JP5085964B2 - Electromagnetic bar and its manufacturing method - Google Patents

Electromagnetic bar and its manufacturing method Download PDF

Info

Publication number
JP5085964B2
JP5085964B2 JP2007095502A JP2007095502A JP5085964B2 JP 5085964 B2 JP5085964 B2 JP 5085964B2 JP 2007095502 A JP2007095502 A JP 2007095502A JP 2007095502 A JP2007095502 A JP 2007095502A JP 5085964 B2 JP5085964 B2 JP 5085964B2
Authority
JP
Japan
Prior art keywords
less
steel
ferrite
precipitate
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007095502A
Other languages
Japanese (ja)
Other versions
JP2007291520A (en
Inventor
正之 笠井
邦和 冨田
高明 豊岡
和明 福岡
哲夫 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Priority to JP2007095502A priority Critical patent/JP5085964B2/en
Publication of JP2007291520A publication Critical patent/JP2007291520A/en
Application granted granted Critical
Publication of JP5085964B2 publication Critical patent/JP5085964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強度が高くかつ磁気特性に優れた電磁棒鋼とその製造方法に関するものである。   The present invention relates to an electromagnetic steel bar having high strength and excellent magnetic properties and a method for producing the same.

近年、電気自動車やハイブリッド型電気自動車のメインモータに代表されるように、モータには省エネルギー化並びに高効率化が強く求められている。   In recent years, as represented by main motors of electric vehicles and hybrid electric vehicles, motors are strongly required to save energy and increase efficiency.

例えば、モータの省エネルギー化や高効率化を図るには、その高周波化が有効な手段の一つとして挙げられるが、周波数が上がるとモータの回転速度も増大し、ローターを構成するコアに加わる遠心力も増大するため、コア材には高い降伏強度が要求される。即ち、コア材の降伏強度が不十分な場合、遠心力によってコア材が塑性変形を起こし、ローターコアとステーターコアとの間のエアギャップが設計値から変化することよりモータ性能が劣化したり、更には、回転中にローターとステーターとが接触し、モータを破損する結果となる。従って、高周波化によりモータの省エネルギー化や高効率化を図るには、ローターコア材の高強度化が不可欠となる。   For example, in order to save energy and increase the efficiency of a motor, one of the effective means is to increase the frequency, but as the frequency increases, the rotational speed of the motor also increases, and the centrifugal force applied to the core constituting the rotor increases. Since the force also increases, the core material is required to have a high yield strength. That is, when the yield strength of the core material is insufficient, the core material causes plastic deformation due to centrifugal force, and the motor performance deteriorates because the air gap between the rotor core and the stator core changes from the design value, Furthermore, the rotor and stator come into contact during rotation, resulting in damage to the motor. Therefore, in order to save energy and increase the efficiency of the motor by increasing the frequency, it is essential to increase the strength of the rotor core material.

ところで、従前のローターコアの製造は、板厚0.35〜0.5mmの電磁鋼板を積層するのが一般的であったが、所定のコア形状に電磁鋼板を一枚一枚打抜き、これを数百枚積層するのに多大な費用を要するため、電磁鋼板に替えて積層が不要な電磁棒鋼を用いてローターを作製するモータが実用化され始めている。   By the way, the conventional manufacture of rotor cores was generally performed by laminating electromagnetic steel sheets with a thickness of 0.35 to 0.5 mm. However, hundreds of electromagnetic steel sheets were punched one by one into a predetermined core shape. Since a great deal of cost is required for lamination, motors for producing rotors using electromagnetic steel bars that do not require lamination instead of electromagnetic steel sheets have been put into practical use.

しかしながら、現状の電磁棒鋼は電磁鋼板と同様に低炭素鋼若しくは珪素鋼からなり、フェライトの固溶強化を主な強化機構としているため、強度は必ずしも高くない。例えば、3%Si鋼の場合でも降伏強度は350MPa程度である。また電磁鋼板の例では、特許文献1に開示されているように、高強度化を目的としたものでも、降伏強度は概略300〜450MPa程度であり、十分な降伏強度は得られていない。   However, the current electromagnetic bar steel is made of low carbon steel or silicon steel like the electromagnetic steel sheet, and the strength is not necessarily high because the main strengthening mechanism is the solid solution strengthening of ferrite. For example, even in the case of 3% Si steel, the yield strength is about 350 MPa. Further, in the example of the electromagnetic steel sheet, as disclosed in Patent Document 1, even if the purpose is to increase the strength, the yield strength is approximately 300 to 450 MPa, and sufficient yield strength is not obtained.

また、特許文献2には、フェライト組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物を分散析出させることによって、高位の磁束密度と高強度とを併せ持つ回転機鉄芯用の熱延鋼板について、記載されている。   Further, Patent Document 2 discloses a heat for a rotating iron core having both high magnetic flux density and high strength by dispersing and precipitating a carbide of less than 10 nm containing Ti, at least one of Mo and W in a ferrite structure. It describes about a rolled steel sheet.

しかしながら、特許文献2では、鋼の成分を規定した上で、鋼組織をフェライトとしてフェライト中に微細析出物を分散析出させること、炭化物の長辺と短辺の長さの比を規定することによって、優れた加工性と磁気特性とを兼ね備えた熱延鋼板を得られるとしているが、磁気特性上重要な磁壁移動については何ら考慮されておらず、実用上十分な磁気特性を有するとは言えない。事実、特許文献2の実施例においては、30000A/mと励磁電流が極端に高く、ほぼ成分(特にFe)によってのみ決まる飽和磁束密度近傍の磁束密度B300の値のみが示されている。しかし、モータ等の性質にとっては、5000A/mでの磁束密度B50に代表されるような、より低磁場領域での磁束密度が重要であるものの、特許文献2に記載の鋼板では高いB50が得られない。また、モータ等の効率を支配する鉄損については一切考慮されておらず、鉄損値も高いため、実用上十分な磁気特性を具備するに至らないものであった。
特開2002−371340号公報 特開2003−268509号公報
However, in Patent Document 2, after defining the components of steel, the steel structure is used as ferrite, fine precipitates are dispersed and precipitated in ferrite, and the ratio of the length of the long side to the short side of the carbide is specified. It is said that a hot-rolled steel sheet having both excellent workability and magnetic properties can be obtained, but no consideration is given to domain wall motion that is important in terms of magnetic properties, and it cannot be said that it has practically sufficient magnetic properties. . In fact, in the example of Patent Document 2, the exciting current is extremely high as 30000 A / m, and only the value of the magnetic flux density B 300 in the vicinity of the saturation magnetic flux density determined only by the component (particularly Fe) is shown. However, although the magnetic flux density in a lower magnetic field region as represented by the magnetic flux density B 50 at 5000 A / m is important for the properties of a motor or the like, the steel plate described in Patent Document 2 has a high B 50. Cannot be obtained. Further, no consideration was given to the iron loss that dominates the efficiency of the motor or the like, and the iron loss value was high, so that practically sufficient magnetic properties were not achieved.
JP 2002-371340 A JP 2003-268509 A

そこで、本発明は、ローターコア材として十分な磁気特性を有すると共に、降伏強度の高い電磁棒鋼とその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic steel bar having sufficient magnetic properties as a rotor core material and having a high yield strength, and a method for producing the same.

本発明は、上記の知見に基づくものであり、その要旨構成は次の通りである。
1.質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Fe及び不可避的不純物の成分組成を有し、平均結晶粒径60μm以上のフェライトの面積率が95%以上の組織からなり、該フェライト中に粒径10nm未満の微細析出物が分散していることを特徴とする電磁棒鋼。
This invention is based on said knowledge, The summary structure is as follows.
1. % By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
Includes having a component composition of the balance Fe and unavoidable impurities, consists of the average crystal grain size 60μm or more ferrite area ratio is 95% or more of tissue, fine precipitates having a size of less than 10nm in the ferrite is dispersed An electromagnetic steel bar characterized by

2.前記組織は、粒径が10μm以下のフェライトの面積率が10%以下であることを特徴とする前記1に記載の電磁棒鋼。 2. 2. The electromagnetic bar steel according to 1, wherein the structure has an area ratio of ferrite having a particle size of 10 μm or less of 10% or less.

3.前記成分組成が、下記(1)式を満たすことを特徴とする前記1または2に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ----(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
3. The electromagnetic bar steel according to 1 or 2, wherein the component composition satisfies the following formula (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 ---- (1)
However, the chemical component display indicates the content (% by mass) of the component.

4.前記微細析出物が、TiおよびMoの炭化物であることを特徴とする前記1ないし3のいずれかに記載の電磁棒鋼。 4). 4. The electromagnetic bar steel according to any one of 1 to 3 , wherein the fine precipitate is a carbide of Ti and Mo.

5.前記成分組成として、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする上記1または2に記載の電磁棒鋼。
5. As the above component composition,
Nb: 0.08% or less,
The electromagnetic bar steel according to 1 or 2 above, comprising one or more of V: 0.15% or less and W: 1.5% or less.

6.前記成分組成が下記(2)式を満たすことを特徴とする前記5に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ----(2)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
6). The electromagnetic bar steel according to 5, wherein the component composition satisfies the following formula (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 ---- (2)
However, the chemical component display indicates the content (% by mass) of the component.

7.前記微細析出物が、TiおよびMoと、Nb、VおよびWのうちの少なくとも1種とを含む炭化物であることを特徴とする前記5または6に記載の電磁棒鋼。 7). 7. The electromagnetic bar steel according to 5 or 6, wherein the fine precipitate is a carbide containing Ti and Mo and at least one of Nb, V and W.

8.前記成分組成として、更に質量%で
S:0.01〜0.1%
を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含むことを特徴とする前記1ないし7のいずれかに記載の電磁棒鋼。
8). As said component composition, it is further mass% S: 0.01-0.1%
And including
Pb: 0.2% or less,
Ca: 0.005% or less,
The electromagnetic bar steel according to any one of 1 to 7 above, which contains one or more of Bi: 0.1% or less and B: 0.02% or less.

9.質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Fe及び不可避的不純物の成分組成を有する鋼素材を、1100℃以上に加熱したのち、最終パスにおける減面率:25%以下および仕上温度:880℃以上の条件下で熱間圧延を施し、次いで1.0℃/s以下の冷却速度で冷却することを特徴とする電磁棒鋼の製造方法。
9. % By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
Steel material with the remaining Fe and unavoidable impurity composition is heated to 1100 ° C or higher, then hot rolled under conditions of area reduction of 25% or less in the final pass and finishing temperature: 880 ° C or higher And then cooling at a cooling rate of 1.0 ° C./s or less.

ここで、最終パスにおける減面率は、次式のとおりである。
減面率(%)=(D−d)/D×100
ただし、D:最終パスにおける圧延前の断面積
d:最終パスにおける圧延後の断面積
Here, the area reduction rate in the final pass is as follows.
Area reduction rate (%) = (D−d) / D × 100
Where D: sectional area before rolling in the final pass
d: Cross-sectional area after rolling in the final pass

10.前記冷却を行った後、さらに下記の温度域で焼鈍することを特徴とする前記9に記載の電磁棒鋼の製造方法。

Mn含有量(質量%)が0.5〜1.7%のとき:600℃以上800℃以下
Mn含有量(質量%)が1.7%超〜3.0%のとき:600℃以上750℃以下
10. 10. The method for producing an electromagnetic steel bar according to 9, wherein the cooling is further performed in the following temperature range after the cooling.
Record
When Mn content (% by mass) is 0.5 to 1.7%: 600 ° C or higher and 800 ° C or lower
When Mn content (% by mass) is over 1.7% to 3.0%: 600 ° C or higher and 750 ° C or lower

11.前記成分組成が、下記(1)式を満たすことを特徴とする前記9または10に記載の電磁棒鋼の製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ----(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
11. The said component composition satisfy | fills following (1) Formula, The manufacturing method of the electromagnetic bar steel of said 9 or 10 characterized by the above-mentioned.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 ---- (1)
However, the chemical component display indicates the content (% by mass) of the component.

12.前記成分組成として、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする前記9または10に記載の電磁棒鋼の製造方法。
12 As the above component composition,
Nb: 0.08% or less,
11. The method for producing electromagnetic bar steel according to 9 or 10 above, comprising one or more of V: 0.15% or less and W: 1.5% or less.

13.前記成分組成が下記(2)式を満たすことを特徴とする前記12に記載の電磁棒鋼の製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ----(2)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
13. 13. The method for producing an electromagnetic steel bar according to 12, wherein the component composition satisfies the following formula (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 ---- (2)
However, the chemical component display indicates the content (% by mass) of the component.

14.前記成分組成として、質量%で
S:0.01〜0.1%
を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含むことを特徴とする前記9ないし13のいずれかに記載の電磁棒鋼の製造方法。
14 As said component composition, in mass% S: 0.01-0.1%
And including
Pb: 0.2% or less,
Ca: 0.005% or less,
14. The method for producing an electromagnetic steel bar according to any one of 9 to 13 above, comprising one or more of Bi: 0.1% or less and B: 0.02% or less.

本発明によれば、十分な磁気特性を有すると共に、降伏強度の高い電磁棒鋼が提供されることから、モータの回転速度を増大しても上述した不具合を回避することができる。従って、モータにおける周波数の一層の増加が可能となり、モータの省エネルギー化並びに高効率化が実現されるため、本発明は産業上極めて有用といえる。   According to the present invention, an electromagnetic steel bar having sufficient magnetic properties and high yield strength is provided, so that the above-described problems can be avoided even if the rotational speed of the motor is increased. Therefore, the frequency in the motor can be further increased, and the energy saving and high efficiency of the motor can be realized. Therefore, the present invention is extremely useful industrially.

本発明の成分組成、ミクロ組織及び製造条件について以下に詳述する。なお、成分組成に関する「%」表示は、特に断らない限りは「質量%」を意味する。
[成分組成]
C:0.04〜0.12%
Cが0.04%未満であると、微細析出物の析出量が不足し、高い降伏強度が得られないため、Cは0.04%以上とする必要がある。一方、Cを0.12%超で含有すると、析出物が粗大化し、やはり高い降伏強度が得られないため、Cの上限は0.12%とする必要がある。
The component composition, microstructure and production conditions of the present invention are described in detail below. In addition, unless otherwise indicated, the "%" display regarding a component composition means "mass%".
[Ingredient composition]
C: 0.04-0.12%
If C is less than 0.04%, the amount of fine precipitates is insufficient and high yield strength cannot be obtained, so C needs to be 0.04% or more. On the other hand, if the content of C exceeds 0.12%, the precipitates become coarse and a high yield strength cannot be obtained, so the upper limit of C needs to be 0.12%.

Si:0.5%以下
Siは、冷間加工性を低下させるため、Siの添加量は0.5%以下とする。より好ましくは0.15%以下である。
Si: 0.5% or less
Since Si decreases the cold workability, the amount of Si is 0.5% or less. More preferably, it is 0.15% or less.

Mn:0.5〜3.0%
本発明において、析出物の析出挙動は、オーステナイトからフェライトへの変態(以降、フェライト変態という)の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度との差が小さく、フェライト変態と析出が競合する場合に、析出物がフェライト中に微細に分散析出する。ここで、Mnはフェライト変態温度を下げ、フェライト変態の変態開始温度と析出物の析出開始温度との差を減少させることで、フェライト変態と析出を競合させることに寄与するが、その効果を得るにはMnを0.5%以上添加する必要がある。一方、Mn量が3.0%を超えると、フェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による析出強化が不足し、強度が低下する。さらに、低温変態相が生成すると磁気特性が劣化する。このため、Mnの上限は3.0%とする。
なお、Mn量が1.7%以下で、特に高い磁束密度B50が得られるため、高い磁気特性を得ようとする場合には、1.7%以下とすることが好ましい。より好ましくは0.6〜1.65%である。一方、Mn量を1.7%超で添加することにより、Mnの固溶強化による高強度化の効果が顕著になる。よって、特に高強度化を指向する場合は1.7%超とすることが好ましい。より好ましくは、1.75〜2.80%である。
Mn: 0.5-3.0%
In the present invention, the precipitation behavior of the precipitate is closely related to the progress of the transformation from austenite to ferrite (hereinafter referred to as ferrite transformation), and the transformation start temperature and precipitate of the ferrite transformation generated during cooling after rolling. When the difference from the precipitation start temperature is small and the ferrite transformation and precipitation compete with each other, the precipitate is finely dispersed and precipitated in the ferrite. Here, Mn contributes to competing ferrite transformation and precipitation by lowering the ferrite transformation temperature and reducing the difference between the transformation initiation temperature of the ferrite transformation and the precipitation initiation temperature of the precipitate, but the effect is obtained. It is necessary to add 0.5% or more of Mn. On the other hand, if the amount of Mn exceeds 3.0%, a low-temperature transformation phase such as bainite is generated in addition to ferrite, resulting in insufficient precipitation strengthening due to fine precipitates, resulting in a decrease in strength. Furthermore, when the low temperature transformation phase is generated, the magnetic properties are deteriorated. For this reason, the upper limit of Mn is set to 3.0%.
In addition, since especially high magnetic flux density B50 is obtained when the amount of Mn is 1.7% or less, it is preferable to make it 1.7% or less in order to obtain high magnetic characteristics. More preferably, it is 0.6 to 1.65%. On the other hand, by adding Mn in an amount exceeding 1.7%, the effect of increasing the strength by solid solution strengthening of Mn becomes remarkable. Therefore, it is preferable to exceed 1.7% particularly when increasing the strength is desired. More preferably, it is 1.75 to 2.80%.

Al:0.1%以下
Alは、脱酸剤として、添加してよいが、過剰に添加するとその効果が飽和するだけでなく、Nとの析出物であるAlNの量が増え、このAlNは10nm未満の径で析出することがないため、磁気特性を劣化させることになる。これを避けるために、Alの添加量は0.1%以下とする。より好ましくは0.05%以下である。脱酸剤として用いる場合には、0.01%以上が好ましい。
Al: 0.1% or less
Al may be added as a deoxidizing agent, but if it is added excessively, not only the effect is saturated, but also the amount of AlN that is a precipitate with N increases, and this AlN precipitates with a diameter of less than 10 nm. Therefore, the magnetic characteristics are deteriorated. In order to avoid this, the amount of Al added is 0.1% or less. More preferably, it is 0.05% or less. When used as a deoxidizer, 0.01% or more is preferable.

Ti:0.03〜0.35%
Tiは、Ti系炭化物やTi−Mo系炭化物を含む析出物を微細に析出させ、強度を向上させるために添加する。すなわち、高い降伏強度を確保するためには0.03%以上が必要であり、一方0.35%を超えて添加すると、析出物が粗大化し、却って強度が低下するため、Tiは0.03〜0.35%の添加範囲とする。より好ましくは0.03〜0.30%である。
Ti: 0.03-0.35%
Ti is added to finely precipitate precipitates including Ti-based carbides and Ti-Mo-based carbides, and improve strength. In other words, 0.03% or more is necessary to ensure a high yield strength. On the other hand, if it exceeds 0.35%, precipitates become coarse and the strength decreases. Therefore, Ti is added in the range of 0.03 to 0.35%. And More preferably, it is 0.03 to 0.30%.

Mo:0.05〜0.8%
Moは、Mo系炭化物やTi−Mo系炭化物を含む析出物を微細に析出させ、強度を向上させるために添加する。また、Moは拡散速度が遅く、Tiと共に析出する場合、析出物の成長速度が低下し、微細な析出物が得られ易いという利点も有する。ここで、高い降伏強度を確保するためには、0.05%以上のMoの添加が必要であり、一方0.8%を超えて添加すると、フェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による析出強化が不足し、強度が低下すると共に磁気特性が劣化する。このため、Moの添加は0.05〜0.8%とする。より好ましくは0.15〜0.50%である。
Mo: 0.05-0.8%
Mo is added to finely precipitate precipitates including Mo-based carbides and Ti-Mo-based carbides, and improve strength. Further, Mo has a slow diffusion rate, and when it precipitates together with Ti, it has an advantage that the growth rate of the precipitate is reduced and a fine precipitate is easily obtained. Here, in order to ensure high yield strength, it is necessary to add 0.05% or more of Mo. On the other hand, when adding over 0.8%, a low-temperature transformation phase such as bainite is generated in addition to ferrite. Precipitation strengthening due to fine precipitates is insufficient, and strength is lowered and magnetic properties are deteriorated. For this reason, the addition of Mo is set to 0.05 to 0.8%. More preferably, it is 0.15-0.50%.

上記成分組成において、特にC、Ti及びMo量の原子比に関し、下記(1)式を満足させると、析出物を微細化する上で有利である。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ----(1)
本パラメーターは、析出物の大きさに影響を与えるもので、0.50以上、1.50以下とした場合、粒径10nm未満の微細析出物の形成が容易となり好ましい。
In the above component composition, particularly regarding the atomic ratio of the amounts of C, Ti and Mo, satisfying the following formula (1) is advantageous in making the precipitate finer.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 ---- (1)
This parameter affects the size of the precipitate, and when it is 0.50 or more and 1.50 or less, formation of fine precipitates having a particle size of less than 10 nm is facilitated, which is preferable.

尚、微細なTi−Mo系炭化物では、炭化物中のTiおよびMoは原子比Ti/Moが0.2〜2.0、更に微細な炭化物では0.7〜1.5であることが観察された。   In addition, in the fine Ti-Mo type carbide, Ti and Mo in the carbide were observed to have an atomic ratio Ti / Mo of 0.2 to 2.0, and in the finer carbide, 0.7 to 1.5.

以上、必須成分について説明したが、本発明では強度や靭性等の一層の向上を図るため、Nb、VおよびWの1種または2種以上を添加することができる。   Although the essential components have been described above, in the present invention, one or more of Nb, V and W can be added in order to further improve the strength and toughness.

Nb:0.08%以下
Nbは、TiおよびMoと共に微細析出物を形成して強度上昇に寄与する。また、フェライトを整粒化することで延性及び靭性を向上させる。これらの効果を得るには、0.005%以上とすることが好ましい。但し、0.08%を超えて含有するとフェライトが微細化し、微細析出物が磁気特性に悪影響を及ぼすようになるため、添加量は0.08%以下とする。より好ましくは0.04%以下である。
Nb: 0.08% or less
Nb forms a fine precipitate together with Ti and Mo and contributes to an increase in strength. Moreover, ductility and toughness are improved by adjusting the grain size of ferrite. In order to obtain these effects, 0.005% or more is preferable. However, if the content exceeds 0.08%, the ferrite becomes finer and fine precipitates adversely affect the magnetic properties. Therefore, the addition amount should be 0.08% or less. More preferably, it is 0.04% or less.

V:0.15%以下
VもTi、Moと共に微細析出物を形成して強度上昇に寄与することから、好ましくは0.005%以上で添加するが、0.15%を超えて含有すると、析出物が粗大化するようになるため、添加量は0.15%以下とする。より好ましくは0.10%以下である。
V: 0.15% or less V also forms fine precipitates together with Ti and Mo and contributes to increasing the strength. Therefore, V is preferably added at 0.005% or more, but if it exceeds 0.15%, the precipitates become coarse. Therefore, the addition amount is 0.15% or less. More preferably, it is 0.10% or less.

W:1.5%以下
WもTi、Moと共に微細析出物を形成して強度上昇に寄与することから、好ましくは0.01%以上で添加するが、1.5%を超えて含有すると、析出物が粗大化するようになるため、添加量は1.5%以下とする。より好ましくは1.0%以下である。
W: 1.5% or less W also forms fine precipitates together with Ti and Mo and contributes to increasing the strength. Therefore, W is preferably added at 0.01% or more, but if it exceeds 1.5%, the precipitates become coarse. Therefore, the addition amount is 1.5% or less. More preferably, it is 1.0% or less.

これらの元素を添加した場合、これらの元素とC、TiおよびMo量の原子比を下記(2)式のように規定すると、析出物の微細化に有利となる。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ----(2)
本パラメーターは、析出物の大きさに影響を与えるもので、0.50以上1.50以下とした場合、粒径10nm未満の微細析出物の形成が容易となり好ましい。
When these elements are added, if the atomic ratio of these elements and the amounts of C, Ti, and Mo is defined as shown in the following formula (2), it is advantageous for refinement of precipitates.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 ---- (2)
This parameter affects the size of the precipitate, and when it is set to 0.50 or more and 1.50 or less, formation of fine precipitates having a particle size of less than 10 nm is facilitated, which is preferable.

尚、Nb、VおよびWの1種または2種以上を含む微細な炭化物では、炭化物中のTi、Mo、Nb、V、Wの原子比(Ti+Nb+V)/(Mo+W)が0.2〜2.0、更に微細な炭化物では0.7〜1.5であることが観察された。   In addition, in the fine carbide containing one or more of Nb, V, and W, the atomic ratio (Ti + Nb + V) / (Mo + W) of Ti, Mo, Nb, V, W in the carbide is 0.2 to 2.0, and is finer It was observed to be 0.7 to 1.5 for the fine carbides.

更に、本発明では、部品加工時の切削性を向上させるため、S:0.01〜0.1%とした上で、Pb≦0.2%、Ca≦0.005、Bi≦0.1%およびB≦0.02%の1種または2種以上を添加することができる。
ここで、S量を0.01〜0.1%としたのは、S量が0.01%未満であると、切削性の向上が図られないためであり、0.1%を超えると、延性や靭性が低下するためである。なお、Sは0.01%未満で不純物として含有されるものである。本発明において、0.1%以下の含有量では、強度ならびに磁気特性には影響を及ぼさない。そのため、積極的に添加して、0.01〜0.1%の含有量とすることができる。
また、Pb、Ca、BiおよびBについても、添加量がそれぞれの上限を超えると、延性や靭性が低下するため、その添加量は、Pb≦0.2%、Ca≦0.005%、Bi≦0.1%およびB≦0.02%とする必要がある。
Further, in the present invention, in order to improve the machinability at the time of machining the part, S: 0.01 to 0.1%, Pb ≦ 0.2%, Ca ≦ 0.005, Bi ≦ 0.1% and B ≦ 0.02% or Two or more kinds can be added.
Here, the reason why the S content is 0.01 to 0.1% is that if the S content is less than 0.01%, the machinability cannot be improved, and if it exceeds 0.1%, the ductility and toughness deteriorate. It is. S is less than 0.01% and is contained as an impurity. In the present invention, when the content is 0.1% or less, the strength and magnetic properties are not affected. Therefore, it can add actively and it can be set as 0.01 to 0.1% of content.
Also, for Pb, Ca, Bi, and B, when the addition amount exceeds the respective upper limit, ductility and toughness are reduced. Therefore, the addition amount is Pb ≦ 0.2%, Ca ≦ 0.005%, Bi ≦ 0.1% and It is necessary to set B ≦ 0.02%.

その他、強度、延性及び靭性を向上させる目的で、Cr、NiおよびCuの1種または2種以上をCr≦0.5%、Ni≦0.5%およびCu≦0.5%の範囲で添加しても構わない。   In addition, for the purpose of improving strength, ductility and toughness, one or more of Cr, Ni and Cu may be added in the range of Cr ≦ 0.5%, Ni ≦ 0.5% and Cu ≦ 0.5%.

不可避的不純物であるPとNは、磁気特性にとって好ましくない元素であるため、PとNは低減することが望ましい。具体的には、Pについては0.03%以下に規制することが好ましい。Nについては0.01%以下に規制することが好ましく、0.005%以下に規制することが更に好ましい。
尚、これらの元素の添加有無や含有量により、本発明の効果が損なわれることは無い。
P and N, which are inevitable impurities, are elements that are not preferable for the magnetic properties, so it is desirable to reduce P and N. Specifically, it is preferable to restrict P to 0.03% or less. N is preferably regulated to 0.01% or less, more preferably 0.005% or less.
In addition, the effect of this invention is not impaired by the presence or absence and content of these elements.

[ミクロ組織]
本発明では、ミクロ組織を、平均結晶粒径が60μm以上のフェライトの面積率が95%以上で、かつ粒径10nm未満の微細析出物が分散析出した組織に規定することが肝要である。これは、以下の理由による。
[Microstructure]
In the present invention, it is important to define the microstructure as a structure in which the area ratio of ferrite having an average crystal grain size of 60 μm or more is 95% or more and fine precipitates having a grain size of less than 10 nm are dispersed and precipitated. This is due to the following reason.

まず、フェライトの面積率を95%以上、好ましくは98%以上とするのは、フェライト相が磁気特性にとって最も好ましい組織であるからである。尚、本発明におけるフェライトの面積率は、断面組織観察(200倍の光学顕微鏡組織観察)で求める。以下、フェライトの面積率が95%以上の組織をフェライト単相組織というFirst, the area ratio of ferrite of 95% or more, to preferably 98% or more, since ferrite phase is the most preferred tissues for magnetic properties. In addition, the area ratio of the ferrite in this invention is calculated | required by cross-sectional structure | tissue observation (200 times optical microscope structure | tissue observation) . Hereinafter , a structure having a ferrite area ratio of 95% or more is referred to as a ferrite single-phase structure .

更に、本発明では、フェライトの平均結晶粒径を60μm以上とする。これは、従来、磁気特性にとって有害と考えられてきた析出物であっても、これが10nm未満と微細な場合には、フェライトの平均結晶粒径を大きくすることで、悪影響を排除できるからである。この点については、以下に詳述する。   Furthermore, in the present invention, the average crystal grain size of ferrite is set to 60 μm or more. This is because even if the precipitate has been considered to be harmful to the magnetic properties in the past, if it is fine as less than 10 nm, the adverse effect can be eliminated by increasing the average crystal grain size of ferrite. . This point will be described in detail below.

成分組成が本発明範囲にある、C:0.068%、Si:0.11%、Mn:1.48%、Ti:0.24%、Mo:0.28%、P:0.018%、S:0.023%、Al:0.029%およびN:0.0041%を含み残部が鉄および不可避不純物の成分組成を有する鋼(鋼1)と、成分組成が本発明範囲から外れた、C:0.072%、Si:0.08%、Mn:1.38%、Ti:0.41%、Mo:0.16%、P:0.015%、S:0.017%、Al:0.031%およびN:0.0030%を含み残部が鉄および不可避不純物の成分組成を有する鋼(鋼2)との二種類の鋼を溶製した。これらを1180℃に加熱後、直径100mmの棒鋼に熱間圧延し、圧延後室温まで空冷した(500℃までの平均冷却速度は0.18℃/s)。その際、結晶粒径を変化させるため、熱間圧延における圧延パススケジュール(各圧下パスの温度と減面率)を種々に変化させた。かくして得られた棒鋼について組織観察を行うと共に、引張試験値および磁気特性を測定した。   Component composition is within the scope of the present invention, C: 0.068%, Si: 0.11%, Mn: 1.48%, Ti: 0.24%, Mo: 0.28%, P: 0.018%, S: 0.023%, Al: 0.029% and N : Steel containing 0.0041% and the balance being iron and inevitable impurities (steel 1), and the composition was outside the scope of the present invention, C: 0.072%, Si: 0.08%, Mn: 1.38%, Ti: 0.41%, Mo: 0.16%, P: 0.015%, S: 0.017%, Al: 0.031% and N: 0.0030%, the balance being iron and inevitable impurities (steel 2) Steel was melted. These were heated to 1180 ° C., hot-rolled into a steel bar having a diameter of 100 mm, and air-cooled to room temperature after rolling (the average cooling rate up to 500 ° C. was 0.18 ° C./s). At that time, in order to change the crystal grain size, the rolling pass schedule (temperature of each reduction pass and the area reduction rate) in hot rolling was variously changed. The steel bar thus obtained was subjected to a structure observation, and a tensile test value and a magnetic property were measured.

ここで、引張試験値については、棒鋼の1/4D(D:棒鋼の直径、100mm)の位置から、平行部の直径6mmおよび平行部長さ40mmの試験片を棒鋼の長手方向に採取し、測定に供した。   Here, the tensile test value was measured by taking a specimen having a parallel part diameter of 6 mm and a parallel part length of 40 mm from the position of 1/4 D of the steel bar (D: diameter of the steel bar, 100 mm) in the longitudinal direction of the steel bar. It was used for.

磁気特性については、得られた棒鋼の中央部から内径33mm、外径45mmおよび厚み5mmのリング状試験片を、リング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流5000A/mでの磁束密度B50ならびに交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。 Regarding the magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the obtained steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times. In addition, 100 times of secondary windings were applied, and the magnetic flux density B 50 at a direct current excitation current of 5000 A / m and the iron loss W 10/50 when excited to a magnetic flux density of 1.0 T at an alternating current of 50 Hz were measured.

組織観察は、棒鋼の任意の位置、計20箇所から組織観察用試験片を採取し、組織の同定を行うと共に、それぞれの試験片についてJIS G 0552の切断法で結晶粒の平均断面積を求め、これより相当円の直径として各試験片の結晶粒径を算出し、更に計20箇所の平均値を求めて、棒鋼全体の平均結晶粒径を求めた。更に、後に詳述する電子顕微鏡観察により析出物の大きさを評価した。   For structure observation, specimens for structure observation were collected from 20 positions at any position on the steel bar, and the structure was identified, and the average cross-sectional area of the crystal grains was determined for each specimen by the cutting method of JIS G 0552. From this, the crystal grain size of each test piece was calculated as the diameter of the equivalent circle, and the average value of a total of 20 locations was determined to determine the average crystal grain size of the entire steel bar. Furthermore, the magnitude | size of the deposit was evaluated by the electron microscope observation explained in full detail behind.

組織観察の結果、鋼1および2は共に、圧延条件を問わず組織がフェライト単相となっていたが、結晶粒径を変えるために熱間圧延でのパススケジュールを変化させたため、フェライト粒径は30μm程度から100μm程度まで変化していた。また、析出物の大きさに関しては、成分組成が本発明範囲にある鋼1ではほぼ5nm程度と微細になっていたが、成分組成が本発明範囲から外れた鋼2では20〜30nmと粗大になっていた。   As a result of the structure observation, both steels 1 and 2 had a ferrite single phase structure regardless of the rolling conditions. However, since the pass schedule in hot rolling was changed to change the crystal grain size, Changed from about 30 μm to about 100 μm. Further, regarding the size of the precipitate, the steel 1 having the component composition within the range of the present invention had a fineness of about 5 nm, but the steel 2 having the component composition outside the range of the present invention had a coarseness of 20 to 30 nm. It was.

次に、図1に、フェライト粒径と、降伏強度YS、磁束密度B50および鉄損W10/50との関係を示す。
同図から判るように、成分組成が本発明範囲にある鋼1及び成分組成が本発明範囲から外れた鋼2はともに、降伏強度YSはフェライト粒径が増加すると低下する傾向を示すが、析出物が5nmと微細な鋼1では、500MPa以上と十分高い降伏強度が得られるのに対し、析出物が20〜30nmと粗大な鋼2では、500MPa未満の降伏強度しか得られない。
Next, FIG. 1 shows the relationship between the ferrite grain size, the yield strength YS, the magnetic flux density B 50 and the iron loss W 10/50 .
As can be seen from the figure, both the steel 1 whose component composition falls within the scope of the present invention and the steel 2 whose component composition falls outside the scope of the present invention both show that the yield strength YS tends to decrease as the ferrite grain size increases. Steel 1 with a fineness of 5 nm gives a sufficiently high yield strength of 500 MPa or more, whereas steel 2 with a coarse precipitate of 20 to 30 nm gives a yield strength of less than 500 MPa.

磁気特性もフェライト粒径に依存して変化するが、粒径依存性は鋼1と鋼2で大幅に異なる。成分組成が本発明範囲にあり、かつ析出物径が5nmと微細な鋼1では、フェライト粒径が小さい場合、磁束密度は1.59T前後と低く、鉄損は44W/kg程度と高いが、フェライト粒径が60μm以上になると磁束密度、鉄損とも著しく改善し、磁束密度は1.63T以上および鉄損は40W/kg以下と、優れた磁気特性を示すようになる。
一方、成分組成が本発明範囲から外れており析出物が20〜30nmと粗大な鋼2では、フェライト粒径の増加と共に、磁束密度は上昇し鉄損は低下する傾向を示すものの、その程度は僅かであり、磁束密度は1.59T前後および鉄損は40W/kg以上と、低位な磁気特性しか示さない。
The magnetic properties also vary depending on the ferrite grain size, but the grain size dependence differs greatly between Steel 1 and Steel 2. In Steel 1, which has a component composition within the range of the present invention and a precipitate diameter of 5 nm, when the ferrite grain size is small, the magnetic flux density is as low as around 1.59 T and the iron loss is as high as about 44 W / kg. When the particle size is 60 μm or more, both the magnetic flux density and the iron loss are remarkably improved. The magnetic flux density is 1.63 T or more and the iron loss is 40 W / kg or less, and excellent magnetic properties are exhibited.
On the other hand, in Steel 2, which has a component composition that is out of the scope of the present invention and the precipitate is 20 to 30 nm, the magnetic flux density increases and the iron loss decreases as the ferrite grain size increases. The magnetic flux density is only about 1.59 T, and the iron loss is 40 W / kg or more, showing only low magnetic properties.

このように、析出物を5nmと微細にすると、高い降伏強度が得られると共に、平均結晶粒径を60μm以上に粗大化させると、磁気特性にとって有害と考えられてきた析出物の影響が抑制され、優れた磁気特性を得ることができる。
以上の検討を析出物の大きさが種々変化した鋼について行ったところ、析出物の大きさが10nm未満の場合、何れもフェライト粒径を60μm以上とすることで、高い磁束密度B50と鉄損W10/50が得られたため、本発明ではフェライト粒径を60μm以上と規定する。
Thus, when the precipitate is made as fine as 5 nm, high yield strength is obtained, and when the average crystal grain size is increased to 60 μm or more, the influence of the precipitate, which has been considered harmful to magnetic properties, is suppressed. Excellent magnetic properties can be obtained.
The above examination was performed on steels with various changes in the size of the precipitates. When the size of the precipitates was less than 10 nm, the ferrite particle size was set to 60 μm or more, so that high magnetic flux density B 50 and iron Since the loss W 10/50 was obtained, the ferrite grain size is defined as 60 μm or more in the present invention.

尚、析出物を微細化した上でフェライト粒径を粗大にすると、析出物の悪影響が抑制され優れた磁気特性が得られる理由については必ずしも明らかではないが、磁化過程での磁壁移動と析出物の関係が示唆される。   Although it is not always clear why the grain size of the ferrite is refined and the ferrite grain size is increased, the adverse effect of the precipitate is suppressed and excellent magnetic properties are obtained. The relationship is suggested.

すなわち、一般に、磁気特性上は磁壁移動が容易な程好ましく、析出物はこの磁壁移動を妨げることで磁気特性に悪影響を及ぼすとされる。ところで、フェライト粒径が増大すると、磁区の大きさも増大し、磁区の境界である磁壁の長さも増大する。ここで、磁壁長さが十分に長く、析出物が十分に微細な場合には、析出物による磁壁移動の抑止力と磁壁
移動の駆動力そのものとの相対関係から、析出物の影響が無視できるようになると推察される。このため、析出物を微細化した上でフェライト粒径を粗大にすると、優れた磁気特性が具備されると考えられる。
That is, in general, it is preferable that the domain wall movement is easy in terms of magnetic characteristics, and precipitates are considered to adversely affect the magnetic characteristics by preventing the domain wall movement. By the way, when the ferrite grain size increases, the size of the magnetic domain also increases, and the length of the domain wall that is the boundary of the magnetic domain also increases. Here, when the domain wall length is sufficiently long and the precipitates are sufficiently fine, the influence of the precipitates can be ignored from the relative relationship between the domain wall movement deterring force due to the precipitates and the driving force itself of the domain wall movement. It is presumed that For this reason, it is considered that if the ferrite grain size is increased after the precipitates are refined, excellent magnetic properties are provided.

さらに、本発明では、微細析出物の粒径は10nm未満とする。析出物の粒径が10nm以上の場合、析出強化能が不足し、高い降伏強度が得られない。
すなわち、微細析出物の粒径は、小さい程強度上昇に有効であり、10nm未満、望ましくは5nm、更に望ましくは3nm以下とする。そのような微細析出物としては、TiおよびMoを複合含有した炭化物、またそれらに更にNb、VおよびWの1種または2種以上を含む炭化物が好ましい。尚、微細析出物は、熱間圧延後の冷却中に析出させる。
Furthermore, in the present invention, the particle size of the fine precipitate is less than 10 nm. When the grain size of the precipitate is 10 nm or more, the precipitation strengthening ability is insufficient and a high yield strength cannot be obtained.
That is, the smaller the particle size of the fine precipitates, the more effective the strength increase, and it is less than 10 nm, preferably 5 nm, and more preferably 3 nm or less. As such fine precipitates, carbides containing a composite of Ti and Mo, and carbides further containing one or more of Nb, V and W are preferable. The fine precipitate is precipitated during cooling after hot rolling.

微細析出物の個数については、1000個/μm3以上、更に望ましくは5000個/μm3以上あることが、強度確保の観点から好ましい。 The number of fine precipitates is preferably 1000 / μm 3 or more, and more preferably 5000 / μm 3 or more from the viewpoint of securing strength.

これらの微細析出物は、母相中に均一に分散析出することが望ましい。また、本発明において、析出物の大きさは、全析出物の90%以上が上記の条件を満足すれば、高い降伏強度が得られる。但し、10nm以上の大きさの析出物は、析出物形成元素を徒に消費し、強度に悪影響を与えるため、その大きさを50nm以下に抑えることが好ましい。   These fine precipitates are desirably dispersed and precipitated uniformly in the matrix phase. In the present invention, if the size of the precipitates satisfies 90% or more of the total precipitates, the high yield strength can be obtained. However, since the precipitate having a size of 10 nm or more consumes the precipitate-forming element and adversely affects the strength, the size is preferably suppressed to 50 nm or less.

上述した析出物とは別に、少量のFe炭化物を含有しても本発明の効果は損なわれないが、平均粒径が1μm以上のFe炭化物を多量に含むと磁気特性を阻害するため、本発明においては、含有されるFe炭化物の大きさの上限は1μm、含有率は析出物全体の1%以下とすることが望ましい。   In addition to the precipitates described above, the effect of the present invention is not impaired even if a small amount of Fe carbide is contained. However, if a large amount of Fe carbide having an average particle size of 1 μm or more is contained, the magnetic properties are hindered. In this case, the upper limit of the size of Fe carbide contained is preferably 1 μm, and the content is preferably 1% or less of the entire precipitate.

尚、析出物の大きさ及び微細析出物の全析出物に占める割合は、以下の方法により求める。
電子顕微鏡試料として、ツインジェット法を用いた電解研磨法で作製したものを用いて、加速電圧200kVで観察する。その際、析出物が母相に対して計測可能なコントラストになるように、母相の結晶方位を制御し、析出物の数え落としを最低限に抑えるため、焦点を正焦点からずらしたデフォーカス法にて観察を行う。また、析出物粒子の計測を行った領域の試料厚さは、電子エネルギー損失分光法を用いて、弾性散乱ピークと非弾性散乱ピーク強度を測定することで評価する。
The size of the precipitate and the ratio of the fine precipitate to the total precipitate are obtained by the following method.
As an electron microscope sample, a sample prepared by an electropolishing method using a twin jet method is used and observed at an acceleration voltage of 200 kV. At that time, the focus is shifted from the normal focus in order to control the crystal orientation of the parent phase so that the precipitate has a measurable contrast with respect to the parent phase and to minimize the number of precipitates. Observe by method. Moreover, the sample thickness of the area | region which measured the deposit particle | grains is evaluated by measuring an elastic scattering peak and an inelastic scattering peak intensity using an electron energy loss spectroscopy.

この方法により、粒子径及び粒子数の計測と試料厚さの計測とを、同じ領域について実行することができる。粒子径及び粒子数の測定は、試料の0.5μm×0.5μmの領域4箇所について行い、1μm2当りに分布する析出物を粒径ごとの個数として算出する。次いで、この値と試料の厚さから析出物の1μm3当りに分布する粒子径ごとの個数を算出する。これにより、析出物の大きさと、全析出物に占める粒径が10nm未満の析出物の割合を求める。
さらに、粒径が10μm以下のフェライトの面積率は10%以下であることが、より高い磁束密度を得る上で好ましい。この点について以下に詳述する。
By this method, the measurement of the particle diameter and the number of particles and the measurement of the sample thickness can be executed for the same region. The measurement of the particle diameter and the number of particles is performed on four places of a 0.5 μm × 0.5 μm region of the sample, and the precipitates distributed per 1 μm 2 are calculated as the number for each particle diameter. Next, the number per particle diameter distributed per 1 μm 3 of the precipitate is calculated from this value and the thickness of the sample. Thereby, the size of the precipitate and the proportion of the precipitate having a particle size of less than 10 nm in the total precipitate are obtained.
Further, the area ratio of ferrite having a particle size of 10 μm or less is preferably 10% or less in order to obtain a higher magnetic flux density. This point will be described in detail below.

成分組成が本発明範囲にある、C:0.095%、Si:0.15%、Mn:1.50%、Ti:0.22%、Mo:0.44%、P:0.022%、S:0.018%、Al:0.015%およびN:0.0053%を含み、残部が鉄および不可避的不純物の成分組成を有する鋼(鋼3)と、成分組成が本発明範囲から外れた、C:0.060%、Si:0.05%、Mn:1.25%、Ti:0.65%、Mo:0.12%、P:0.02%、S:0.008%、Al;0.020%およびN:0.0045%を含み残部が鉄および不可避的不純物の成分組成を有する鋼(鋼4)との2種類の鋼を溶製した。これらを1200℃に加熱後、直径100mmの棒鋼に熱間圧延し、圧延後に500℃までの平均冷却速度が0.18℃/sで室温まで冷却した。その際、結晶粒径を変化させるため、熱間圧延における圧延スケジュール(圧下パスの温度と減面率)ならびにその後の焼鈍温度を種々変化させた。得られた棒鋼について組織観察を行うと共に、引張試験値と磁気特性を測定した。   Component composition is within the range of the present invention, C: 0.095%, Si: 0.15%, Mn: 1.50%, Ti: 0.22%, Mo: 0.44%, P: 0.022%, S: 0.018%, Al: 0.015% and N : Steel containing 0.0053%, the balance being iron and inevitable impurities (steel 3), and the composition was outside the scope of the present invention, C: 0.060%, Si: 0.05%, Mn: 1.25%, Ti: 0.65%, Mo: 0.12%, P: 0.02%, S: 0.008%, Al: 0.020% and N: 0.0045%, the balance with steel (steel 4) having a component composition of iron and inevitable impurities Two types of steel were melted. These were heated to 1200 ° C. and hot-rolled into a steel bar having a diameter of 100 mm, and after rolling, the steel was cooled to room temperature at an average cooling rate of up to 500 ° C. at 0.18 ° C./s. At that time, in order to change the crystal grain size, various rolling schedules (temperature of rolling pass and area reduction ratio) and subsequent annealing temperatures in hot rolling were changed. The obtained steel bars were observed for the structure, and the tensile test values and magnetic properties were measured.

ここで、引張試験値については、棒鋼の1/4D(D:棒鋼の直径、100mm)の位置から、平行部の直径6mmおよび平行部長さ40mmの試験片を棒鋼の長手方向に採取し、測定に供した。   Here, the tensile test value was measured by taking a specimen having a parallel part diameter of 6 mm and a parallel part length of 40 mm from the position of 1/4 D of the steel bar (D: diameter of the steel bar, 100 mm) in the longitudinal direction of the steel bar. It was used for.

磁気特性については、得られた棒鋼の中央部から内径33mm、外径45mmおよび厚み5mmのリング状試験片を、リング板面が棒鋼断面に平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流5000A/mでの磁束密度B50ならびに、交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。 Regarding the magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm and a thickness of 5 mm was taken from the center of the obtained steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times. In addition, the magnetic flux density B 50 at a DC excitation current of 5000 A / m and the iron loss W 10/50 when excitation was performed up to a magnetic flux density of 1.0 T at an AC 50 Hz were measured.

また、組織観察は、棒鋼の任意の位置、計20箇所から組織観察用試験片を採取し、組織の同定を行った。それぞれの試験片について、各100個の粒を任意に選び、これらの断面積を画像処理によって求め、これと等価な断面積を持つ相当円の直径として計2000個の結晶粒の粒径を個別に算出すると共に、これらの平均値を求めることによって、棒鋼全体の平均結晶粒径を求めた。更に、粒径10μm以下のフェライト粒の面積率(以下、Ρと略記する)は、各視野における組織写真の粒径10μm以下の結晶粒を黒塗りした後、画像解析により求めた。更にまた、後述する電子顕微鏡観察により析出物の大きさを評価した。   In addition, for structure observation, specimens for tissue observation were collected from arbitrary positions of the steel bar, a total of 20 locations, and the structure was identified. For each test piece, select 100 grains each, and obtain the cross-sectional area of these by image processing. And the average crystal grain size of the whole steel bar was determined by calculating the average value of these. Furthermore, the area ratio of ferrite grains having a particle size of 10 μm or less (hereinafter abbreviated as “Ρ”) was determined by image analysis after blackening crystal grains having a particle size of 10 μm or less in the structure photograph in each field of view. Furthermore, the size of the precipitate was evaluated by observation with an electron microscope, which will be described later.

組織観察の結果、圧延条件を問わず組織はフェライト単相となっていたが、結晶粒径を変えるために熱間圧延でのパススケジュールならびに焼鈍温度を種々変化させたため、個々のフェライト粒径は2μm程度から100μm程度まで変化していた。   As a result of the structure observation, the structure was a ferrite single phase regardless of the rolling conditions, but in order to change the crystal grain size, the hot rolling pass schedule and the annealing temperature were variously changed, so the individual ferrite grain size was It changed from about 2 μm to about 100 μm.

また、析出物の大きさに関しては、成分組成が本発明範囲にある鋼3ではほぼ5nm程度と微細になっていたが、成分組成が本発明範囲から外れた鋼4では20〜30nmと粗大になっていた。   Further, regarding the size of the precipitate, the steel 3 having the component composition within the range of the present invention had a fineness of about 5 nm, but the steel 4 having the component composition outside the range of the present invention had a coarseness of 20 to 30 nm. It was.

図2に、フェライトの平均結晶粒径と、降伏強度YS、磁束密度B50および鉄損W10/50との関係を示す。
同図から判るように、成分組成が本発明範囲にある鋼3および成分組成が本発明範囲から外れた鋼4はともに、降伏強度YSはフェライト粒径が増加すると低下する傾向を示すが、析出物が5nmと微細な鋼3では、最低でも520MPaと十分高い降伏強度が得られるのに対し、析出物が20〜30nmと粗大な鋼4では、最高でも500MPa未満の降伏強度しか得られない。
FIG. 2 shows the relationship between the average crystal grain size of ferrite, the yield strength YS, the magnetic flux density B 50 and the iron loss W 10/50 .
As can be seen from the figure, both the steel 3 whose component composition falls within the scope of the present invention and the steel 4 whose component composition falls outside the scope of the present invention both show that the yield strength YS tends to decrease as the ferrite grain size increases. In steel 3 with a fineness of 5 nm, a sufficiently high yield strength of 520 MPa can be obtained at least, whereas in steel 4 with a coarse precipitate of 20-30 nm, a yield strength of less than 500 MPa can be obtained at most.

磁気特性も、フェライト粒径に依存して変化するが、粒径依存性は鋼3と鋼4で大幅に異なる。成分組成が本発明範囲内であり析出物が5nmと微細な鋼3では、フェライト粒径が小さい場、粒径10μm以下のフェライト粒が10%以下の場合に優れた磁気特性を示す。すなわち、粒径10μm以下のフェライト粒が10%以下ではフェライト平均粒径が60μm以上の範囲で、磁束密度B50は1.67T以上、鉄損は34W/kg以下と、優れた特性を示す。これに対し、粒径10μm以下のフェライト粒が10%超では、フェライト平均粒径が60μm以上でも、磁束密度が最大でも1.66Tであり、鉄損は35W/kg以上となる。 The magnetic properties also vary depending on the ferrite grain size, but the grain size dependence differs greatly between Steel 3 and Steel 4. Steel 3 having a component composition within the range of the present invention and having a precipitate as fine as 5 nm exhibits excellent magnetic properties when the ferrite grain size is small and when the ferrite grain size is 10 μm or less. That is, when the ferrite grain size is 10% or less, the ferrite average grain size is 60 μm or more, the magnetic flux density B 50 is 1.67 T or more, and the iron loss is 34 W / kg or less. On the other hand, if the ferrite grains having a grain size of 10 μm or less exceed 10%, the average magnetic grain diameter is 60 μm or more, the magnetic flux density is 1.66 T at the maximum, and the iron loss is 35 W / kg or more.

一方、成分組成が本発明範囲外であり、析出物が20〜30nmと粗大な鋼4では、フェライト粒径の増加と共に磁束密度は上昇し、鉄損は低下する傾向を示すが、磁束密度は1.60T以下、鉄損は40W/kg以上と、低位な磁気特性しか示さない。   On the other hand, in the steel 4 in which the component composition is outside the range of the present invention and the precipitate is 20 to 30 nm and coarse, the magnetic flux density tends to increase and the iron loss decreases as the ferrite grain size increases. 1.60T or less, iron loss is 40W / kg or more, showing only low magnetic properties.

また、鋼3、鋼4に対してMn含有量が高い鋼5、鋼6についても、同様に平均結晶粒径および粒径10μm以下のフェライト粒の面積率(以下、Ρと略記する)の影響を調査した結果を図3に示す。ここで、鋼5は、成分組成が本発明範囲にある、C:0.075%、Si:0.09%、Mn:2.15%、Ti:0.24%、Mo:0.48%、P:0.018%、S:0.023%、Al:0.029%およびN:0.0041%を含み、残部が鉄および不可避的不純物の成分組成を有する鋼であり、鋼6は、成分組成が本発明範囲から外れた、C:0.072%、Si:0.08%、Mn:2.20%、Ti:0.46%、Mo:0.12%、P:0.015%、S:0.017%、Al:0.031%およびN:0.0030%を含み残部が鉄および不可避的不純物の成分組成を有する鋼である。   Similarly, the influence of the average grain size and the area ratio of ferrite grains having a grain size of 10 μm or less (hereinafter abbreviated as 同 様) on steels 5 and 6 having a higher Mn content than steels 3 and 4 The results of the investigation are shown in FIG. Here, the composition of steel 5 is within the range of the present invention, C: 0.075%, Si: 0.09%, Mn: 2.15%, Ti: 0.24%, Mo: 0.48%, P: 0.018%, S: 0.023% , Al: 0.029% and N: 0.0041%, the balance being steel having a component composition of iron and unavoidable impurities, steel 6 having a component composition outside the scope of the present invention, C: 0.072%, Si: Contains 0.08%, Mn: 2.20%, Ti: 0.46%, Mo: 0.12%, P: 0.015%, S: 0.017%, Al: 0.031% and N: 0.0030%, the balance being the composition of iron and inevitable impurities It has steel.

図3に、フェライトの平均結晶粒径と、降伏強度YS、磁束密度B50および鉄損W10/50との関係を示す。
同図から判るように、成分組成が本発明範囲にある鋼5および成分組成が本発明範囲から外れた鋼6はともに、降伏強度YSはフェライト粒径が増加すると低下する傾向を示すが、析出物が5nmと微細な鋼5では、最低でも550MPaと十分高い降伏強度が得られるのに対し、析出物が20〜30nmと粗大な鋼6では、530MPa未満の降伏強度しか得られない。
FIG. 3 shows the relationship between the average crystal grain size of ferrite, the yield strength YS, the magnetic flux density B50, and the iron loss W10 / 50.
As can be seen from the figure, both the steel 5 whose component composition falls within the scope of the present invention and the steel 6 whose component composition departs from the scope of the present invention show a tendency that the yield strength YS tends to decrease as the ferrite grain size increases. In steel 5 with a fineness of 5 nm, a sufficiently high yield strength of at least 550 MPa is obtained, whereas in steel 6 with a coarse precipitate of 20-30 nm, a yield strength of less than 530 MPa is obtained.

磁気特性も、フェライト粒径に依存して変化するが、粒径依存性は鋼5と鋼6で大幅に異なる。成分組成が本発明範囲内であり析出物が5nmと微細な鋼5では、フェライト粒径が小さく、かつ粒径10μm以下のフェライトの面積率が10%以下の場合に優れた磁気特性を示す。すなわち、粒径10μm以下のフェライトの面積率が10%以下であれば、フェライト平均粒径が60μm以上の範囲で、磁束密度B50は1.66T以上、鉄損は35W/kg以下と、優れた特性を示す。これに対し、同フェライト面積率が10%超では、フェライト平均粒径が60μm以上でも、磁束密度が最大でも1.66Tであり、鉄損は35W/kg超えとなる。 The magnetic properties also vary depending on the ferrite grain size, but the grain size dependence differs greatly between Steel 5 and Steel 6. Steel 5 having a component composition within the range of the present invention and a fine precipitate of 5 nm exhibits excellent magnetic properties when the ferrite grain size is small and the area ratio of ferrite having a grain size of 10 μm or less is 10% or less. That is, if the area ratio of ferrite having a particle size of 10 μm or less is 10% or less, the ferrite average particle size is 60 μm or more, the magnetic flux density B 50 is 1.66 T or more, and the iron loss is 35 W / kg or less. Show properties. On the other hand, when the ferrite area ratio exceeds 10%, even if the average ferrite grain size is 60 μm or more, the magnetic flux density is 1.66 T at the maximum, and the iron loss exceeds 35 W / kg.

一方、成分組成が本発明範囲外であり、析出物が20〜30nmと粗大な鋼6では、フェライト粒径の増加と共に磁束密度は上昇し、鉄損は低下する傾向を示すが、磁束密度は1.60T以下および鉄損は40W/kg以上と、低位な磁気特性しか示さない。   On the other hand, in the steel 6 having a component composition outside the scope of the present invention and having a precipitate as coarse as 20 to 30 nm, the magnetic flux density tends to increase and the iron loss decreases as the ferrite grain size increases. 1.60 T or less and iron loss of 40 W / kg or more, showing only low magnetic properties.

このように、析出物を5nmと微細にすると高い降伏強度が得られると共に、平均結晶粒径を60μm以上に粗大化させることで、磁気特性にとって有害と考えられてきた析出物の影響が軽減され、さらに粒径10μm以下のフェライトの面積率を10%以下とすることで、さらに優れた磁気特性を得ることができる。そして、かような検討を析出物の大きさが種々変化した鋼について行ったところ、析出物の大きさが10nm未満の場合、何れもフェライト粒径を60μm以上、Ρを10%以下とすることで、高い磁束密度B50と低い鉄損WlO/50が得られた。 Thus, when the precipitate is made as fine as 5 nm, high yield strength is obtained, and the influence of the precipitate, which has been considered harmful to magnetic properties, is reduced by increasing the average crystal grain size to 60 μm or more. Further, by setting the area ratio of ferrite having a particle size of 10 μm or less to 10% or less, further excellent magnetic properties can be obtained. And when such a study was conducted on steels with various changes in the size of the precipitates, when the size of the precipitates was less than 10 nm, the ferrite grain size should be 60 μm or more and the wrinkles should be 10% or less. in a high magnetic flux density B 50 and low iron loss W lO / 50 was obtained.

更に、この点を確認するため、同様の検討を化学組成、析出物径及びフェライト粒径が種々変化した鋼について行ったところ、析出物の大きさが10nm未満の場合、フェライトの平均粒径を60μm以上とすると共に、粒径10μm以下のフェライトの面積率を10%以下とすれば、高い磁束密度B50ならびに低い鉄損WlO/50が得られることが明らかとなった。従って、磁気特性の点からは、フェライトの平均粒径を60μm以上粒径が10μm以下のフェライトの面積率を10%以下とすることが好ましいのである。 Furthermore, in order to confirm this point, the same examination was performed on steels with various chemical compositions, precipitate diameters, and ferrite particle diameters. When the precipitate size was less than 10 nm, the average particle diameter of ferrite was determined. When the area ratio of ferrite having a grain size of 10 μm or less is set to 10 μm or less in addition to 60 μm or more, it has been clarified that high magnetic flux density B 50 and low iron loss W 10/50 can be obtained. Therefore, from the viewpoint of magnetic properties, it is preferable that the area ratio of ferrite having an average grain size of ferrite of 60 μm or more and 10 μm or less is 10% or less.

ここで、粒径10μm以下の微細なフェライトが少ない場合には、磁気特性に対する析出物の悪影響が抑制される理由については必ずしも明らかではないが、磁壁移動に対する抑止力と結晶粒径の関係が示唆される。   Here, when there are few fine ferrites with a grain size of 10 μm or less, the reason why the adverse effect of precipitates on the magnetic properties is suppressed is not necessarily clear, but the relationship between the deterring force against domain wall motion and the crystal grain size is suggested. Is done.

すなわち、一般に、磁気特性上は磁壁移動が容易な程好ましく、析出物はこの磁壁移動を妨げることで磁気特性に悪影響をおよぼすとされる。ところで、フェライト粒径が増大すると磁区の大きさも増大し、磁区の境界である磁壁の長さも増大する。ここで、磁壁長さが十分に長く、かつ析出物が十分に微細な場合は、析出物による磁壁移動の抑止力と磁壁移動の駆動力との相対関係から、磁壁移動に対する析出物の影響が事実上無視できるようになると推察される。このため、フェライト粒径は大きい程磁気特性上有利となるが、鋼材全体を考えると、フェライト粒径は必ずしも同一ではなく、フェライト粒径にはある程度バラツキがあることに配慮する必要がある。   That is, in general, it is preferable that the domain wall movement is easy in terms of magnetic characteristics, and the precipitates have an adverse effect on the magnetic characteristics by preventing the domain wall movement. By the way, when the ferrite grain size increases, the size of the magnetic domain also increases, and the length of the domain wall that is the boundary of the magnetic domain also increases. Here, when the domain wall length is sufficiently long and the precipitate is sufficiently fine, the influence of the precipitate on the domain wall movement is affected by the relative relationship between the domain wall movement deterring force by the precipitate and the driving force of the domain wall movement. It is assumed that it will be virtually negligible. For this reason, the larger the ferrite particle size, the more advantageous in terms of magnetic properties. However, considering the entire steel material, it is necessary to consider that the ferrite particle size is not necessarily the same, and the ferrite particle size varies to some extent.

フェライト粒径にバラツキがあると、フェライトの大きな部分では磁壁は析出物の影響を受けず容易に移動できるが、フェライトの小さな部分では破壁移動が析出物によって妨げられるため、これが磁壁の移動をある程度律速することになる。従って、フェライトの平均的な大きさを増大させることに加えて、磁壁移動の律速となる微細なフェライトが占める割合を低減することが磁気特性上重要となる。このため、粒径10μm以下の微細なフェライトの割合を減じると、磁気特性に対する析出物の悪影響を防止するためのフェライ
トの平均粒径が、微細なフェライトの割合を特段考慮しない場合より低下するものと考えられる。
If the ferrite grain size varies, the domain wall can move easily without being affected by precipitates in the large part of ferrite, but in the small part of ferrite, the fracture wall movement is hindered by the precipitates. It will be rate limited to some extent. Therefore, in addition to increasing the average size of the ferrite, it is important in terms of magnetic properties to reduce the proportion of fine ferrite that is the rate-determining domain wall motion. Therefore, if the proportion of fine ferrite with a particle size of 10 μm or less is reduced, the average particle size of ferrite to prevent the adverse effect of precipitates on the magnetic properties will be lower than when the proportion of fine ferrite is not specifically considered it is conceivable that.

[製造条件]
以下に、望ましい製造条件について説明する。
加熱温度
本発明では、熱間圧延後の冷却中に析出物を微細に析出させるために、熱間圧延前の鋳片に析出している析出物を、加熱炉にて一旦固溶させる必要がある。その際、加熱温度が1100℃未満であると、Ti−Mo系炭化物等が十分に固溶しないため、加熱温度は1100℃以上とする。
[Production conditions]
Hereinafter, desirable manufacturing conditions will be described.
Heating temperature In the present invention, in order to precipitate precipitates finely during cooling after hot rolling, it is necessary to once dissolve the precipitates precipitated on the slab before hot rolling in a heating furnace. is there. At that time, if the heating temperature is less than 1100 ° C., Ti—Mo-based carbides and the like are not sufficiently dissolved, so the heating temperature is set to 1100 ° C. or higher.

減面率
本発明では優れた磁気特性を得るために、フェライトの平均結晶粒径を60μm以上とする必要があり、そのため熱間圧延での減面率を制御する。その場合、熱間圧延の最終パスにおける減面率を低下させることが有効である。具体的には、これを25%以下にすると粒径60μm以上のフェライトが得られるため、熱間圧延の最終パスにおける減面率については、その上限を25%とする。
Area reduction ratio In the present invention, in order to obtain excellent magnetic properties, the average crystal grain size of ferrite needs to be 60 μm or more, and therefore the area reduction ratio in hot rolling is controlled. In that case, it is effective to reduce the area reduction rate in the final pass of the hot rolling. Specifically, since ferrite with a grain size of 60 μm or more can be obtained when this is 25% or less, the upper limit of the area reduction rate in the final pass of hot rolling is 25%.

仕上温度
本発明では、析出物の析出挙動がフェライト変態の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度との差が小さく、フェライト変態と析出が競合する場合に、析出物がフェライト中に微細に分散析出する。フェライト変態と析出を競合させるには、フェライト変態の開始温度を下げる必要があるが、熱間圧延における仕上温度が低い場合には、圧延で導入される歪がフェライト変態の開始温度を上昇させ、析出物の微細化を阻害する。これを避けるためには、仕上温度を歪の影響が現れない高温にすれば良く、この点から仕上温度は880℃以上とする。
Finishing temperature In the present invention, the precipitation behavior of the precipitate is closely related to the progress of the ferrite transformation, and the difference between the transformation start temperature of the ferrite transformation that occurs during cooling after rolling and the precipitation start temperature of the precipitate is small, When the ferrite transformation and precipitation compete, the precipitate is finely dispersed and precipitated in the ferrite. In order to compete the ferrite transformation and precipitation, it is necessary to lower the ferrite transformation start temperature, but when the finishing temperature in hot rolling is low, the strain introduced in the rolling increases the ferrite transformation start temperature, Impairs refinement of precipitates. In order to avoid this, the finishing temperature may be set to a high temperature at which the influence of distortion does not appear. From this point, the finishing temperature is set to 880 ° C. or higher.

冷却速度
本発明では、熱間圧延後の冷却中に微細析出物を析出させる。その場合、熱間圧延後の冷却速度が1.0℃/sを超えると、低温変態相が生成して析出が十分に進行せず、高い降伏強度が得られなくなる。そこで、熱間圧延後の冷却速度は1.0℃/s以下とする必要がある。また、冷却速度が1.0℃/s以下であれば、本発明鋼は低Cであるため、フェライト単相組織が得られる。尚、析出は500℃までで実質上終了するため、熱間圧延後から500℃までを1.0℃/s以下の冷却速度で冷却すれば良い。
Cooling rate In the present invention, fine precipitates are deposited during cooling after hot rolling. In that case, if the cooling rate after hot rolling exceeds 1.0 ° C./s, a low-temperature transformation phase is generated, and precipitation does not proceed sufficiently, and high yield strength cannot be obtained. Therefore, the cooling rate after hot rolling needs to be 1.0 ° C./s or less. Further, if the cooling rate is 1.0 ° C./s or less, the steel of the present invention has a low C, and thus a ferrite single phase structure can be obtained. In addition, since precipitation is substantially complete | finished up to 500 degreeC, what is necessary is just to cool to 500 degreeC after hot rolling at a cooling rate of 1.0 degrees C / s or less.

上述した成分組成を有する鋼素材を用いて、以上説明した製造条件に従い、棒鋼を製造することで、平均結晶粒径60μm以上のフェライト単相の組織に成り、該フェライト中に粒径10nm未満の微細析出物が分散した棒鋼を得ることができる。
本発明では、さらに、微細析出物を十分に析出させ、また組織を均一化させることで、高い強度、磁気特性並びに被削性を兼備させるために、熱間圧延終了後に焼鈍を施してもよい。焼鈍温度を適正とすることにより、上述のように粒径10μm以下のフェライトの面積率を10%以下として、良好な磁気特性を得ることもできる。以下、焼鈍温度の適正範囲について、説明する。
By using a steel material having the above-described component composition and producing a steel bar according to the production conditions described above, a ferrite single-phase structure with an average crystal grain size of 60 μm or more is formed, and the ferrite has a grain size of less than 10 nm. A steel bar in which fine precipitates are dispersed can be obtained.
In the present invention, in addition, annealing may be performed after the hot rolling is completed in order to sufficiently precipitate fine precipitates and make the structure uniform so as to combine high strength, magnetic properties and machinability. . By making the annealing temperature appropriate, the area ratio of ferrite having a particle diameter of 10 μm or less can be made 10% or less as described above, and good magnetic properties can be obtained. Hereinafter, an appropriate range of the annealing temperature will be described.

焼鈍温度
以下に、焼鈍温度範囲を決定するために行った実験について詳述する。
成分組成が本発明の範囲にある、C:0.075%、Si:0.09%、Mn:1.62%、Ti:0.24、Mo:0.48%、P:0.015%、S:0.023%、Al:0.025%およびN:0.0038%を含み、残部が鉄および不可避的不純物の成分組成を有する鋼Aを溶製した。これらを1150℃に加熱後、熱間圧延の開始パスにおける減面率が32%および圧延最終パスにおける減面率が15%となる熱間圧延を施し、長さ6mおよび直径120mmの棒鋼にした。圧延終了後、500℃までの平均冷却速度が0.165℃/sで室温まで冷却した。その後、焼鈍温度を500℃から850℃の範囲で種々変化させた。
Annealing temperature An experiment conducted for determining the annealing temperature range will be described in detail below.
Component composition is in the range of the present invention, C: 0.075%, Si: 0.09%, Mn: 1.62%, Ti: 0.24, Mo: 0.48%, P: 0.015%, S: 0.023%, Al: 0.025% and N : Steel A containing 0.0038% and the balance having a composition of iron and inevitable impurities was melted. After heating them to 1150 ° C, they were hot-rolled so that the area reduction rate in the hot rolling start pass was 32% and the area reduction rate in the final rolling pass was 15%, resulting in a steel bar with a length of 6m and a diameter of 120mm. . After rolling, the film was cooled to room temperature at an average cooling rate of up to 500 ° C at 0.165 ° C / s. Thereafter, the annealing temperature was varied in the range of 500 ° C to 850 ° C.

また、成分組成が本発明の範囲にある、C:0.069%,Si:0.05%,Mn:2.23%,Ti:0.26%,Mo:0.52%,P:0.010%,S:0.022%およびN:0.0035%を含み残部が鉄および不可避的不純物の成分組成を有する鋼Bを溶製した。これらを1180℃に加熱後、熱間圧延の開始パスにおける減面率が35%および圧延最終パスにおける減面率が16%となる熱間圧延を施し、長さ6mおよび直径110mmの棒鋼にした。圧延終了後、500℃までの平均冷却速度が0.160℃/sで室温まで冷却した。その後、焼鈍温度を500℃から850℃の範囲で種々変化させた。   Further, the component composition is within the scope of the present invention, C: 0.069%, Si: 0.05%, Mn: 2.23%, Ti: 0.26%, Mo: 0.52%, P: 0.010%, S: 0.022% and N: 0.0035 %, And the balance was made of steel B having the composition of iron and inevitable impurities. After heating them to 1180 ° C, they were hot-rolled to give a reduction in area of 35% in the hot rolling start pass and a reduction in area of 16% in the final rolling pass, resulting in a steel bar with a length of 6m and a diameter of 110mm. . After rolling, the film was cooled to room temperature at an average cooling rate of up to 500 ° C at 0.160 ° C / s. Thereafter, the annealing temperature was varied in the range of 500 ° C to 850 ° C.

かくして得られた棒鋼について、磁気特性を測定した。磁気特性については、図4に示すように、棒鋼の端面より50cmの断面から1m置きの1/4D位置より、内径33mm、外径45mmおよび厚み5mmのリング状試験片を、リング板面が棒鋼断面に平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流5000A/mでの磁束密度B50並びに交流50Hzで磁束密度1.0Tまで励磁したときの鉄損WlO/50を測定した。 The magnetic properties of the steel bar thus obtained were measured. As for magnetic properties, as shown in Fig. 4, a ring-shaped test piece with an inner diameter of 33 mm, an outer diameter of 45 mm and a thickness of 5 mm from a 1 / 4D position 1 m away from a cross section of 50 cm from the end face of the steel bar, and the ring plate surface of the bar Samples were taken so that they were parallel to the cross section, and were subjected to 100 primary windings and 100 secondary windings, and were excited to a magnetic flux density B 50 at a DC excitation current of 5000 A / m and a magnetic flux density of 1.0 T at an AC 50 Hz. When the iron loss W lO / 50 was measured.

図5、図6に、それぞれ鋼A、鋼Bについての磁気測定結果に及ぼす焼鈍温度の影響を示す。図5より、鋼Aでは焼鈍温度が600℃以上800℃以下である時に、磁気特性のばらつきが少なく、B50が1.67T以上、W10/50が34W/kg以下となっていた。また、図6より、鋼Bでは、焼鈍温度が600℃以上750℃以下である本発明鋼では、磁気特性のばらつきが少なく、B50が1.65T以上、W10/50が36W/kg以下となっていた。これに対し、圧延後の焼鈍を行わない非調質鋼や焼鈍温度が鋼Aで焼鈍温度を600℃以上800℃以下の範囲外とした鋼、および、鋼Bで焼鈍温度が600℃以上750℃以下の範囲外とした鋼は、磁気特性のばらつきが大きく、適正な温度範囲で焼鈍を行った場合に比べ低位の磁気特性を示した。 5 and 6 show the influence of the annealing temperature on the magnetic measurement results for steel A and steel B, respectively. According to FIG. 5, when steel A has an annealing temperature of 600 ° C. or more and 800 ° C. or less, there is little variation in magnetic properties, B 50 is 1.67 T or more, and W 10/50 is 34 W / kg or less. In addition, as shown in FIG. 6, the steel B has an annealing temperature of 600 ° C. or more and 750 ° C. or less, and there is little variation in magnetic properties, B 50 is 1.65 T or more, and W 10/50 is 36 W / kg or less. It was. In contrast, non-tempered steel that does not undergo annealing after rolling, steel that has an annealing temperature of steel A and an annealing temperature outside the range of 600 ° C to 800 ° C, and steel B has an annealing temperature of 600 ° C to 750 ° C. Steels outside the range of ℃ or less showed a large variation in magnetic properties, and exhibited lower magnetic properties than when annealed in an appropriate temperature range.

焼鈍温度が600℃未満では、微細析出物を析出させることができないため、高強度化が図れない。加えて、粒径10μm以下のフェライトの面積率を10%以下とすることができず、また焼鈍を施さない鋼に対して磁気特性と被削性の改善が図れない。したがって、焼鈍温度は600℃以上とする。また、焼鈍温度が高すぎると、微細析出物が粗大化するとともに、焼鈍後の冷却中に第2相が生成することで磁気特性が低下する。鋼中のMn含有量が1.7%以下の場合には、焼鈍温度を800℃以下とすれば良好な磁気特性が確保でき、また、鋼中のMn含有量が1.7%超の場合には、焼鈍温度を750℃以下とすれば良好な磁気特性が確保できることがわかった。
以上のような検討の結果、焼鈍を行う場合の焼鈍温度は、
Mn含有量(質量%)が0.5〜1.7%の時:600℃以上800℃以下
Mn含有量(質量%)が1.7%超〜3.0%の時:600℃以上750℃以下
とする。
If the annealing temperature is less than 600 ° C., fine precipitates cannot be precipitated, so that high strength cannot be achieved. In addition, the area ratio of ferrite having a particle size of 10 μm or less cannot be reduced to 10% or less, and the magnetic properties and machinability cannot be improved with respect to steel that is not annealed. Therefore, the annealing temperature is 600 ° C. or higher. On the other hand, if the annealing temperature is too high, fine precipitates are coarsened, and the second phase is generated during cooling after annealing, thereby degrading the magnetic properties. If the Mn content in the steel is 1.7% or less, good magnetic properties can be secured by setting the annealing temperature to 800 ° C or less, and if the Mn content in the steel exceeds 1.7%, annealing is performed. It was found that good magnetic properties can be secured if the temperature is 750 ° C. or lower.
As a result of the above examination, the annealing temperature when annealing is as follows:
When Mn content (% by mass) is 0.5 to 1.7%: 600 ° C or higher and 800 ° C or lower
When Mn content (mass%) is more than 1.7% to 3.0%: 600 ° C. or more and 750 ° C. or less.

[実施例1]
表1に示す組成の鋼を溶製し、これらを表2及び表3記載の条件で所定寸法の棒鋼に熱間圧延した。
熱間圧延においては、加熱温度、パススケジュール、仕上温度及び圧延後から500℃までの冷却速度を変化させた。ここで、冷却速度については、圧延仕上寸法を変え、これを圧延後空冷することで変化させた。
[Example 1]
Steels having the compositions shown in Table 1 were melted, and these were hot-rolled into bar steels having predetermined dimensions under the conditions shown in Tables 2 and 3.
In hot rolling, the heating temperature, pass schedule, finishing temperature, and cooling rate to 500 ° C. after rolling were changed. Here, the cooling rate was changed by changing the rolling finish dimensions and air cooling after rolling.

かくして得られた棒鋼について、組織観察並びに引張試験を行うと共に、磁気特性を測定した。
組織観察は、棒鋼の任意の位置、計20箇所から組織観察用試験片を採取し、組織の同定を行うと共に、それぞれの試験片についてJIS G O552の切断法で結晶粒の平均断面積を求め、これより相当円の直径として各試験片の結晶粒径を算出し、更に計20箇所の平均値を求めて、棒鋼全体の平均結晶粒径を求めた。
The steel bar thus obtained was subjected to a structure observation and a tensile test, and the magnetic properties were measured.
For structure observation, specimens for structure observation were collected from 20 locations in total, and the structure was identified, and the average cross-sectional area of the crystal grains was determined for each specimen by the cutting method of JIS G O552. From this, the crystal grain size of each test piece was calculated as the diameter of the equivalent circle, and the average value of a total of 20 locations was determined to determine the average crystal grain size of the entire steel bar.

更に、電解研磨にて薄膜試料を作製し、前記した方法に従い透過型電子顕微鏡(TEM)観察することで析出物の粒子径を測定するとともに、エネルギー分散型X線分光装置(EDX)を併用し、析出物を同定した。引張試験は棒鋼の1/4Dの位置から平行部の直径が6mmおよび平行部長さが40mmの試験片を棒鋼の長手方向に採取し、測定に供した。磁気特性については、棒鋼の中心部から内径33mm、外径45mmおよび厚み5mmのリング状試験片を、リング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流5000A/mでの磁束密度B50ならびに交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。 Furthermore, a thin film sample was prepared by electrolytic polishing, and the particle size of the precipitate was measured by observation with a transmission electron microscope (TEM) according to the method described above, and an energy dispersive X-ray spectrometer (EDX) was used in combination. The precipitate was identified. In the tensile test, a test piece having a parallel part diameter of 6 mm and a parallel part length of 40 mm was taken from the 1 / 4D position of the steel bar in the longitudinal direction of the steel bar and subjected to measurement. Regarding magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times and secondary. The iron loss W 10/50 was measured when 100 windings were applied, and the magnetic flux density B 50 at a direct current excitation current of 5000 A / m and the magnetic flux density 1.0 T at an alternating current of 50 Hz were measured.

上記した組織観察、引張試験および磁気測定の結果を、表2及び表3に併記する。
表中のNo.は個々の結果を区分するためのものであり、供試鋼と熱延条件の組合せが明示されるように、鋼番と熱延条件を組み合せに基づいて番号を付与(例えば、鋼番1を条件Aで熱間圧延した場合は1−Aとする)した。
The results of the above-described structure observation, tensile test and magnetic measurement are shown in Tables 2 and 3.
No. in the table is for classifying individual results, and a number is assigned based on the combination of steel number and hot rolling conditions so that the combination of the test steel and hot rolling conditions is clearly indicated (for example, When the steel No. 1 was hot-rolled under the condition A, it was 1-A).

組織については、フェライトはF、ベイナイトやマルテンサイト等の低温変態相が生成し、その体積分率が5%以上を超える場合をTと略記した。析出物については、平均粒子径を記載した。尚、粒子径のバラツキは10nm未満の析出物では最大でも±1nm、それ以上の大きさの析出物では±3nmから±5nmであった。尚、組織に低温変態相が生成した場合については、結晶粒径と析出物の粒子径の測定は割愛した。   Regarding the structure, ferrite is abbreviated as T when a low temperature transformation phase such as F, bainite or martensite is generated and the volume fraction exceeds 5% or more. For the precipitate, the average particle size is described. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where a low temperature transformation phase was generated in the structure, the measurement of the crystal grain size and the particle size of the precipitate was omitted.

Figure 0005085964
Figure 0005085964

Figure 0005085964
Figure 0005085964

Figure 0005085964
Figure 0005085964

表2は、熱間圧延条件を本発明範囲とし、鋼組成の影響を示したものであるが、同表から明らかなように、鋼組成及び熱間圧延条件ともに本発明範囲を満たす本発明例では、500MPa以上の降伏強度が得られており、磁気特性についても磁束密度B50が1.60T以上および鉄損W10/50が40w/kg以下と、高い強度と磁気特性を兼備している。 Table 2 shows the effect of the steel composition with the hot rolling conditions as the scope of the present invention. As is apparent from the table, the present invention examples satisfying the scope of the present invention in both the steel composition and the hot rolling conditions. The yield strength of 500 MPa or more is obtained, and the magnetic properties of the magnetic flux density B 50 are 1.60 T or more and the iron loss W 10/50 is 40 w / kg or less.

これに対して、鋼組成が本発明範囲を外れた比較例では、降伏強度が500MPa未満であり、磁気特性も劣っている。   On the other hand, in the comparative example in which the steel composition is out of the scope of the present invention, the yield strength is less than 500 MPa and the magnetic properties are inferior.

No.17−Aは、C量が低く微細析出物の析出量が不足しており、降伏強度が低い。   No. 17-A has a low amount of C, a short amount of fine precipitates, and a low yield strength.

No.18−Aは、C量が高く析出物が粗大化しており、降伏強度が低い。析出物が粗大な場合には、詳述したように析出物が磁気特性に悪影響を及ぼすため、磁束密度B50は1.59T、鉄損W10/50は40.4W/kg程度となっており、磁気特性に劣る。 No. 18-A has a high C content, coarse precipitates, and low yield strength. When the precipitate is coarse, the precipitate adversely affects the magnetic properties as described in detail, so the magnetic flux density B 50 is 1.59 T and the iron loss W 10/50 is about 40.4 W / kg. Inferior to magnetic properties.

No.19−Aは、Mnが低いためにフェライト変態と析出が十分競合せず、析出物が粗大に析出する結果、降伏強度が低い。また、析出物粗大化による磁気特性の劣化に起因して、鉄損W10/50が43.8W/kgと高い。 In No. 19-A, since the Mn is low, ferrite transformation and precipitation do not sufficiently compete with each other, and the precipitate is coarsely precipitated, resulting in low yield strength. In addition, the iron loss W 10/50 is as high as 43.8 W / kg due to deterioration of magnetic properties due to coarsening of precipitates.

Mnの高いNo.20−Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため、降伏強度が低い。また、低温変態相の生成に起因すると思われるが、磁束密度B50が1.55Tと低い。 In No. 20-A having a high Mn, a low-temperature transformation phase is generated and precipitation strengthening due to fine precipitates is insufficient, so that the yield strength is low. Although seems to be due to formation of the low-temperature transformation phase, the magnetic flux density B 50 is 1.55T and low.

No.21−Aは、Tiが低いために微細析出物の析出量が不足し、降伏強度が低い。一方、Tiが高いNo.22−Aでは、析出物が粗大化しており、降伏強度が低く、磁束密度B50および鉄損W10/50ともに劣っていた。 No. 21-A has a low yield strength because Ti is low, resulting in an insufficient amount of fine precipitates. On the other hand, in No. 22-A with high Ti, the precipitates were coarsened, the yield strength was low, and both the magnetic flux density B 50 and the iron loss W 10/50 were inferior.

No.23−Aは、Moが低いために微細析出物の析出量が不足し、降伏強度が低い。一方、Moが高いNo.24−Aでは、低温変態相が生成しており、微細析出物による析出強化が不足するため降伏強度が低い。また、Mnが高くて同じく低温変態相を生成したNo.20−Aと同様に、磁束密度B50が1.56Tと低くなっている。 No. 23-A has a low Mo, so the amount of fine precipitates is insufficient and the yield strength is low. On the other hand, in No. 24-A having a high Mo, a low-temperature transformation phase is generated and the yield strength is low because precipitation strengthening due to fine precipitates is insufficient. In addition, the magnetic flux density B 50 is as low as 1.56 T, similarly to No. 20-A in which Mn is high and the low temperature transformation phase is generated.

また、表3は、本発明鋼である鋼番3を種々の条件で熱間圧した結果であるが、同表から明らかなように、本発明鋼である鋼番3を本発明範囲の条件で熱間圧延した本発明例では、570MPa以上と高い降伏強度が得られており、磁気特性についても、磁束密度B50が1.60T以上、鉄損W10/50が40W/kg以下と優れた値を示している。 Table 3 shows the results of hot pressing steel No. 3 which is the steel of the present invention under various conditions. As is clear from the table, steel No. 3 which is the steel of the present invention is a condition within the scope of the present invention. In the example of the present invention that was hot-rolled at a high yield strength of 570 MPa or higher, the magnetic properties were excellent with a magnetic flux density B 50 of 1.60 T or more and an iron loss W 10/50 of 40 W / kg or less. The value is shown.

ここで、熱間圧延の最終パスにおける減面率に着目すると、減面率によってフェライト粒径が変化し、これが磁気特性に影響を及ぼすことが判る。   Here, paying attention to the area reduction rate in the final pass of hot rolling, it can be seen that the ferrite grain size changes depending on the area reduction rate, and this affects the magnetic properties.

すなわち、減面率を25%以下とすると(No.3−D〜No.3−G)、フェライト粒径が60μm以上となる。析出物が10nm未満と微細な場合、フェライト粒径が60μm以上となると、磁気特性に対する析出物の悪影響が無くなるため、減面率が25%以下であるNo.3−D〜No.3−Gは、優れた磁気特性を示している。しかしながら、減面率が25%を超えると、フェライトが粒径60μm未満に細粒化する(No.3−H及びNo.3−I)ため、析出物が1Onm未満と微細であっても、析出物が磁気特性に悪影響を及ぼすようになり、磁束密度B
50が1.58Tおよび鉄損W10/50が42W/kgまで劣化している。このように、磁気特性に対する析出物の悪影響を防止し、高位の磁気特性を得るためには、熱間圧延の最終パスにおける減面率を25%以下とする必要がある。
That is, when the area reduction rate is 25% or less (No. 3-D to No. 3-G), the ferrite particle size is 60 μm or more. When the precipitate is as fine as less than 10 nm, when the ferrite grain size is 60 μm or more, the adverse effect of the precipitate on the magnetic properties disappears, so the area reduction rate is 25% or less No. 3-D to No. 3-G Shows excellent magnetic properties. However, when the area reduction rate exceeds 25%, the ferrite is refined to a grain size of less than 60 μm (No. 3-H and No. 3-I), so even if the precipitate is less than 1 Onm, Precipitates have an adverse effect on magnetic properties, and magnetic flux density B
50 has deteriorated to 1.58T and iron loss W 10/50 to 42 W / kg. As described above, in order to prevent the adverse effect of the precipitates on the magnetic properties and obtain high magnetic properties, it is necessary to reduce the area reduction rate in the final pass of hot rolling to 25% or less.

最終パスにおける減面率に加えて、加熱温度、仕上温度及び冷却速度についても適正化の必要があり、これらが本発明範囲を外れた比較例では、降伏強度が低い。   In addition to the area reduction ratio in the final pass, it is necessary to optimize the heating temperature, the finishing temperature, and the cooling rate, and in these comparative examples that are outside the scope of the present invention, the yield strength is low.

No.3−Kは、加熱温度が低く、熱間圧延前の鋳片に析出している析出物が加熱炉にて十分に固溶しないため、析出物の微細析出が阻害される結果、降伏強度が低く、加えて磁気特性も目標値を満たさない。析出物に関しては、圧延後の冷却中に微細に析出したと思われるものと、鋳片で析出した析出物の溶け残りと思われるものが混在しており、析出物の平均粒子径は100nm以上となっていた。   No.3-K has a low heating temperature, and the precipitate deposited on the slab before hot rolling does not sufficiently dissolve in the heating furnace. The strength is low, and the magnetic properties do not meet the target value. As for the precipitate, there are a mixture of what appears to be finely precipitated during cooling after rolling and what is considered to be the undissolved residue of the precipitate deposited on the slab, and the average particle size of the precipitate is 100 nm or more. It was.

No.3−Nは、仕上温度が低く、圧延で導入される歪がフェライト変態の開始温度を上昇させ、フェライト変態と析出の競合を妨げる結果、析出物が粗大し、降伏強度が低下すると共に磁気特性が劣化している。   In No.3-N, the finishing temperature is low, and the strain introduced by rolling increases the starting temperature of the ferrite transformation and prevents the competition between the ferrite transformation and the precipitation. As a result, the precipitate becomes coarse and the yield strength decreases. Magnetic properties are degraded.

No.3−Oは、熱間圧延後の冷却速度が過大な例であるが、これのみ冷却速度を増加させるため、圧延後ミスト冷却を行った。冷却速度が速いと冷却中に低温変態相が生成し、微細析出物が十分析出しないため、降伏強度が低下することが判る。   No. 3-O is an example in which the cooling rate after hot rolling is excessive, but in order to increase the cooling rate only for this, mist cooling after rolling was performed. It can be seen that when the cooling rate is high, a low-temperature transformation phase is generated during cooling, and fine precipitates are not sufficiently precipitated, resulting in a decrease in yield strength.

[実施例2]
表4に示す組成の鋼を溶製し、これらを表5および表6に記載の条件に従って、所定寸法の棒鋼に熱間圧延した。熱間圧延においては、加熱温度、パススケジュール、仕上温度および圧延後から500℃までの冷却速度を変化させた。ここで、圧延仕上寸法を変え、この圧延後に空冷することによって、冷却速度を変化させた。さらに、圧延後に、0〜850℃の温度での焼鈍を施した。
[Example 2]
Steels having the compositions shown in Table 4 were melted, and these were hot-rolled into steel bars having predetermined dimensions in accordance with the conditions described in Tables 5 and 6. In hot rolling, the heating temperature, pass schedule, finishing temperature, and cooling rate to 500 ° C. after rolling were changed. Here, the cooling finish was changed, and the cooling rate was changed by air cooling after the rolling. Further, after rolling, annealing was performed at a temperature of 0 to 850 ° C.

かくして得られた棒鋼について、組織観察および引張試験を行うと共に、磁気特性を測定した。組織観察として、捧鋼の任意の位置、計20箇所から組織観察用試験片を採取し、組織の同定を行った。それぞれの試験片について各100個の粒を任意に選び、これらの断面積を画像処理によって求め、これと等価な断面積を持つ相当円の直径として計2000個の結晶粒の粒径を個別に算出すると共に、これらの平均値を求めることで、棒鋼全体の平均結晶粒径を求めた。
また、粒径10μm以下のフェライト粒径の面積率は、各視野における組織写真の粒径10μm以下の結晶粒を黒塗りした後、画像解析により求めた。
The steel bar thus obtained was subjected to a structure observation and a tensile test, and the magnetic properties were measured. For tissue observation, specimens for tissue observation were collected from arbitrary positions of the dedicated steel, a total of 20 locations, and the structure was identified. Select 100 grains for each test piece, obtain the cross-sectional area of these by image processing, and individually set the diameter of a total of 2000 grains as the diameter of the equivalent circle with the equivalent cross-sectional area. While calculating, the average grain size of the whole steel bar was calculated | required by calculating | requiring these average values.
Further, the area ratio of the ferrite grain diameter of 10 μm or less was determined by image analysis after blackening crystal grains of 10 μm or less in the structure photograph in each field of view.

更に、電子顕微鏡観察により析出物の大きさを評価した。
更にまた、電解研磨にて薄膜試料を作製し、前記した方法に従い透過型電子顕微鏡(EDX)にて観察することによって析出物の粒子径を測定するとともに、エネルギー分散型X線分光装置(EDX)を併用し、析出物を同定した。
引張試験は棒鋼の1/4Dの位置から平行部の直径が6mmおよび平行部長さが40mmの試験片を棒鋼の長手方向に採取し、測定に供した。
磁気特性については、棒鋼の中心部から内径33mm、外径45mmおよび厚み5mmのリング状試験片を、リング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流1000A/mでの磁束密度B10および励磁電流5000A/mでの磁束密度B50、並びに交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。
Furthermore, the size of the precipitate was evaluated by observation with an electron microscope.
Furthermore, a thin film sample is prepared by electropolishing, and the particle size of the precipitate is measured by observing with a transmission electron microscope (EDX) according to the above-described method, and an energy dispersive X-ray spectrometer (EDX). In combination, precipitates were identified.
In the tensile test, a specimen having a parallel part diameter of 6 mm and a parallel part length of 40 mm was taken from the 1 / 4D position of the steel bar in the longitudinal direction of the steel bar and used for measurement.
Regarding magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times and secondary. Iron loss W 10 when 100 windings are applied and magnetic flux density B 10 at DC exciting current 1000 A / m, magnetic flux density B 50 at exciting current 5000 A / m, and magnetic flux density 1.0 T at 50 Hz AC are excited. / 50 was measured.

上記した組織観察、引張試験、磁気測定の結果を表5および表6に示す。
表中のNo.は個々の結果を区分するためのものであり、供試鋼と熱延条件の組合せが明示されるように、鋼番と熱延条件を組み合せて起番した(例えば、鋼番1を条件Aで熱間圧延した場合は1-Aと起番)。
Tables 5 and 6 show the results of the above-described structure observation, tensile test, and magnetic measurement.
No. in the table. Is used to classify the individual results, and the steel number and the hot rolling conditions were combined in order to clearly indicate the combination of the test steel and the hot rolling conditions (for example, the steel number 1 is the condition A). In case of hot rolling at 1-A, start with 1-A).

組織については,フェライトはF、べイナイトやマルテンサイト等の低温変態相が生成し、その体積分率が5%以上を超える場合をTと略記した。析出物については平均粒子径を記載した。尚、粒子径のバラツキは10nm未満の析出物では最大でも±1nm、それ以上の大きさの析出物では±3nm〜±5nmであった。尚、組織に低温変態相が生成した場合については、結晶粒径と析出物の粒子径の測定は割愛した。   Regarding the structure, ferrite is abbreviated as T when a low-temperature transformation phase such as F, bainite or martensite is generated and the volume fraction exceeds 5%. The average particle size is described for the precipitate. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where a low temperature transformation phase was generated in the structure, the measurement of the crystal grain size and the particle size of the precipitate was omitted.

Figure 0005085964
Figure 0005085964

Figure 0005085964
Figure 0005085964

Figure 0005085964
Figure 0005085964

表5は、熱間圧延条件を本発明範囲とし、鋼組成の影響を示したものであるが、同表から明らかなように、鋼組成および熱間圧延条件とも本発明範囲を満たす本発明例では500MPa以上の降伏強度が得られており、磁気特性についても、破束密度B50が1.65T以上および鉄損W10/50が34W/kg以下と優れている。 Table 5 shows the influence of the steel composition with the hot rolling conditions as the scope of the present invention. As is apparent from the table, the present invention examples satisfying the scope of the present invention in both the steel composition and the hot rolling conditions. , Yield strength of 500 MPa or more is obtained, and the magnetic properties are excellent with a fracture density B 50 of 1.65 T or more and an iron loss W 10/50 of 34 W / kg or less.

これに対して、鋼組成が本発明範囲を外れた比較例では、降伏強度が低く500MPa未満であり、磁気特性にも劣っている。 No.14−AはCが低く、微細析出物の析出量が不足しており、降伏強度が低い。
No.15−AはCが高く、析出物が粗大化しており、降伏強度が低い。析出物が粗大な場合には、前述したように析出物が磁気特性に悪影響をおよぼすため、磁気特性が劣っている。
No.16−Aは、Mnが低いためフェライト変態と析出が十分競合せず、析出物が粗大に析出する結果、磁気特性が低下する。
On the other hand, in the comparative example in which the steel composition is out of the range of the present invention, the yield strength is low and less than 500 MPa, and the magnetic properties are inferior. No. 14-A has a low C, the precipitation amount of fine precipitates is insufficient, and the yield strength is low.
No. 15-A has high C, precipitates are coarsened, and yield strength is low. When the precipitate is coarse, the magnetic property is inferior because the precipitate adversely affects the magnetic property as described above.
In No. 16-A, since Mn is low, ferrite transformation and precipitation do not sufficiently compete with each other, and as a result of coarse precipitation, the magnetic properties are deteriorated.

Mnの高いNo.17-Aでは低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低い。また、低温変態相の生成に起因して、磁束密度B10が0.93T、B50は1.59Tと低い。
No.18−Aは、Tiが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Tiが高いNo.19−Aでは析出物が粗大化しており、降伏強度が低く、磁束密度B50、鉄損W10/50とも低位である。
No.20−Aは、Moが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Moが高いNo.21−Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低く、磁気特性も劣っている。Mnが高く、同じく低温変態相を生成したNo.17−Aと同様、磁束密度B50が低くなっている。
In No. 17-A having a high Mn, a low-temperature transformation phase is formed, and the yield strength is low because precipitation strengthening due to fine precipitates is insufficient. Further, due to the generation of the low temperature transformation phase, the magnetic flux density B 10 is as low as 0.93 T and B 50 is as low as 1.59 T.
No. 18-A has a low yield strength due to a low amount of fine precipitates because Ti is low. On the other hand, in No. 19-A having a high Ti, the precipitates are coarsened, the yield strength is low, and both the magnetic flux density B 50 and the iron loss W 10/50 are low.
No. 20-A is low in Mo, so the amount of fine precipitates is insufficient and yield strength is low. On the other hand, in No. 21-A having a high Mo, a low-temperature transformation phase is generated, and precipitation strengthening due to fine precipitates is insufficient, resulting in low yield strength and poor magnetic properties. Similar to No. 17- A, which has a high Mn and also produced a low-temperature transformation phase, the magnetic flux density B 50 is low.

表6は、本発明鋼である鋼番4を種々の条件で熱間圧延して焼鈍したものの結果を示しているが、同表から明らかなように、本発明例では500MPa以上と高い降伏強度が得られており、磁気特性についても、磁束密度B10が1.00T以上、B50が1.65T以上、鉄損W10/50が34W/kg以下と優れた値を示している。 Table 6 shows the results of annealing the steel No. 4 which is the steel of the present invention by hot rolling under various conditions. As is clear from the table, in the inventive examples, the yield strength is as high as 500 MPa or more. As for the magnetic characteristics, the magnetic flux density B 10 is 1.00 T or more, B 50 is 1.65 T or more, and the iron loss W 10/50 is 34 W / kg or less.

No.4−G鋼は、焼鈍温度が高いため、析出物が固溶し、冷却中に第2相が析出するため、焼鈍温度が適正の場合に比べると磁気特性が劣っている。
No.4−H鋼は、焼鈍を行わないため、粒径10μm以下のフェライトの面積率が高く、焼鈍温度が適正の場合に比べると、磁束密度B10が低位である。
No.4−I鋼およびNo.4−N鋼は、熱間圧延における圧延最終パスの減面率が高く、フェライトの平均結晶粒径が本発明の下限である60μmを下回っており、かつ10μm以下のフェライトの面積率も高いため、磁気特性が低位である。
Since No. 4-G steel has a high annealing temperature, the precipitates are dissolved, and the second phase is precipitated during cooling. Therefore, the magnetic properties are inferior compared with the case where the annealing temperature is appropriate.
Since No. 4-H steel is not annealed, the area ratio of ferrite having a particle size of 10 μm or less is high, and the magnetic flux density B 10 is lower than when the annealing temperature is appropriate.
No. 4-I steel and No. 4-N steel have a high area reduction ratio in the final rolling pass in hot rolling, the average crystal grain size of ferrite is below the lower limit of 60 μm of the present invention, and Since the area ratio of ferrite of 10 μm or less is high, the magnetic properties are low.

熱間圧延における減面率に加えて、加熱温度仕上げ温度および冷却速度についても適正化する必要がある。これらの製造条件が本発明範囲を外れた比較例では、降伏強度が低い。
すなわち、No.4−O鋼は、加熱温度が低いため、熱間圧延前の鋳片の析出物が加熱炉で十分に固溶せず、析出物が粗大化する。その結果、降伏強度が低いことに加え、磁気特性も劣っている。
No.4−S鋼は仕上げ温度が低く、圧延で導入される歪がフェライト変態の開始温度を上昇させ、フェライト変態と析出の競合を阻害する結果、析出物が粗大化し、降伏強度が低下することに加え、磁気特性が劣化する。
No.4−T鋼は、熱間圧延後の冷却速度が過大な例であり、冷却速度を増大させるために圧延後にミスト冷却を行った。冷却速度が速いと低温変態相が析出し、焼鈍を行っても微細析出物が十分に析出しないため、降伏強度が低下する。
In addition to the area reduction ratio in hot rolling, it is necessary to optimize the heating temperature finishing temperature and the cooling rate. In comparative examples where these manufacturing conditions are outside the scope of the present invention, the yield strength is low.
That is, because the heating temperature of No. 4-O steel is low, the precipitate on the slab before hot rolling does not sufficiently dissolve in the heating furnace, and the precipitate becomes coarse. As a result, in addition to the low yield strength, the magnetic properties are inferior.
No.4-S steel has a low finishing temperature, and the strain introduced by rolling raises the starting temperature of the ferrite transformation and inhibits the competition between the ferrite transformation and precipitation. As a result, the precipitate becomes coarse and the yield strength decreases. In addition, the magnetic properties deteriorate.
The No. 4-T steel is an example in which the cooling rate after hot rolling is excessive, and mist cooling was performed after rolling in order to increase the cooling rate. When the cooling rate is high, a low temperature transformation phase is precipitated, and even if annealing is performed, fine precipitates are not sufficiently precipitated, so that the yield strength is lowered.

[実施例3]
表7に示す組成の鋼を溶製し、これらを表8および表9に記載の条件に従って、所定寸法の棒鋼に熱間圧延した。
熱間圧延においては、加熱温度、パススケジュール、仕上温度および圧延後から500℃までの冷却速度を変化させた。ここで、圧延仕上寸法を変え、この圧延後に空冷することによって、冷却速度を変化させた。さらに、圧延後に、0〜850℃の温度での焼鈍を施した。
[Example 3]
Steels having the compositions shown in Table 7 were melted, and these were hot-rolled into steel bars having predetermined dimensions in accordance with the conditions described in Tables 8 and 9.
In hot rolling, the heating temperature, pass schedule, finishing temperature, and cooling rate to 500 ° C. after rolling were changed. Here, the cooling finish was changed, and the cooling rate was changed by air cooling after the rolling. Further, after rolling, annealing was performed at a temperature of 0 to 850 ° C.

かくして得られた棒鋼について、組織観察および引張試験を行うと共に、磁気特性を測定した。
組織観察は、棒鋼の任意の位置、計20箇所から組織観察用試験片を採取し、組織の同定を行った。それぞれの試験片について各100個の粒を任意に選び、これらの断面積を画像処理によって求め、これと等価な断面積を持つ相当円の直径として計2000個の結晶粒の粒径を個別に算出すると共に、これらの平均値を求めることによって、平均結晶粒径を求めた。
また、粒径10μm以下のフェライト粒径の面積率は、各視野における組織写真の粒径10μm以下の結晶粒を黒塗りした後、画像解析により求めた。
The steel bar thus obtained was subjected to a structure observation and a tensile test, and the magnetic properties were measured.
For tissue observation, specimens for tissue observation were collected from arbitrary positions of the steel bar, a total of 20 locations, and the structure was identified. Select 100 grains for each test piece, obtain the cross-sectional area of these by image processing, and individually set the diameter of a total of 2000 grains as the diameter of the equivalent circle with the equivalent cross-sectional area. While calculating, the average grain size was calculated | required by calculating | requiring these average values.
Further, the area ratio of the ferrite grain diameter of 10 μm or less was determined by image analysis after blackening crystal grains of 10 μm or less in the structure photograph in each field of view.

更に、電子顕微鏡観察により析出物の大きさを評価した。
更にまた、電解研磨にて薄膜試料を作製し、前記した方法に従い透過型電子顕微鏡(EDX)にて観察することによって析出物の粒子径を測定するとともに、エネルギー分散型X線分光装置(EDX)を併用し、析出物を同定した。
引張試験は棒鋼の1/4Dの位置から平行部の直径が6mmφ、平行部長さが40mmの試験片を棒鋼の長手方向に採取し、測定に供した。
磁気特性については、棒鋼の中心部から内径33mm、外径45mmおよび厚み5mmのリング状試験片を、リング板面が棒鋼断面と平行になるように採取し、1次巻線100回および2次巻線100回を施し、直流の励磁電流1000A/mでの磁束密度B10および励磁電流5000A/mでの磁束密度B50、並びに交流50Hzで磁束密度1.0Tまで励磁したときの鉄損W10/50を測定した。
Furthermore, the size of the precipitate was evaluated by observation with an electron microscope.
Furthermore, a thin film sample is prepared by electropolishing, and the particle size of the precipitate is measured by observing with a transmission electron microscope (EDX) according to the above-described method, and an energy dispersive X-ray spectrometer (EDX). In combination, precipitates were identified.
In the tensile test, a test piece having a parallel part diameter of 6 mmφ and a parallel part length of 40 mm was taken from the 1 / 4D position of the steel bar in the longitudinal direction of the steel bar and used for measurement.
Regarding magnetic properties, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 5 mm was taken from the center of the steel bar so that the ring plate surface was parallel to the cross section of the steel bar, and the primary winding was 100 times and secondary. Iron loss W 10 when 100 windings are applied, and magnetic flux density B 10 at DC excitation current 1000 A / m, magnetic flux density B 50 at excitation current 5000 A / m, and magnetic flux density 1.0 T at 50 Hz AC / 50 was measured.

上記した組織観察、引張試験、磁気測定の結果を表8および表9に示す。
表中のNo.は個々の結果を区分するためのものであり、供試鋼と熱延条件の組合せが明示されるように、鋼番と熱延条件を組み合せて起番した(例えば、鋼番1を条件Aで熱間圧延した場合は1-Aと起番)。
Tables 8 and 9 show the results of the above-described structure observation, tensile test, and magnetic measurement.
No. in the table. Is used to classify the individual results, and the steel number and the hot rolling conditions were combined in order to clearly indicate the combination of the test steel and the hot rolling conditions (for example, the steel number 1 is the condition A). In case of hot rolling at 1-A, start with 1-A).

組織については,フェライトはF、べイナイトやマルテンサイト等の低温変態相が生成し、その体積分率が5%以上を超える場合をTと略記した。析出物については平均粒子径を記載した。尚、粒子径のバラツキは10nm未満の析出物では最大でも±1nm、それ以上の大きさの析出物では±3nmから±5nmであった。尚、組織に低温変態相が生成した場合については、結晶粒径と析出物の粒子径の測定は割愛した。   Regarding the structure, ferrite is abbreviated as T when a low-temperature transformation phase such as F, bainite or martensite is generated and the volume fraction exceeds 5%. The average particle size is described for the precipitate. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where a low temperature transformation phase was generated in the structure, the measurement of the crystal grain size and the particle size of the precipitate was omitted.

Figure 0005085964
Figure 0005085964

Figure 0005085964
Figure 0005085964

Figure 0005085964
Figure 0005085964

表8は、熱間圧延条件は本発明範囲とし、鋼組成の影響を示したものであるが、同表から明らかなように、鋼組成および熱間圧延条件とも本発明範囲を満たす発明例では500MPa以上の降伏強度が得られており、磁気特性についても、磁束密度B50が1.63T以上、鉄損W10/50が35W/kg以下と優れている。 Table 8 shows the influence of the steel composition on the hot rolling conditions within the scope of the present invention, and as is clear from the table, in the invention examples in which both the steel composition and the hot rolling conditions satisfy the scope of the present invention. Yield strength of 500 MPa or more has been obtained, and the magnetic properties are excellent with magnetic flux density B 50 of 1.63 T or more and iron loss W 10/50 of 35 W / kg or less.

これに対して、鋼組成が本発明範囲を外れた比較例では、降伏強度が500MPa未満であり、磁気特性にも劣っている。
No.14−AはCが低く、微細析出物の析出量が不足しており、降伏強度が低い。
No.15−AはCが高く、析出物が粗大化しており、降伏強度が低い。析出物が粗大な場合には、前述したように析出物が磁気特性に悪影響をおよぼすため、磁気特性が劣っている。
On the other hand, in the comparative example in which the steel composition is out of the scope of the present invention, the yield strength is less than 500 MPa, and the magnetic properties are inferior.
No. 14-A has a low C, the precipitation amount of fine precipitates is insufficient, and the yield strength is low.
No. 15-A has high C, precipitates are coarsened, and yield strength is low. When the precipitate is coarse, the magnetic property is inferior because the precipitate adversely affects the magnetic property as described above.

No.16−AはMnが低いためフェライト変態と析出が十分競合せず、析出物が粗大に析出する結果、強度が低く、磁気特性が低下する。
Mnの高いNo.17−Aでは低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低い。また、低温変態相の生成に起因して、磁束密度B10が0.94T、B50が1.55Tと低い。
Tiが高いNo.19−Aでは析出物が粗大化しており、降伏強度が低く、磁束密度B50、鉄損W10/50とも低位である。
No.20−AはMoが低いため微細析出物の析出量が不足し降伏強度が低い。一方Moが高いNo.21−Aでは低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低く、磁気特性も劣っている。Mnが高く、同じく低温変態相を生成したNo.17−Aと同様、磁束密度が低くなっている。
In No. 16-A, since Mn is low, ferrite transformation and precipitation do not compete sufficiently, and as a result of precipitation of the precipitate coarsely, the strength is low and the magnetic properties are deteriorated.
No. with high Mn. In 17-A, a low-temperature transformation phase is generated, and the yield strength is low because precipitation strengthening due to fine precipitates is insufficient. Further, due to the formation of the low-temperature transformation phase, the magnetic flux density B 10 is 0.94T, B 50 is 1.55T and low.
In No. 19-A with high Ti , the precipitates are coarsened, the yield strength is low, and the magnetic flux density B 50 and the iron loss W 10/50 are low.
No. 20-A has low Mo, so the amount of fine precipitates is insufficient and yield strength is low. On the other hand, No. 21-A having a high Mo generates a low-temperature transformation phase and lacks precipitation strengthening due to fine precipitates, resulting in low yield strength and poor magnetic properties. The magnetic flux density is low as in No. 17- A, which has a high Mn and also generates a low-temperature transformation phase.

表9は、本発明鋼である鋼番2を種々の条件で熱間圧延し、焼鈍した結果であるが、同表から明らかなように、本発明例では500MPa以上と高い降伏強度が得られており、磁気特性についても、磁束密度B10が1.00T以上、B50が1.63T以上および鉄損W10/50が35W/kg以下と優れた値を示している。
No.2−G鋼は焼鈍温度が高いため、析出物が固溶し冷却中に第2相が析出する。その結果、焼鈍温度が適正な場合に比べると、磁気特性は劣っている。
Table 9 shows the result of hot rolling and annealing steel No. 2 which is the steel of the present invention under various conditions. As is clear from the table, in the inventive example, a high yield strength of 500 MPa or more was obtained. As for the magnetic characteristics, the magnetic flux density B 10 is 1.00 T or more, B 50 is 1.63 T or more, and the iron loss W 10/50 is 35 W / kg or less.
Since No.2-G steel has a high annealing temperature, the precipitate is dissolved and the second phase is precipitated during cooling. As a result, the magnetic properties are inferior compared to the case where the annealing temperature is appropriate.

No.2−HとNo.2−M鋼は焼鈍を行わないため、粒径10μm以下のフェライトの面積率が高く、磁束密度B10が、焼鈍を行い場合よりも低いものである。
No.2−I鋼およびNo.2−N鋼は熱間圧延における圧延最終パスの減面率が高く、フェライトの平均結晶粒径が本発明の下限である60μmを下回っており、かつ10μm以下のフェライトの面積率も高いため、磁気特性が低いものである。
Since No.2-H and No.2-M steels are not annealed, the area ratio of ferrite having a particle size of 10 μm or less is high, and the magnetic flux density B 10 is lower than that in the case of annealing.
No. 2-I steel and No. 2-N steel have a high area reduction rate in the final rolling pass in hot rolling, the average crystal grain size of ferrite is below the lower limit of 60 μm of the present invention, and 10 μm or less. Since the area ratio of ferrite is high, the magnetic properties are low.

熱間圧延における減面率に加えて、加熱温度、仕上げ温度および冷却速度についても適正化する必要がある。これらの製造条件が本発明範囲を外れた比較例では、降伏強度が低い。
No.2−O鋼は加熱温度が低いため、熱間圧延前の鋳片の析出物が加熱炉で十分に固溶せず、析出物が粗大化する。その結果、降伏強度が低いことに加え、磁気特性も劣っている。
No.2−S鋼は仕上げ温度が低く、圧延で導入される歪がフェライト変態の開始温度を上昇させ、フェライト変態と析出の競合を阻害する。その結果、析出物が粗大化し、降伏強度が低下する。また、粗大な析出物に起因して、磁気特性が劣化する。
No.2−T鋼は熱間圧延後の冷却速度が過大な例であり、冷却速度を増大させるために圧延後にミスト冷却を行った。冷却速度が速いと低温変態相が析出し焼鈍を行っても微細析出物が十分に析出しないため、降伏強度が低下する。
In addition to the area reduction ratio in hot rolling, it is necessary to optimize heating temperature, finishing temperature, and cooling rate. In comparative examples where these manufacturing conditions are outside the scope of the present invention, the yield strength is low.
Since the heating temperature of No. 2-O steel is low, the precipitate of the slab before hot rolling does not sufficiently dissolve in the heating furnace, and the precipitate becomes coarse. As a result, in addition to the low yield strength, the magnetic properties are inferior.
No.2-S steel has a low finishing temperature, and the strain introduced by rolling raises the start temperature of the ferrite transformation and inhibits the competition between the ferrite transformation and precipitation. As a result, the precipitates become coarse and the yield strength decreases. In addition, magnetic properties are deteriorated due to coarse precipitates.
No.2-T steel is an example in which the cooling rate after hot rolling is excessive, and mist cooling was performed after rolling in order to increase the cooling rate. When the cooling rate is fast, a low temperature transformation phase is precipitated, and even if annealing is performed, fine precipitates are not sufficiently precipitated, so that the yield strength is lowered.

フェライトの平均結晶粒径と磁気特性(磁束密度B50、鉄損W10/50)及び降伏強度との関係を示す図。The figure which shows the relationship between the average crystal grain diameter of a ferrite, a magnetic characteristic (magnetic flux density B50 , iron loss W10 / 50 ), and yield strength. フェライトの平均結晶粒径が諸特性に及ぼす影響を示す図であり、(a)フェライトの平均結晶粒径と降伏強度との関係を、(b)はフェライトの平均結晶粒径と鉄損W10/50との関係を、(c)はフェライトの平均結晶粒径と磁束密度B50との関係を示す。It is a figure which shows the influence which the average crystal grain diameter of a ferrite has on various characteristics, (a) The relationship between the average crystal grain diameter of ferrite and yield strength, (b) is the average crystal grain diameter of ferrite and iron loss W 10 / 50 the relationship between, (c) shows the relationship between the average crystal grain size and the magnetic flux density B 50 of ferrite. 他の鋼に関して、フェライトの平均結晶粒径が諸特性に及ぼす影響を示す図であり、(a)フェライトの平均結晶粒径と降伏強度との関係を、(b)はフェライトの平均結晶粒径と鉄損W10/50との関係を、(c)はフェライトの平均結晶粒径と磁束密度B50との関係を示す。It is a figure which shows the influence which the average crystal grain diameter of a ferrite has on various characteristics regarding other steel, (a) Relation between the average crystal grain diameter of ferrite and yield strength, (b) is the average crystal grain diameter of ferrite and the relationship between the iron loss W 10/50, (c) shows the relationship between the average crystal grain size and the magnetic flux density B 50 of ferrite. 試料採取位置を示す図である。It is a figure which shows a sample collection position. 焼鈍温度と磁気特性との関係を示す図である。It is a figure which shows the relationship between an annealing temperature and a magnetic characteristic. 他の鋼に関して、焼鈍温度と磁気特性との関係を示す図である。It is a figure which shows the relationship between annealing temperature and a magnetic characteristic regarding another steel.

Claims (14)

質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Fe及び不可避的不純物の成分組成を有し、平均結晶粒径60μm以上のフェライトの面積率が95%以上の組織からなり、該フェライト中に粒径10nm未満の微細析出物が分散していることを特徴とする電磁棒鋼。
% By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
Includes having a component composition of the balance Fe and unavoidable impurities, consists of the average crystal grain size 60μm or more ferrite area ratio is 95% or more of tissue, fine precipitates having a size of less than 10nm in the ferrite is dispersed An electromagnetic steel bar characterized by
前記組織は、粒径が10μm以下のフェライトの面積率が10%以下であることを特徴とする請求項1に記載の電磁棒鋼。   The electromagnetic bar steel according to claim 1, wherein the structure has an area ratio of ferrite having a particle size of 10 μm or less of 10% or less. 前記成分組成が、下記(1)式を満たすことを特徴とする請求項1または2に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ----(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
The electromagnetic bar steel according to claim 1 or 2, wherein the component composition satisfies the following formula (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 ---- (1)
However, the chemical component display indicates the content (% by mass) of the component.
前記微細析出物が、TiおよびMoの炭化物であることを特徴とする請求項1ないし3のいずれかに記載の電磁棒鋼。   The electromagnetic bar steel according to any one of claims 1 to 3, wherein the fine precipitate is a carbide of Ti and Mo. 前記成分組成として、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする請求項1または2に記載の電磁棒鋼。
As the above component composition,
Nb: 0.08% or less,
The electromagnetic bar steel according to claim 1 or 2, comprising one or more of V: 0.15% or less and W: 1.5% or less.
前記成分組成が下記(2)式を満たすことを特徴とする請求項5に記載の電磁棒鋼。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ----(2)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
The electromagnetic bar steel according to claim 5, wherein the component composition satisfies the following expression (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 ---- (2)
However, the chemical component display indicates the content (% by mass) of the component.
前記微細析出物が、TiおよびMoと、Nb、VおよびWのうちの少なくとも1種とを含む炭化物であることを特徴とする請求項5または6に記載の電磁棒鋼。   The electromagnetic bar steel according to claim 5 or 6, wherein the fine precipitate is a carbide containing Ti and Mo and at least one of Nb, V and W. 前記成分組成として、更に質量%で
S:0.01〜0.1%
を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含むことを特徴とする請求項1ないし7のいずれかに記載の電磁棒鋼。
As said component composition, it is further mass% S: 0.01-0.1%
And including
Pb: 0.2% or less,
Ca: 0.005% or less,
The electromagnetic bar steel according to any one of claims 1 to 7, comprising one or more of Bi: 0.1% or less and B: 0.02% or less.
質量%で
C:0.04〜0.12%、
Si:0.5%以下、
Mn:0.5〜3.0%、
Al:0.1%以下、
Ti:0.03〜0.35%および
Mo:0.05〜0.8%
を含み、残部Fe及び不可避的不純物の成分組成を有する鋼素材を、1100℃以上に加熱したのち、最終パスにおける減面率:25%以下および仕上温度:880℃以上の条件下で熱間圧延を施し、次いで1.0℃/s以下の冷却速度で冷却することを特徴とする電磁棒鋼の製造方法。
% By mass C: 0.04 to 0.12%,
Si: 0.5% or less,
Mn: 0.5-3.0%
Al: 0.1% or less,
Ti: 0.03-0.35% and
Mo: 0.05-0.8%
Steel material with the remaining Fe and unavoidable impurity composition is heated to 1100 ° C or higher, then hot rolled under conditions of area reduction of 25% or less in the final pass and finishing temperature: 880 ° C or higher And then cooling at a cooling rate of 1.0 ° C./s or less.
前記冷却を行った後、さらに下記の温度域で焼鈍することを特徴とする請求項9に記載の電磁棒鋼の製造方法。

Mn含有量(質量%)が0.5〜1.7%のとき:600℃以上800℃以下
Mn含有量(質量%)が1.7%超〜3.0%のとき:600℃以上750℃以下
The method for manufacturing an electromagnetic steel bar according to claim 9, further comprising annealing after the cooling in the following temperature range.
Record
When Mn content (% by mass) is 0.5 to 1.7%: 600 ° C or higher and 800 ° C or lower
When Mn content (% by mass) is over 1.7% to 3.0%: 600 ° C or higher and 750 ° C or lower
前記成分組成が、下記(1)式を満たすことを特徴とする請求項9または10に記載の電磁棒鋼の製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ----(1)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
The said component composition satisfy | fills following (1) Formula, The manufacturing method of the electromagnetic bar steel of Claim 9 or 10 characterized by the above-mentioned.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 ---- (1)
However, the chemical component display indicates the content (% by mass) of the component.
前記成分組成として、更に質量%で
Nb:0.08%以下、
V:0.15%以下および
W:1.5%以下
の1種または2種以上を含むことを特徴とする請求項9または10に記載の電磁棒鋼の製造方法。
As the above component composition,
Nb: 0.08% or less,
The method for producing an electromagnetic steel bar according to claim 9 or 10, comprising one or more of V: 0.15% or less and W: 1.5% or less.
前記成分組成が下記(2)式を満たすことを特徴とする請求項12に記載の電磁棒鋼の製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ----(2)
ただし、化学成分表示は当該成分の含有量(質量%)を示す。
The method for producing an electromagnetic steel bar according to claim 12, wherein the component composition satisfies the following expression (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 ---- (2)
However, the chemical component display indicates the content (% by mass) of the component.
前記成分組成として、更に質量%で
S:0.01〜0.1%
を含み、かつ
Pb:0.2%以下、
Ca:0.005%以下、
Bi:0.1%以下および
B:0.02%以下
の1種または2種以上を含むことを特徴とする請求項9ないし13のいずれかに記載の電磁棒鋼の製造方法。
As said component composition, it is further mass% S: 0.01-0.1%
And including
Pb: 0.2% or less,
Ca: 0.005% or less,
The method for producing an electromagnetic steel bar according to any one of claims 9 to 13, comprising one or more of Bi: 0.1% or less and B: 0.02% or less.
JP2007095502A 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method Expired - Fee Related JP5085964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095502A JP5085964B2 (en) 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2006098692 2006-03-31
JP2006099545 2006-03-31
JP2006098692 2006-03-31
JP2006099545 2006-03-31
JP2006098701 2006-03-31
JP2006098701 2006-03-31
JP2007095502A JP5085964B2 (en) 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007291520A JP2007291520A (en) 2007-11-08
JP5085964B2 true JP5085964B2 (en) 2012-11-28

Family

ID=38762408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095502A Expired - Fee Related JP5085964B2 (en) 2006-03-31 2007-03-30 Electromagnetic bar and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5085964B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615465B (en) * 2008-05-30 2012-10-17 株式会社日立制作所 Soft magnetic powder for compact powder body and compact powder body using the same
US11248283B2 (en) * 2016-12-08 2022-02-15 Nippon Steel Corporation Steel material for soft magnetic part, soft magnetic part, and method for producing soft magnetic part

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268826B2 (en) * 2002-04-26 2009-05-27 Jfe条鋼株式会社 Steel bar for cold forging, cold forged product and manufacturing method

Also Published As

Publication number Publication date
JP2007291520A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US8157928B2 (en) Non-oriented electrical steel sheet and production process thereof
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP4586669B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
WO2004050934A1 (en) Non-oriented magnetic steel sheet and method for production thereof
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
CN115087757B (en) Non-oriented electrical steel sheet and method for manufacturing same
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JPWO2020166718A1 (en) Non-oriented electrical steel sheet
JP5578288B2 (en) Hot-rolled steel sheet for generator rim and manufacturing method thereof
JP5085963B2 (en) Electromagnetic bar and its manufacturing method
JP2010018857A (en) Non-oriented electrical steel sheet for rotor, and manufacturing method therefor
JP2005200713A (en) Nonoriented silicon steel sheet having excellent uniformity of magnetic property in coil and high production yield, and its production method
JP7253055B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5085964B2 (en) Electromagnetic bar and its manufacturing method
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP4273768B2 (en) Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof
KR101403199B1 (en) Non-oriented electromagnetic steel sheet
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
WO2010084847A1 (en) Non-oriented electromagnetic steel sheet
JP2023554663A (en) Non-oriented electrical steel sheet and its manufacturing method
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4415932B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP4974603B2 (en) Rotor core of motor and manufacturing method thereof
JP2008308704A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees