、磁束密度は鋼中の非磁性元素量が少ないほど高くなる。そのため、従来、磁気特性の優れた鋼板には、極低炭素鋼が用いられてきたが、極低炭素鋼板では、強度は高々300MPaしかないため、高強度を得るにはSi、Al、Pを多量に固溶させて強度を上昇させてきた。
【0004】
しかしながら、このような固溶強化による高強度化では要求される590MPa級以上の強度は容易に得ることができない上に、加工性が著しく低下し、さらには、多量に添加したSi、Al、Pで磁束密度が低下してしまう。そこで、このようなニーズに対して、フェライトを主体とした鋼を微細析出物で強化し、高強度と高加工性、さらには高磁気特性を並立させることが考えられる。
【0005】
非特許文献1では、低炭素鋼にTiを加えた加工性の優れた高張力熱延鋼板が提案されている。この技術では、従来鋼よりC量を低減し、セメンタイト量を低減させることで加工性を向上させ、Ti単独添加で高強度を実現している。しかしながら、Cに対してTiを多量に添加するため、組織が転位密度の高いベイニティックフェライトとなり、磁気特性は回転機鉄芯として実用に耐えるものではない。特に、980MPa級以上の高強度を得るためにTiを多量に添加しても、析出物が粗大化しやすくなり、逆に強度が低下するばかりか、組織の転位密度が高くなり、回転機鉄芯としては使用することができない。
【0006】
また、特許文献1では、Ti添加低炭素鋼による高強度熱延鋼板が開示されている。この技術は、Cを0.03〜0.05%、Tiを0.1〜0.20%含有する鋼のパーライトや低温変態相の体積率を規定することで、加工性を向上させようとするものである。しかしながら、590MPa級以上の高強度を得るには多量のTi添加が必須であり、強度上昇に寄与しない30nmを超える粗大なTi炭化物が生成しやすい上に、多量の固溶Ti、および、不可避的に生成する転位密度の高いベイニティックフライトが磁気特性を劣化させる。
【0007】
特許文献2には、Ti、B添加のSi−Mn鋼による高磁束密度を有する高強度熱延鋼板の製造方法が開示されている。この技術では、焼き入れ性改善のためBを添加し、圧延後急冷することでベイナイト組織を生成させている。この転位密度の高いベイナイトにより磁気特性は回転機鉄芯として満足できるものではない。
【0008】
特許文献3にも、Ti添加による高磁束密度を有する高強度熱延鋼板の製造方法が開示されている。この技術では、高強度熱延鋼板で用いられるSiを0.10%以下に低減する代わりに、TiCで強度を補っている。しかし、この技術でもTi添加により転位密度の高いベイニティックフェライトが生成しやすく、やはり磁気特性は回転機鉄芯としては不十分なものとなってしまう。
【0009】
【特許文献1】
特公平8−26433号公報
【特許文献2】
特開昭63−166931号公報
【特許文献3】
特開昭59−91121号公報
【非特許文献1】
CAMP-ISIJ(1992),p1863-1866
【0010】
【発明が解決しようとする課題】
このように、いずれの従来技術も回転機鉄芯として十分な磁気特性を有する加工性に優れた590MPa級以上の強度を有する高強度熱延鋼板は未だ得られていない。
【0011】
本発明はかかる事情に鑑みてなされたものであって、磁気特性が良好で、加工性に優れ、590MPa級以上の強度を有する回転機鉄芯用熱延鋼板およびその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく研究を重ねた結果、1μmを超える粗大炭化物および転位密度の高いベイニティックフェライトを生じさせるCおよびTiに対してその添加量を抑え、かつ、極めて微細な析出物が分散したフェライト組織とすることにより、590MPa級以上の高強度と優れた加工性を有しながら優れた磁気特性をも備えた回転機鉄芯として十分な特性を有する鋼板が得られることを見出した。すなわち、TiとMoまたは/およびWとを鋼に添加し、TiとMoおよびWの少なくとも一方とを含む炭化物からなる10nm未満の超微細析出物で鋼を強化するとともに、Ti添加量を制限して、組織をフェライトとすることで、磁気特性および加工性に優れた590MPa級以上の強度を有する、回転機用鉄芯用として十分な特性の高強度熱延鋼板が得られることを見出した。
【0013】
本発明はこのような知見に基づいてなされたものであって、以下の(1)〜()を提供する。
【0017】
)重量%で、C≦0.10%、Si≦0.5%、Mn:0.2〜2%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、Ti:0.02〜0.2%を含み、さらにMo≦0.7%(ただし0.2%以下の範囲を除く)およびW≦1.5%のうち少なくとも一方を含み、残部がFeおよび不可避不純物からなり、体積率で95%以上のフェライト組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物が分散してなり、590MPa級以上の強度を有する、回転機鉄芯用熱延鋼板。
【0019】
)上記(1)において、上記炭化物の組成が、原子数比で、0.5≦Ti/(Mo+W)≦2を満たすことを特徴とする回転機鉄芯用熱延鋼板。
【0020】
)上記(1)または(2)において、鋼におけるTi、W、Moの組成比が、
{(Mo/96)+(W/184)}/{(Ti/48)+(Mo/96)+(W/184)}≧0.2
を満足することを特徴とする回転機鉄芯用熱延鋼板。
【0021】
)上記(1)から()のいずれかにおいて、鋼におけるC、Ti、W、Moの組成比が、
0.5≦(C/12)/{(Ti/48)+(W/184)+(Mo/96)}≦1.5
を満足することを特徴とする回転機鉄芯用熱延鋼板。
【0022】
)上記(1)から(4)のいずれかにおいて、重量%で、さらに、Nb≦0.08%、V≦0.1%、B≦0.002%、Cu≦0.5%、Ni≦0.3%、Ca≦0.005%を含むことを特徴とする回転機鉄芯用熱延鋼板。
【0023】
)上記(1)から()のいずれかにおいて、前記炭化物の長辺と短辺との長さの比が2以下であることを特徴とする回転機鉄芯用熱延鋼板。
【0024】
)上記(1)から()のいずれかの鋼板を製造するにあたり、熱間圧延を800℃以上で終了し、570〜670℃で巻取ることを特徴とする回転機鉄芯用熱延鋼板の製造方法。
【0025】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明に係る回転機鉄芯用の熱延鋼板は、重量%で、C≦0.10%、Si≦0.5%、Mn:0.2〜2%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、Ti:0.02〜0.2%を含み、さらにMo≦0.7%およびW≦1.5%のうち少なくとも一方を含み、残部がFeおよび不可避不純物からなり、体積率で95%以上のフェライト組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物が分散してなり、590MPa級以上の強度を有する。
【0026】
体積率で95%以上のフェライト組織としたのは、マルテンサイトを含む複合組織および転位密度の高いベイニティックフェライト組織、アシキュラーフェライト組織では、良好な磁気特性が得られないからである。すなわち、本発明でいうフェライト組織は、ベイニティックフェライトやアシキュラーフェライトを除く高温でも組織変化のないフェライトをいう。
【0027】
本発明では、完全に100%フェライトになっている必要はなく、断面組織観察などによる体積で95%以上がフェライトとなっていればよい。好ましくは98%以上である。また、TiとMoおよびWの少なくとも一方とを含む炭化物からなる微細な析出物以外の粗大なセメンタイトは、高強度鋼板の磁気特性を劣化させるため、体積率を3%未満とすることが望ましい。さらに望ましくは1%未満である。
【0028】
本発明において、鋼組織をフェライト組織とするには、ランナウトテーブル上で冷却時に起こるγ→α変態を700℃以下にまで遅延させる必要がある。これは、700℃以上で変態が開始すると、γ+α二相域におけるCのαからγへの再分配が生じ、パーライトまたは低温変態相が生成しやすくなるためである。そこで、本発明においては、MoおよびWの少なくとも一方を添加することでフェライト変態を遅延させる。MoやWはパーライト変態も同時に遅延させるので、粗大Fe炭化物の析出も抑制することができる。
【0029】
マトリックスが実質的にフェライトである鋼を高強度化するためには超微細析出物を用いる。一般に、MoはMoCを形成するが、MoCは析出しにくいため、Mo単独添加では590MPa級以上の強度を得ることは困難である。そこで、本発明においては、鋼中のTi、Mo、Wの量を制御することで、TiとMoおよびWの少なくとも一方とを含む炭化物を10nm未満と超微細にかつ適当な早さで析出させる。このような観点から、炭化物のTiとMo+Wとの比であるTi/(Mo+W)を原子数比で0.5以上、2以下とすることが好ましい。また、このような析出物は、さらにNbおよびVのうち少なくとも一方を含んでいてもよい。
【0030】
また、超微細析出物として存在する上記炭化物においては、その形状が球形に近い方が磁気特性が良好になる。これは、長方形の析出物、展伸した析出物では、長辺側の曲率が極めて大きくなり、その周囲のマトリックスに大きな応力場が生じて結果的に磁気特性が劣化するためである。そのため、電子顕微鏡で観察した析出物の長辺と短辺との長さの比、すなわちアスペクト比が2以下であることが好ましい。
【0031】
熱延鋼板の強度を590MPa級以上としたのは、回転機鉄芯用鋼板として用いる場合に生じる大きな遠心力に耐えるために必要であるからである。
【0032】
次に、上記化学成分組成について説明する。
C≦0.10%
CはTiとMoまたは/およびWとを含む炭化物として固定され、鋼の強度を担う元素である。しかし、含有量が0.10%を超えると粗大なFe炭化物や島状マルテンサイトが生成しやすくなり、加工性が劣化する傾向にある。そのため、C含有量は0.10%以下とする。一方、590MPa級以上の強度を得る観点からは0.0050%以上が望ましく、0.01%超がさらに望ましい。
【0033】
Ti:0.02〜0.2%
TiはMoまたは/およびWとともに微細炭化物を形成し、鋼の強度を担う。しかし、0.02%未満では微細析出物量が少なくなり、高強度を実現しにくくなり、一方、0.2%を超えると転位密度の高いベイニティックフェライトの生成が促進される傾向にあり、磁気特性が劣化する。そのため、Ti含有量は0.02〜0.2%とする。
【0034】
Mo≦0.7%
Moは、ランナウトテーブル上でのフェライト変態を調整し、高温でのγ+α二相組織の形成を抑制してフェライト主体組織を形成しやすくする他、同時にFe炭化物の生成を抑制する。0.7%を超えるとマトリックスがベイナイト化しやすくなり、磁気特性が劣化するおそれがある。このため、Mo含有量は0.7%以下とする。好ましくは0.5%以下である。一方、Wが添加されない場合、Moが0.05%未満では粗大なFe炭化物の析出を抑制することが困難となるため好ましくは0.05%以上である。
【0035】
W≦1.5%
Wは、TiとともにまたはTiおよびMoとともに微細な炭化物を析出し、Fe炭化物の生成を抑制して、鋼の高強度化に寄与する。W含有量が1.5%を超えると転位密度の低いフェライト組織を得ることが困難になることからW含有量は1.5%以下とする。Moが添加されない場合、W含有量が少ないと冷却中のFe炭化物析出を抑制することができないことから、その場合にはW含有量は0.1%以上が望ましい。
【0037】
Si≦0.5%
Siは高強度鋼板を製造する場合に、固溶強化元素としてよく用いられてきた。しかしながら、Siは赤スケールを生成し、表面性状を劣化させてしまう。したがって、Si量は0.5%以下が好ましい。望ましくは0.2%以下、さらに望ましくは、0.05%以下である。
【0038】
Mn:0.2〜2%
Mnは固溶強化元素として使用される。しかし、その量が0.2%未満では焼入元素が添加されていてもパーライトが生成しやすくなって590MPa級の強度を得難くなり、一方、2%を超えると鋼中の偏析が著しくなって加工性が劣化する。このため、Mn含有量は0.2〜2%が好ましい。望ましくは、0.5〜2%である。
【0039】
P≦0.06%
Pは固溶強化元素であるが、0.06%を超えて添加されると粒界への著しい偏析を招き延性が劣化するので、0.06%以下が好ましい。
【0040】
S≦0.01%
SはMnS、TiSとして固定される。このため、Sは材質特性に有効に作用するMn、Ti量を低減させ、また延性も低下させることから、0.01%以下が好ましい。さらに好ましくは0.005%以下である。
【0041】
Al≦0.1%
鋼中Alは脱酸材として使用される。しかし、その含有量が0.1%を超えると鋼の延性低下を招くことから、0.1%以下が好ましい。
【0042】
N≦0.006%
Nは鋼中の不純物である。その含有量が0.006%を超えると延性を低下させる粗大な窒化物形成の原因となることから、0.006%以下が好ましい。
【0043】
本発明に係る回転機鉄芯用の熱延鋼板は、重量%で、さらに、Nb≦0.08%、V≦0.1%、B≦0.002%、Cu≦0.5%、Ni≦0.3%、Ca≦0.005%を含んでもよい。
【0044】
Nb≦0.08%
Nbは鋼を適度に微細化し、結晶粒形状を整粒化する目的で添加してもよい。しかし、0.08%を超えると結晶粒の極度の微細化をもたらし、伸びが低下する傾向があることから添加する場合には0.08%以下が好ましい。結晶粒微細化効果は0.005%以上のNb添加で顕著であることから、0.005%以上が一層好ましい。
【0045】
V≦0.1%
Vは10nm未満の微細析出物として存在する炭化物の一部を構成することができるため、添加してもよい。ただし、Vは鋼の焼入性を増大する元素であることから0.1%以上添加すると、転位密度の大きいベイニティックフェライトが生成しやすくなる。したがって、Vを添加する場合には、0.1%以下が好ましい。
【0046】
B≦0.002%、Cu≦0.5%、Ni≦0.3%、Ca≦0.005%は、耐二次加工脆性、耐食性向上等のためのものであり、これらはこの範囲で1種以上含まれていても特性上問題はない。
【0047】
本発明では、上記炭化物をフェライト中に微細に析出させるために、鋼におけるTi、W、Moの組成比が以下の(1)式を満足することが望ましく、C、Ti、W、Moの組成比が以下の(2)式を満足することが望ましい。
{(Mo/96)+(W/184)}/{(Ti/48)+(Mo/96)+(W/184)}≧0.2 …(1)
(ただし、上記(1)式中、Ti、W、Moは各成分の重量%を表す。)
0.5≦(C/12)/{(Ti/48)+(W/184)+(Mo/96)}≦1.5 …(2)
(ただし、上記(2)式中、C、Ti、Mo、Wは各成分の重量%を表す。)
【0048】
{(Mo/96)+(W/184)}/{(Ti/48)+(Mo/96)+(W/184)}の値が0.2未満では、微細な炭化物が粗大化しやすく590MPa級以上の強度を得難くなる。したがって、上記(1)式のように{(Mo/96)+(W/184)}/{(Ti/48)+(Mo/96)+(W/184)}の値を0.2以上とすることが好ましい。より望ましくは0.4以上である。また、この値が0.8を超えると、炭化物の析出量が少なくなり、やはり590MPa級以上の強度を得難くなるため0.8以下とすることが好ましい。
【0049】
また、(C/12)/{(Ti/48)+(W/184)+(Mo/96)}の値が0.5未満では、強度を担う微細な炭化物量が少なくなり、590MPa級以上の強度を得難くなる。また、1.5を超えると、粗大セメンタイト量が多くなることから磁気特性が劣化する。したがって、上記(2)式のように(C/12)/{(Ti/48)+(W/184)+(Mo/96)}の値を0.5以上、1.5以下とすることが好ましい。より望ましくは0.75以上、1.3以下である。
【0050】
次に、以上のような本発明の熱延鋼板の好ましい製造条件について述べる。
ここでは、上記成分組成を有する鋼をオーステナイト単相域の温度に加熱後、熱間圧延するにあたり、800℃以上で仕上圧延を完了し、570〜670℃で巻取る。
【0051】
仕上圧延温度:800℃以上
仕上圧延温度は材質均一化のために重要である。800℃未満では幅方向の温度変化で加工γの再結晶率が変化してしまい、熱延鋼板の組織に変動が認められるようになることから、仕上圧延温度は800℃以上が好ましい。さらに、870℃以上とすることがより一層望ましい。
【0052】
巻取り温度:570〜670℃
本発明鋼ではTiとMoまたは/およびWを含む炭化物の析出で粒界セメンタイトの析出を抑制することから、巻取り温度をTiとMoまたは/およびWとを含む炭化物の析出しやすい570〜670℃とした。また、本発明鋼では、MoまたはWによりフェライト変態が抑制されていることから、コイル内の巻取温度変動に関わらず幅方向で組織は均一となり、フェライト変態直後にTiとMoまたは/およびWとを含む炭化物が析出する。このため、強度、延性ともに安定する。
【0053】
なお、本発明の熱延鋼板は、黒皮ままでも酸洗材でもその特性に差違はない。調質圧延についても通常行われているものであれば特に規定はない。さらに、鋳造後直ちにもしくは補熱を目的とした加熱を施した後にそのまま熱間圧延を行う直送圧延を行っても本発明の効果に影響はない。さらにまた、粗圧延後に仕上圧延前もしくは圧延機スタンド間で圧延材を加熱しても、粗圧延後、圧延材を接合して行う連続圧延を行っても、さらには圧延材の加熱と連続圧延を同時に行っても本発明の効果は損なわれない。また、薄スラブ鋳造を用いて、粗圧延を省略しても差し支えない。
【0054】
【実施例】
(実施例1)
表1に示す化学成分を有する鋼を溶製し、熱間圧延を行い、板厚が3.0mmの高強度熱延鋼板を製造した。得られた鋼板の組織は、光学顕微鏡で観察して同定した。さらに強度を担う微細炭化物を透過型電子顕微鏡(TEM)によって観察するとともに、微細炭化物の組成をTEMに装備されたエネルギー分散型X線分光装置(EDX)による分析から把握した。
【0055】
また、得られた鋼板の機械的特性および磁気特性を測定した。機械的特性については引張特性をJIS5号試験片にて測定した。加工性については、伸び(EL)および穴広げ性(λ)によって評価した。穴広げ性については、日本鉄鋼連盟規格JFST1001に従って測定した。磁気特性については磁束密度B300(30kA/mでの磁束密度:単位T)を測定した。これらの結果を表2に示す。
【0056】
No.1では、フェライト組織であり、強度を担う析出物は、TiとMoとを含む炭化物であり、その大きさは1〜5nm程度と極めて微細でり、引張強度(TS)が590MPa級以上であって、本発明の範囲内である。また、析出物の長辺と短辺との長さの比が1.1でありほぼ球形である。そのため、加工性の指標である伸び(EL)と穴広げ性(λ)が良好であり、磁束密度も回転機鉄芯用として十分な値を示した。
【0057】
これに対し、No.2では、組織がフェライト+パーライトであり、30nm程度の粗大な析出物が多数観察され、その析出物の組成はTiCおよびTiとNbのみを含む炭化物であり、本発明から外れる比較例である。また、析出物の長辺と短辺との長さの比も2を超えている。そのため、磁束密度B300がNo.1の本発明例の鋼板に比べて劣っている。さらに、加工性の指標である伸び(EL)と穴広げ性(λ)が悪く、回転機鉄芯用として十分な加工性を有していないことが確認された。
【0058】
【表1】

Figure 0004273768
【0059】
【表2】
Figure 0004273768
【0060】
(実施例2)
表3に示す化学成分を有する鋼を溶製し、熱間圧延を行い、板厚が4.5mmの高強度熱延鋼板を製造した。得られた鋼板の組織は、光学顕微鏡で観察して同定した。さらに強度を担う微細析出物を透過型電子顕微鏡(TEM)によって観察するとともに、析出物の組成をTEMに装備されたエネルギー分散型X線分光装置(EDX)による分析から把握した。
【0061】
また、得られた鋼板の機械的特性および磁気特性を測定した。機械的特性については引張特性をJIS5号試験片にて測定した。加工性については、伸び(EL)で評価した。磁気特性については磁束密度B300(30kA/mでの磁束密度:単位T)を測定した。これらの結果を表4に示す。
【0062】
No.11〜22は、780MPa級の本発明例であり、強度を担う析出物は、TiとMoとを含む5nm未満の炭化物であった。そのため、磁束密度B300、強度、加工性ともに優れた値を示した。これらのうちNo.11〜17はMoを添加した例であり、No.18はMoとW、No.19はWを添加した例である。また、No.20はV、No.21はCuとNi、No.22はBを添加した例である。
【0063】
No.12〜22は、{(Mo/96)+(W/184)}/{(Ti/48)+(Mo/96)+(W/184)}の値が0.4〜0.8の好ましい範囲にあり、No.11よりも高い強度を示している。また、No.12,13,15,17,19,20,21,22は、(C/12)/{(Ti/48)+(W/184)+(Mo/96)}の値が0.75〜1.3の好ましい範囲にあり、No.11,14,16,18よりも優れたB300の値を示している。
【0064】
No.23〜26は980MPa級の本発明例であり、いずれも5nm未満の析出物で980MPa級まで高強度化されており、優れたB300を兼備している。これらのうち、No.23はMo、No.24はMoとW、No.25はWを添加した例であり、No.26はMoとNbを添加した例である。
【0065】
No.27,28は590MPa級の本発明例であり、いずれも5nm未満の析出物で高強度化されており、優れたB300も兼備している。No.27はMo、No.28はMoとWとNb,Caを添加した例である。
【0066】
No.29,30は780MPa級の比較材である。No.29では、組織がフェライト−パーライトであり、析出物径も大きく、析出物の長辺と短辺との長さの比が2.3と大きいため、B300が低かった。また、No.30は組織がベイナイトであり、B300が極めて低い値となった。
【0067】
【表3】
Figure 0004273768
【0068】
【表4】
Figure 0004273768
【0069】
【発明の効果】
以上説明したように、本発明によれば、重量%で、C≦0.10%、Ti:0.02〜0.2%を含み、さらにMo≦0.7%およびW≦1.5%のうち少なくとも一方を含み、実質的にフェライト組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物が分散してなる、強度590MPa級以上の高強度熱延鋼板としたので、優れた加工性を有しながら優れた磁気特性をも備えた回転機鉄芯として十分な特性を有する高強度熱延鋼板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled steel sheet and a manufacturing method thereof that have a 590MPa class or higher strength for use in rotary machine iron core of the rotor or the like of the large generators.
[0002]
[Prior art]
In recent years, steel sheets used for structural members for electrical equipment have been required to have magnetic characteristics, that is, high magnetic permeability and magnetic flux density in addition to mechanical characteristics for the purpose of improving the performance of electrical equipment. In particular, a steel plate for a rotating machine core such as a rotor of a large generator is required to have a high strength and a high magnetic flux density because it receives a large centrifugal force.
[0003]
Among the above magnetic properties, the permeability increases as the amount of coarse carbides in the steel decreases, and the magnetic flux density increases as the amount of nonmagnetic elements in the steel decreases. Therefore, in the past, ultra-low carbon steel has been used as a steel plate with excellent magnetic properties. However, since ultra-low carbon steel has a strength of only 300 MPa, Si, Al, and P are used to obtain high strength. The strength has been increased by dissolving a large amount.
[0004]
However, the required strength of 590 MPa or higher cannot be easily obtained by increasing the strength by such solid solution strengthening, and the workability is remarkably lowered. Further, a large amount of Si, Al, P added. As a result, the magnetic flux density decreases. In order to meet such needs, it is conceivable that steels mainly composed of ferrite are strengthened with fine precipitates, so that high strength, high workability, and high magnetic properties are aligned.
[0005]
Non-Patent Document 1 proposes a high-tensile hot-rolled steel sheet having excellent workability obtained by adding Ti to low-carbon steel. In this technology, the amount of C is reduced compared to the conventional steel, the workability is improved by reducing the amount of cementite, and high strength is realized by adding Ti alone. However, since a large amount of Ti is added to C, the structure becomes bainitic ferrite having a high dislocation density, and the magnetic properties cannot be practically used as a rotating machine iron core. In particular, even if a large amount of Ti is added in order to obtain a high strength of 980 MPa or higher, precipitates are likely to be coarsened. Conversely, not only the strength is lowered, but also the dislocation density of the structure is increased, and the iron core of the rotating machine is increased. Can not be used as.
[0006]
Moreover, in patent document 1, the high intensity | strength hot-rolled steel plate by Ti addition low carbon steel is disclosed. This technique attempts to improve workability by defining the volume fraction of pearlite and low-temperature transformation phase of steel containing 0.03-0.05% C and 0.1-0.20% Ti. To do. However, in order to obtain a high strength of 590 MPa or higher, a large amount of Ti is indispensable, and a coarse Ti carbide exceeding 30 nm that does not contribute to an increase in strength is easily generated, and a large amount of solid solution Ti and unavoidable The bainitic flight with a high dislocation density generated in the magnetic field deteriorates the magnetic properties.
[0007]
Patent Document 2 discloses a method for producing a high-strength hot-rolled steel sheet having a high magnetic flux density by using Ti and B-added Si-Mn steel. In this technique, B is added to improve hardenability, and a bainite structure is generated by quenching after rolling. Due to the high dislocation density bainite, the magnetic properties are not satisfactory for a rotating iron core.
[0008]
Patent Document 3 also discloses a method for producing a high-strength hot-rolled steel sheet having a high magnetic flux density by adding Ti. In this technique, instead of reducing Si used in the high-strength hot-rolled steel sheet to 0.10% or less, the strength is supplemented with TiC. However, even with this technique, bainitic ferrite having a high dislocation density is likely to be formed by addition of Ti, and the magnetic characteristics are still insufficient for a rotating machine iron core.
[0009]
[Patent Document 1]
Japanese Patent Publication No. 8-26433 [Patent Document 2]
Japanese Patent Laid-Open No. 63-166931 [Patent Document 3]
JP 59-91121 A [Non-Patent Document 1]
CAMP-ISIJ (1992), p1863-1866
[0010]
[Problems to be solved by the invention]
As described above, none of the conventional techniques has yet obtained a high-strength hot-rolled steel sheet having a sufficient strength as a rotating machine iron core and excellent workability and having a strength of 590 MPa or higher.
[0011]
The present invention has been made in view of such circumstances, and provides a hot-rolled steel sheet for an iron core of a rotating machine having excellent magnetic properties, excellent workability, and a strength of 590 MPa or higher, and a method for producing the same. Objective.
[0012]
[Means for Solving the Problems]
As a result of repeated researches to solve the above problems, the present inventors have suppressed the amount of addition to C and Ti that cause coarse carbides exceeding 1 μm and bainitic ferrite having a high dislocation density, and extremely By using a ferrite structure in which fine precipitates are dispersed, a steel sheet having sufficient properties as a rotating machine iron core having high strength of 590 MPa class or higher and excellent workability is obtained. I found out that That is, Ti and Mo or / and W are added to the steel, the steel is strengthened with ultrafine precipitates of less than 10 nm made of carbide containing Ti and at least one of Mo and W, and the amount of Ti added is limited. Thus, it has been found that a high-strength hot-rolled steel sheet having sufficient strength as an iron core for a rotating machine and having a strength of 590 MPa or more excellent in magnetic characteristics and workability can be obtained by making the structure ferrite.
[0013]
This invention is made | formed based on such knowledge, Comprising: The following (1)-( 7 ) is provided.
[0017]
( 1 )% by weight, C ≦ 0.10%, Si ≦ 0.5%, Mn: 0.2-2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1% , N ≦ 0.006 %, Ti: 0.02 to 0.2% , Mo ≦ 0.7% (excluding the range of 0.2% or less) and W ≦ 1.5% At least one is included, the balance is Fe and inevitable impurities , and a carbide structure of less than 10 nm including Ti, Mo and W is dispersed in a ferrite structure having a volume ratio of 95% or more. A hot- rolled steel sheet for an iron core of a rotating machine.
[0019]
( 2 ) The hot rolled steel sheet for a rotating machine iron core according to (1), wherein the composition of the carbide satisfies 0.5 ≦ Ti / (Mo + W) ≦ 2 in terms of atomic ratio.
[0020]
( 3 ) In the above (1) or (2) , the composition ratio of Ti, W, and Mo in the steel is
{(Mo / 96) + (W / 184)} / {(Ti / 48) + (Mo / 96) + (W / 184)} ≧ 0.2
A hot rolled steel sheet for an iron core of a rotating machine characterized by satisfying
[0021]
( 4 ) In any one of the above (1) to ( 3 ), the composition ratio of C, Ti, W, and Mo in the steel is
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} ≦ 1.5
A hot rolled steel sheet for an iron core of a rotating machine characterized by satisfying
[0022]
( 5 ) In any one of the above (1) to (4) , by weight%, Nb ≦ 0.08%, V ≦ 0.1%, B ≦ 0.002%, Cu ≦ 0.5%, A hot rolled steel sheet for an iron core of a rotating machine, characterized by containing Ni ≦ 0.3% and Ca ≦ 0.005%.
[0023]
(6) In any one of (1) to (5), hot-rolled steel sheet for a rotating machine iron core, wherein a ratio of the length of the long side and the short side of the carbides is 2 or less.
[0024]
(7) In producing one of the steel plate of (1) to (6), the hot rolling finished at 800 ° C. or higher, the heat for rotating machine iron core, wherein the winding at five hundred seventy to six hundred and seventy ° C. A method for producing rolled steel sheets.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The hot-rolled steel sheet for a rotating machine iron core according to the present invention is by weight%, C ≦ 0.10%, Si ≦ 0.5%, Mn: 0.2-2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, Ti: 0.02 to 0.2 %, and at least of Mo ≦ 0.7% and W ≦ 1.5% One part is included, the remainder is made of Fe and inevitable impurities , and a carbide structure having a volume fraction of 95% or more and containing carbide of less than 10 nm containing Ti, at least one of Mo and W is dispersed, and has a strength of 590 MPa or more. Have.
[0026]
The reason why the ferrite structure is 95% or more in volume ratio is that good magnetic properties cannot be obtained in a composite structure including martensite, a bainitic ferrite structure having a high dislocation density, and an acicular ferrite structure. That is, the ferrite structure referred to in the present invention refers to a ferrite having no structure change even at a high temperature excluding bainitic ferrite and acicular ferrite.
[0027]
In the present invention, not completely necessary that is a 100% ferrite, 95% or more by volume due to the cross-sectional surface texture observation it is sufficient that a ferrite. Preferably it is 98% or more. In addition, coarse cementite other than fine precipitates made of carbide containing Ti and at least one of Mo and W deteriorates the magnetic properties of the high-strength steel sheet, so that the volume ratio is preferably less than 3%. More desirably, it is less than 1%.
[0028]
In the present invention, in order to make the steel structure a ferrite structure, it is necessary to delay the γ → α transformation that occurs during cooling on the run-out table to 700 ° C. or less. This is because when the transformation starts at 700 ° C. or higher, redistribution of C from α to γ occurs in the γ + α two-phase region, and pearlite or a low-temperature transformation phase is easily generated. Therefore, in the present invention, the ferrite transformation is delayed by adding at least one of Mo and W. Since Mo and W also delay the pearlite transformation at the same time, precipitation of coarse Fe carbides can also be suppressed.
[0029]
To increase the strength of steel whose matrix is substantially ferrite, ultrafine precipitates are used. In general, Mo forms Mo 2 C, but Mo 2 C hardly precipitates. Therefore, it is difficult to obtain a strength of 590 MPa or more by adding Mo alone. Therefore, in the present invention, by controlling the amounts of Ti, Mo, and W in the steel, carbides containing Ti and at least one of Mo and W are precipitated in an ultrafine and appropriate speed of less than 10 nm. . From such a viewpoint, it is preferable that Ti / (Mo + W), which is a ratio of carbide Ti to Mo + W, is 0.5 or more and 2 or less in terms of the atomic ratio. Further, such a precipitate may further contain at least one of Nb and V.
[0030]
Moreover, in the said carbide | carbonized_material which exists as an ultrafine precipitate, the one where the shape is near spherical form becomes favorable in a magnetic characteristic. This is because in the rectangular precipitate and the extended precipitate, the curvature on the long side becomes extremely large, and a large stress field is generated in the surrounding matrix, resulting in deterioration of the magnetic characteristics. Therefore, it is preferable that the ratio of the long side to the short side of the precipitate observed with an electron microscope, that is, the aspect ratio is 2 or less.
[0031]
The reason why the strength of the hot-rolled steel sheet is set to 590 MPa or more is that it is necessary to withstand a large centrifugal force generated when used as a steel sheet for a rotating machine iron core.
[0032]
Next, the chemical component composition will be described.
C ≦ 0.10%
C is an element which is fixed as a carbide containing Ti and Mo or / and W and bears the strength of steel. However, if the content exceeds 0.10%, coarse Fe carbide and island martensite are likely to be generated, and the workability tends to deteriorate. Therefore, the C content is 0.10% or less. On the other hand, from the viewpoint of obtaining a strength of 590 MPa or higher, 0.0050% or more is desirable, and more than 0.01% is more desirable.
[0033]
Ti: 0.02 to 0.2%
Ti forms fine carbide together with Mo or / and W, and bears the strength of the steel. However, if the amount is less than 0.02%, the amount of fine precipitates is small and it is difficult to achieve high strength. On the other hand, if it exceeds 0.2%, the production of bainitic ferrite having a high dislocation density tends to be promoted. Magnetic properties deteriorate. Therefore, the Ti content is 0.02 to 0.2%.
[0034]
Mo ≦ 0.7%
Mo adjusts the ferrite transformation on the run-out table, suppresses the formation of a γ + α two-phase structure at a high temperature to facilitate the formation of a ferrite main structure, and simultaneously suppresses the formation of Fe carbides. If it exceeds 0.7%, the matrix tends to be bainite and the magnetic properties may be deteriorated. For this reason, Mo content shall be 0.7% or less. Preferably it is 0.5% or less. On the other hand, when W is not added, if the Mo content is less than 0.05%, it is difficult to suppress the precipitation of coarse Fe carbides, so the content is preferably 0.05% or more.
[0035]
W ≦ 1.5%
W precipitates fine carbides together with Ti or Ti and Mo, suppresses the formation of Fe carbides, and contributes to increasing the strength of steel. If the W content exceeds 1.5%, it becomes difficult to obtain a ferrite structure with a low dislocation density, so the W content is set to 1.5% or less. When Mo is not added, if the W content is small, Fe carbide precipitation during cooling cannot be suppressed. In this case, the W content is preferably 0.1% or more.
[0037]
Si ≦ 0.5%
Si has often been used as a solid solution strengthening element when producing high-strength steel sheets. However, Si produces a red scale and deteriorates the surface properties. Accordingly, the Si content is preferably 0.5% or less. Desirably, it is 0.2% or less, and more desirably 0.05% or less.
[0038]
Mn: 0.2-2%
Mn is used as a solid solution strengthening element. However, if the amount is less than 0.2%, pearlite is easily generated even if a quenching element is added, and it is difficult to obtain a strength of 590 MPa. On the other hand, if it exceeds 2%, segregation in steel becomes remarkable. Processability deteriorates. For this reason, the Mn content is preferably 0.2 to 2%. Desirably, it is 0.5 to 2%.
[0039]
P ≦ 0.06%
P is a solid solution strengthening element, but if added over 0.06%, it causes significant segregation to the grain boundary and deteriorates ductility, so 0.06% or less is preferable.
[0040]
S ≦ 0.01%
S is fixed as MnS and TiS. For this reason, S is preferably 0.01% or less because it reduces the amount of Mn and Ti that effectively act on the material properties and also reduces the ductility. More preferably, it is 0.005% or less.
[0041]
Al ≦ 0.1%
Al in steel is used as a deoxidizer. However, if its content exceeds 0.1%, the ductility of the steel is reduced, so 0.1% or less is preferable.
[0042]
N ≦ 0.006%
N is an impurity in the steel. If its content exceeds 0.006%, coarse nitride formation that lowers ductility is caused, so 0.006% or less is preferable.
[0043]
The hot-rolled steel sheet for a rotating machine iron core according to the present invention is by weight%, and further Nb ≦ 0.08%, V ≦ 0.1%, B ≦ 0.002%, Cu ≦ 0.5%, Ni ≦ 0.3%, Ca ≦ 0.005% may be included.
[0044]
Nb ≦ 0.08%
Nb may be added for the purpose of appropriately refining the steel and adjusting the crystal grain shape. However, if it exceeds 0.08%, the crystal grains are extremely refined and the elongation tends to decrease. Therefore, when added, 0.08% or less is preferable. Since the crystal grain refining effect is significant when 0.005% or more of Nb is added, 0.005% or more is more preferable.
[0045]
V ≦ 0.1%
V may constitute a part of carbides present as fine precipitates of less than 10 nm, and therefore may be added. However, since V is an element that increases the hardenability of steel, when 0.1% or more is added, bainitic ferrite having a high dislocation density is likely to be generated. Therefore, when adding V, 0.1% or less is preferable.
[0046]
B ≦ 0.002%, Cu ≦ 0.5%, Ni ≦ 0.3%, Ca ≦ 0.005% are for improving secondary work brittleness resistance, corrosion resistance, etc., and these are within this range. There is no problem in characteristics even if one or more types are included.
[0047]
In the present invention, in order to finely precipitate the carbide in the ferrite, it is desirable that the composition ratio of Ti, W, and Mo in the steel satisfies the following formula (1), and the composition of C, Ti, W, and Mo It is desirable that the ratio satisfies the following formula (2).
{(Mo / 96) + (W / 184)} / {(Ti / 48) + (Mo / 96) + (W / 184)} ≧ 0.2 (1)
(However, in the above formula (1), Ti, W, and Mo represent weight% of each component.)
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} ≦ 1.5 (2)
(However, in said Formula (2), C, Ti, Mo, and W represent the weight% of each component.)
[0048]
If the value of {(Mo / 96) + (W / 184)} / {(Ti / 48) + (Mo / 96) + (W / 184)} is less than 0.2, fine carbides tend to coarsen and become 590 MPa. It becomes difficult to obtain a strength higher than the grade. Therefore, the value of {(Mo / 96) + (W / 184)} / {(Ti / 48) + (Mo / 96) + (W / 184)} is 0.2 or more as shown in the above equation (1). It is preferable that More desirably, it is 0.4 or more. Moreover, when this value exceeds 0.8, the amount of precipitation of carbides decreases, and it becomes difficult to obtain a strength of 590 MPa or higher.
[0049]
In addition, when the value of (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} is less than 0.5, the amount of fine carbides responsible for strength decreases, and the 590 MPa class or higher It becomes difficult to obtain strength. On the other hand, if it exceeds 1.5, the amount of coarse cementite increases, so the magnetic properties deteriorate. Therefore, the value of (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} is set to 0.5 or more and 1.5 or less as in the above equation (2). Is preferred. More desirably, it is 0.75 or more and 1.3 or less.
[0050]
Next, preferable production conditions for the hot-rolled steel sheet of the present invention as described above will be described.
Here, when the steel having the above composition is heated to the temperature of the austenite single phase region and then hot-rolled, finish rolling is completed at 800 ° C. or higher and wound at 570 to 670 ° C.
[0051]
Finish rolling temperature: 800 ° C. or more The finish rolling temperature is important for making the material uniform. If it is less than 800 ° C., the recrystallization rate of the processed γ changes due to the temperature change in the width direction, and the structure of the hot-rolled steel sheet is changed. Thus, the finish rolling temperature is preferably 800 ° C. or higher. Furthermore, it is still more desirable to set it as 870 degreeC or more.
[0052]
Winding temperature: 570-670 ° C
In the steel of the present invention, precipitation of carbides containing Ti and Mo or / and W is suppressed, so that precipitation of grain boundary cementite is suppressed. C. In the steel of the present invention, since the ferrite transformation is suppressed by Mo or W, the structure becomes uniform in the width direction regardless of the coiling temperature fluctuation in the coil, and Ti and Mo or / and W immediately after the ferrite transformation. And a carbide containing. For this reason, both strength and ductility are stable.
[0053]
In addition, the hot-rolled steel sheet of the present invention has no difference in its characteristics whether it is black or pickled. There is no particular restriction on temper rolling as long as it is usually performed. Furthermore, the effect of the present invention is not affected even if direct feed rolling, in which hot rolling is performed directly after casting or after heating for the purpose of supplementary heating, is performed. Furthermore, even if the rolling material is heated after rough rolling and before finish rolling or between rolling mill stands, or after continuous rolling performed by joining the rolled material after rough rolling, heating and continuous rolling of the rolling material are further performed. Even if it performs simultaneously, the effect of this invention is not impaired. Further, it is possible to omit rough rolling using thin slab casting.
[0054]
【Example】
(Example 1)
Steel having chemical components shown in Table 1 was melted and hot-rolled to produce a high-strength hot-rolled steel sheet having a thickness of 3.0 mm. The structure of the obtained steel plate was identified by observing with an optical microscope. Further, the fine carbides responsible for the strength were observed by a transmission electron microscope (TEM), and the composition of the fine carbides was grasped from the analysis by the energy dispersive X-ray spectrometer (EDX) equipped in the TEM.
[0055]
Moreover, the mechanical characteristic and magnetic characteristic of the obtained steel plate were measured. Regarding mechanical properties, tensile properties were measured with JIS No. 5 test pieces. Workability was evaluated by elongation (EL) and hole expansibility (λ). The hole expandability was measured according to the Japan Iron and Steel Federation standard JFST1001. For magnetic properties, magnetic flux density B300 (magnetic flux density at 30 kA / m: unit T) was measured. These results are shown in Table 2.
[0056]
No. In No. 1, the precipitate having a ferrite structure and bearing strength is a carbide containing Ti and Mo, and the size thereof is extremely fine, about 1 to 5 nm, and the tensile strength (TS) is not less than 590 MPa class. It is within the scope of the present invention. Further, the ratio of the length of the long side to the short side of the precipitate is 1.1, which is almost spherical. For this reason, elongation (EL) and hole expansibility (λ), which are indexes of workability, were good, and the magnetic flux density also showed a sufficient value for an iron core for a rotating machine.
[0057]
In contrast, no. In No. 2, the structure is ferrite + pearlite, and a large number of coarse precipitates of about 30 nm are observed, and the composition of the precipitates is a carbide containing only TiC and Ti and Nb, which is a comparative example deviating from the present invention. Further, the ratio of the length of the long side to the short side of the precipitate exceeds 2. Therefore, the magnetic flux density B300 is No. It is inferior to the steel sheet of Example 1 of the present invention. Furthermore, it was confirmed that the elongation (EL) and the hole expansibility (λ), which are indexes of workability, were poor, and the processability was not sufficient for iron cores of rotating machines.
[0058]
[Table 1]
Figure 0004273768
[0059]
[Table 2]
Figure 0004273768
[0060]
(Example 2)
Steels having the chemical components shown in Table 3 were melted and hot-rolled to produce high-strength hot-rolled steel sheets having a thickness of 4.5 mm. The structure of the obtained steel plate was identified by observing with an optical microscope. Further, the fine precipitates responsible for the strength were observed with a transmission electron microscope (TEM), and the composition of the precipitates was grasped from the analysis by the energy dispersive X-ray spectrometer (EDX) equipped in the TEM.
[0061]
Moreover, the mechanical characteristic and magnetic characteristic of the obtained steel plate were measured. Regarding mechanical properties, tensile properties were measured with JIS No. 5 test pieces. Workability was evaluated by elongation (EL). For magnetic properties, magnetic flux density B300 (magnetic flux density at 30 kA / m: unit T) was measured. These results are shown in Table 4.
[0062]
No. 11 to 22 are examples of the present invention of 780 MPa class, and the precipitate responsible for the strength was a carbide of less than 5 nm containing Ti and Mo. Therefore, the magnetic flux density B300, strength, and workability were excellent. Of these, No. Nos. 11 to 17 are examples in which Mo is added. 18 is Mo and W, No. 18; 19 is an example in which W is added. No. 20 is V, No. 21 is Cu and Ni. 22 is an example in which B is added.
[0063]
No. 12 to 22 preferably have a value of {(Mo / 96) + (W / 184)} / {(Ti / 48) + (Mo / 96) + (W / 184)} of 0.4 to 0.8. No. The strength is higher than 11. No. 12,13,15,17,19,20,21,22 has a value of (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} of 0.75 to 1 .3 in the preferred range. B300 values superior to 11, 14, 16, 18 are shown.
[0064]
No. Nos. 23 to 26 are examples of the present invention of the 980 MPa class, all of which are high in strength to the 980 MPa class with precipitates of less than 5 nm, and have excellent B300. Of these, No. 23 is Mo, No. 24 is Mo and W, No. 24. No. 25 is an example in which W is added. 26 is an example in which Mo and Nb are added.
[0065]
No. Nos. 27 and 28 are examples of the present invention of 590 MPa class, both of which are strengthened with precipitates of less than 5 nm and also have excellent B300. No. 27 is Mo, No. 27. 28 is an example in which Mo, W, Nb, and Ca are added.
[0066]
No. 29 and 30 are comparative materials of 780 MPa class. No. In No. 29, the structure was ferrite-pearlite, the precipitate diameter was large, and the ratio of the long side length to the short side length was as large as 2.3, so B300 was low. No. No. 30 had a structure of bainite, and B300 had a very low value.
[0067]
[Table 3]
Figure 0004273768
[0068]
[Table 4]
Figure 0004273768
[0069]
【The invention's effect】
As explained above, according to the present invention, by weight%, C ≦ 0.10%, Ti: 0.02 to 0.2%, Mo ≦ 0.7% and W ≦ 1.5% Because it is a high strength hot rolled steel sheet having a strength of 590 MPa or more, in which carbides of less than 10 nm including at least one of Ti and Mo and W and / or at least one of them is dispersed in the ferrite structure, it is excellent. A high-strength hot-rolled steel sheet having sufficient characteristics as a rotating machine iron core having excellent magnetic properties while having workability can be obtained.

Claims (7)

重量%で、C≦0.10%、Si≦0.5%、Mn:0.2〜2%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、Ti:0.02〜0.2%を含み、さらにMo≦0.7%(ただし0.2%以下の範囲を除く)およびW≦1.5%のうち少なくとも一方を含み、残部がFeおよび不可避不純物からなり、体積率で95%以上のフェライト組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物が分散してなり、590MPa級以上の強度を有する、回転機鉄芯用熱延鋼板。% By weight, C ≦ 0.10%, Si ≦ 0.5%, Mn: 0.2-2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006 %, T i: 0.02 to 0.2% , and Mo ≦ 0.7% (excluding the range of 0.2% or less) and W ≦ 1.5% And the balance is Fe and inevitable impurities , and a carbide structure of less than 10 nm containing at least one of Ti and Mo and W is dispersed in a ferrite structure having a volume ratio of 95% or more, and has a strength of 590 MPa class or more. Hot rolled steel sheet for rotating machine iron core. 上記炭化物の組成が、原子数比で、0.5≦Ti/(Mo+W)≦2を満たすことを特徴とする請求項1に記載の回転機鉄芯用熱延鋼板。2. The hot rolled steel sheet for a rotating machine iron core according to claim 1, wherein the composition of the carbide satisfies 0.5 ≦ Ti / (Mo + W) ≦ 2 in terms of atomic ratio. 鋼におけるTi、W、Moの組成比が、
{(Mo/96)+(W/184)}/{(Ti/48)+(Mo/96)+(W/184)}≧0.2
を満足することを特徴とする請求項1または請求項2に記載の回転機鉄芯用熱延鋼板。
ただし、上記式中、Ti、W、Moは各成分の重量%を表す。
The composition ratio of Ti, W, and Mo in steel is
{(Mo / 96) + (W / 184)} / {(Ti / 48) + (Mo / 96) + (W / 184)} ≧ 0.2
The hot- rolled steel sheet for an iron core of a rotating machine according to claim 1 or 2 , wherein:
However, in the above formula, Ti, W, and Mo represent weight% of each component.
鋼におけるC、Ti、W、Moの組成比が、
0.5≦(C/12)/{(Ti/48)+(W/184)+(Mo/96)}≦1.5
を満足することを特徴とする請求項1から請求項のいずれか1項に記載の回転機鉄芯用熱延鋼板。
ただし、上記式中、C、Ti、Mo、Wは各成分の重量%を表す。
The composition ratio of C, Ti, W, and Mo in steel is
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} ≦ 1.5
The hot- rolled steel sheet for a rotating machine iron core according to any one of claims 1 to 3 , wherein:
However, in said formula, C, Ti, Mo, and W represent weight% of each component.
重量%で、さらに、Nb≦0.08%、V≦0.1%、B≦0.002%、Cu≦0.5%、Ni≦0.3%、Ca≦0.005%を含むことを特徴とする請求項1から請求項4のいずれか1項に記載の回転機鉄芯用熱延鋼板。In addition, Nb ≦ 0.08%, V ≦ 0.1%, B ≦ 0.002%, Cu ≦ 0.5%, Ni ≦ 0.3%, Ca ≦ 0.005%. The hot- rolled steel sheet for a rotating machine iron core according to any one of claims 1 to 4 . 前記炭化物の長辺と短辺との長さの比が2以下であることを特徴とする請求項1から請求項のいずれか1項に記載の回転機鉄芯用熱延鋼板。The hot rolled steel sheet for a rotary machine iron core according to any one of claims 1 to 5 , wherein a ratio of a length of a long side to a short side of the carbide is 2 or less. 請求項1から請求項のいずれかの鋼板を製造するにあたり、熱間圧延を800℃以上で終了し、570〜670℃で巻取ることを特徴とする回転機鉄芯用熱延鋼板の製造方法。When producing the steel sheet according to any one of claims 1 to 6 , the hot rolling is finished at 800 ° C or higher and wound at 570 to 670 ° C, and the hot rolled steel sheet for a rotary machine iron core is produced. Method.
JP2003000659A 2001-12-28 2003-01-06 Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof Expired - Fee Related JP4273768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000659A JP4273768B2 (en) 2001-12-28 2003-01-06 Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001399053 2001-12-28
JP2001-399053 2001-12-28
JP2003000659A JP4273768B2 (en) 2001-12-28 2003-01-06 Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003268509A JP2003268509A (en) 2003-09-25
JP4273768B2 true JP4273768B2 (en) 2009-06-03

Family

ID=29217734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000659A Expired - Fee Related JP4273768B2 (en) 2001-12-28 2003-01-06 Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4273768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
WO2014148001A1 (en) 2013-03-19 2014-09-25 Jfeスチール株式会社 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615465B (en) * 2008-05-30 2012-10-17 株式会社日立制作所 Soft magnetic powder for compact powder body and compact powder body using the same
JP5957878B2 (en) * 2011-12-27 2016-07-27 Jfeスチール株式会社 High strength hot-rolled steel sheet for warm forming and manufacturing method thereof
US9738273B2 (en) 2012-01-31 2017-08-22 Mitsubishi Electric Corporation Vehicle control apparatus
MX2017006868A (en) * 2014-11-28 2017-08-14 Jfe Steel Corp Hot-rolled steel sheet for magnetic pole and method for manufacturing same, and rim member for hydroelectric power generation.
WO2016088321A1 (en) * 2014-12-05 2016-06-09 Jfeスチール株式会社 Hot-rolled steel sheet for magnetic pole and method for manufacturing same, and rim member for hydroelectric power generation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
WO2014148001A1 (en) 2013-03-19 2014-09-25 Jfeスチール株式会社 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
KR20170069307A (en) 2013-03-19 2017-06-20 제이에프이 스틸 가부시키가이샤 HIGH-STRENGTH HOT ROLLED STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE
US10400316B2 (en) 2013-03-19 2019-09-03 Jfe Steel Corporation High strength hot rolled steel sheet having tensile strength of 780 MPa or more

Also Published As

Publication number Publication date
JP2003268509A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US6632295B2 (en) High tensile strength hot-rolled steel sheet and method for manufacturing the same
KR100995160B1 (en) High-strength wire rod excelling in wire drawing performance and process for producing the same
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
KR20080017464A (en) High-strength wire rod excelling in wire drawing performance and process for producing the same
WO2012036307A1 (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
JP5304435B2 (en) Hot-rolled steel sheet with excellent hole-expandability and manufacturing method thereof
WO2016185741A1 (en) High-strength electric-resistance-welded steel pipe, method for producing steel sheet for high-strength electric-resistance-welded steel pipe, and method for producing high-strength electric-resistance-welded steel pipe
JPH0949050A (en) High strength hot rolled steel sheet small in deterioration in yield strength after forming, pipe formed by using the same and production of high strength hot rolled steel sheet
WO2013073136A1 (en) Thin steel sheet and process for producing same
JP5971404B2 (en) High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and method for producing the same
JP5423737B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
WO2022070608A1 (en) Steel sheet and steel sheet manufacturing method
US10301698B2 (en) Hot-rolled steel sheet for generator rim and method for manufacturing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2021063253A (en) High-strength hot-rolled steel sheet and method for manufacturing the same
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP4273768B2 (en) Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof
JP5085963B2 (en) Electromagnetic bar and its manufacturing method
JP3932892B2 (en) High-strength steel plate and high-strength electroplated steel plate excellent in ductility, stretch flangeability and shock absorption characteristics and methods for producing them
JP5085964B2 (en) Electromagnetic bar and its manufacturing method
JP4319940B2 (en) High carbon steel plate with excellent workability, hardenability and toughness after heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Ref document number: 4273768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees