JP5132467B2 - Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength - Google Patents

Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength Download PDF

Info

Publication number
JP5132467B2
JP5132467B2 JP2008197034A JP2008197034A JP5132467B2 JP 5132467 B2 JP5132467 B2 JP 5132467B2 JP 2008197034 A JP2008197034 A JP 2008197034A JP 2008197034 A JP2008197034 A JP 2008197034A JP 5132467 B2 JP5132467 B2 JP 5132467B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
layer
plating
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008197034A
Other languages
Japanese (ja)
Other versions
JP2010031339A (en
Inventor
裕也 隅野
幸矢 野村
洋介 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008197034A priority Critical patent/JP5132467B2/en
Publication of JP2010031339A publication Critical patent/JP2010031339A/en
Application granted granted Critical
Publication of JP5132467B2 publication Critical patent/JP5132467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Conductive Materials (AREA)

Description

本発明は、電気・電子部品の素材として用いられる導電率および強度に優れる銅合金に関するものである。   The present invention relates to a copper alloy having excellent conductivity and strength used as a material for electric / electronic parts.

銅合金は、強度、導電性および熱伝導性に優れることから、家電製品の部品、半導体装置用リードフレーム等の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、バスバー、端子・コネクタ等の機構部品や産業用機器などの各種用途に用いられる。   Copper alloys are excellent in strength, conductivity, and thermal conductivity, so they are parts for home appliances, semiconductor parts such as lead frames for semiconductor devices, materials for electrical and electronic parts such as printed wiring boards, switch parts, bus bars, terminals -Used in various applications such as mechanical parts such as connectors and industrial equipment.

これらの各種用途に用いられる銅合金には、強度、導電性および熱伝導性以外に、その用途に応じて、各種の特性が求められる。例えば、車載用ジャンクションボックス(以下、「JB」と略す)のバスバーとして、図1に示す接点構造を有するものが知られており、このバスバー1では、圧接部2a,2bを有するメス端子部3と、リレーやヒューズなどのオス端子4との電気的な接触を維持するために、応力の集中するメス端子部3の圧接部2a,2bの下部5は、強度、応力緩和特性等の特性に優れることが求められる。特に、応力緩和特性は、電気的接触を良好に保つために重要な特性である。また、バスバー1の板厚は、通常0.64〜0.8mmと厚く、曲げが困難であるため、種々の加工に耐え得る曲げ加工性も重要な特性となる。   In addition to strength, conductivity, and thermal conductivity, various properties are required for the copper alloy used in these various applications depending on the application. For example, a bus bar having a contact structure shown in FIG. 1 is known as a bus bar of an in-vehicle junction box (hereinafter abbreviated as “JB”). In this bus bar 1, a female terminal portion 3 having press contact portions 2a and 2b is known. In order to maintain electrical contact with the male terminals 4 such as relays and fuses, the lower portions 5 of the pressure contact portions 2a and 2b of the female terminal portion 3 where stress is concentrated have characteristics such as strength and stress relaxation characteristics. It is required to be excellent. In particular, the stress relaxation characteristic is an important characteristic for maintaining good electrical contact. Moreover, since the thickness of the bus bar 1 is generally 0.64 to 0.8 mm and is difficult to bend, bending workability that can withstand various kinds of processing is also an important characteristic.

また、近年の車載電装用部品における低コスト化、小型化および軽量化の傾向から、車載JB用バスバーの材料には、従来から要望されている機械的特性に加えて、一段と高い導電率[具体的には、60%IACS以上〔IACS:万国標準軟銅(International Annealed Copper Standard)〕]であることが望まれている。   In addition, due to the recent trend toward lower cost, smaller size, and lighter weight for in-vehicle electrical components, in-vehicle JB busbar materials have higher electrical conductivity in addition to the mechanical properties that have been conventionally requested. Specifically, it is desired to be 60% IACS or more [IACS: International Annealed Copper Standard].

さらに、従来、バスバーは、耐食性を高めるためにSnめっきを施した状態で使用されている。ここで、前記のとおり、JBにおける近年の小型化および軽量化の要求に適応するため、バスバーに直接、半導体を実装するタイプが増加しており、耐食性だけでなく加熱後のめっき耐熱剥離性などの特性も重要になってきている。   Furthermore, conventionally, the bus bar is used in a state where Sn plating is applied in order to improve the corrosion resistance. Here, as described above, in order to adapt to the recent demands for miniaturization and weight reduction in JB, the number of types in which a semiconductor is directly mounted on a bus bar is increasing, and not only corrosion resistance but also heat resistance of plating after heating, etc. The characteristics of are also becoming important.

そこで、これらの問題に対応するため、各種の銅合金が提案されている。例えば、特許文献1には、バスバー、自動車用コネクタ端子、電気・電子部品の端子等の通電部品用に適した銅合金として、質量%でFe:0.15〜0.7%、P:0.04〜0.5%、Sn:0.5%以下、Mg:0.01〜0.5%を含有し、結晶粒径、導電率、引張強さ、曲げ加工性およびプレス打ち抜き性を所定範囲に規定した銅合金が開示されている.   Therefore, various copper alloys have been proposed to cope with these problems. For example, in Patent Document 1, Fe: 0.15 to 0.7% in mass%, P: 0 as a copper alloy suitable for current-carrying parts such as bus bars, connector terminals for automobiles, and terminals for electric / electronic parts. 0.04 to 0.5%, Sn: 0.5% or less, Mg: 0.01 to 0.5%, crystal grain size, electrical conductivity, tensile strength, bending workability and press punchability are predetermined. A range of copper alloys is disclosed.

また、特許文献2には、バスバー、端子等に用いる銅合金として、強度、導電率および曲げ加工性の向上を目的として、Fe:0.01〜3.0%、P:0.01〜0.3%、Sn:0.01〜5.0%、Mg:0.1〜1.0%、Zn0.005〜3.0%を含有し、結晶粒径とその標準偏差が所定範囲にある銅合金が開示されている。   Further, in Patent Document 2, as a copper alloy used for bus bars, terminals, etc., Fe: 0.01 to 3.0%, P: 0.01 to 0 for the purpose of improving strength, conductivity and bending workability. .3%, Sn: 0.01-5.0%, Mg: 0.1-1.0%, Zn 0.005-3.0%, crystal grain size and its standard deviation are within a predetermined range A copper alloy is disclosed.

さらに、特許文献3には、強度、耐マイグレーション性、応力緩和性に優れた高導電率銅合金として、Fe:0.02〜0.50%、P:0.01〜0.1%、Sn:0.1〜1.0%、Mg:0.1〜1.0%、Zn:0.3〜2.0%を含有する銅合金が開示されている。
特開2007−291518号公報(請求項1,2,6等) 特開2007−177274号公報(請求項1,4,5等) 特開平03−97816号公報(特許請求の範囲等)
Furthermore, Patent Document 3 discloses Fe: 0.02 to 0.50%, P: 0.01 to 0.1%, Sn as a high conductivity copper alloy having excellent strength, migration resistance, and stress relaxation properties. : Copper alloy containing 0.1 to 1.0%, Mg: 0.1 to 1.0%, Zn: 0.3 to 2.0% is disclosed.
JP 2007-291518 A (Claims 1, 2, 6 etc.) JP 2007-177274 A (Claims 1, 4, 5, etc.) Japanese Patent Laid-Open No. 03-97816 (claims, etc.)

しかし、特許文献1に開示された銅合金は、150℃で長時間加熱することによってSnめっきが剥離を生じることがあり、加熱後のSnめっきの耐熱剥離性に劣るという問題がある。また、特許文献2に開示された銅合金は、製造に際して、冷間圧延材を高温に急速加熱した後、急冷する必要があり、製造コストアップとなる。また、この銅合金は、導電率が十分に高くないという問題点がある。   However, the copper alloy disclosed in Patent Document 1 has a problem that Sn plating peels off when heated at 150 ° C. for a long time, and the heat-resistant peelability of Sn plating after heating is inferior. In addition, the copper alloy disclosed in Patent Document 2 needs to be rapidly cooled after the cold-rolled material is rapidly heated to a high temperature, which increases the manufacturing cost. Further, this copper alloy has a problem that the conductivity is not sufficiently high.

さらに、特許文献3に開示された銅合金は、500℃で2時間の焼鈍における析出処理において、P化物を形成する元素、具体的にはFe、Mgに対しP量が少ないため、母相に固溶するFe、Mgの量が多くなり、高導電率を得にくい。また、他の特性も十分なものとは言い難い。   Furthermore, since the copper alloy disclosed in Patent Document 3 has a small amount of P with respect to elements that form P compounds, specifically Fe and Mg, in the precipitation treatment in annealing at 500 ° C. for 2 hours, The amount of Fe and Mg to be dissolved increases and it is difficult to obtain high conductivity. Moreover, it cannot be said that other characteristics are sufficient.

そこで、本発明の課題は、高い導電率および強度を有するとともに、応力緩和特性、曲げ加工性、および耐マイグレーション特性にも優れた電気・電子部品用銅合金と、この電気・電子部品用銅合金を用いてなるSnめっき耐熱剥離性に優れたSnめっき銅合金材を提供することにある。   Accordingly, the object of the present invention is to provide a copper alloy for electric / electronic parts having high conductivity and strength, and excellent stress relaxation characteristics, bending workability, and migration resistance characteristics, and the copper alloy for electric / electronic parts. It is providing the Sn plating copper alloy material excellent in Sn plating heat-resistant peeling property which uses this.

そこで、本発明者らは、銅合金の強度や導電率の向上に有効なFe−P析出物およびMg−P析出物を形成するために必要なFeおよびMgの含有量について鋭意検討した。その結果、銅合金においては、Fe、P、Mg、SnおよびZnを特定の量含有し、残部がCuおよび不可避的不純物で構成される成分組成にするとともに、Fe、MgおよびPの含有量を、(Fe+Mg)/Pが2.0〜4.0、かつ、Fe>Mg、の関係にすることが、Fe−P析出物およびMg−P析出物を形成させて、強度や導電率を向上させるために有効であることを知見した。そして、この銅合金が、応力緩和特性、曲げ加工性、および耐マイグレーション特性にも優れることを知見した。   Therefore, the present inventors diligently studied the Fe and Mg contents necessary for forming Fe—P precipitates and Mg—P precipitates effective for improving the strength and conductivity of the copper alloy. As a result, in the copper alloy, a specific amount of Fe, P, Mg, Sn and Zn is contained, and the balance is composed of Cu and inevitable impurities, and the contents of Fe, Mg and P are , (Fe + Mg) / P is in the range of 2.0 to 4.0, and Fe> Mg, which forms Fe—P precipitates and Mg—P precipitates, and improves strength and conductivity. It was found to be effective for And it discovered that this copper alloy was excellent also in stress relaxation characteristics, bending workability, and migration resistance.

すなわち、請求項1に係る発明の電気・電子部品用銅合金は、Fe:0.1〜0.3質量%、P:0.05〜0.15質量%、Mg:0.04〜0.15質量%、Sn:0.01〜0.2質量%およびZn:0.05〜0.5質量%を含み、残部がCuおよび不可避的不純物からなり、Fe、MgおよびPの含有量について、(Fe+Mg)/Pが2.0〜4.0、かつ、Fe>Mg、の関係を満たし、ビッカース硬さが130以上、圧延方向に対して平行方向および直角方向において、150℃で1000時間加熱後の応力緩和率が35%以下であり、150℃で1000時間加熱後もSnめっきが剥離しないことを特徴とする。   That is, the copper alloy for electrical / electronic parts of the invention according to claim 1 is Fe: 0.1-0.3% by mass, P: 0.05-0.15% by mass, Mg: 0.04-0. 15% by mass, Sn: 0.01-0.2% by mass and Zn: 0.05-0.5% by mass, with the balance consisting of Cu and inevitable impurities, with respect to the contents of Fe, Mg and P, (Fe + Mg) / P satisfies the relationship of 2.0 to 4.0 and Fe> Mg, the Vickers hardness is 130 or more, and is heated at 150 ° C. for 1000 hours in a direction parallel to and perpendicular to the rolling direction. The subsequent stress relaxation rate is 35% or less, and the Sn plating does not peel after heating at 150 ° C. for 1000 hours.

この銅合金は、このような構成を有することによって、高い導電率および強度を示し、さらに、応力緩和特性、曲げ加工性、耐マイグレーション特性および加熱後のSnめっき耐熱剥離性に優れるものである。   By having such a configuration, this copper alloy exhibits high electrical conductivity and strength, and is excellent in stress relaxation characteristics, bending workability, migration resistance characteristics, and Sn plating heat release resistance after heating.

請求項2に係る発明のSnめっき銅合金材は、前記電気・電子部品用銅合金からなる銅合金母材と、前記銅合金母材の表面に形成された厚さ3μm以下のCu−Sn合金層と、前記Cu−Sn合金層の表面に形成された厚さ0.3〜3.0μmのSnめっき層と、を有することを特徴とする。   The Sn-plated copper alloy material of the invention according to claim 2 is a copper alloy base material made of the copper alloy for electric / electronic parts, and a Cu-Sn alloy having a thickness of 3 μm or less formed on the surface of the copper alloy base material. And a Sn plating layer having a thickness of 0.3 to 3.0 μm formed on the surface of the Cu—Sn alloy layer.

このSnめっき銅合金材は、このような構成によって、高い導電率および強度を有するとともに、応力緩和特性、曲げ加工性が向上し、また、耐マイグレーション特性の向上による優れた耐腐食性を示し、さらに、Snめっき層の加熱後の耐熱剥離性を向上させることができる。また、表面にSn層が存在するため、Snめっき銅合金材より製作した端子をPbレスはんだや一般のはんだを用いて基板等にはんだ付けする際のはんだ広がり性が優れ、良好なはんだ接合強度が得られる。   This Sn-plated copper alloy material has high conductivity and strength as well as improved stress relaxation characteristics and bending workability due to such a configuration, and exhibits excellent corrosion resistance due to improved migration resistance, Furthermore, the heat-resistant peelability after heating of the Sn plating layer can be improved. In addition, since there is a Sn layer on the surface, it has excellent solder spreadability when soldering a terminal made of Sn-plated copper alloy material to a substrate using Pb-less solder or general solder, and good solder joint strength Is obtained.

請求項3に係る発明のSnめっき銅合金材は、前記電気・電子部品用銅合金からなる銅合金母材と、前記銅合金母材の表面に形成された厚さ3μm以下のCu−Sn合金層と、前記Cu−Sn合金層の表面に形成された厚さ0.3〜2.0μmのSnめっき層と、を有し、前記Cu−Sn合金層、及び前記Snめっき層は、前記銅合金母材の表面に形成したSnめっき層をリフロー処理することにより形成されたものであることを特徴とする。   The Sn-plated copper alloy material of the invention according to claim 3 is a copper alloy base material made of the copper alloy for electric / electronic parts and a Cu—Sn alloy having a thickness of 3 μm or less formed on the surface of the copper alloy base material. A Sn plating layer having a thickness of 0.3 to 2.0 μm formed on the surface of the Cu—Sn alloy layer, and the Cu—Sn alloy layer and the Sn plating layer are made of the copper It is formed by reflowing the Sn plating layer formed on the surface of the alloy base material.

このSnめっき銅合金材は、このような構成によって、銅合金母材を構成する銅合金に起因する高い導電率および強度、優れた応力緩和特性および曲げ加工性を有するとともに、耐マイグレーション特性の向上による優れた耐腐食性を示し、さらにSn層の加熱後の耐熱剥離性を向上させることができる。また、表面にSn層が存在するため、Snめっき銅合金材より製作した端子をPbレスはんだや一般のはんだを用いて基板等にはんだ付けする際のはんだ広がり性が優れ、良好なはんだ接合強度が得られる。更に、Snめっき後のリフロー処理により、めっき層に発生する応力が低減され、Snのウィスカーが発生せず、狭ピッチの端子に用いても短絡が発生せず、電子部品の信頼性が向上する。   With this configuration, the Sn-plated copper alloy material has high conductivity and strength, excellent stress relaxation characteristics and bending workability due to the copper alloy constituting the copper alloy base material, and improved migration resistance characteristics. It shows excellent corrosion resistance due to, and further can improve the heat-resistant peelability after heating the Sn layer. In addition, since there is a Sn layer on the surface, it has excellent solder spreadability when soldering a terminal made of Sn-plated copper alloy material to a substrate using Pb-less solder or general solder, and good solder joint strength Is obtained. Furthermore, the reflow treatment after Sn plating reduces the stress generated in the plating layer, does not cause Sn whiskers, and does not cause short circuit even when used for narrow pitch terminals, improving the reliability of electronic components. .

本発明に係る電気・電子部品用銅合金は、高い導電率および強度を有するとともに、応力緩和特性、曲げ加工性、耐マイグレーション特性に優れるものである。そのため、本発明の銅合金は、電気・電子部品用の材料だけでなく、家電、半導体部品、産業用機器、並びに自動車用電機電子部品に幅広く有効に活用できる。特に、車載用JBのバスバーを構成する素材として用いた場合には、バスバーの小型化および軽量化を図ることができる。本発明に係る電気・電子部品用銅合金は、一般的な銅合金の製造方法によって製造することができるために、バスバーの低コスト化にも寄与する。   The copper alloy for electric / electronic parts according to the present invention has high conductivity and strength, and is excellent in stress relaxation characteristics, bending workability, and migration resistance characteristics. Therefore, the copper alloy of the present invention can be effectively used widely not only for materials for electric / electronic parts, but also for home appliances, semiconductor parts, industrial equipment, and automotive electric / electronic parts. In particular, when it is used as a material that constitutes a vehicle-mounted JB bus bar, the bus bar can be reduced in size and weight. Since the copper alloy for electrical / electronic parts according to the present invention can be manufactured by a general copper alloy manufacturing method, it contributes to cost reduction of the bus bar.

また、本発明に係るSnめっき銅合金材は、本発明に係る銅合金からなる銅合金母材の表面に、Cu−Sn合金層と、Snめっき層、またはリフロー処理により形成されたCu−Sn合金層とSn層とを有するものであり、銅合金母材を構成する本発明の銅合金によって、高い導電率および強度を有するとともに、応力緩和特性、曲げ加工性および耐マイグレーション特性に優れたものであり、さらに、表面に形成されたSnめっき層またはSn層は加熱後の耐熱剥離性に優れるものである。   The Sn-plated copper alloy material according to the present invention is a Cu-Sn alloy layer and a Sn-plated layer or Cu-Sn formed on the surface of a copper alloy base material made of the copper alloy according to the present invention. It has an alloy layer and a Sn layer, and has high conductivity and strength as well as excellent stress relaxation characteristics, bending workability and migration resistance characteristics by the copper alloy of the present invention constituting the copper alloy base material. Furthermore, the Sn plating layer or Sn layer formed on the surface is excellent in heat-resistant peelability after heating.

以下、本発明の導電率および強度に優れる電気・電子部品用銅合金(以下、「本発明の銅合金」という)および本発明の銅合金を用いてなるSnめっき銅合金材について詳細に説明する。   Hereinafter, the copper alloy for electrical / electronic parts excellent in the electrical conductivity and strength of the present invention (hereinafter referred to as “the copper alloy of the present invention”) and the Sn-plated copper alloy material using the copper alloy of the present invention will be described in detail. .

本発明の銅合金は、Fe、P、Mg、SnおよびZnを特定の量含有し、残部がCuおよび不可避的不純物で構成される成分組成を有するとともに、Fe、MgおよびPの含有量が特定の関係を有するものである。以下、本発明の銅合金を構成する各成分の含有量の数値範囲およびその数値範囲の限定理由、さらに、Fe、MgおよびPの含有量の関係について説明する。   The copper alloy of the present invention contains a specific amount of Fe, P, Mg, Sn, and Zn, the remainder has a component composition composed of Cu and inevitable impurities, and the content of Fe, Mg, and P is specified It has the relationship. Hereinafter, the numerical range of the content of each component constituting the copper alloy of the present invention, the reason for limiting the numerical range, and the relationship between the contents of Fe, Mg, and P will be described.

(Feの含有量:0.1〜0.3質量%)
Feは、Fe−P系の微細な析出物を形成して、析出硬化によって強度を向上させるとともに、導電率を向上させるために有効な元素である。Feの含有量が0.1質量%未満では、十分な析出による強度および導電率の向上効果を得ることができず、0.3質量%を超えると、導電率の低下を招く。したがって、Feの含有量は0.1〜0.3質量%の範囲とする。このFeの含有量は、0.12〜0.28質量%が好ましく、さらに好ましくは0.15〜0.25質量%である。
(Fe content: 0.1 to 0.3% by mass)
Fe is an effective element for forming Fe-P-based fine precipitates, improving the strength by precipitation hardening, and improving the conductivity. If the Fe content is less than 0.1% by mass, the effect of improving the strength and conductivity due to sufficient precipitation cannot be obtained, and if it exceeds 0.3% by mass, the conductivity is lowered. Therefore, the Fe content is in the range of 0.1 to 0.3% by mass. The Fe content is preferably 0.12 to 0.28 mass%, more preferably 0.15 to 0.25 mass%.

(Pの含有量:0.05〜0.15質量%)
Pは、FeやMgと析出物を形成して、析出硬化によって強度を向上させるとともに、導電率を向上させるために有効な元素である。Pの含有量が0.05質量%未満では、FeやMgとの析出物が十分に形成されず、FeやMgの固溶量が増加し、導電率の低下を招く。一方、Pの含有量が0.15質量%を越えると、Pの固溶量が増加し、導電率の低下を招く。したがって、Pの含有量は、0.05〜0.15質量%の範囲とする。このPの含有量は、0.07〜0.13質量%が好ましく、さらに好ましくは0.08〜0.12質量%である。
(P content: 0.05 to 0.15 mass%)
P is an element effective for forming precipitates with Fe and Mg and improving strength by precipitation hardening and improving conductivity. When the P content is less than 0.05 mass%, precipitates with Fe and Mg are not sufficiently formed, and the solid solution amount of Fe and Mg increases, leading to a decrease in conductivity. On the other hand, when the content of P exceeds 0.15% by mass, the solid solution amount of P increases and the conductivity decreases. Therefore, the P content is in the range of 0.05 to 0.15 mass%. The P content is preferably 0.07 to 0.13 mass%, more preferably 0.08 to 0.12 mass%.

(Mgの含有量:0.04〜0.15質量%)
Mgは、Mg−P系の微細な析出物を形成して、析出硬化によって強度を向上させるとともに、導電率を向上させるために有効な元素である。また、析出せず固溶したままのMgは、固溶による強度の向上と耐応力緩和特性の向上に有効である。Mgの含有量が、0.04質量%未満では、Mg−P析出物の析出による強度および導電率の向上と固溶Mgによる固溶強化と耐応力緩和特性の向上を十分に得ることができず、0.15質量%を超えると、固溶Mgが増加し、導電率を低下させる。したがって、Mgの含有量は、0.04〜0.15質量%の範囲とする。このMgの含有量は、0.06〜0.13質量%が好ましく、さらに好ましくは0.08〜0.12質量%である。
(Mg content: 0.04 to 0.15 mass%)
Mg is an effective element for forming Mg-P-based fine precipitates, improving the strength by precipitation hardening, and improving the conductivity. Further, Mg that does not precipitate and remains in solid solution is effective in improving strength and improving stress relaxation resistance due to solid solution. When the Mg content is less than 0.04% by mass, it is possible to sufficiently improve the strength and electrical conductivity due to the precipitation of Mg—P precipitates, the solid solution strengthening by the solid solution Mg, and the improvement of the stress relaxation resistance. If it exceeds 0.15% by mass, the solid solution Mg increases and the electrical conductivity decreases. Therefore, the Mg content is in the range of 0.04 to 0.15 mass%. The content of Mg is preferably 0.06 to 0.13 mass%, more preferably 0.08 to 0.12 mass%.

(Fe、MgおよびPの含有量の関係)
本発明の銅合金において、Fe、MgおよびPの含有量は、(Fe+Mg)/Pが2.0〜4.0の関係にあることが必須である。(Fe+Mg)/Pが2.0未満でも4.0を超えてもFe−P析出物およびMg−P析出物が十分に析出せず、Fe、MgおよびPの固溶量が増え、導電率が低下する。このとき、再結晶温度を上げる効果がMgよりFeの方が高いため、FeおよびMg量の関係は、Fe>Mg、とする。(Fe+Mg)/Pの範囲は2.5〜3.5の範囲が望ましい。
(Relationship of Fe, Mg and P contents)
In the copper alloy of the present invention, the content of Fe, Mg and P must be such that (Fe + Mg) / P is in a relationship of 2.0 to 4.0. Even if (Fe + Mg) / P is less than 2.0 or more than 4.0, Fe—P precipitates and Mg—P precipitates are not sufficiently precipitated, and the solid solution amount of Fe, Mg and P increases, and the electrical conductivity is increased. Decreases. At this time, since the effect of raising the recrystallization temperature is higher in Fe than Mg, the relationship between Fe and Mg content is Fe> Mg. The range of (Fe + Mg) / P is preferably in the range of 2.5 to 3.5.

(Snの含有量:0.01〜0.2質量%)
Snは、固溶による強度の向上と耐応力緩和特性の向上に有効な元素である。Snの含有量が0.01質量%未満では、固溶による強度の向上と耐応力緩和特性の向上が十分に得られず、また、0.2質量%を超えると、導電率を低下する。したがって、Snの含有量は、0.01〜0.2質量%の範囲とする。このSnの含有量は、0.02〜0.18質量%が好ましく、さらに好ましくは0.04〜0.15質量%である。
(Sn content: 0.01 to 0.2% by mass)
Sn is an element effective for improving the strength by solid solution and improving the stress relaxation resistance. If the Sn content is less than 0.01% by mass, sufficient improvement in strength and stress relaxation resistance due to solid solution cannot be obtained, and if it exceeds 0.2% by mass, the electrical conductivity decreases. Therefore, the Sn content is in the range of 0.01 to 0.2% by mass. The content of Sn is preferably 0.02 to 0.18% by mass, more preferably 0.04 to 0.15% by mass.

(Znの含有量:0.05〜0.5質量%)
Znは、電子部品の接合に用いる、Snめっきやはんだの耐熱剥離性を改善し、熱剥離を抑制するために有効な元素である。Znの含有量が0.05質量%未満では、Snめっきやはんだの耐熱剥離性の向上に十分な効果が得られず、0.5質量%を超えると、導電率が低下する。したがって、Znの含有量は、0.05〜0.5質量%の範囲とする。このZnの含有量は、0.07〜0.40質量%が好ましく、さらに好ましくは0.10〜0.30質量%である。
(Zn content: 0.05 to 0.5 mass%)
Zn is an element effective for improving the heat-resistant peelability of Sn plating and solder used for joining electronic components and suppressing thermal peeling. If the Zn content is less than 0.05% by mass, a sufficient effect cannot be obtained for improving the Sn plating and the heat-resistant peelability of the solder, and if it exceeds 0.5% by mass, the electrical conductivity decreases. Therefore, the Zn content is in the range of 0.05 to 0.5 mass%. The Zn content is preferably 0.07 to 0.40 mass%, more preferably 0.10 to 0.30 mass%.

(不可避的不純物)
不可避的不純物は、例えば、Mn、Ni、Co、Zr等である。これらの不可避的不純物の含有量は、導電率60%IACSを満足し得る範囲で含有すれば、本発明の銅合金の導電性に影響せず、また、強度にも悪影響がない。
(Inevitable impurities)
Inevitable impurities are, for example, Mn, Ni, Co, Zr and the like. The content of these inevitable impurities does not affect the conductivity of the copper alloy of the present invention and does not adversely affect the strength as long as the conductivity is within a range that can satisfy 60% IACS.

本発明の銅合金は、その用途に応じて、各種の形態、形状に成形される。例えば、本発明の銅合金からなる板材、板材を幅方向にスリットしてなる条や、条をコイル化した形態、線材等の各種の形態、形状に成形される。そして、本発明の銅合金からなる板材、条等からなる母材(銅合金母材)を電気・電子部品用部品の素材として用いる場合は、その銅合金母材の表面に、Cu−Sn合金層とSnめっき層とが形成されたSnめっき銅合金材とすることが好ましい。   The copper alloy of the present invention is formed into various forms and shapes depending on the application. For example, the sheet material made of the copper alloy of the present invention, a strip formed by slitting the plate member in the width direction, a form obtained by coiling the strip, and various forms and shapes such as a wire rod are formed. And when using the base material (copper alloy base material) which consists of the board | plate material which consists of the copper alloy of this invention, a strip, etc. as a raw material of components for electrical / electronic components, Cu-Sn alloy is formed on the surface of the copper alloy base material. It is preferable to use a Sn-plated copper alloy material in which a layer and a Sn plating layer are formed.

Cu−Sn合金層は、銅合金母材の表面にSnめっき層を形成することによって、銅合金母材とSnめっき層の界面に、CuとSnの合金化によって形成される層であり、室温程度の温度でもCu中におけるSnの拡散係数が大きいことから、Snめっき材を室温に放置した状態でも生成する。このCu−Sn合金層は脆く、Snめっき材の曲げ加工性を低下させるため、3μm以下とする。Cu−Sn合金層の厚さは、2μm以下であることが望ましい。   The Cu—Sn alloy layer is a layer formed by alloying Cu and Sn at the interface between the copper alloy base material and the Sn plating layer by forming the Sn plating layer on the surface of the copper alloy base material. Since Sn has a large diffusion coefficient in Cu even at a moderate temperature, it is generated even when the Sn plating material is left at room temperature. This Cu—Sn alloy layer is brittle and is set to 3 μm or less in order to reduce the bending workability of the Sn plating material. The thickness of the Cu—Sn alloy layer is desirably 2 μm or less.

Snめっき層は、はんだ付け性の向上、耐腐食性等の向上を目的として、銅合金母材の表面に形成されるものであり、結果的に、銅合金母材の表面に形成される形成されるCu−Sn合金層上に形成されることとなる。Snめっき層の厚さは、0.3〜3.0μmであることが好ましい。Snめっき層の厚さが0.3μm未満であると、はんだ付け時のはんだ広がり性が低下し、はんだ接合強度が低下する。   The Sn plating layer is formed on the surface of the copper alloy base material for the purpose of improving solderability, corrosion resistance, and the like, and as a result, formed on the surface of the copper alloy base material. It will be formed on the Cu-Sn alloy layer. The thickness of the Sn plating layer is preferably 0.3 to 3.0 μm. When the thickness of the Sn plating layer is less than 0.3 μm, the solder spreadability at the time of soldering is lowered, and the solder joint strength is lowered.

銅合金母材の表面に、Snめっき層を形成したSnめっき銅合金材に、リフロー処理を施すことが好ましい。これにより、銅合金母材の表面に、Cu−Sn合金層と、Snめっき層が溶融したSn層とが形成されたSnめっき銅合金材が得られる。   It is preferable to perform a reflow process on the Sn-plated copper alloy material in which the Sn plating layer is formed on the surface of the copper alloy base material. Thereby, the Sn plating copper alloy material by which the Cu-Sn alloy layer and the Sn layer which the Sn plating layer fuse | melted was formed on the surface of the copper alloy base material is obtained.

リフロー処理後のSnめっき銅合金材において、Cu−Sn合金層は曲げ加工性を低下させるため、その厚さは3.0μm以下であることが好ましい。   In the Sn-plated copper alloy material after the reflow treatment, the Cu—Sn alloy layer preferably has a thickness of 3.0 μm or less in order to reduce bending workability.

また、前記Sn層は、はんだ付け性を確保するため、厚さが0.3〜2.0μmであることが好ましい。   Further, the Sn layer preferably has a thickness of 0.3 to 2.0 μm in order to ensure solderability.

本発明の銅合金は、前記の成分組成およびFe、MgおよびPの含有量の関係を満足する銅合金を製造可能な方法であれば、特に制限されず、いずれの方法にしたがって製造されたものでもよい。通常、鋳造、熱間圧延、冷間圧延、焼鈍、仕上げ圧延および低温焼鈍の各工程を、この順で行う方法によって製造することができる。   The copper alloy of the present invention is not particularly limited as long as it is a method capable of producing a copper alloy satisfying the relationship between the component composition and the contents of Fe, Mg, and P, and is produced according to any method. But you can. Usually, it can manufacture by the method of performing each process of casting, hot rolling, cold rolling, annealing, finish rolling, and low temperature annealing in this order.

鋳造は、Cuと、Fe、P、Mg、SnおよびZnを、前記成分組成に調製した銅合金溶湯を鋳造して行うことができる。
また、熱間圧延は、鋳造によって得られた鋳塊を850〜950℃で30分〜3時間均熱処理した後、所定の厚さまで圧延し、さらに、700℃以上で焼き入れ処理することによって行うことができる。この熱間圧延において、圧延温度が低過ぎると、再結晶が不完全となり不均一な組織となる虞がある。圧延温度が高過ぎると、結晶粒が粗大化して曲げ加工性が低下する虞がある。そして、熱間圧延後は水冷する。
Casting can be performed by casting a copper alloy melt prepared by preparing Cu, Fe, P, Mg, Sn, and Zn in the above-described component composition.
The hot rolling is performed by soaking the ingot obtained by casting at 850 to 950 ° C. for 30 minutes to 3 hours, rolling to a predetermined thickness, and further quenching at 700 ° C. or higher. be able to. In this hot rolling, if the rolling temperature is too low, recrystallization may be incomplete and a non-uniform structure may be formed. If the rolling temperature is too high, the crystal grains become coarse and the bending workability may be reduced. And after hot rolling, it water-cools.

次に、冷間圧延は、次工程の焼鈍および仕上げ圧延前に、熱間圧延された圧延板を通常圧下率70%以上で圧延する工程である。この冷間圧延によって、その後の焼鈍を行った後の結晶粒径およびそのばらつきを調整することができる。   Next, cold rolling is a step of rolling a hot-rolled rolled sheet at a normal reduction of 70% or more before annealing and finish rolling in the next step. By this cold rolling, the crystal grain size and its variation after the subsequent annealing can be adjusted.

焼鈍は、再結晶およびP化合物(Fe−P析出物、Mg−P析出物)の析出処理を行って微細な析出物を形成させ、銅合金板の強度と導電率を向上(回復)させるための工程である。この焼鈍は、450〜600℃で15分〜10時間加熱して行うことができる。   In order to improve (recover) the strength and conductivity of the copper alloy sheet, annealing is performed by recrystallization and precipitation treatment of P compounds (Fe—P precipitates, Mg—P precipitates) to form fine precipitates. It is this process. This annealing can be performed by heating at 450 to 600 ° C. for 15 minutes to 10 hours.

仕上げ圧延は、所期の厚さに圧延する工程である。この仕上げ圧延では、本発明の銅合金またはSnめっき銅合金材が、特に曲げ加工性を必要とする場合は加工率50%以下とすることが好ましい。
また、低温焼鈍は、仕上げ圧延による歪を除去し、応力緩和特性およびばね限界値を増加させることを目的として行う。この低温焼鈍は、通常、300〜500℃で5秒〜1分加熱処理することによって行うことができる。
Finish rolling is a process of rolling to a desired thickness. In this finish rolling, when the copper alloy or Sn-plated copper alloy material of the present invention requires bending workability, it is preferable to set the processing rate to 50% or less.
The low-temperature annealing is performed for the purpose of removing the strain due to finish rolling and increasing the stress relaxation characteristics and the spring limit value. This low-temperature annealing can be usually performed by heat treatment at 300 to 500 ° C. for 5 seconds to 1 minute.

また、本発明の銅合金を母材(銅合金母材)とするSnめっき銅合金材は、前記の低温焼鈍に続いて、Snめっきを行うことによって製造することができる。これによって、銅合金母材と、銅合金母材とSnめっきとの合金からなるCu−Sn合金層と、Snめっき層とを有するSnめっき銅合金材を得ることができる。   Moreover, the Sn plating copper alloy material which uses the copper alloy of this invention as a base material (copper alloy base material) can be manufactured by performing Sn plating following the said low temperature annealing. Thereby, the Sn plating copper alloy material which has a Cu alloy base material, the Cu-Sn alloy layer which consists of an alloy of a copper alloy base material, and Sn plating, and a Sn plating layer can be obtained.

リフロー処理を行わない場合、光沢Snめっきを行うことが望ましく、例えば、硫酸第1錫を40g/l、硫酸を100g/l、クレゾールスルフォン酸を30g/l、分散剤を20g/l、光沢剤を10ml/l、ホルマリンを5ml/l等を含むめっき浴中で、浴温度:20℃、対極としてSn板を用い、電流密度:2.5A/dmのめっき条件で行うことができる。 When reflow treatment is not performed, it is desirable to perform bright Sn plating, for example, stannous sulfate 40 g / l, sulfuric acid 100 g / l, cresol sulfonic acid 30 g / l, dispersant 20 g / l, brightener In a plating bath containing 10 ml / l of formalin, 5 ml / l of formalin, etc., using a Sn plate as the counter electrode with a bath temperature of 20 ° C. and a current density of 2.5 A / dm 2 .

また、リフロー処理を行う場合は、Snめっきとして、例えば、硫酸第1錫を50g/l、硫酸を80g/l、クレゾールスルフォン酸を30g/l、光沢剤を10g/l等を含むめっき浴中で、浴温度:30℃、対極としてSn板を用い、電流密度:3A/dmのめっき条件で行うことができる。 In the case of performing reflow treatment, for example, Sn plating is performed in a plating bath containing 50 g / l stannous sulfate, 80 g / l sulfuric acid, 30 g / l cresolsulfonic acid, 10 g / l brightener, and the like. Then, the bath temperature is 30 ° C., an Sn plate is used as the counter electrode, and the current density is 3 A / dm 2 .

さらに、Snめっき銅合金材をリフロー処理することにより、Cu−Sn合金層を介して、銅合金母材とSn層とがより緊密に接合された構造とすることが好ましい。リフロー処理は、Snめっきを施した後、通常、240〜600℃で3〜30秒加熱することによって行うことができる。   Further, it is preferable that the Sn-plated copper alloy material is subjected to a reflow treatment to have a structure in which the copper alloy base material and the Sn layer are more closely joined via the Cu-Sn alloy layer. The reflow treatment can be usually performed by heating at 240 to 600 ° C. for 3 to 30 seconds after Sn plating.

本発明の銅合金は、前記した成分組成を有し、前記した製造方法および製造条件によって製造されることによって、60%IACS以上の高い導電率と、ビッカース硬度130Hv以上の高い強度を有し、さらに、応力緩和特性(150℃で1000時間加熱後の応力緩和率が平行および垂直方向のいずれも35%以下)、曲げ加工性、耐マイグレーション特性、およびSnめっき耐熱剥離特性(150℃で1000時間加熱後もSnめっきが剥離しない)に優れたものである。また、このとき平均結晶粒サイズは、JIS H0501に記載されている切断法により測定した場合、2〜10μm程度である。   The copper alloy of the present invention has the above-described component composition, and is manufactured by the above-described manufacturing method and manufacturing conditions, thereby having a high conductivity of 60% IACS or higher and a high strength of Vickers hardness of 130Hv or higher. Furthermore, stress relaxation characteristics (the stress relaxation rate after heating at 150 ° C. for 1000 hours is 35% or less in both parallel and vertical directions), bending workability, migration resistance characteristics, and Sn plating heat-resistant peeling characteristics (1000 hours at 150 ° C.) It is excellent in that the Sn plating does not peel off even after heating. At this time, the average crystal grain size is about 2 to 10 μm when measured by the cutting method described in JIS H0501.

以下、本発明の実施例について、その比較例と比較して具体的に説明する。   Examples of the present invention will be specifically described below in comparison with comparative examples.

(実施例1〜7および比較例1〜14に係る試料の製造条件)
各例の成分組成を表1に示す。この表1に示す成分組成の銅合金を溶製した後、ブックモールドに鋳造して、厚さ45mmの鋳塊を得た。鋳塊を900℃で1時間均熱処理後、熱間圧延して厚さ15mmとし、700℃以上で焼き入れを行った。次に、焼き入れ後の熱間圧延板の両面を厚さ1mm程度研磨して、表面の酸化スケールおよび傷を除去した。その後、厚さ1.07〜1.28mmに冷間圧延した。このとき、次の仕上げ圧延における加工率に応じて目標板厚を変更した。次に、500〜550℃で2時間再結晶および析出焼鈍を行った後、仕上げ圧延して厚さ0.64mmとした。そして、350℃で20秒間低温焼鈍して、試料(銅合金板)を得た。
(Production conditions of samples according to Examples 1 to 7 and Comparative Examples 1 to 14)
The component composition of each example is shown in Table 1. A copper alloy having the component composition shown in Table 1 was melted and then cast into a book mold to obtain an ingot having a thickness of 45 mm. The ingot was soaked at 900 ° C. for 1 hour, then hot rolled to a thickness of 15 mm, and quenched at 700 ° C. or higher. Next, both sides of the hot-rolled sheet after quenching were polished by about 1 mm in thickness to remove surface oxide scale and scratches. Then, it cold-rolled to thickness 1.07-1.28mm. At this time, the target plate thickness was changed according to the processing rate in the next finish rolling. Next, after recrystallization and precipitation annealing at 500 to 550 ° C. for 2 hours, finish rolling was performed to a thickness of 0.64 mm. And it annealed at 350 degreeC for 20 second low temperature, and obtained the sample (copper alloy board).

(試料の評価方法)
実施例1〜8および比較例1〜14の各銅合金板について、下記の試験方法に従って、導電率、ビッカース硬度、機械的特性(0.2%耐力)、応力緩和率および結晶粒径の測定、ならびに曲げ加工性の評価を行った。
(Sample evaluation method)
About each copper alloy plate of Examples 1-8 and Comparative Examples 1-14, according to the following test method, measurement of electrical conductivity, Vickers hardness, mechanical properties (0.2% proof stress), stress relaxation rate, and crystal grain size The bending workability was evaluated.

〔導電率の測定〕
JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジを用いた四端子法で体積抵抗率を測定した。測定された体積抵抗率を、万国標準軟銅(International Annealed Copper Standard)の体積抵抗率1.7241×10−8Ωmで除し、百分率で表し、導電率(%IACS)を求めた。
[Measurement of conductivity]
The volume resistivity was measured by a four-terminal method using a double bridge in accordance with a nonferrous metal material conductivity measurement method defined in JIS-H0505. The measured volume resistivity was divided by the volume resistivity 1.7241 × 10 −8 Ωm of Universal Annealed Copper Standard and expressed as a percentage to obtain the conductivity (% IACS).

〔ビッカース硬さの測定〕
JIS−Z2248に規定されている微小硬さ試験方法に準拠し、試験加重2.94N(=0.3kgf)でビッカース硬さを測定した。
[Measurement of Vickers hardness]
Based on the microhardness test method specified in JIS-Z2248, the Vickers hardness was measured at a test load of 2.94 N (= 0.3 kgf).

〔機械的特性の測定〕
長手方向が圧延方向(L.D.:Longtudinal Direction)および垂直方向(T.D.:Transverse Direction)となるJIS5号引張り試験片を、機械加工にて作製した。2つの試験片(L.D.、T.D.)のそれぞれについて、JIS−Z2241に準拠して引張り試験を実施した。永久伸び0.2%に相当する引張強さを耐力として求めた。
[Measuring mechanical properties]
A JIS No. 5 tensile test piece in which the longitudinal direction is the rolling direction (LD: Longitudinal Direction) and the vertical direction (TD: Transverse Direction) was produced by machining. Each of the two test pieces (LD, TD) was subjected to a tensile test according to JIS-Z2241. The tensile strength corresponding to the permanent elongation of 0.2% was determined as the proof stress.

〔応力緩和率の測定〕
応力緩和率は、片持ち梁方式によって測定した。すなわち、幅10mmの短冊状試験片(長さ方向が板材の圧延方向に対して平行方向(L.D.:Longtudinal Direction)になるものおよび直角方向(T.D.:Transverse Direction)になるもの)を切り出し、その一端を剛体試験台に固定する。固定端から一定距離の位置で試験片に10mmのたわみを与えたとき、固定端において、試験片の採取方向にあわせ、それぞれの方向の材料の0.2%耐力の80%に相当する表面応力を負荷する。たわみを与える位置の固定端からの距離はJCBA T309:2004 銅及び銅合金薄板条の曲げによる応力緩和試験方法により算出した。剛体試験台に固定し、たわみを与えた試験片を150℃のオーブン中に1000時間保持した後に取り出し、たわみ量dを取り去ったときの永久歪みδを測定し、応力緩和率RS=(δ/d)×100を計算する。
[Measurement of stress relaxation rate]
The stress relaxation rate was measured by the cantilever method. That is, a strip-shaped test piece having a width of 10 mm (in which the length direction is parallel to the rolling direction of the plate (LD): a direction that is parallel to the rolling direction and the direction that is perpendicular to the direction of the direction (TD: Transverse Direction) ) And fix one end to a rigid test bench. When a 10 mm deflection is applied to the test piece at a fixed distance from the fixed end, the surface stress corresponding to 80% of the 0.2% proof stress of the material in each direction at the fixed end is aligned with the sampling direction of the test piece. To load. The distance from the fixed end of the position where the deflection is given was calculated by a stress relaxation test method by bending of JCBA T309: 2004 copper and copper alloy sheet. The test piece fixed to the rigid body test stand and subjected to deflection was taken out after being held in an oven at 150 ° C. for 1000 hours, and the permanent strain δ when the deflection amount d was removed was measured, and the stress relaxation rate RS = (δ / d) Calculate x100.

〔曲げ加工性の評価〕
曲げ加工性は、伸銅協会標準JBMA−T307に規定されるW曲げ試験方法に従って評価した。すなわち、銅合金板から幅10mm、長さ30mmの試験片を切り出し、Good Way(曲げ軸が圧延方向に垂直、以下、「G.W.」という)およびBad Way(曲げ軸が圧延方向に平行、以下、「B.W.」という)の曲げ試験を行った。曲げ部における割れの有無を100倍の光学顕微鏡により目視観察し、下記の基準で評価した。
A しわ無し
B しわ小
C しわ中〜大
D 割れ小
E 割れ大
[Evaluation of bending workability]
The bending workability was evaluated according to the W-bending test method defined in JBMA-T307, a standard for copper elongation. That is, a test piece having a width of 10 mm and a length of 30 mm was cut out from a copper alloy plate, and Good Way (bending axis was perpendicular to the rolling direction, hereinafter referred to as “GW”) and Bad Way (bending axis was parallel to the rolling direction). , Hereinafter referred to as “BW”). The presence or absence of cracks in the bent portion was visually observed with a 100 × optical microscope and evaluated according to the following criteria.
A No wrinkle B Small wrinkle C Medium to large wrinkle D Small crack E Large crack

〔結晶粒径の測定〕
試料表面を研磨後、エッチングして光学顕微鏡による組織写真を撮影し、その組織写真からJIS H0501に規定されている切断法(線分の向きを板幅方向)により結晶粒径を測定した。なお、測定は、板幅方向に加え、板幅方向に対し直角および45度についても行い、それぞれ3箇所の平均値を結晶粒径とした。
(Measurement of crystal grain size)
After polishing the sample surface, etching was performed, and a structure photograph was taken with an optical microscope, and the crystal grain size was measured from the structure photograph by a cutting method defined in JIS H0501 (the direction of the line segment is the plate width direction). In addition to the plate width direction, the measurement was also performed at a right angle and 45 degrees with respect to the plate width direction.

(Snめっき銅合金板の製造と評価)
実施例1および3、比較例9、12、13および14の各銅合金板に、下記めっき条件でSnめっきを行い、表面に膜厚1.0μmのSnめっき層を形成した。
[光沢Snめっき条件]
めっき浴の組成:硫酸第1錫40g/l、硫酸100g/l、クレゾールスルフォン酸30g/l、分散剤20g/l、光沢剤10ml/l、ホルマリン5ml/l
めっき浴の温度:20℃
電流密度: 2.5A/dm
対極材料:Sn板
[リフロー前のSnめっき条件]
めっき浴の組成:硫酸第1錫50g/l、硫酸80g/l、クレゾールスルフォン酸30g/l、光沢剤10g/l
めっき浴の温度:30℃
電流密度: 3A/dm
対極材料:Sn板
(Production and evaluation of Sn-plated copper alloy sheet)
Sn plating was carried out on the copper alloy plates of Examples 1 and 3 and Comparative Examples 9, 12, 13 and 14 under the following plating conditions to form a 1.0 μm thick Sn plating layer on the surface.
[Glossy Sn plating conditions]
Composition of plating bath: stannous sulfate 40 g / l, sulfuric acid 100 g / l, cresol sulfonic acid 30 g / l, dispersant 20 g / l, brightener 10 ml / l, formalin 5 ml / l
Plating bath temperature: 20 ° C
Current density: 2.5 A / dm 2
Counter electrode material: Sn plate [Sn plating condition before reflow]
Composition of plating bath: stannous sulfate 50 g / l, sulfuric acid 80 g / l, cresol sulfonic acid 30 g / l, brightener 10 g / l
Plating bath temperature: 30 ° C
Current density: 3A / dm 2
Counter electrode material: Sn plate

Snめっき層を形成した銅合金板について、下記の方法に従って、Sn層の厚さ(表2に「Sn層厚」と記す)とCu−Sn合金層の厚さ(表2に「Cu−Sn合金層厚」と記す)の測定、加熱後のSnめっき耐熱剥離性試験を行った。   About the copper alloy plate in which the Sn plating layer was formed, according to the following method, the thickness of the Sn layer (shown as “Sn layer thickness” in Table 2) and the thickness of the Cu—Sn alloy layer (see “Cu—Sn in Table 2”). Measurement of “Alloy Layer Thickness”) and Sn plating heat-resistant peel test after heating were performed.

〔Sn層の厚さおよびCu−Sn合金層の厚さの測定〕
蛍光X線膜厚計(セイコー電子工業株式会社:SFT3200)を用いて測定した。
[Measurement of Sn Layer Thickness and Cu-Sn Alloy Layer Thickness]
It measured using the fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .: SFT3200).

〔加熱後のSnめっき耐熱剥離性の評価〕
長さ30mm×幅10mmの寸法に切り出した試験片を、オーブン中、150℃で1000時間加熱した後、マンドレル180度曲げ治具にて直径2mmで180度の曲げ戻し試験を行い、曲げ部内側のSnめっきの外観を観察して剥離の有無を調べた。
[Evaluation of heat resistance of Sn plating after heating]
A test piece cut to a size of 30 mm in length and 10 mm in width was heated in an oven at 150 ° C. for 1000 hours, and then subjected to a 180 ° bend-back test with a mandrel 180 ° bending jig at a diameter of 2 mm, and the inside of the bent portion The appearance of the Sn plating was observed for the presence or absence of peeling.

次に、リフロー前のSnめっき層が形成された銅合金板を、380℃で13秒間加熱することで、リフロー処理を行った。こうして、Sn層が形成された銅合金板について、前記の方法に従って、Sn層の厚さ(表3に「Sn層厚」と記す)とCu−Sn合金層の厚さ(表3に「Cu−Sn合金層厚」と記す)の測定、加熱後のSnめっき耐熱剥離性試験を行った。   Next, the reflow process was performed by heating the copper alloy plate in which the Sn plating layer before reflow was formed at 380 degreeC for 13 second (s). Thus, for the copper alloy sheet on which the Sn layer was formed, according to the above-described method, the thickness of the Sn layer (referred to as “Sn layer thickness” in Table 3) and the thickness of the Cu—Sn alloy layer (referred to as “Cu in Table 3”). -Sn alloy layer thickness "), and Sn plating heat-resistant peel test after heating.

(試験結果)
以上の導電率、ビッカース硬さ、機械的特性(0.2%耐力)、応力緩和率、曲げ加工性および結晶粒径の測定について、その測定結果を表1に併記する。また、Snめっき層を形成した銅合金板、およびリフロー処理を施した銅合金板について、Sn層の厚さとCu−Sn合金層の厚さの測定結果および加熱後のSnめっき耐熱剥離性の評価結果を表2および表3に示す。
(Test results)
Table 1 shows the measurement results for the above measurements of conductivity, Vickers hardness, mechanical properties (0.2% yield strength), stress relaxation rate, bending workability, and crystal grain size. Moreover, about the copper alloy board in which Sn plating layer was formed, and the copper alloy board which performed the reflow process, the measurement result of Sn layer thickness and the thickness of a Cu-Sn alloy layer, and evaluation of Sn plating heat-resistant peeling property after a heating The results are shown in Table 2 and Table 3.

Figure 0005132467
注:含有量は質量%で示す。
*1 L.D./T.D.を示す。
*2 180℃で24時間加熱後の応力緩和率(L.D./T.D.)
*3 G.W./B.W.についてR/tの曲げ加工性を評価した。
*4 JIS H0501規定の切断法により測定した。
Figure 0005132467
Note: Content is expressed in mass%.
* 1 L. D. / T. D. Indicates.
* 2 Stress relaxation rate after heating at 180 ° C. for 24 hours (LD / TD)
* 3 G. W. / B. W. The bending workability of R / t was evaluated.
* 4 Measured by the cutting method specified in JIS H0501.

Figure 0005132467
注:含有量は質量%で示す。
Figure 0005132467
Note: Content is expressed in mass%.

Figure 0005132467
Figure 0005132467

表1に示すとおり、比較例1は、Feの含有量(0.07質量%)が本発明の範囲(Fe:0.1〜0.3質量%)を外れるため、本発明のビッカース硬さ(Hv)の範囲(130以上)より劣る結果(125)を示している。   As shown in Table 1, in Comparative Example 1, since the Fe content (0.07% by mass) deviates from the range of the present invention (Fe: 0.1 to 0.3% by mass), the Vickers hardness of the present invention. The result (125) inferior to the range (130 or more) of (Hv) is shown.

比較例2は、Feの含有量(0.32質量%)が本発明の範囲(Fe:0.1〜0.3質量%)を外れるため、導電率が低い値(57%IACS)を示している。   In Comparative Example 2, since the Fe content (0.32% by mass) is out of the range of the present invention (Fe: 0.1 to 0.3% by mass), the conductivity is low (57% IACS). ing.

比較例3は、Pの含有量(0.04質量%)が本発明の範囲(P:0.05〜0.15質量%)を外れるため、本発明のビッカース硬さ(Hv)の範囲(130以上)より劣る結果(125)を示している。   In Comparative Example 3, since the P content (0.04% by mass) is out of the range of the present invention (P: 0.05 to 0.15% by mass), the Vickers hardness (Hv) range of the present invention ( The result (125) inferior to 130 or more) is shown.

比較例4は、Pの含有量(0.17質量%)が本発明の範囲(P:0.05〜0.15質量%)を外れるため、T.D.の応力緩和率が大きい値(37%)を示している。   In Comparative Example 4, the P content (0.17% by mass) deviates from the range of the present invention (P: 0.05 to 0.15% by mass). D. This shows a large value (37%) of the stress relaxation rate.

比較例5は、Snの含有量(0.0005質量%)が、本発明の範囲(Sn:0.01〜0.2質量%)を外れるため、本発明のビッカース硬さ(Hv)の範囲(130以上)より劣る結果(125)を示し、さらに、耐力が低く、およびT.D.の応力緩和率が大きい値(45%)を示している。   In Comparative Example 5, the Sn content (0.0005% by mass) is out of the range of the present invention (Sn: 0.01 to 0.2% by mass), so the range of the Vickers hardness (Hv) of the present invention. (130 or more) shows inferior results (125), lower yield strength, and T.I. D. Shows a large value (45%) of the stress relaxation rate.

比較例6は、Snの含有量(0.22質量%)が、本発明の範囲(Sn:0.01〜0.2質量%)を外れるため、導電率が低い値(56%IACS)を示している。   In Comparative Example 6, since the Sn content (0.22% by mass) is out of the range of the present invention (Sn: 0.01 to 0.2% by mass), the conductivity is low (56% IACS). Show.

比較例7は、Mgの含有量(0.03質量%)が、本発明の範囲(Mg:0.04〜0.15質量%)を外れるため、本発明のビッカース硬さ(Hv)の範囲(130以上)より劣る結果(128)を示している。   In Comparative Example 7, since the Mg content (0.03% by mass) is outside the range of the present invention (Mg: 0.04 to 0.15% by mass), the range of the Vickers hardness (Hv) of the present invention. The result (128) inferior to (130 or more) is shown.

比較例8は、Mgの含有量(0.17質量%)が、本発明の範囲(Mg:0.04〜0.15質量%)を外れるため、導電率が低い値(55%IACS)を示している。   In Comparative Example 8, since the Mg content (0.17% by mass) is outside the range of the present invention (Mg: 0.04 to 0.15% by mass), the conductivity is low (55% IACS). Show.

比較例9は、Znの含有量(0.03質量%)が、本発明の範囲(Zn:0.05〜0.5質量%)を外れるため、表2および表3に示すとおり、加熱後のSnめっき耐熱剥離性に劣る結果(剥離有)を示している。   In Comparative Example 9, since the Zn content (0.03% by mass) is outside the range of the present invention (Zn: 0.05 to 0.5% by mass), as shown in Tables 2 and 3, after heating, The result (exfoliation existence) inferior to Sn plating heat-resistant exfoliation nature of No. 2 is shown.

比較例10は、Znの含有量(0.7質量%)が、本発明の範囲(Zn:0.05〜0.5質量%)を外れるため、導電率が低い値(56%IACS)を示している。   In Comparative Example 10, since the Zn content (0.7% by mass) is outside the range of the present invention (Zn: 0.05 to 0.5% by mass), the conductivity is low (56% IACS). Show.

比較例11は、FeおよびMgの含有量について、Fe<Mgであり、本発明の関係(Fe>Mg)を満たさないため、ビッカース硬さ(Hv)が、本発明の範囲(130以上)より劣る結果(125)を示している。   In Comparative Example 11, the Fe and Mg contents are Fe <Mg, and the relationship of the present invention (Fe> Mg) is not satisfied. Therefore, the Vickers hardness (Hv) is more than the range of the present invention (130 or more). Inferior results (125) are shown.

比較例12は、Znの含有量(0質量%)が本発明の範囲(Zn:0.05〜0.5質量%)を外れるため、表2および表3に示すとおり、加熱後のSnめっき耐熱剥離性に劣る結果(剥離有)を示している。   In Comparative Example 12, since the Zn content (0 mass%) is out of the range of the present invention (Zn: 0.05 to 0.5 mass%), as shown in Table 2 and Table 3, Sn plating after heating is performed. The result is inferior in heat-resistant peelability (with peeling).

比較例13は、Snの含有量(0質量%)およびZnの含有量(0質量%)が本発明の範囲(Sn:0.001〜0.2質量%、Zn:0.05〜0.5質量%)を外れるため、T.D.の応力緩和率が大きい値(37%)を示している。   In Comparative Example 13, the Sn content (0 mass%) and the Zn content (0 mass%) are within the scope of the present invention (Sn: 0.001 to 0.2 mass%, Zn: 0.05 to 0.00%). 5% by mass), T. D. This shows a large value (37%) of the stress relaxation rate.

比較例14は、Pの含有量(0.035質量%)、Snの含有量(0.3質量%)およびMgの含有量(0.2質量%)が、本発明の範囲(P:0.05〜0.15質量%、Sn:0.001〜0.2質量%、Mg:0.04〜0.15質量%)を外れ、さらに、Fe、MgおよびPの含有量が、本発明の関係((Fe+Mg)/P:2.0〜4.0)を満たさないため、導電率が低い値(51%IACS)を示している。   In Comparative Example 14, the P content (0.035 mass%), the Sn content (0.3 mass%), and the Mg content (0.2 mass%) are within the scope of the present invention (P: 0). 0.05 to 0.15 mass%, Sn: 0.001 to 0.2 mass%, Mg: 0.04 to 0.15 mass%), and the contents of Fe, Mg, and P Since the relationship ((Fe + Mg) / P: 2.0 to 4.0) is not satisfied, the conductivity is low (51% IACS).

これらの比較例1〜14に対して、実施例1〜7は、Fe、P、Sn、MgおよびZnの含有量が本発明の範囲にあるとともに、Fe、MgおよびPの含有量が、本発明の関係((Fe+Mg)/P:2.0〜4.0、Fe>Mg)を満たし、さらに、ビッカース硬さ(130以上)、圧延方向に対して平行方向および直角方向における応力緩和率が35%以下であり、加熱後のSnめっき耐熱剥離性についても優れた結果(剥離無)を示している。   In contrast to these comparative examples 1 to 14, in Examples 1 to 7, the contents of Fe, P, Sn, Mg and Zn are within the scope of the present invention, and the contents of Fe, Mg and P are Satisfying the relationship of the invention ((Fe + Mg) / P: 2.0 to 4.0, Fe> Mg), Vickers hardness (130 or more), stress relaxation rate in the direction parallel to and perpendicular to the rolling direction It is 35% or less, and shows excellent results (no peeling) for the Sn plating heat-resistant peelability after heating.

バスバーの構造例を示す概略図である。It is the schematic which shows the structural example of a bus bar.

符号の説明Explanation of symbols

1 バスバー
2a,2b 圧接部
3 メス端子部
4 オス端子
5 下部
1 Bus bar 2a, 2b Pressure contact part 3 Female terminal part 4 Male terminal 5 Lower part

Claims (3)

Fe:0.1〜0.3質量%、P:0.05〜0.15質量%、Mg:0.04〜0.15質量%、Sn:0.01〜0.2質量%およびZn:0.05〜0.5質量%を含み、残部がCuおよび不可避的不純物からなり、
Fe、MgおよびPの含有量について、(Fe+Mg)/Pが2.0〜4.0、かつ、Fe>Mg、の関係を満たし、ビッカース硬さが130以上、圧延方向に対して平行方向および直角方向において、150℃で1000時間加熱後の応力緩和率が35%以下であり、150℃で1000時間加熱後もSnめっきが剥離しないことを特徴とする導電率および強度に優れる電気・電子部品用銅合金。
Fe: 0.1-0.3 mass%, P: 0.05-0.15 mass%, Mg: 0.04-0.15 mass%, Sn: 0.01-0.2 mass%, and Zn: 0.05 to 0.5% by mass, with the balance being Cu and inevitable impurities,
About content of Fe, Mg, and P, (Fe + Mg) / P satisfies the relationship of 2.0 to 4.0 and Fe> Mg, the Vickers hardness is 130 or more, the direction parallel to the rolling direction, and Electrical and electronic parts with excellent electrical conductivity and strength, characterized in that the stress relaxation rate after heating at 150 ° C. for 1000 hours in a right angle direction is 35% or less and Sn plating does not peel after heating at 150 ° C. for 1000 hours Copper alloy.
請求項1に記載の電気・電子部品用銅合金からなる銅合金母材と、
前記銅合金母材の表面に形成された厚さ3μm以下のCu−Sn合金層と、
前記Cu−Sn合金層の表面に形成された厚さ0.3〜3.0μmのSnめっき層と、を有することを特徴とするSnめっき銅合金材。
A copper alloy base material comprising the copper alloy for electrical and electronic parts according to claim 1;
A Cu—Sn alloy layer having a thickness of 3 μm or less formed on the surface of the copper alloy base material;
An Sn-plated copper alloy material comprising: a Sn-plated layer having a thickness of 0.3 to 3.0 μm formed on the surface of the Cu-Sn alloy layer.
請求項1に記載の電気・電子部品用銅合金からなる銅合金母材と、
前記銅合金母材の表面に形成された厚さ3μm以下のCu−Sn合金層と、前記Cu−Sn合金層の表面に形成された厚さ0.3〜2.0μmのSnめっき層と、を有し、前記Cu−Sn合金層、及び前記Snめっき層は、前記銅合金母材の表面に形成したSnめっき層をリフロー処理することにより形成されたものであることを特徴とするSnめっき銅合金材。
A copper alloy base material comprising the copper alloy for electrical and electronic parts according to claim 1;
A Cu—Sn alloy layer having a thickness of 3 μm or less formed on the surface of the copper alloy base material; and a Sn plating layer having a thickness of 0.3 to 2.0 μm formed on the surface of the Cu—Sn alloy layer; The Cu—Sn alloy layer and the Sn plating layer are formed by reflowing an Sn plating layer formed on the surface of the copper alloy base material. Copper alloy material.
JP2008197034A 2008-07-30 2008-07-30 Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength Expired - Fee Related JP5132467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197034A JP5132467B2 (en) 2008-07-30 2008-07-30 Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197034A JP5132467B2 (en) 2008-07-30 2008-07-30 Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength

Publications (2)

Publication Number Publication Date
JP2010031339A JP2010031339A (en) 2010-02-12
JP5132467B2 true JP5132467B2 (en) 2013-01-30

Family

ID=41736162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197034A Expired - Fee Related JP5132467B2 (en) 2008-07-30 2008-07-30 Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength

Country Status (1)

Country Link
JP (1) JP5132467B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5950499B2 (en) * 2011-02-11 2016-07-13 株式会社神戸製鋼所 Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP5892974B2 (en) * 2012-07-06 2016-03-23 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6140032B2 (en) * 2013-08-30 2017-05-31 Dowaメタルテック株式会社 Copper alloy sheet, method for producing the same, and current-carrying component
JP6270417B2 (en) * 2013-11-01 2018-01-31 Jx金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5897084B1 (en) * 2014-08-27 2016-03-30 株式会社神戸製鋼所 Conductive material for connecting parts with excellent resistance to fine sliding wear
KR102052879B1 (en) * 2014-08-25 2019-12-06 가부시키가이샤 고베 세이코쇼 Conductive material for connection parts which has excellent minute slide wear resistance
JP6389414B2 (en) * 2014-10-17 2018-09-12 Dowaメタルテック株式会社 Method for producing copper alloy sheet
JP7136157B2 (en) * 2020-06-30 2022-09-13 三菱マテリアル株式会社 Copper alloys, copper alloy plastic working materials, parts for electronic and electrical equipment, terminals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2977839B2 (en) * 1989-09-07 1999-11-15 株式会社神戸製鋼所 Highly conductive copper alloy for electrical and electronic components with excellent migration resistance
JPH05311288A (en) * 1991-11-06 1993-11-22 Nikko Kinzoku Kk Copper alloy improved in stress relaxation property
JP3807387B2 (en) * 2003-07-31 2006-08-09 日立電線株式会社 Copper alloy for terminal / connector and manufacturing method thereof
JP4441467B2 (en) * 2004-12-24 2010-03-31 株式会社神戸製鋼所 Copper alloy with bending workability and stress relaxation resistance
JP5075447B2 (en) * 2006-03-30 2012-11-21 Dowaメタルテック株式会社 Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
JP4157899B2 (en) * 2006-11-17 2008-10-01 株式会社神戸製鋼所 High strength copper alloy sheet with excellent bending workability

Also Published As

Publication number Publication date
JP2010031339A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP5039862B1 (en) Corson alloy and manufacturing method thereof
JP4887851B2 (en) Ni-Sn-P copper alloy
JP5065478B2 (en) Copper alloy material for electric and electronic parts and manufacturing method
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP2002294368A (en) Copper alloy for terminal and connector and production method therefor
KR100329153B1 (en) Copper alloy for terminals and connectors and method for making same
KR20190077011A (en) Copper alloy sheet and manufacturing method thereof
JP2016156057A (en) Copper alloy sheet for electric-electronic component
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP6099543B2 (en) Copper alloy sheet with excellent conductivity, stress relaxation resistance and formability
CN111868276B (en) Copper alloy sheet and method for producing same
JP4987028B2 (en) Copper alloy tin plating material for printed circuit board terminals
JP2016014165A (en) Copper alloy material, method for producing copper alloy material, lead frame and connector
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
CN101784684B (en) High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP5150908B2 (en) Copper alloy for connector and its manufacturing method
JP6301734B2 (en) Copper alloy material and method for producing the same
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JP3470889B2 (en) Copper alloy for electric and electronic parts
JP4633380B2 (en) Manufacturing method of copper alloy sheet for conductive parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees