JP4974603B2 - Rotor core of motor and manufacturing method thereof - Google Patents

Rotor core of motor and manufacturing method thereof Download PDF

Info

Publication number
JP4974603B2
JP4974603B2 JP2006208762A JP2006208762A JP4974603B2 JP 4974603 B2 JP4974603 B2 JP 4974603B2 JP 2006208762 A JP2006208762 A JP 2006208762A JP 2006208762 A JP2006208762 A JP 2006208762A JP 4974603 B2 JP4974603 B2 JP 4974603B2
Authority
JP
Japan
Prior art keywords
mass
less
rotor core
motor according
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006208762A
Other languages
Japanese (ja)
Other versions
JP2008031542A (en
Inventor
正之 笠井
邦和 冨田
高明 豊岡
和明 福岡
哲夫 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Priority to JP2006208762A priority Critical patent/JP4974603B2/en
Publication of JP2008031542A publication Critical patent/JP2008031542A/en
Application granted granted Critical
Publication of JP4974603B2 publication Critical patent/JP4974603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、降伏強度が高く、かつ磁気特性に優れたモータのローターコアとその製造方法に関する。
The present invention relates to a rotor core of a motor having high yield strength and excellent magnetic characteristics, and a method for manufacturing the same.

電気自動車やハイブリッド型電気自動車のメインモータに代表されるように、近年のモータには、省エネルギー化並びに高効率化が強く求められている。
省エネルギー化や高効率化を図るには、モータの高周波化が有効な手段の一つとして挙げられるが、周波数が上がるとモータの回転速度も増大する。モータの回転数が増大するとローターを構成するコアに加わる遠心力も増大するため、コア材には高い降伏強度が要求される。即ち、コア材の降伏強度が不十分な場合、遠心力によってコア材が塑性変形を起こし、ローターコアとステーターコア間のエアギャップが設計値から変化することでモータ性能が劣化したり、更には、回転中にローターとステーターが接触しモータを破損する結果となる。このため、高周波化によりモータの省エネルギー化や高効率化を図るには、ローターコア材の高強度化が不可欠となる。
As represented by main motors of electric vehicles and hybrid electric vehicles, recent motors are strongly required to save energy and improve efficiency.
Increasing the frequency of the motor is one effective means for achieving energy savings and higher efficiency. However, as the frequency increases, the rotational speed of the motor also increases. Since the centrifugal force applied to the core constituting the rotor increases as the motor speed increases, the core material is required to have a high yield strength. In other words, when the yield strength of the core material is insufficient, the core material undergoes plastic deformation due to centrifugal force, and the air gap between the rotor core and the stator core changes from the design value, and the motor performance deteriorates. During rotation, the rotor and the stator come into contact with each other, resulting in damage to the motor. For this reason, it is indispensable to increase the strength of the rotor core material in order to save energy and increase the efficiency of the motor by increasing the frequency.

ところで、ローターコアの製造方法としては、これまで板厚0.35〜0.5mm程度の電磁鋼板を積層する手法が一般的であったが、電磁鋼板を一枚毎に所定のコア形状に打抜き、これを数百枚積層するのには多大な費用を要するため、電磁鋼板に替えて積層が不要な電磁棒鋼をローターに用いる、モータを実用化することが検討され始めている。   By the way, as a method of manufacturing a rotor core, a method of laminating electromagnetic steel sheets having a thickness of about 0.35 to 0.5 mm has been generally used so far. Since it takes a great deal of money to stack several hundred sheets, it has begun to consider putting a motor into practical use that uses electromagnetic steel bars that do not require stacking instead of electromagnetic steel sheets.

しかしながら、現状の電磁棒鋼は電磁鋼板と同様に低炭素鋼若しくは珪素鋼からなり、フェライトの固溶強化を主な強化機構としているため、強度は必ずしも高くない。例えば、3質量%Si鋼の場合でも降伏強度は350MPa程度である。また、鋼板の例ではあるが、特許文献1に開示されているように、高強度化を目的としたものでも降伏強度は概略300〜450MPa程度であり、更に冷間鍛造を施した後、焼鈍を施しても十分な降伏強度は得られない。   However, the current electromagnetic bar steel is made of low carbon steel or silicon steel like the electromagnetic steel sheet, and the strength is not necessarily high because the main strengthening mechanism is the solid solution strengthening of ferrite. For example, even in the case of 3 mass% Si steel, the yield strength is about 350 MPa. Moreover, although it is an example of a steel plate, as disclosed in Patent Document 1, the yield strength is approximately 300 to 450 MPa even for the purpose of increasing the strength, and further, after performing cold forging, annealing is performed. Even if it gives, sufficient yield strength is not obtained.

なお、従来、冷間鍛造部品として用いられる機械構造用炭素鋼材やクロムモリブデン鋼は、冷間鍛造後に焼入れ焼戻し処理を行った場合に、熱処理条件によっては高い降伏強度を得られるが、磁気特性が極めて低位であることが問題であった。
特開2002−371340号公報
Conventionally, carbon steel for mechanical structures and chromium molybdenum steel used as cold forged parts can obtain high yield strength depending on the heat treatment conditions when quenching and tempering treatment is performed after cold forging, but the magnetic properties are low. The problem was that it was very low.
JP 2002-371340 A

そこで、本発明は、特にローターコア材として十分な磁気特性を有すると共に、高い降伏強度を有する冷間鍛造部品とその製造方法について提供することを目的とする。   Accordingly, an object of the present invention is to provide a cold forged part having a sufficient magnetic property as a rotor core material and having a high yield strength, and a manufacturing method thereof.

発明者らは、冷間鍛造部品の組織をフェライト単相とし、さらにフェライト組織中に粒径10nm未満の微細析出物を分散析出させてフェライトを析出強化すると、著しい高強度化が図れ、かつ磁気特性にも優れたモータのローターコアが得られることを見出した。
The inventors have made the structure of the cold forged part a ferrite single phase, and further dispersed and precipitated fine precipitates with a particle size of less than 10 nm in the ferrite structure to strengthen the precipitation of ferrite, thereby significantly increasing the strength and magnetic properties. It has been found that a rotor core of a motor having excellent characteristics can be obtained.

本発明は、上記知見に基づいてなされたものであり、その要旨構成は次の通りである。
1.C:0.040質量%以上0.120質量%以下、
Si:0.5質量%以下、
Mn:0.60質量%以上3.00質量%以下、
Al:0.1質量%以下、
Ti:0.03質量%以上0.35質量%以下および
Mo:0.05質量%以上0.8質量%以下
を含み、残部Feおよび不可避的不純物の成分組成を有し、フェライト中に粒径10nm未満の微細析出物が分散してなる組織を有し、{211}面に対する{100}面の強度比が0.7以上、かつ{211}面に対する{110}面の強度比が0.4以下である冷間鍛造部品からなることを特徴とするモータのローターコア
This invention is made | formed based on the said knowledge, The summary structure is as follows.
1. C: 0.040 mass% or more and 0.120 mass% or less,
Si: 0.5% by mass or less,
Mn: 0.60 mass% or more and 3.00 mass% or less,
Al: 0.1 mass% or less,
Ti: 0.03 mass% to 0.35 mass% and
Mo: 0.05 mass% or more and 0.8 mass% or less, having a component composition of the balance Fe and inevitable impurities, having a structure in which fine precipitates having a particle size of less than 10 nm are dispersed in ferrite, {211} A rotor core for a motor, comprising a cold forged part having a strength ratio of {100} face to the face of 0.7 or more and a strength ratio of {110} face to the {211} face of 0.4 or less.

2.前記成分組成が、下記(1)式を満たすことを特徴とする前記1に記載のモータのローターコア

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ・・・・・・(1)
2. 2. The rotor core of the motor according to 1 above, wherein the component composition satisfies the following formula (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)

3.前記微細析出物が、Tiおよび/またはMoの炭化物であることを特徴とする前記1または2に記載のモータのローターコア
3. 3. The rotor core of the motor according to 1 or 2, wherein the fine precipitate is a carbide of Ti and / or Mo.

4.前記成分組成として、更に
Nb:0.08質量%以下、
V:0.15質量%以下および
W:1.5質量%以下
のうちから選ばれる一種または二種以上を含むことを特徴とする前記1、2または3記載のモータのローターコア
4). As the component composition,
Nb: 0.08 mass% or less,
4. The rotor core of the motor according to 1, 2 or 3, characterized in that it comprises one or more selected from V: 0.15 mass% or less and W: 1.5 mass% or less.

5.前記成分組成が、下記(2)式を満たすことを特徴とする前記4に記載のモータのローターコア

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ・・・・・・(2)
5. 5. The rotor core of the motor according to 4 above, wherein the component composition satisfies the following formula (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (2)

6.前記微細析出物が、TiおよびMoと、Nb、VおよびWの内の少なくとも一種とを含む炭化物であることを特徴とする前記4または5に記載のモータのローターコア
6). 6. The rotor core of the motor according to 4 or 5, wherein the fine precipitate is a carbide containing Ti and Mo and at least one of Nb, V and W.

7.前記成分組成として、更に
S:0.01質量%以上0.1質量%以下
を含み、かつ
Pb:0.2質量%以下、
Ca:0.005質量%以下、
Bi:0.1質量%以下および
B:0.02質量%以下
の一種または二種以上を含むことを特徴とする前記1乃至6のいずれかに記載のモータのローターコア
7). The component composition further includes S: 0.01% by mass or more and 0.1% by mass or less, and
Pb: 0.2 mass% or less,
Ca: 0.005 mass% or less,
The rotor core of the motor according to any one of 1 to 6 above, which contains one or more of Bi: 0.1% by mass or less and B: 0.02% by mass or less.

8.C:0.040質量%以上0.120質量%以下、
Si:0.5質量%以下、
Mn:0.60質量%以上3.00質量%以下、
Al:0.1質量%以下、
Ti:0.03質量%以上0.35質量%以下および
Mo:0.05質量%以上0.8質量%以下
を含み、残部Feおよび不可避的不純物の成分組成になる鋼素材を、1100℃以上に加熱し、仕上温度880℃以上で熱間圧延した後、加工率20%以上の冷間鍛造を施し、600℃以上700℃以下の温度域にて焼鈍を施し、{211}面に対する{100}面の強度比を0.7以上、かつ{211}面に対する{110}面の強度比を0.4以下とすることを特徴とするモータのローターコアの製造方法。
8). C: 0.040 mass% or more and 0.120 mass% or less,
Si: 0.5% by mass or less,
Mn: 0.60 mass% or more and 3.00 mass% or less,
Al: 0.1 mass% or less,
Ti: 0.03 mass% to 0.35 mass% and
Mo: A steel material containing 0.05% by mass to 0.8% by mass with the balance being Fe and inevitable impurities is heated to 1100 ° C or higher and hot-rolled at a finishing temperature of 880 ° C or higher. subjecting% or more cold forging, and facilities annealed at 600 ° C. or higher 700 ° C. or less of the temperature range, {211} {100} intensity ratio of surface 0.7 or more with respect to surface and {211} with respect to plane {110} A method for manufacturing a rotor core of a motor, wherein the strength ratio of the surface is 0.4 or less .

9.前記鋼素材は、下記(1)式を満たす成分組成になることを特徴とする前記8に記載のモータのローターコアの製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ・・・・・・(1)
9. 9. The method for manufacturing a rotor core of a motor according to 8, wherein the steel material has a component composition satisfying the following formula (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)

10.前記鋼素材は、更に
Nb:0.08質量%以下、
V:0.15質量%以下および
W:1.5質量%以下
のうちから選ばれる一種または二種以上を含むことを特徴とする前記8または9に記載のモータのローターコアの製造方法。
Ten. The steel material is further
Nb: 0.08 mass% or less,
10. The method for producing a rotor core of a motor as described in 8 or 9 above, comprising one or more selected from V: 0.15% by mass or less and W: 1.5% by mass or less.

11.前記鋼素材は、下記(2)式を満たす成分組成になることを特徴とする前記10に記載のモータのローターコアの製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ・・・・・・(2)
11. 11. The method for producing a rotor core of a motor as described in 10 above, wherein the steel material has a composition that satisfies the following formula (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (2)

12.前記鋼素材は、更に
S:0.01質量%以上0.1質量%以下
を含み、かつ
Pb:0.2質量%以下、
Ca:0.005質量%以下、
Bi:0.1質量%以下および
B:0.02質量%以下
の一種または二種以上を含むことを特徴とする前記8乃至11のいずれかに記載のモータのローターコアの製造方法。
12. The steel material further includes S: 0.01 mass% or more and 0.1 mass% or less, and
Pb: 0.2 mass% or less,
Ca: 0.005 mass% or less,
12. The method for producing a rotor core of a motor as described in any one of 8 to 11 above, wherein one or more of Bi: 0.1% by mass or less and B: 0.02% by mass or less are included.

本発明によれば、ローターコア材として十分な磁気特性を有すると共に、降伏強度の高い冷間鍛造部品を提供できるため、本発明の冷間鍛造部品をローターコアとして用いたモータでは、モータの回転速度を増大してもコア材の塑性変形に起因した、上述の不具合を回避することができる。従って、モータにおける周波数の一層の増加が可能となり、モータの省エネルギー化ならびに高効率化が実現されるため、本発明は産業上極めて有用である。   According to the present invention, a cold forged component having sufficient magnetic properties as a rotor core material and high yield strength can be provided. Therefore, in a motor using the cold forged component of the present invention as a rotor core, the rotation of the motor Even if the speed is increased, the above-mentioned problems caused by plastic deformation of the core material can be avoided. Therefore, the frequency in the motor can be further increased, and the energy saving and high efficiency of the motor are realized. Therefore, the present invention is extremely useful industrially.

以下、本発明の冷間鍛造部品について、その成分組成、ミクロ組織および製造条件毎に、以下に詳述する。なお、成分組成に関する「%」表示は、特に断らない限りは「質量%」を意味する。
C:0.040%以上0.120%以下
Cが0.040%未満であると、微細析出物の析出量が不足し、高い降伏強度が得られないため、Cは0.040%以上とする必要がある。一方、Cは0.120%を超えて含有すると析出物が粗大化し、やはり高い降伏強度が得られないため、Cの上限は0.120%とする必要がある。
Hereinafter, the cold forged part of the present invention will be described in detail below for each component composition, microstructure and production condition. In addition, unless otherwise indicated, the "%" display regarding a component composition means "mass%".
C: 0.040% or more and 0.120% or less When C is less than 0.040%, the amount of fine precipitates is insufficient and high yield strength cannot be obtained, so C needs to be 0.040% or more. On the other hand, if the content of C exceeds 0.120%, the precipitates become coarse and high yield strength cannot be obtained, so the upper limit of C needs to be 0.120%.

Si:0.5%以下
Siは冷間加工性を低下させるため、添加量は0.5%以下に制限する。より好ましくは0.15%以下である。
Si: 0.5% or less
Since Si decreases the cold workability, the addition amount is limited to 0.5% or less. More preferably, it is 0.15% or less.

Mn:0.60%以上3.00%以下
本発明では、析出物の析出挙動がオーステナイトからフェライトへの変態(以降、フェライト変態)の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度の差が小さく、フェライト変態と析出が競合する場合に、析出物がフェライト中に微細に分散析出する。Mnは、フェライト変態温度を下げ、フェライト変態の変態開始温度と析出物の析出開始温度との差を減少させることによって、フェライト変態と析出を競合させるのに寄与する。さらに、Mnは、固溶強化による高強度化に寄与し、この効果はMnを0.60%超えで添加することで顕著になる。一方、Mn量が3.00%を超えると、フェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による強化が不足し、磁束密度が低下する。このため、Mnの上限は3.00%とする。より好ましくは、0.70%以上2.80%以下である。
Mn: 0.60% or more and 3.00% or less In the present invention, the precipitation behavior of precipitates is closely related to the progress of transformation from austenite to ferrite (hereinafter referred to as ferrite transformation). When the difference between the transformation start temperature and the precipitation start temperature of the precipitate is small and the ferrite transformation and precipitation compete with each other, the precipitate is finely dispersed and precipitated in the ferrite. Mn contributes to competing ferrite transformation and precipitation by lowering the ferrite transformation temperature and reducing the difference between the transformation initiation temperature of the ferrite transformation and the precipitation initiation temperature of the precipitate. Furthermore, Mn contributes to high strength by solid solution strengthening, and this effect becomes remarkable when Mn is added in excess of 0.60%. On the other hand, when the amount of Mn exceeds 3.00%, a low-temperature transformation phase such as bainite is generated in addition to ferrite, and strengthening by fine precipitates is insufficient, and the magnetic flux density is lowered. For this reason, the upper limit of Mn is set to 3.00%. More preferably, it is 0.70% or more and 2.80% or less.

Al:0.1%以下
Alは、脱酸元素として添加しても良く、この場合は0.010%以上を添加する必要がある。しかし、過剰に添加すると、その効果が飽和するだけでなく、Nとの析出物であるAlNの量が増え、AlNは10nm未満に析出することがないため、磁気特性を劣化させる。これを避けるために、Alの添加量は0.1%以下とする。より好ましくは、0.05%以下である。
Al: 0.1% or less
Al may be added as a deoxidizing element. In this case, 0.010% or more needs to be added. However, if it is added excessively, not only the effect is saturated, but the amount of AlN that is a precipitate with N increases, and AlN does not precipitate below 10 nm. In order to avoid this, the amount of Al added is 0.1% or less. More preferably, it is 0.05% or less.

Ti:0.03%以上0.35%以下
Tiは、Ti系炭化物やTi−Mo系炭化物を含む析出物を微細に析出させ強度を向上させるのに有効な成分であり、高い降伏強度を確保するためには0.03%以上が必要である。一方、0.35%を超えて添加すると、析出物が粗大化し、却って強度が低下するため、Tiは0.03%以上0.35%以下とする。より好ましくは、0.03%以上0.20%以下である。
Ti: 0.03% to 0.35%
Ti is an effective component for improving the strength by finely depositing precipitates including Ti-based carbides and Ti-Mo-based carbides, and 0.03% or more is necessary to ensure high yield strength. On the other hand, if added over 0.35%, the precipitates become coarse and the strength decreases, so Ti is made 0.03% to 0.35%. More preferably, it is 0.03% or more and 0.20% or less.

Mo:0.05%以上0.8%以下
Moは、Mo系炭化物やTi−Mo系炭化物を含む析出物を微細に析出させ、強度を向上させるために添加する。また、Moは拡散速度が遅く、Tiと共に析出する場合、析出物の成長速度が低下し、微細な析出物が得られ易いという利点も有する。ここで、高い降伏強度を確保するためには、0.05%以上のMo添加が必要であり、一方、0.8%を超えて添加すると、フェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による析出強化が不足し強度が低下すると共に、磁気特性が劣化する。このため、Moは0.05%以上0.8%以下とする。より好ましくは、0.15%以上0.50%以下である。
Mo: 0.05% or more and 0.8% or less
Mo is added to finely precipitate precipitates including Mo-based carbides and Ti-Mo-based carbides, and improve strength. Further, Mo has a slow diffusion rate, and when it precipitates together with Ti, it has an advantage that the growth rate of the precipitate is reduced and a fine precipitate is easily obtained. Here, in order to ensure high yield strength, it is necessary to add 0.05% or more of Mo. On the other hand, when adding over 0.8%, a low-temperature transformation phase such as bainite is generated in addition to ferrite. Precipitation strengthening due to fine precipitates is insufficient, resulting in a decrease in strength and a deterioration in magnetic properties. For this reason, Mo is made 0.05% to 0.8%. More preferably, it is 0.15% or more and 0.50% or less.

また、上記成分組成において、特にC、TiおよびMo量の原子比に関し、下記(1)式を満足させると析出物の微細化に有利となる。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ・・・・・・(1)
本パラメーターは、析出物の大きさに影響を与えるものであり、0.50以上1.50以下とした場合、粒径10nm未満の微細析出物の形成が容易となり好ましい。
Further, in the above component composition, particularly regarding the atomic ratio of the amounts of C, Ti and Mo, satisfying the following formula (1) is advantageous for making the precipitate finer.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
This parameter affects the size of the precipitate, and when it is set to 0.50 or more and 1.50 or less, formation of fine precipitates having a particle diameter of less than 10 nm is facilitated, which is preferable.

尚、微細なTi−Mo系炭化物では、炭化物中のTi、Moは原子比でTi/Moが0.2以上2.0以下、更に微細な炭化物では0.7以上1.5以下であることが観察された。   It was observed that Ti and Mo in the carbides of fine Ti—Mo based carbides have an atomic ratio of Ti / Mo of 0.2 or more and 2.0 or less, and finer carbides of 0.7 or more and 1.5 or less.

以上、必須成分について説明したが、本発明では強度や靭性等の一層の向上を図るため、
Nb、VおよびWの一種または二種以上を添加することができる。
Nb:0.08%以下
NbはTi、Moと共に微細析出物を形成して強度上昇に寄与する。また、フェライトを整粒化することで延性および靭性を向上させる。そのためには、好ましくは、0.01%以上で添加する。但し、0.08%を超えて含有すると、フェライトが微細化し、微細析出物が磁気特性に悪影響を及ぼすようになるため、添加量は0.08%以下とする。より好ましくは、0.04%以下である。
As described above, although the essential components have been described, in the present invention, in order to further improve the strength and toughness,
One or more of Nb, V and W can be added.
Nb: 0.08% or less
Nb forms fine precipitates together with Ti and Mo and contributes to an increase in strength. Moreover, ductility and toughness are improved by adjusting the grain size of ferrite. For that purpose, 0.01% or more is preferably added. However, if the content exceeds 0.08%, the ferrite becomes finer and fine precipitates adversely affect the magnetic properties, so the addition amount should be 0.08% or less. More preferably, it is 0.04% or less.

V:0.15%以下
VもTiおよびMoと共に微細析出物を形成して強度上昇に寄与するため、好ましくは0.01%以上で添加する。しかしながら、0.15%を超えて含有すると、析出物が粗大化するようになるため、添加量は0.15%以下とする。より好ましくは、0.10%以下である。
V: 0.15% or less V is also added in an amount of 0.01% or more because V also forms fine precipitates with Ti and Mo and contributes to an increase in strength. However, if the content exceeds 0.15%, the precipitate becomes coarse, so the addition amount is 0.15% or less. More preferably, it is 0.10% or less.

W:1.5%以下
WもTi、Moと共に微細析出物を形成して強度上昇に寄与するため、好ましくは0.1%以上で添加する。しかしながら、1.5%を超えて含有すると析出物が粗大化するようになるため、添加量は1.5%以下とする。より好ましくは、1.0%以下である。
W: 1.5% or less Since W also forms fine precipitates together with Ti and Mo and contributes to an increase in strength, W is preferably added at 0.1% or more. However, if the content exceeds 1.5%, the precipitate becomes coarse, so the addition amount is 1.5% or less. More preferably, it is 1.0% or less.

これらの元素を添加した場合、これらの元素とC、TiおよびMo量の原子比を下記(2)式に従って規定すると、析出物の微細化に有利となる。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ・・・・・・(2)
When these elements are added, if the atomic ratios of these elements and the amounts of C, Ti, and Mo are defined according to the following formula (2), it is advantageous for refinement of precipitates.
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (2)

本パラメーターは、析出物の大きさに影響を与えるもので、0.50以上、1.50以下とした場合、粒径10nm未満の微細析出物の形成が容易となる。   This parameter affects the size of the precipitates. When the parameter is 0.50 or more and 1.50 or less, formation of fine precipitates having a particle size of less than 10 nm is facilitated.

尚、Nb、VおよびWの一種または二種以上を含む微細な炭化物では、炭化物中のTi、Mo、Nb、VおよびWの原子比(Ti+Nb+V)/(Mo+W)が0.2〜2.0、更に繊細な炭化物では0.7〜1.5であることが観察された。   In addition, in the fine carbide | carbonized_material containing 1 type, or 2 or more types of Nb, V, and W, atomic ratio (Ti + Nb + V) / (Mo + W) of Ti, Mo, Nb, V, and W in carbide is 0.2-2.0, and more delicate It was observed to be 0.7-1.5 for carbides.

更に、本発明では、部品加工時の切削性を向上させるため、Sを0.01%以上0.1%以下で含んだ上で、Pb:0.2%以下、Ca:0.005%以下、Bi:0.1%以下およびB:0.02%以下の一種または二種以上を添加することができる。
ここで、S量を0.01%以上0.1%以下としたのは、S量が0.01%未満であると切削性の向上が図られないためであり、一方0.1%を超えると延性や靭性が低下するためである。
なお、Sは0.01%未満で不純物として含有されるものである。本発明では、0.1%以下の含有量において、強度ならびに磁気特性には影響を及ぼさない。そのため、積極的に添加して、0.01〜0.1%の含有量とすることができる。
Further, in the present invention, in order to improve the machinability at the time of processing the part, S is included in the range of 0.01% to 0.1%, Pb: 0.2% or less, Ca: 0.005% or less, Bi: 0.1% or less, and B : One or more of 0.02% or less can be added.
Here, the reason why the S content is 0.01% or more and 0.1% or less is that if the S content is less than 0.01%, the machinability cannot be improved, whereas if it exceeds 0.1%, the ductility and toughness deteriorate. Because.
S is less than 0.01% and is contained as an impurity. In the present invention, strength and magnetic properties are not affected at a content of 0.1% or less. Therefore, it can add actively and it can be set as 0.01 to 0.1% of content.

また、Pb、Ca,BiおよびBについても、添加量がそれぞれの上限を超えると、延性や靭性が低下するため、その添加量は、Pb≦0.2%、Ca≦0.005%、Bi≦0.1%およびB≦0.02%とする必要がある。なお、下限については、切削性向上の理由から、Pb≧0.05%、Ca≧0.001%、Bi≧0.03%およびB≧0.001%とすることが好ましい。   Also, for Pb, Ca, Bi, and B, when the addition amount exceeds the respective upper limit, ductility and toughness are reduced. Therefore, the addition amount is Pb ≦ 0.2%, Ca ≦ 0.005%, Bi ≦ 0.1% and It is necessary to set B ≦ 0.02%. The lower limit is preferably set to Pb ≧ 0.05%, Ca ≧ 0.001%, Bi ≧ 0.03%, and B ≧ 0.001% for reasons of improving machinability.

その他、延性および靭性を向上させる目的で、Cr、NiおよびCuの一種または二種以上を、それぞれCr≦0.5%、Ni≦0.5%およびCu≦0.5%の範囲で添加しても構わない。添加する場合は、いずれも0.05%以上とする。   In addition, for the purpose of improving ductility and toughness, one or more of Cr, Ni and Cu may be added in the range of Cr ≦ 0.5%, Ni ≦ 0.5% and Cu ≦ 0.5%, respectively. If added, both should be 0.05% or more.

すなわち、不可避的不純物であるPおよびNは磁気特性にとって好ましくない元素であるため、PとNはできるだけ低減することが望ましい。具体的には、Pについては0.03%以下に規制することが好ましい。Nについては0.01%以下に規制することが好ましく、0.005%以下に規制することが更に好ましい。
尚、これら元素の添加の有無や含有量により、本発明の効果が損なわれることは無い。
That is, P and N, which are unavoidable impurities, are elements that are not preferable for the magnetic properties, so it is desirable to reduce P and N as much as possible. Specifically, it is preferable to restrict P to 0.03% or less. N is preferably regulated to 0.01% or less, more preferably 0.005% or less.
In addition, the effect of this invention is not impaired by the presence or absence and content of these elements.

次に、本発明では、ミクロ組織をフェライト単相に規定する。フェライト単相とするのは、フェライト単相が磁気特性にとって最も好ましい組織であるからである。尚、本発明におけるフェライト単相とは、断面組織観察(200倍の光学顕微鏡組織観察)でフェライトの面積率が95%以上、好ましくは98%以上であることを指す。   Next, in the present invention, the microstructure is defined as a ferrite single phase. The reason why the ferrite single phase is used is that the ferrite single phase is the most preferable structure for magnetic properties. The ferrite single phase in the present invention means that the area ratio of ferrite is 95% or more, preferably 98% or more in cross-sectional structure observation (200-times optical microscope structure observation).

更に、本発明では、微細析出物の粒径を10nm未満とする。析出物の粒径が10nm以上の場合、析出強化能力が不足し、高い降伏強度が得られない。すなわち、微細析出物の粒径は小さい程強度上昇に有効であり、望ましくは5nm以下、更に望ましくは3nm以下とする。そのような微細析出物としては、TiおよびMoを複合含有した炭化物または、それらに更にNb、VおよびWの一種または二種以上を含む炭化物が好ましい。尚、微細析出物は、熱間圧延後の冷却中並びに、その後の焼鈍中に析出させる。   Furthermore, in the present invention, the particle size of the fine precipitate is less than 10 nm. When the grain size of the precipitate is 10 nm or more, the precipitation strengthening ability is insufficient and high yield strength cannot be obtained. In other words, the smaller the particle size of the fine precipitates, the more effective the strength is, and it is desirably 5 nm or less, more desirably 3 nm or less. As such fine precipitates, carbides containing a composite of Ti and Mo or carbides further containing one or more of Nb, V and W are preferable. The fine precipitates are precipitated during cooling after hot rolling and during subsequent annealing.

なお、微細析出物の個数については、1000個/μm3以上、更に望ましくは5000個/μm3以上あると、高い降伏強度が得易く好適である。
これらの微細析出物の分布形態は特に規定しないが、母相中に均一に分散析出させることが望ましい。
As for the number of fine precipitates, 1000 / μm 3 or more, more desirably 5000 / μm 3 or more is preferable because high yield strength is easily obtained.
Although the distribution form of these fine precipitates is not particularly defined, it is desirable to uniformly disperse and precipitate in the matrix.

上述した析出物とは別に、少量のFe炭化物を含有しても本発明の効果は損なわれないが、平均粒径が1μm以上のFe炭化物を多量に含むと磁気特性を阻害するため、本発明においては、含有されるFe炭化物の大きさの上限は1μm、含有率は析出物全体の1%以下とすることが望ましい。   In addition to the precipitates described above, the effect of the present invention is not impaired even if a small amount of Fe carbide is contained. However, if a large amount of Fe carbide having an average particle size of 1 μm or more is contained, the magnetic properties are hindered. In this case, the upper limit of the size of the Fe carbide contained is preferably 1 μm, and the content is preferably 1% or less of the entire precipitate.

尚、析出物の大きさおよび微細析出物の全析出物に占める割合は、以下の方法により求める。
すなわち、ツインジェット法を用いた電解研磨法にて電子顕微鏡試料を作製し、その試料を加速電圧200kVで観察する。その際、析出物が母相に対して計測可能なコントラストになるように、母相の結晶方位を制御し、析出物の数え落としを最低限に抑えるため、焦点を正焦点からずらしたデフォーカス法で観察を行う。また、析出物粒子の計測を行った領域の試料厚さは電子エネルギー損失分光法を用いて、弾性散乱ピークと非弾性散乱ピーク強度とを測定することで評価する。
The size of the precipitate and the ratio of the fine precipitate to the total precipitate are obtained by the following method.
That is, an electron microscope sample is prepared by an electrolytic polishing method using a twin jet method, and the sample is observed at an acceleration voltage of 200 kV. At that time, the focus is shifted from the normal focus in order to control the crystal orientation of the parent phase so that the precipitate has a measurable contrast with respect to the parent phase and to minimize the number of precipitates. Observe by method. Moreover, the sample thickness of the area | region which measured the deposit particle | grains is evaluated by measuring an elastic scattering peak and an inelastic scattering peak intensity using an electron energy loss spectroscopy.

この方法により、粒子径および粒子数の計測と試料厚さの計測を同じ領域について、実行することができる。粒子径および粒子数の測定は、試料の0.5μm×0.5μmの領域4箇所について行ない、1μm2当りに分布する析出物を粒径ごとの個数として算出する。次いで、この値と試料の厚さから析出物の1μm3当りに分布する粒子径ごとの個数を算出する。これにより、析出物の大きさと、全析出物に占める粒径が10nm未満の析出物の割合を求める。 By this method, the measurement of the particle diameter and the number of particles and the measurement of the sample thickness can be executed for the same region. The measurement of the particle diameter and the number of particles is carried out on four places of a 0.5 μm × 0.5 μm region of the sample, and the precipitates distributed per 1 μm 2 are calculated as the number for each particle diameter. Next, from this value and the thickness of the sample, the number of precipitates per particle diameter distributed per 1 μm 3 is calculated. Thereby, the size of the precipitate and the proportion of the precipitate having a particle size of less than 10 nm in the total precipitate are obtained.

また、本発明において、組織は、圧延方向の{211}面に対する{100}面の強度比が0.7以上、かつ{211}面に対する{110}面の強度比が0.4以下であることが肝要である。なぜなら、{100}面は最も磁化され易い<100>磁化容易軸を多く含んでおり、一方{110}面は磁化され難い<110>軸を多く含む。従って、{100}面の強化比が大きいほど、磁区の自発磁化が大きくなり、一定の励磁電流に対して磁束密度が高くなる。
発明者らは、{100}の方位と{110}の方位について磁気特性に対する影響を定量化するため、{211}面に対する{100}面の強度比と、{211}面に対する{110}面の強度比とを種々変化させたサンプルについて、磁束密度B50を調査した結果、前者が0.7以上、後者が0.4以下で高いB50値となることがわかった(図1参照)。よって本発明では、{211}面に対する{100}面の強度比を0.7以上、{211}面に対する{110}面の強度比を0.4以下とする。
In the present invention, it is important that the structure has a strength ratio of {100} plane to {211} plane in the rolling direction of 0.7 or more and a strength ratio of {110} plane to {211} plane of 0.4 or less. is there. This is because the {100} plane includes many <100> easy axes that are most easily magnetized, while the {110} plane includes many <110> axes that are not easily magnetized. Therefore, as the strengthening ratio of the {100} plane increases, the spontaneous magnetization of the magnetic domain increases, and the magnetic flux density increases with a constant excitation current.
In order to quantify the influence of {100} orientation and {110} orientation on magnetic properties, the inventors analyzed the intensity ratio of {100} plane to {211} plane and {110} plane to {211} plane. As a result of investigating the magnetic flux density B 50 for the samples with various strength ratios, it was found that the former had a high B 50 value of 0.7 or more and the latter 0.4 or less (see FIG. 1). Therefore, in the present invention, the strength ratio of the {100} plane to the {211} plane is 0.7 or more, and the strength ratio of the {110} plane to the {211} plane is 0.4 or less.

以下に、上記した冷間鍛造部品を製造する際の条件について説明する。すなわち、冷間鍛造部品は、上述の成分に調整した鋼素材を、1100℃以上に加熱し、仕上温度880℃以上で熱間圧延した後、加工率20%以上の冷間鍛造を施し、600℃以上700℃以下の温度域にて焼鈍を施すことによって、得られる。
加熱温度
本発明では、熱間圧延後の冷却中に析出物を微細に析出させるために、熱間圧延前の鋳片に析出している析出物を、加熱炉にて一旦固溶させる必要がある。その際、加熱温度が1100℃未満であると、Ti−Mo系炭化物等が十分に固溶しないため、加熱温度は1100℃以上とする。
Below, the conditions at the time of manufacturing the above-mentioned cold forged part are demonstrated. In other words, the cold forged parts were heated to 1100 ° C or higher after the steel material adjusted to the above-mentioned components, hot-rolled at a finishing temperature of 880 ° C or higher, and then subjected to cold forging with a processing rate of 20% or higher. It can be obtained by annealing in a temperature range of from ℃ to 700 ℃.
Heating temperature In the present invention, in order to precipitate precipitates finely during cooling after hot rolling, it is necessary to once dissolve the precipitates precipitated on the slab before hot rolling in a heating furnace. is there. At that time, if the heating temperature is less than 1100 ° C., Ti—Mo-based carbides and the like are not sufficiently dissolved, so the heating temperature is set to 1100 ° C. or higher.

仕上温度
本発明では、析出物の析出挙動がフェライト変態の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度との差が小さく、フェライト変態と析出が競合する場合に、析出物がフェライト中に微細に分散析出する。フェライト変態と析出を競合させるにはフェライト変態の開始温度を下げる必要があるが、熱間圧延における仕上温度が低い場合には、圧延で導入される歪がフェライト変態の開始温度を上昇させ、析出物の微細化を阻害する。これを避けるためには、仕上温度を歪の影響が現れない高温にすれば良く、この点から仕上温度は880℃以上とする。
Finishing temperature In the present invention, the precipitation behavior of the precipitate is closely related to the progress of the ferrite transformation, and the difference between the transformation start temperature of the ferrite transformation that occurs during cooling after rolling and the precipitation start temperature of the precipitate is small, When the ferrite transformation and precipitation compete, the precipitate is finely dispersed and precipitated in the ferrite. In order to compete with ferrite transformation and precipitation, it is necessary to lower the start temperature of ferrite transformation, but when the finishing temperature in hot rolling is low, the strain introduced by rolling raises the start temperature of ferrite transformation and precipitates. Inhibits refinement of objects. In order to avoid this, the finishing temperature may be set to a high temperature at which the influence of distortion does not appear. From this point, the finishing temperature is set to 880 ° C. or higher.

冷間鍛造の加工率
本発明では、{211}面に対する{100}面の強度比が0.7以上かつ、{211}面に対する{110}面の強度比が0.4以下とする必要がある。このため、熱間圧延に引き続く冷間加工と熱処理によって磁気特性に優位な集合組織を発達させ、同時に微細析出物を十分に析出させることで、高い強度と良好な磁気特性を兼備させることが重要である。
In the present invention, the strength ratio of the {100} plane to the {211} plane needs to be 0.7 or more and the strength ratio of the {110} plane to the {211} plane needs to be 0.4 or less. For this reason, it is important to develop a texture that is superior in magnetic properties by cold working and heat treatment following hot rolling, and at the same time sufficiently precipitate fine precipitates to combine high strength and good magnetic properties. It is.

以下に、加工条件を決定するために行った実験について詳述する。
すなわち、成分組成が本発明範囲にある、C:0.072%、Si:0.07%、Mn:2.05%、Ti:0.22%、Mo:0.48%、P:0.007%、S:0.005%、Al:0.018%およびN:0.0020%を含み、残部が鉄および不可避的不純物になる鋼を溶製した。この鋼を1230℃に加熱後、熱間圧延を施し、長さ6mおよび直径70mmの棒鋼にした。その後、直径60mmおよび高さ25mmの円盤状の冷間鍛造試験片を据込み方向が圧延方向と垂直になるように切り出し、加工度を0〜80%まで変化させた据込み加工を行い、650℃で60minの焼鈍を行った。
Below, the experiment conducted in order to determine processing conditions is explained in full detail.
That is, the component composition is within the scope of the present invention, C: 0.072%, Si: 0.07%, Mn: 2.05%, Ti: 0.22%, Mo: 0.48%, P: 0.007%, S: 0.005%, Al: 0.018% And N: 0.0020%, and the balance was made of iron and steel with inevitable impurities. This steel was heated to 1230 ° C. and hot-rolled to obtain a steel bar having a length of 6 m and a diameter of 70 mm. Thereafter, a disk-shaped cold forging test piece having a diameter of 60 mm and a height of 25 mm was cut out so that the upsetting direction was perpendicular to the rolling direction, and upsetting was performed with the degree of processing varied from 0 to 80%. Annealing was carried out at 60 ° C. for 60 min.

かくして得られた冷間鍛造そして焼鈍後の試験片について、面強度比、磁気特性ならびに機械特性を測定した。
まず、面強度比は、板厚の1/2位置の中心部より25mm×25mmおよび厚み1mmを削り出し、Cu−Kα線を用いたX線による測定により求めた。磁気特性については、板厚中央部より、内径33mm−外径45mm、厚み3mmのリング状試験片を採取し、1次巻線100回、2次巻線100回を施し、直流の励磁電流5000A/mでの磁束密度B50を測定した。機械特性については、引張試験にて評価した。
The test pieces after cold forging and annealing thus obtained were measured for surface strength ratio, magnetic properties and mechanical properties.
First, the surface strength ratio was obtained by measuring 25 mm × 25 mm and a thickness of 1 mm from the center of the 1/2 position of the plate thickness, and measuring by X-ray using Cu—Kα ray. Regarding the magnetic characteristics, a ring-shaped test piece having an inner diameter of 33 mm, an outer diameter of 45 mm, and a thickness of 3 mm was taken from the center of the plate thickness, subjected to 100 primary windings and 100 secondary windings, and a DC excitation current of 5000 A. The magnetic flux density B 50 at / m was measured. The mechanical properties were evaluated by a tensile test.

図1に、磁気測定結果におよぼす焼鈍温度の影響を示す。図1より、冷間加工率が20%以上である本発明鋼では、B50が1.66T以上、YSが650MPa以上となっていた。
冷間加工率が20%未満では、磁気特性に有利な{100}集合組織の発達が不十分であり、かつ{110}集合組織が高いため、磁気特性も劣っている。また、冷間鍛造そして焼鈍による微細析出物の析出が促進されないため、降伏強度の向上が不十分である。以上のような検討の結果、冷間加工率を20%以上とした。
FIG. 1 shows the influence of the annealing temperature on the magnetic measurement results. From FIG. 1, in the steel of the present invention having a cold work rate of 20% or more, B 50 was 1.66 T or more and YS was 650 MPa or more.
If the cold work rate is less than 20%, the development of {100} texture that is advantageous for the magnetic properties is insufficient, and the magnetic properties are also inferior because the {110} texture is high. Moreover, since precipitation of fine precipitates by cold forging and annealing is not promoted, the yield strength is not sufficiently improved. As a result of the above examination, the cold working rate was set to 20% or more.

焼鈍温度
焼鈍温度が600℃以下では、微細析出物の析出が起こらないため降伏強度の向上が図れない。また、焼鈍温度が700℃超えでは、微細析出物が粗大化することで磁気特性が急激に低下する。このため、焼鈍温度は600℃以上700℃以下と限定する。
Annealing temperature When the annealing temperature is 600 ° C or lower, the precipitation strength cannot be improved because fine precipitates do not precipitate. On the other hand, when the annealing temperature exceeds 700 ° C., the magnetic properties are drastically lowered due to coarsening of fine precipitates. For this reason, the annealing temperature is limited to 600 ° C. or more and 700 ° C. or less.

表1に示す成分組成の鋼を溶製し、これらを1200℃に加熱後、熱間圧延により長さ6mおよび直径80mmの棒鋼にした。その際、熱間圧延後の冷却速度は0.23℃/sで冷却した。その後、直径60mmおよび高さ25mmの円盤状の冷間鍛造試験片を据込み方向が圧延方向と垂直になるように切り出し、加工度を0〜80%まで変化させた据込み加工を行い、その後650℃で60minの焼鈍を行った。   Steels having the composition shown in Table 1 were melted, heated to 1200 ° C., and then hot-rolled to form steel bars having a length of 6 m and a diameter of 80 mm. At that time, the cooling rate after hot rolling was 0.23 ° C./s. Thereafter, a disk-shaped cold forging test piece having a diameter of 60 mm and a height of 25 mm was cut out so that the upsetting direction was perpendicular to the rolling direction, and upsetting was performed with the degree of processing varied from 0 to 80%. Annealing was performed at 650 ° C. for 60 minutes.

かくして得られた冷間鍛造そして焼鈍後の試験片について、面強度比、磁気特性ならびに機械特性を上述と同様に測定した。   About the test piece after the cold forging and annealing thus obtained, the surface strength ratio, the magnetic property and the mechanical property were measured in the same manner as described above.

更に、電解研磨にて薄膜試料を作製し、前記した方法に従い透過型電子顕微鏡(TEM)観察することで析出物の粒子径を測定するとともに、エネルギー分散型X線分光装置(EDX)を併用し、析出物を同定した。
上記した組織観察、引張試験および磁気測定の結果を、表2に示す。
Furthermore, a thin film sample was prepared by electrolytic polishing, and the particle size of the precipitate was measured by observation with a transmission electron microscope (TEM) according to the method described above, and an energy dispersive X-ray spectrometer (EDX) was used in combination. The precipitate was identified.
Table 2 shows the results of the above-described structure observation, tensile test, and magnetic measurement.

なお、表1の組織の項において、フェライトはF、ベイナイトやマルテンサイト等の低温変態相が生成し、その体積分率が5%以上となる場合をTと略記した。また、析出物については、平均粒子径を記載した。尚、粒子径のバラツキは、10nm未満の析出物で最大でも±1nm、それ以上の大きさの析出物で±3nmから±5nmであった。尚、組織に低温変態相が生成した場合については、緒晶粒径と析出物の粒子径の測定は割愛した。   In the structure section of Table 1, ferrite is abbreviated as T when a low temperature transformation phase such as F, bainite, martensite, etc. is generated and its volume fraction is 5% or more. Moreover, about the deposit, the average particle diameter was described. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where a low temperature transformation phase was generated in the structure, measurement of the crystal grain size and the particle size of the precipitate was omitted.

Figure 0004974603
Figure 0004974603

Figure 0004974603
Figure 0004974603

表2は、鋼組成の影響を示したものであるが、同表から明らかなように、発明例では600MPa以上の降伏強度が得られており、磁気特性についても、磁束密度B50が1.67T以上と優れている。 Table 2 shows the influence of the steel composition. As is clear from the table, the invention example yielded a yield strength of 600 MPa or more, and the magnetic properties were such that the magnetic flux density B 50 was 1.67 T. Excellent with the above.

これに対して、鋼組成が本発明範囲を外れた比較例では、降伏強度が低く、磁気特性にも劣っている。
すなわち、No.13は、Cが低く、微細析出物の析出量が不足しており、降伏強度が低い。
No.14は、Cが高く、析出物が粗大化しており、降伏強度が低い。析出物が粗大な場合には、前述したように析出物が磁気特性に悪影響を及ぼすため、磁気特性が劣っている。
No.15−Aは、Mnが低いためフェライト変態と析出が十分競合せず、析出物が粗大に析出する結果、強度が低く、磁気特性も低下する。
Mnの高いNo.16−Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低い。また、低温変態相の生成に起因して、磁気特性が低位である。
No.17−Aは、Tiが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Tiが高いNo.18−Aでは、析出物が粗大化しており、降伏強度が低く、磁束密度が低位である。
No.19−Aは、Moが低いため微細析出物の析出量が不足し降伏強度が低い。一方、Moが高いNo.20−Aでは、低温変態相が生成し、微細析出物による析出強化が不足するため降伏強度が低く、磁気特性も劣っている。Mnが高く、同じく低温変態相を生成したNo.16−Aと同様、磁束密度が低くなっている。
On the other hand, in the comparative example in which the steel composition is out of the scope of the present invention, the yield strength is low and the magnetic properties are inferior.
That is, No. 13 has a low C, an insufficient amount of fine precipitates, and a low yield strength.
No. 14 has high C, precipitates are coarsened, and yield strength is low. When the precipitate is coarse, the magnetic property is inferior because the precipitate adversely affects the magnetic property as described above.
In No. 15-A, since Mn is low, ferrite transformation and precipitation do not compete sufficiently, and as a result of the coarse precipitation, the strength is low and the magnetic properties are also deteriorated.
In No. 16-A having a high Mn, a low-temperature transformation phase is formed, and the yield strength is low because precipitation strengthening due to fine precipitates is insufficient. Also, the magnetic properties are low due to the generation of the low temperature transformation phase.
No. 17-A has a low yield strength due to a low amount of fine precipitates because Ti is low. On the other hand, in No. 18-A where Ti is high, precipitates are coarsened, yield strength is low, and magnetic flux density is low.
No. 19-A has a low Mo, so the amount of fine precipitates is insufficient and the yield strength is low. On the other hand, in No. 20-A having a high Mo, a low-temperature transformation phase is generated, and precipitation strengthening due to fine precipitates is insufficient, resulting in low yield strength and poor magnetic properties. The magnetic flux density is low as in No. 16-A, which has a high Mn and also generates a low-temperature transformation phase.

次に、表3は、本発明鋼である鋼番5を種々の条件で製造した結果であるが、同表から明らかなように、発明例では650MPa以上と高い降伏強度が得られており、磁気特性についても、磁束密度B50が1.67T以上と優れた値を示している。
一方、No.5−D鋼は、焼鈍温度が高いため、析出物が固溶し冷却中に第2相が析出する。その結果、低位の磁気特性しか示さない。
No.5−E鋼は、焼鈍を行わないため、焼鈍による析出が起こらず、焼鈍材に比べて強度が低くなっている。また、{100}集合組織も発達せず、磁気特性も低位である。
No.5−F鋼およびN0.5−G鋼は、冷間加工率が低いため、焼鈍後も十分に{100}集合組織が発達せず、磁気特性も低位である。
No.5−M鋼は、加熱温度が低いため、熱間圧延前の鋳片の析出物が加熱炉で十分に固溶せず、析出物が粗大化する。その結果、磁気特性が劣っている。
No.5−Q鋼は、仕上温度が低く、圧延で導入される歪がフェライト変態の開始温度を上昇させ、フェライト変態と析出の競合を阻害する。その結果、析出物が粗大化し、降伏強度が低下する。また、粗大な析出物に起因して、磁気特性が劣化する。
Next, Table 3 shows the results of manufacturing the steel No. 5, which is the steel of the present invention, under various conditions. As is clear from the table, the invention example has obtained a high yield strength of 650 MPa or more, As for the magnetic characteristics, the magnetic flux density B 50 is an excellent value of 1.67 T or more.
On the other hand, No. 5-D steel has a high annealing temperature, so that the precipitate is dissolved and the second phase is precipitated during cooling. As a result, only low magnetic properties are shown.
Since No. 5-E steel is not annealed, precipitation due to annealing does not occur, and the strength is lower than that of the annealed material. Also, {100} texture does not develop and magnetic properties are low.
Since No. 5-F steel and N0.5-G steel have a low cold work rate, {100} texture does not develop sufficiently even after annealing, and magnetic properties are also low.
Since the heating temperature of No. 5-M steel is low, the slab precipitate before hot rolling does not sufficiently dissolve in the heating furnace, and the precipitate becomes coarse. As a result, the magnetic properties are inferior.
In No. 5-Q steel, the finishing temperature is low, and the strain introduced by rolling increases the starting temperature of the ferrite transformation and inhibits the competition between ferrite transformation and precipitation. As a result, the precipitates become coarse and the yield strength decreases. In addition, magnetic properties are deteriorated due to coarse precipitates.

Figure 0004974603
Figure 0004974603

冷間加工率と集合組織、磁気特性および機械特性との関係を示す図である。It is a figure which shows the relationship between a cold work rate, a texture, a magnetic characteristic, and a mechanical characteristic.

Claims (12)

C:0.040質量%以上0.120質量%以下、
Si:0.5質量%以下、
Mn:0.60質量%以上3.00質量%以下、
Al:0.1質量%以下、
Ti:0.03質量%以上0.35質量%以下および
Mo:0.05質量%以上0.8質量%以下
を含み、残部Feおよび不可避的不純物の成分組成を有し、フェライト中に粒径10nm未満の微細析出物が分散してなる組織を有し、{211}面に対する{100}面の強度比が0.7以上、かつ{211}面に対する{110}面の強度比が0.4以下である冷間鍛造部品からなることを特徴とするモータのローターコア
C: 0.040 mass% or more and 0.120 mass% or less,
Si: 0.5% by mass or less,
Mn: 0.60 mass% or more and 3.00 mass% or less,
Al: 0.1 mass% or less,
Ti: 0.03 mass% to 0.35 mass% and
Mo: 0.05 mass% or more and 0.8 mass% or less, having a component composition of the balance Fe and inevitable impurities, having a structure in which fine precipitates having a particle size of less than 10 nm are dispersed in ferrite, {211} A rotor core for a motor, comprising a cold forged part having a strength ratio of {100} face to the face of 0.7 or more and a strength ratio of {110} face to the {211} face of 0.4 or less.
前記成分組成が、下記(1)式を満たすことを特徴とする請求項1に記載のモータのローターコア

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ・・・・・・(1)
The rotor core of the motor according to claim 1, wherein the component composition satisfies the following expression (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
前記微細析出物が、Tiおよび/またはMoの炭化物であることを特徴とする請求項1または2に記載のモータのローターコア The rotor core of the motor according to claim 1, wherein the fine precipitate is a carbide of Ti and / or Mo. 前記成分組成として、更に
Nb:0.08質量%以下、
V:0.15質量%以下および
W:1.5質量%以下
のうちから選ばれる一種または二種以上を含むことを特徴とする請求項1、2または3記載のモータのローターコア
As the component composition,
Nb: 0.08 mass% or less,
4. The rotor core of a motor according to claim 1 , wherein the rotor core includes one or more selected from V: 0.15 mass% or less and W: 1.5 mass% or less.
前記成分組成が、下記(2)式を満たすことを特徴とする請求項4に記載のモータのローターコア

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ・・・・・・(2)
The rotor core of the motor according to claim 4, wherein the component composition satisfies the following expression (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (2)
前記微細析出物が、TiおよびMoと、Nb、VおよびWの内の少なくとも一種とを含む炭化物であることを特徴とする請求項4または5に記載のモータのローターコア The rotor core of a motor according to claim 4 or 5, wherein the fine precipitate is a carbide containing Ti and Mo and at least one of Nb, V and W. 前記成分組成として、更に
S:0.01質量%以上0.1質量%以下
を含み、かつ
Pb:0.2質量%以下、
Ca:0.005質量%以下、
Bi:0.1質量%以下および
B:0.02質量%以下
の一種または二種以上を含むことを特徴とする請求項1乃至6のいずれかに記載のモータのローターコア
The component composition further includes S: 0.01% by mass or more and 0.1% by mass or less, and
Pb: 0.2 mass% or less,
Ca: 0.005 mass% or less,
The rotor core of the motor according to any one of claims 1 to 6, comprising one or more of Bi: 0.1 mass% or less and B: 0.02 mass% or less.
C:0.040質量%以上0.120質量%以下、
Si:0.5質量%以下、
Mn:0.60質量%以上3.00質量%以下、
Al:0.1質量%以下、
Ti:0.03質量%以上0.35質量%以下および
Mo:0.05質量%以上0.8質量%以下
を含み、残部Feおよび不可避的不純物の成分組成になる鋼素材を、1100℃以上に加熱し、仕上温度880℃以上で熱間圧延した後、加工率20%以上の冷間鍛造を施し、600℃以上700℃以下の温度域にて焼鈍を施し、{211}面に対する{100}面の強度比を0.7以上、かつ{211}面に対する{110}面の強度比を0.4以下とすることを特徴とするモータのローターコアの製造方法。
C: 0.040 mass% or more and 0.120 mass% or less,
Si: 0.5% by mass or less,
Mn: 0.60 mass% or more and 3.00 mass% or less,
Al: 0.1 mass% or less,
Ti: 0.03 mass% to 0.35 mass% and
Mo: A steel material containing 0.05% by mass to 0.8% by mass with the balance being Fe and inevitable impurities is heated to 1100 ° C or higher and hot-rolled at a finishing temperature of 880 ° C or higher. subjecting% or more cold forging, and facilities annealed at 600 ° C. or higher 700 ° C. or less of the temperature range, {211} {100} intensity ratio of surface 0.7 or more with respect to surface and {211} with respect to plane {110} A method for manufacturing a rotor core of a motor, wherein the strength ratio of the surface is 0.4 or less .
前記鋼素材は、下記(1)式を満たす成分組成になることを特徴とする請求項8に記載のモータのローターコアの製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 ・・・・・・(1)
The method for manufacturing a rotor core of a motor according to claim 8, wherein the steel material has a component composition satisfying the following expression (1).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (1)
前記鋼素材は、更に
Nb:0.08質量%以下、
V:0.15質量%以下および
W:1.5質量%以下
のうちから選ばれる一種または二種以上を含むことを特徴とする請求項8または9に記載のモータのローターコアの製造方法。
The steel material is further
Nb: 0.08 mass% or less,
The method for producing a rotor core of a motor according to claim 8 or 9, comprising one or more selected from V: 0.15 mass% or less and W: 1.5 mass% or less.
前記鋼素材は、下記(2)式を満たす成分組成になることを特徴とする請求項10に記載のモータのローターコアの製造方法。

0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 ・・・・・・(2)
The method for manufacturing a rotor core of a motor according to claim 10, wherein the steel material has a component composition satisfying the following expression (2).
Record
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (2)
前記鋼素材は、更に
S:0.01質量%以上0.1質量%以下
を含み、かつ
Pb:0.2質量%以下、
Ca:0.005質量%以下、
Bi:0.1質量%以下および
B:0.02質量%以下
の一種または二種以上を含むことを特徴とする請求項8乃至11のいずれかに記載のモータのローターコアの製造方法。

The steel material further includes S: 0.01 mass% or more and 0.1 mass% or less, and
Pb: 0.2 mass% or less,
Ca: 0.005 mass% or less,
The method for producing a rotor core of a motor according to any one of claims 8 to 11, comprising one or more of Bi: 0.1 mass% or less and B: 0.02 mass% or less.

JP2006208762A 2006-07-31 2006-07-31 Rotor core of motor and manufacturing method thereof Active JP4974603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208762A JP4974603B2 (en) 2006-07-31 2006-07-31 Rotor core of motor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208762A JP4974603B2 (en) 2006-07-31 2006-07-31 Rotor core of motor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008031542A JP2008031542A (en) 2008-02-14
JP4974603B2 true JP4974603B2 (en) 2012-07-11

Family

ID=39121285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208762A Active JP4974603B2 (en) 2006-07-31 2006-07-31 Rotor core of motor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4974603B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766362B2 (en) * 2016-01-26 2020-10-14 日本製鉄株式会社 Skin-baked steel with excellent coarse grain prevention characteristics, fatigue characteristics, and machinability during carburizing and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268826B2 (en) * 2002-04-26 2009-05-27 Jfe条鋼株式会社 Steel bar for cold forging, cold forged product and manufacturing method

Also Published As

Publication number Publication date
JP2008031542A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP6866935B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JPWO2018164185A1 (en) Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
WO2004050934A1 (en) Non-oriented magnetic steel sheet and method for production thereof
TWI718973B (en) Non-directional electromagnetic steel sheet and its manufacturing method and motor core
JP2023507594A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5200376B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN113166823A (en) Non-oriented electromagnetic steel sheet
JP2023554663A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2008266731A (en) Full hard cold rolled steel sheet
US20240038422A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
JP5085963B2 (en) Electromagnetic bar and its manufacturing method
KR102297753B1 (en) Non-oriented electrical steel sheet with low core-loss and high strength after stress relief annealing and method for manufacturing the same
JP4740400B2 (en) Non-oriented electrical steel sheet
JP4681687B2 (en) Non-oriented electrical steel sheet
JP4974603B2 (en) Rotor core of motor and manufacturing method thereof
JP4273768B2 (en) Hot-rolled steel sheet for iron core of rotating machine and manufacturing method thereof
JP2024519776A (en) Non-oriented electrical steel sheet and its manufacturing method
JP5085964B2 (en) Electromagnetic bar and its manufacturing method
JP3752844B2 (en) High-strength, high-workability hot-rolled steel sheet with excellent impact and fatigue resistance
JP7328597B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7555080B2 (en) Manufacturing method of cold rolled steel sheet and manufacturing method of steel parts
US20240084415A1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2024099357A (en) Soft magnetic steel wire with excellent magnetic flux density and core loss characteristics, method of manufacturing the same, and electromagnetic component including core material made from the soft magnetic steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4974603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250