JPH10195562A - Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production - Google Patents

Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production

Info

Publication number
JPH10195562A
JPH10195562A JP9001802A JP180297A JPH10195562A JP H10195562 A JPH10195562 A JP H10195562A JP 9001802 A JP9001802 A JP 9001802A JP 180297 A JP180297 A JP 180297A JP H10195562 A JPH10195562 A JP H10195562A
Authority
JP
Japan
Prior art keywords
copper alloy
electronic equipment
electrical
alloy
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9001802A
Other languages
Japanese (ja)
Other versions
JP3418301B2 (en
Inventor
Tatsuhiko Eguchi
立彦 江口
Takao Hirai
崇夫 平井
Manabu Kojima
学 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP00180297A priority Critical patent/JP3418301B2/en
Publication of JPH10195562A publication Critical patent/JPH10195562A/en
Application granted granted Critical
Publication of JP3418301B2 publication Critical patent/JP3418301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy excellent in blanking workability capable of sufficiently meeting the recent damand for making electrical and electronic equipment part highly integrated, compact, low-cost, etc., by incorporating specific amount of at least one element among Pb, Bi, Ca, Sr, Ba, and Te into Cu or a Cu alloy containing Cu and Zn, Zr, Sn, Ni, P, Fe, Cr, etc. SOLUTION: One or more elements among Pb, Bi, Ca, Sr, Ba, and Te are incorporated by 0.002-0.5wt.% into Cu or a Cu alloy. If necessary, 0.01-0.5% of one or more elements among Sn, Cr, Mg, Zr, Ni, Ag, and Mn and further incorporated. As the Cu alloy, alloys of Cu-Zn, Cu-Zr, Cu-Sn, Cu-Sn-Ni, Cu-Sn-Ni- P, Cu-Fe, Cu-Fe-P, Cu-Fe-Zn-P, Cu-Cr, Cu-Cr-Zr, etc., are suitably used. It is preferable to regulate the size of crystallized substances or precipitates and the size of crystalline grains to <=5μm and <30μm, respectively, by controlling working conditions for the Cu alloy of the above composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、打抜加工が施され
る電気電子機器用の端子材、コネクタ材、スイッチ材、
接点材、配線配器材、ヒートシンク(ヒートスプレッ
タ)材、電極材など、特にIC等の半導体のリードフレー
ム材に適した電気電子機器用銅合金、およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal material, a connector material, and a switch material for electrical and electronic equipment to be subjected to a punching process.
The present invention relates to a copper alloy for electrical and electronic equipment suitable for a lead frame material of a semiconductor such as an IC, particularly a contact material, a wiring / distribution material, a heat sink (heat spreader) material, an electrode material, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来より、半導体機器のリードフレーム
材、端子材、配器材等の電気電子機器用材料には、強
度、耐熱性、電気伝導性、熱伝導性、ばね性、曲げ加工
性などが要求され、さらにAg、Pdなどの貴金属めっき
や、Snまたは半田などのめっきが施されるため、めっき
性、半田接合性、表面平滑性なども要求される。これら
の特性を満足する材料として、 Cu-Sn系、 Cu-Zn系、Cu
-Sn-Ni系、 Cu-Ni系、Cu-Ni-Zn系等の固溶型銅合金、 C
u-Zr系、 Cu-Fe系、 Cu-Co系、 Cu-Cr系、 Cu-Ti系、 C
u-Be系、Cu-Ni-Ti系、Cu-Fe-Ti系、Cu-Cr-Zr系、Cu-Ni-
Si系、Cu-Ni-Sn系等の析出型銅合金、さらに無酸素銅、
タフピッチ銅、Ag入り銅などの純銅系合金などがある。
前記銅合金は用途に応じて使い分けされており、例え
ば、トランジスタやピン数の少ない挿入型のリードフレ
ーム材には、耐熱性や電気伝導性が良好な Cu-Fe系合
金、 Cu-Zr系合金などが使用され、ピン数が多く表面実
装型のリードフレーム材には、高強度で電気伝導性に優
れ、かつめっき性、半田接合性に優れるCu-Sn-Ni系合
金、 Cu-Cr系合金、Cu-Cr-Zr系合金などが広く使用され
ている。また端子材、コネクタ材には、コスト的に有利
で加工性の良い Cu-Zn系合金、強度とばね性等に優れる
Cu-Sn系合金などが使用されている。
2. Description of the Related Art Conventionally, materials for electric and electronic devices such as lead frame materials, terminal materials, and distribution devices of semiconductor devices include strength, heat resistance, electric conductivity, heat conductivity, springability, bending workability, and the like. In addition, since plating with a noble metal such as Ag or Pd, or plating with Sn or solder is performed, plating properties, solder bonding properties, surface smoothness, and the like are also required. Materials satisfying these characteristics include Cu-Sn, Cu-Zn, Cu
-Sn-Ni, Cu-Ni, Cu-Ni-Zn, etc.
u-Zr, Cu-Fe, Cu-Co, Cu-Cr, Cu-Ti, C
u-Be, Cu-Ni-Ti, Cu-Fe-Ti, Cu-Cr-Zr, Cu-Ni-
Si-based, Cu-Ni-Sn-based precipitation-type copper alloys, more oxygen-free copper,
Pure copper alloys such as tough pitch copper and Ag-containing copper are available.
The copper alloy is properly used depending on the application, for example, a transistor or an insertion type lead frame material having a small number of pins includes a Cu-Fe-based alloy and a Cu-Zr-based alloy having good heat resistance and electric conductivity. High-strength, excellent electrical conductivity, and excellent Cu-Sn-Ni and Cu-Cr alloys for plating and soldering And Cu-Cr-Zr alloys are widely used. For terminal and connector materials, Cu-Zn alloy with good cost and good workability, excellent in strength and spring property etc.
Cu-Sn alloys and the like are used.

【0003】前記銅合金をリードフレームや端子に成形
する方法は、打抜加工法が主流であり、前記銅合金には
寸法精度を確保するために高度な打抜加工性が要求され
ており、この要求は、近年の半導体機器などの電気電子
機器における高集積化、小型化、高機能化、低コスト化
などに伴って益々厳しくなってきている。すなわち、多
ピンでピッチが細かい薄肉のリードフレームや、ピンが
多列に形成されたマトリックス状の小型リードフレーム
には、特に高度の寸法精度が要求されるが、これらも打
抜加工法で成形されている。また、端子、コネクタ、配
器配電部材などでは、金型磨耗やメンテナンス頻度の低
減を目的に打抜加工性の向上が求められている。
[0003] As a method of forming the copper alloy into a lead frame or a terminal, a punching method is mainly used, and the copper alloy is required to have high punching workability in order to secure dimensional accuracy. This demand has become more and more severe with recent high integration, miniaturization, high performance, and low cost of electric and electronic devices such as semiconductor devices. In other words, a thin lead frame with a large number of pins and a fine pitch, or a small lead frame in the form of a matrix in which pins are formed in multiple rows requires particularly high dimensional accuracy, but these are also formed by a punching method. Have been. In addition, for terminals, connectors, and power distribution members, there has been a demand for improved punching workability for the purpose of reducing mold wear and maintenance frequency.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の銅合
金を部品に打抜加工する場合、次のような問題がある。 (1)打抜きバリや粉体が部品表面に残留して部品に打痕
傷が生じ、また金型が破損する、 (2)部品に過大な加工
ひずみが発生して寸法精度が低下する、 (3)金型の磨耗
が激しく寿命が短い、 (4)リードフレームや小型端子の
ような微細加工部品では打抜きバリによりリード間に短
絡が生じる。このため、本発明者等は打抜加工性の改善
を目的に鋭意研究を進め、前記問題は銅マトリックス中
に化合物として分散する元素を適量添加することにより
改善できることを知見し、さらに研究を進めて本発明を
完成させるに至った。本発明の目的は、リードフレー
ム、端子、コネクタなどの電気電子機器用材料として好
適な打抜加工性に優れた電気電子機器用銅合金およびそ
の製造方法を提供することにある。
However, when a conventional copper alloy is stamped into a part, there are the following problems. (1) Punching burrs and powder remain on the surface of the part to cause dent scratches on the part and damage the mold. (2) Excessive processing strain occurs on the part, reducing dimensional accuracy. 3) Die wear is severe and life is short. (4) For microfabricated parts such as lead frames and small terminals, shorts occur between leads due to punch burrs. For this reason, the present inventors have conducted intensive studies for the purpose of improving the punching workability, and have found that the above problem can be improved by adding an appropriate amount of an element dispersed as a compound in a copper matrix, and further research has been conducted. Thus, the present invention has been completed. SUMMARY OF THE INVENTION An object of the present invention is to provide a copper alloy for electrical and electronic equipment excellent in punching workability, which is suitable as a material for electrical and electronic equipment such as a lead frame, a terminal, and a connector, and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
CuにPb、Bi、Ca、Sr、Ba、Teの元素のう
ちの少なくとも1種を 0.002〜0.5wt%含有させたことを
特徴とする打抜加工性に優れた電気電子機器用銅合金で
ある。
According to the first aspect of the present invention,
A copper alloy for electrical and electronic equipment having excellent punching characteristics, characterized in that Cu contains at least one element of Pb, Bi, Ca, Sr, Ba and Te in an amount of 0.002 to 0.5 wt%. .

【0006】請求項2記載の発明は、Cu−Zn系合金
にPb、Bi、Ca、Sr、Ba、Teの元素のうちの
少なくとも1種を 0.002〜0.5wt%含有させたことを特徴
とする打抜加工性に優れた電気電子機器用銅合金であ
る。
The invention according to claim 2 is characterized in that at least one of the elements Pb, Bi, Ca, Sr, Ba, and Te is contained in the Cu-Zn alloy at 0.002 to 0.5 wt%. It is a copper alloy for electrical and electronic equipment with excellent punching workability.

【0007】請求項3記載の発明は、Zrを0.02〜0.2w
t%含有するCu−Zr系合金にPb、Bi、Ca、S
r、Ba、Teの元素のうちの少なくとも1種を 0.002
〜0.5wt%含有させたことを特徴とする打抜加工性に優れ
た電気電子機器用銅合金である。
According to a third aspect of the present invention, Zr is set to 0.02 to 0.2 w.
Pb, Bi, Ca, S in Cu-Zr alloy containing t%
at least one of the elements r, Ba and Te is 0.002
It is a copper alloy for electrical and electronic equipment excellent in punching work, characterized by containing 0.5 wt%.

【0008】請求項4記載の発明は、Cu−Sn系合金
にPb、Bi、Ca、Sr、Ba、Teの元素のうちの
少なくとも1種を 0.002〜0.5wt%含有させたことを特徴
とする打抜加工性に優れた電気電子機器用銅合金であ
る。
The invention according to claim 4 is characterized in that at least one of the elements Pb, Bi, Ca, Sr, Ba and Te is contained in the Cu-Sn-based alloy in an amount of 0.002 to 0.5 wt%. It is a copper alloy for electrical and electronic equipment with excellent punching workability.

【0009】請求項5記載の発明は、Cu−Sn−Ni
系合金にPb、Bi、Ca、Sr、Ba、Teの元素の
うちの少なくとも1種を 0.002〜0.5wt%含有させたこと
を特徴とする打抜加工性に優れた電気電子機器用銅合金
である。
According to a fifth aspect of the present invention, there is provided Cu-Sn-Ni
A copper alloy for electrical and electronic equipment with excellent punching characteristics, characterized in that at least one of the elements Pb, Bi, Ca, Sr, Ba, and Te is contained in the base alloy. is there.

【0010】請求項6記載の発明は、Snを 1.5〜2.5w
t%、Niを 0.1〜0.3wt%、Pを 0.15wt%以下含有するC
u−Sn−Ni−P系合金にPb、Bi、Ca、Sr、
Ba、Teの元素のうちの少なくとも1種を 0.002〜0.
5wt%含有させたことを特徴とする打抜加工性に優れた電
気電子機器用銅合金である。
[0010] The invention according to claim 6 is that Sn is 1.5 to 2.5 watts.
C containing 0.1% to 0.3% by weight of Ni and 0.15% by weight of P
Pb, Bi, Ca, Sr, u-Sn-Ni-P alloy
At least one of the elements Ba and Te is 0.002-0.
It is a copper alloy for electrical and electronic equipment with excellent punching characteristics characterized by containing 5 wt%.

【0011】請求項7記載の発明は、Cu−Fe系合金
にPb、Bi、Ca、Sr、Ba、Teの元素のうちの
少なくとも1種を 0.002〜0.5wt%含有させたことを特徴
とする打抜加工性に優れた電気電子機器用銅合金であ
る。
The invention according to claim 7 is characterized in that at least one of the elements Pb, Bi, Ca, Sr, Ba and Te is contained in the Cu-Fe alloy at 0.002 to 0.5 wt%. It is a copper alloy for electrical and electronic equipment with excellent punching workability.

【0012】請求項8記載の発明は、Feを0.02〜0.5w
t%、Pを0.01〜0.2wt%含有するCu−Fe−P系合金に
Pb、Bi、Ca、Sr、Ba、Teの元素のうちの少
なくとも1種を 0.002〜0.5wt%含有させたことを特徴と
する打抜加工性に優れた電気電子機器用銅合金である。
The invention according to claim 8 is characterized in that Fe is contained in an amount of 0.02 to 0.5 w
t%, at least one element of Pb, Bi, Ca, Sr, Ba, and Te is contained in a Cu-Fe-P-based alloy containing 0.01 to 0.2 wt% of P in an amount of 0.002 to 0.5 wt%. It is a copper alloy for electrical and electronic equipment with excellent punching characteristics.

【0013】請求項9記載の発明は、Feを 1.0〜2.6w
t%、Znを0.05〜2.0wt%、Pを 0.015〜0.15wt% 含有す
るCu−Fe−Zn−P系合金にPb、Bi、Ca、S
r、Ba、Teの元素のうちの少なくとも1種を 0.002
〜0.5wt%含有させたことを特徴とする打抜加工性に優れ
た電気電子機器用銅合金である。
According to a ninth aspect of the present invention, the amount of Fe is 1.0 to 2.6 watts.
Pb, Bi, Ca, S in Cu-Fe-Zn-P-based alloy containing 0.05% to 2.0% by weight of Zn, 0.05% to 2.0% by weight of Zn, and 0.015% to 0.15% by weight of P.
at least one of the elements r, Ba and Te is 0.002
It is a copper alloy for electrical and electronic equipment excellent in punching work, characterized by containing 0.5 wt%.

【0014】請求項10記載の発明は、Cu−Cr系合金
にPb、Bi、Ca、Sr、Ba、Teの元素のうちの
少なくとも1種を 0.002〜0.5wt%含有させたことを特徴
とする打抜加工性に優れた電気電子機器用銅合金であ
る。
The invention according to claim 10 is characterized in that at least one of the elements Pb, Bi, Ca, Sr, Ba and Te is contained in the Cu-Cr-based alloy at 0.002 to 0.5 wt%. It is a copper alloy for electrical and electronic equipment with excellent punching workability.

【0015】請求項11記載の発明は、Cu−Cr−Zr
系合金にPb、Bi、Ca、Sr、Ba、Teの元素の
うちの少なくとも1種を 0.002〜0.5wt%含有させたこと
を特徴とする打抜加工性に優れた電気電子機器用銅合金
である。
[0015] The invention according to claim 11 is a method for producing Cu—Cr—Zr
A copper alloy for electrical and electronic equipment with excellent punching characteristics, characterized in that at least one of the elements Pb, Bi, Ca, Sr, Ba, and Te is contained in the base alloy. is there.

【0016】請求項12記載の発明は、請求項1、2、
7、8、9のいずれかに記載の電気電子機器用銅合金
に、さらにSn、Cr、Mg、Zr、Ni、Ag、Mn
の元素のうちの少なくとも1種を総計で0.01〜0.5wt%含
有させたことを特徴とする打抜加工性に優れた電気電子
機器用銅合金である。
The invention described in claim 12 is the first or second invention.
The copper alloy for electrical and electronic equipment according to any one of 7, 8, and 9, further comprising Sn, Cr, Mg, Zr, Ni, Ag, and Mn.
A copper alloy for electrical and electronic equipment having excellent punching properties, characterized by containing at least one of the elements of 0.01 to 0.5 wt% in total.

【0017】請求項13記載の発明は、請求項3に記載の
電気電子機器用銅合金に、さらにSn、Cr、Mg、N
i、Ag、Mnの元素のうちの少なくとも1種を総計で
0.01〜0.5wt%含有させたことを特徴とする打抜加工性に
優れた電気電子機器用銅合金である。
According to a thirteenth aspect of the present invention, there is provided a copper alloy for electrical and electronic equipment according to the third aspect, further comprising Sn, Cr, Mg, N
at least one of the elements i, Ag and Mn in total
It is a copper alloy for electrical and electronic equipment excellent in punching work, characterized by containing 0.01 to 0.5 wt%.

【0018】請求項14記載の発明は、請求項4に記載の
電気電子機器用銅合金に、さらにCr、Mg、Zr、N
i、Ag、Mnの元素のうちの少なくとも1種を総計で
0.01〜0.5wt%含有させたことを特徴とする打抜加工性に
優れた電気電子機器用銅合金である。
According to a fourteenth aspect of the present invention, the copper alloy for electrical and electronic equipment according to the fourth aspect further comprises Cr, Mg, Zr, N
at least one of the elements i, Ag and Mn in total
It is a copper alloy for electrical and electronic equipment excellent in punching work, characterized by containing 0.01 to 0.5 wt%.

【0019】請求項15記載の発明は、請求項5、6のい
ずれかに記載の電気電子機器用銅合金に、さらにCr、
Mg、Zr、Ag、Mnの元素のうちの少なくとも1種
を総計で0.01〜0.5wt%含有させたことを特徴とする打抜
加工性に優れた電気電子機器用銅合金である。
According to a fifteenth aspect of the present invention, there is provided a copper alloy for electrical and electronic equipment according to any one of the fifth and sixth aspects, further comprising Cr,
A copper alloy for electrical and electronic equipment having excellent punching characteristics, characterized by containing at least one of Mg, Zr, Ag, and Mn elements in a total amount of 0.01 to 0.5 wt%.

【0020】請求項16記載の発明は、請求項10に記載の
電気電子機器用銅合金に、さらにSn、Mg、Zr、N
i、Ag、Mnの元素のうちの少なくとも1種を総計で
0.01〜0.5wt%含有させたことを特徴とする打抜加工性に
優れた電気電子機器用銅合金である。
According to a sixteenth aspect of the present invention, there is provided a copper alloy for electrical and electronic equipment according to the tenth aspect, further comprising Sn, Mg, Zr, N
at least one of the elements i, Ag and Mn in total
It is a copper alloy for electrical and electronic equipment excellent in punching work, characterized by containing 0.01 to 0.5 wt%.

【0021】請求項17記載の発明は、請求項11に記載の
電気電子機器用銅合金に、さらにSn、Mg、Ni、A
g、Mnの元素のうちの少なくとも1種を総計で0.01〜
0.5wt%含有させたことを特徴とする打抜加工性に優れた
電気電子機器用銅合金である。
According to a seventeenth aspect of the present invention, there is provided a copper alloy for electric and electronic equipment according to the eleventh aspect, wherein Sn, Mg, Ni, A
g, at least one of the elements of Mn in total of 0.01 to
It is a copper alloy for electrical and electronic equipment excellent in punching work, characterized by containing 0.5 wt%.

【0022】請求項18記載の発明は、晶出物または析出
物の径が5μm以下であることを特徴とする請求項1〜
17のいずれかに記載の打抜加工性に優れた電気電子機器
用銅合金である。
The invention according to claim 18 is characterized in that the diameter of a crystallized substance or a precipitate is 5 μm or less.
18. A copper alloy for electrical and electronic equipment excellent in punching workability according to any one of 17.

【0023】請求項19記載の発明は、結晶粒の径が30μ
m未満であることを特徴とする請求項1〜17のいずれか
に記載の打抜加工性に優れた電気電子機器用銅合金であ
る。
The invention according to claim 19 is characterized in that the crystal grains have a diameter of 30 μm.
18. The copper alloy for electrical and electronic equipment excellent in punching workability according to any one of claims 1 to 17, wherein the copper alloy is less than m.

【0024】請求項20記載の発明は、晶出物または析出
物の径が5μm以下、かつ結晶粒の径が30μm未満であ
ることを特徴とする請求項1〜17のいずれかに記載の打
抜加工性に優れた電気電子機器用銅合金である。
The invention according to claim 20 is characterized in that the diameter of the crystallized substance or precipitate is 5 μm or less and the diameter of the crystal grains is less than 30 μm. It is a copper alloy for electrical and electronic equipment that has excellent punchability.

【0025】請求項21記載の発明は、請求項1〜17のい
ずれかに記載した組成の銅合金に、鋳造加工、熱間加
工、冷間加工を施すにあたり、前記鋳造加工時の冷却速
度を5℃/秒以上とし、前記鋳造加工にて得られる銅合
金鋳塊を 700〜1000℃に加熱して熱間加工し、熱間加工
後10℃/秒以上の速度で急冷し、次いで冷間加工を、途
中に 300〜600 ℃で30秒〜6時間加熱する熱処理を少な
くとも1回入れて施すことを特徴とする打抜加工性に優
れた電気電子機器用銅合金の製造方法である。
According to a twenty-first aspect of the present invention, when a copper alloy having the composition described in any one of the first to seventeenth aspects is subjected to casting, hot working and cold working, the cooling rate during the casting is reduced. The copper alloy ingot obtained by the casting process is heated to 700 to 1000 ° C., hot-worked, quenched at a rate of 10 ° C./sec or more after hot working, and then cold-cooled. This is a method for producing a copper alloy for electrical and electronic equipment excellent in punching workability, characterized by performing at least one heat treatment of heating at 300 to 600 ° C. for 30 seconds to 6 hours.

【0026】[0026]

【発明の実施の形態】請求項1〜11記載の発明は、通常
使用されている電気電子機器用銅合金(ベース金属)
に、Pb、Bi、Ca、Sr、Ba、Teの元素群(選
択元素群A)のうちの少なくとも1種を適量添加して前
記電気電子機器用銅合金の打抜加工性を改善したもので
ある。ここで、打抜加工性は、打抜きバリの発生具
合、打抜き端面の寸法精度と形状、打抜き金型の寿
命などで評価される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claims 1 to 11 is a commonly used copper alloy (base metal) for electric and electronic equipment.
And at least one element selected from the group consisting of Pb, Bi, Ca, Sr, Ba, and Te (selective element group A) is added in an appropriate amount to improve the punching workability of the copper alloy for electric and electronic devices. is there. Here, the punching workability is evaluated based on the degree of occurrence of punching burrs, the dimensional accuracy and shape of the punched end face, the life of the punching die, and the like.

【0027】前記合金元素は、それ自体の単体化合物、
Cuとの化合物、合金元素同士の化合物などとして銅マ
トリックス中に分散する。すなわち、Pb、Biは単体
の化合物として、Ca、Sr、Ba、TeはCuとの化
合物として、それぞれ銅マトリックス中に晶出または析
出分散し、前者は主に前記の向上に、後者は主に前記
の向上にそれぞれ寄与する。これら元素を2種以上添
加すると、各元素が相互に結合しながらより微細に分散
するという相乗効果が得られ、前記の打抜加工性
のすべてがより一層向上する。特にPb、Biの1種以
上とCa、Sr、Ba、Teの1種以上の組合わせによ
り、打抜加工性が著しく向上する。これら元素の含有量
を総計で 0.005〜0.2wt%に限定した理由は、0.005wt%未
満では前記の打抜加工性の改善効果が十分に得ら
れず、0.2wt%を超えると製造時、特に熱間加工時や冷間
加工時に割れ等の欠陥が発生するためである。なお、前
記選択元素群Aの添加は、適量であれば、強度、導電
率、耐熱性、ばね性、曲げ加工性、めっき性、半田付性
などの電気電子機器用銅合金に必要とされる特性を損な
うようなことがない。
The alloy element is a simple compound of itself,
It is dispersed in a copper matrix as a compound with Cu, a compound between alloying elements, or the like. That is, Pb and Bi are single compounds, and Ca, Sr, Ba and Te are compounds with Cu, respectively, which are crystallized or precipitated and dispersed in a copper matrix. The former is mainly for the above-mentioned improvement, and the latter is mainly for the above-mentioned improvement. Each contributes to the above improvement. When two or more of these elements are added, a synergistic effect that each element is finely dispersed while bonding to each other is obtained, and all of the above-described punching workability is further improved. In particular, the combination of at least one of Pb and Bi and at least one of Ca, Sr, Ba, and Te significantly improves the punching workability. The reason for limiting the total content of these elements to 0.005 to 0.2 wt% is that if the content is less than 0.005 wt%, the effect of improving the punching workability cannot be sufficiently obtained. This is because defects such as cracks occur during hot working or cold working. The addition of the selective element group A is required for a copper alloy for electric / electronic equipment such as strength, conductivity, heat resistance, spring property, bending property, plating property, solderability, etc., if it is an appropriate amount. There is no loss of characteristics.

【0028】請求項12〜17記載の発明は、請求項1〜11
記載の発明銅合金に、さらにSn、Cr、Mg、Zr、
Ni、Ag、Mnの元素群(選択元素群B)のうちの少
なくとも1種を含有させたもので、これら元素は、打抜
加工性を害さずに、前記銅合金の強度、耐熱性、曲げ加
工性、耐疲労特性、応力緩和特性、ばね性、めっき性、
半田接合性、耐マイグレーション性などを改善する。前
記選択元素群Bの含有量を総計で0.01〜0.5wt%に限定し
た理由は、 0.01wt%未満ではその効果が十分に得られ
ず、0.5wt%を超えると導電率が低下し、また製造加工性
が悪化するためである。前記元素の他、Si、Al、Z
n、Co、Fe、Ti、V、Hf、As、Sb、P、
B、Cなどにも同様の効果が認められる。
[0028] The inventions of claims 12 to 17 correspond to claims 1 to 11
In addition to the invention copper alloy described, Sn, Cr, Mg, Zr,
The alloy contains at least one element group of Ni, Ag, and Mn (selective element group B). These elements do not impair the punching workability, and the strength, heat resistance, and bending strength of the copper alloy. Workability, fatigue resistance, stress relaxation, spring, plating,
Improves solderability, migration resistance, etc. The reason that the content of the selected element group B is limited to a total of 0.01 to 0.5 wt% is that if the content is less than 0.01 wt%, the effect is not sufficiently obtained, and if the content exceeds 0.5 wt%, the electrical conductivity is lowered, and This is because workability deteriorates. In addition to the above elements, Si, Al, Z
n, Co, Fe, Ti, V, Hf, As, Sb, P,
Similar effects are observed for B, C, and the like.

【0029】本発明で用いられるベース金属は、通常、
リードフレーム、端子、コネクタ、配電配器部品などに
用いられている銅または銅合金である。すなわち、 Cu-
Zn系、 Cu-Sn系、Cu-Sn-Ni系、 Cu-Ni系、Cu-Ni-Zn系等
の固溶型合金、 Cu-Zr系、 Cu-Fe系、 Cu-Cr系、Cu-Cr-
Zr系、 Cu-Mg系、 Cu-Co系、Cu-Ti 系、 Cu-Be系、Cu-N
i-Ti系、Cu-Fe-Ti系、Cu-Ni-Si系、Cu-Ni-Sn系等の析出
型合金、無酸素銅、タフピッチ銅、Ag入り銅等の純銅系
合金などである。
The base metal used in the present invention is usually
Copper or copper alloy used for lead frames, terminals, connectors, power distribution components, and the like. That is, Cu-
Solid solution alloys such as Zn, Cu-Sn, Cu-Sn-Ni, Cu-Ni, Cu-Ni-Zn, Cu-Zr, Cu-Fe, Cu-Cr, Cu- Cr-
Zr, Cu-Mg, Cu-Co, Cu-Ti, Cu-Be, Cu-N
Precipitated alloys such as i-Ti, Cu-Fe-Ti, Cu-Ni-Si, and Cu-Ni-Sn, and pure copper-based alloys such as oxygen-free copper, tough pitch copper, and copper containing Ag.

【0030】本発明では、前記電気電子機器用銅合金の
うち、Cu−Zr系合金、Cu−Sn−Ni−P系合
金、Cu−Fe−P系合金、Cu−Fe−Zn−P系合
金は合金元素量を限定しており、以下にその限定理由を
述べる。Cu−Zr系合金(請求項3記載)において、
Zrは銅マトリックス中にCu−Zr系化合物として微
細に析出して導電率をあまり低下させずに強度と耐熱性
を向上させる。その含有量を0.02〜0.2wt%に限定した理
由は、 0.02wt%未満ではその効果が十分に得られず、0.
2wt%を超えると導電率が低下するとともに、Cu−Zr
系化合物が粗大化してAgめっき性および打抜加工性が
低下するためである。この合金では、酸素の含有量を0.
005wt%以下にするとZrの効果がさらに大きく現れる。
In the present invention, among the copper alloys for electric and electronic equipment, Cu-Zr alloy, Cu-Sn-Ni-P alloy, Cu-Fe-P alloy, Cu-Fe-Zn-P alloy Limits the amount of alloying elements, and the reasons for the limitation are described below. In a Cu-Zr-based alloy (claim 3),
Zr is finely precipitated as a Cu-Zr-based compound in a copper matrix and improves strength and heat resistance without significantly lowering the electrical conductivity. The reason for limiting the content to 0.02 to 0.2 wt% is that if the content is less than 0.02 wt%, the effect cannot be obtained sufficiently, and
If it exceeds 2 wt%, the conductivity decreases and Cu-Zr
This is because the system compound becomes coarse and the Ag plating property and the punching workability decrease. In this alloy, the oxygen content is 0.
If the content is less than 005 wt%, the effect of Zr will appear even more.

【0031】Cu−Sn−Ni−P系合金(請求項6記
載)において、SnとNiは強度、導電率、およびその
他の主要特性を左右する重要な元素で、一般にリードフ
レーム材としてはCu−2wt%Sn−0.2wt%Ni合金が使
用されている。前記銅合金において、Snは銅マトリッ
クス中に固溶し、曲げ加工性を損なわずに強度を向上さ
せる。その含有量を 1.5〜2.5wt%に限定した理由は、1.
5 wt%未満では十分な強度が得られず、2.5wt%を超える
と導電率が大幅に低下する上、熱間加工性が悪化するた
めである。NiはSnと同じように銅マトリックス中に
固溶して強度向上に寄与し、また耐熱性、耐食性、結晶
粒微細化などにも効果がある。Niの含有量を 0.1〜0.
3 wt% に限定した理由は、0.1wt%未満ではその効果が十
分に得られず、0.3wt%を超えると導電率が大幅に低下す
るためである。Pは鋳造時に脱酸材として作用し、その
後、合金中に残存するもので、その量が 0.15wt%を超え
ると加工性や半田付性が低下する。
In a Cu—Sn—Ni—P alloy (Claim 6), Sn and Ni are important elements that affect strength, conductivity, and other main characteristics. A 2 wt% Sn-0.2 wt% Ni alloy is used. In the copper alloy, Sn forms a solid solution in a copper matrix and improves strength without impairing bending workability. The reason for limiting the content to 1.5 to 2.5 wt% is as follows.
If the content is less than 5 wt%, sufficient strength cannot be obtained, and if the content exceeds 2.5 wt%, the electrical conductivity is significantly reduced and the hot workability is deteriorated. Like Ni, Ni forms a solid solution in a copper matrix to contribute to strength improvement, and is also effective in heat resistance, corrosion resistance, crystal grain refinement, and the like. Ni content 0.1 ~ 0.
The reason why the content is limited to 3 wt% is that if the content is less than 0.1 wt%, the effect cannot be sufficiently obtained, and if the content is more than 0.3 wt%, the conductivity is significantly reduced. P acts as a deoxidizing material during casting and remains in the alloy after that. If its amount exceeds 0.15 wt%, workability and solderability deteriorate.

【0032】Cu−Fe−P系合金(請求項8記載)
は、導電性を要する用途に適した合金である。この合金
でFeは一部が銅マトリックス中に固溶し、他はPと化
合物を形成して微細に析出して、導電率をあまり下げず
に強度および耐熱性を向上させる。その含有量を0.02〜
0.5wt%に限定した理由は、 0.02wt%未満ではその効果が
十分に得られず、0.5wt%を超えると導電率の低下が大き
くなるためである。PはFeと化合物を形成して強度と
耐熱性向上に寄与する。その含有量を0.01〜0.2wt%に限
定した理由は、 0.01wt%未満ではその効果が十分に得ら
れず、0.2wt%を超えると導電率の低下が大きくなるため
である。
Cu-Fe-P alloy (claim 8)
Is an alloy suitable for applications requiring conductivity. In this alloy, a part of Fe forms a solid solution in a copper matrix, and the other forms a compound with P to precipitate finely, thereby improving strength and heat resistance without significantly lowering conductivity. 0.02 ~
The reason why the content is limited to 0.5 wt% is that if the content is less than 0.02 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 0.5 wt%, the decrease in conductivity becomes large. P forms a compound with Fe and contributes to improvement in strength and heat resistance. The reason for limiting the content to 0.01 to 0.2 wt% is that if the content is less than 0.01 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 0.2 wt%, the decrease in conductivity becomes large.

【0033】Cu−Fe−Zn−P系合金(請求項9記
載)は強度を要する用途に適した合金である。ここでF
eの含有量を 1.0〜2.6wt%に限定した理由は、1.0wt%未
満では十分な強度向上が得られず、2.6wt%を超えると強
度の向上効果が飽和する上、晶出物や析出物のサイズが
大きくなり、打抜加工性およびめっき性が低下するため
である。Pの含有量を 0.015〜0.15wt% に限定した理由
は、0.015wt%未満ではその効果が十分に得られず、 0.1
5wt%を超えると耐半田剥離性が著しく低下するためであ
る。Znは半田付性および半田めっき性の改善に寄与す
る。その含有量を0.05〜2.0wt%に限定した理由は、 0.0
5wt%未満ではその効果が十分に得られず、2.0wt%を超え
ると半田付性が却って低下するためである。なお、本発
明の銅合金は、通常の条や板材としてばかりでなく、断
面が凹凸形状の異形条などとしても使用できる。
The Cu-Fe-Zn-P-based alloy (claim 9) is an alloy suitable for applications requiring strength. Where F
The reason for limiting the content of e to 1.0 to 2.6 wt% is that if the content is less than 1.0 wt%, sufficient strength improvement cannot be obtained, and if it exceeds 2.6 wt%, the strength improvement effect is saturated, and crystallized substances and precipitation This is because the size of the product becomes large, and the punching workability and the plating property deteriorate. The reason why the content of P is limited to 0.015 to 0.15 wt% is that if the content is less than 0.015 wt%, the effect cannot be sufficiently obtained.
If it exceeds 5 wt%, the solder peeling resistance is significantly reduced. Zn contributes to improvement of solderability and solder plating property. The reason for limiting the content to 0.05 to 2.0 wt% is that
If the amount is less than 5% by weight, the effect cannot be sufficiently obtained. If the amount exceeds 2.0% by weight, the solderability is rather deteriorated. The copper alloy of the present invention can be used not only as ordinary strips and plate materials, but also as irregularly shaped strips having an uneven cross section.

【0034】このように、本発明の電気電子機器用銅合
金は、従来の電気電子機器用銅合金に、晶出物または析
出物を形成する選択元素群A(Pb、Bi、Ca、S
r、Ba、Te)の元素の少なくとも1種を適量添加す
ることで、電気電子機器用銅合金としての特性を劣化さ
せることなく打抜加工性を改善したものである。また、
さらに、選択元素群B(Sn、Cr、Mg、Zr、N
i、Ag、Mn)の元素の少なくとも1種を適量添加す
ることにより電気電子機器用銅合金としての特性を向上
させたものである。
As described above, the copper alloy for electrical and electronic equipment of the present invention is different from the conventional copper alloy for electrical and electronic equipment in that the selected element group A (Pb, Bi, Ca, S
By adding an appropriate amount of at least one element of (r, Ba, Te), the punching workability is improved without deteriorating the characteristics as a copper alloy for electric / electronic equipment. Also,
Further, the selected element group B (Sn, Cr, Mg, Zr, N
(i, Ag, Mn) by adding an appropriate amount of at least one of the elements described above to improve the properties as a copper alloy for electric and electronic equipment.

【0035】請求項18〜20の発明は、前記発明銅合金中
の晶出物または析出物の大きさを5μm未満に限定し、
または結晶粒の大きさを30μm未満に限定し、または晶
出物または析出物の大きさを5μm未満、かつ結晶粒の
大きさを30μm未満に限定することにより打抜加工性を
さらに改善したものである。前記晶出物または析出物の
大きさを5μm未満に限定した理由は、晶出物または析
出物の大きさが5μmを超えると打抜加工性の指標の一
つである前記の向上効果が低下するためである。ま
た、結晶粒径を30μm未満に限定した理由は、30μmを
超えると前記の向上効果が低下するためである。
The invention according to claims 18 to 20 is characterized in that the size of a crystallized substance or a precipitate in the invention copper alloy is limited to less than 5 μm,
Or, further improved punching workability by limiting the size of crystal grains to less than 30 μm, or limiting the size of crystallized substances or precipitates to less than 5 μm and the size of crystal grains to less than 30 μm. It is. The reason for limiting the size of the crystallized substance or the precipitate to less than 5 μm is that when the size of the crystallized substance or the precipitate exceeds 5 μm, the above-mentioned improvement effect, which is one of the indexes of punching workability, is reduced. To do that. The reason why the crystal grain size is limited to less than 30 μm is that if it exceeds 30 μm, the above-mentioned improvement effect is reduced.

【0036】請求項21記載の発明は、請求項18〜20記載
の銅合金の製造方法である。この発明において、所定の
成分に調整した溶湯を鋳造する際の冷却速度を5℃/秒
以上に限定する理由は、前記冷却速度が5℃/秒未満で
は、晶出物の大きさを5μm以下にできないためであ
る。熱間加工前の鋳塊加熱温度および熱間加工温度を 7
00〜1000℃に限定する理由は、 700℃未満では加工性が
悪く、1000℃を超えると晶出物または析出物の大きさを
5μm以下にできないためである。
The invention according to claim 21 is a method for producing a copper alloy according to claims 18 to 20. In the present invention, the reason why the cooling rate when casting a molten metal adjusted to a predetermined component is limited to 5 ° C./sec or more is that when the cooling rate is less than 5 ° C./sec, the size of the crystallized material is 5 μm or less. Because it cannot be done. Set the ingot heating temperature and hot working temperature before hot working to 7
The reason why the temperature is limited to 100 to 1000 ° C. is that the workability is poor at a temperature lower than 700 ° C., and the size of a crystallized substance or a precipitate cannot be reduced to 5 μm or less at a temperature higher than 1000 ° C.

【0037】熱間加工後の冷却速度を10℃/秒以上に限
定する理由は、10℃/秒未満では晶出物または析出物の
大きさを5μm以下にできないためである。冷間加工の
途中に熱処理を施すのは歪みを解放して加工性を高める
とともに、導電率を回復させるためであり、前記熱処理
温度を 300〜600 ℃、熱処理時間を30秒〜6時間に限定
する理由は、 300℃未満でもまた30秒未満でも歪みの解
放および導電率の回復が十分に得られず、 600℃を超え
てもまた6時間を超えても晶出物または析出物が5μm
を超え、また結晶粒径が30μmを超えるためである。
The reason why the cooling rate after hot working is limited to 10 ° C./sec or more is that if the cooling rate is less than 10 ° C./sec, the size of a crystallized substance or a precipitate cannot be reduced to 5 μm or less. The heat treatment is performed during the cold working in order to release the strain and improve the workability and to restore the conductivity. The heat treatment temperature is limited to 300 to 600 ° C. and the heat treatment time is limited to 30 seconds to 6 hours. The reason for this is that the strain relief and the recovery of the conductivity cannot be sufficiently obtained even at a temperature lower than 300 ° C. or for a time shorter than 30 seconds.
And the crystal grain size exceeds 30 μm.

【0038】さらに前記請求項21の発明にて得られた板
材に、 60%以上の断面減少率で冷間加工を施したのち、
200〜500 ℃の温度範囲で再結晶を伴わない焼鈍を施す
ことにより、伸び、曲げ加工性、異方性、内部応力、ば
ね性などの電気電子機器用部材として必要な特性が一層
改善される。前記 300〜600 ℃での熱処理および 200〜
500 ℃での焼鈍は、バッチ式、送間式(連続式)のどち
らの方式で行っても良い。なお、前記 200〜500 ℃の焼
鈍の前、後、または前後の両方に、テンションレベラや
ローラーレベラ等の矯正処理を施すと、電気電子機器用
部材の寸法精度が向上する。
Further, after subjecting the plate material obtained by the invention of claim 21 to cold working at a cross-sectional reduction rate of 60% or more,
By performing annealing without recrystallization in the temperature range of 200 to 500 ° C, the characteristics required for electrical and electronic equipment such as elongation, bending workability, anisotropy, internal stress, and spring properties are further improved. . Heat treatment at 300-600 ° C and 200-
Annealing at 500 ° C. may be performed by either a batch system or a continuous system. If a straightening process such as a tension leveler or a roller leveler is performed before, after or both before and after the annealing at 200 to 500 ° C., the dimensional accuracy of the member for electric and electronic equipment is improved.

【0039】[0039]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1〜8に示す組成の合金(ベース金属に
Pb、Bi、Ca、Sr、Ba、Teなどの選択元素群
Aを少なくとも1種含有させたもの)を高周波溶解炉に
より溶解し、これを6℃/秒の冷却速度で厚さ30mm、幅
100mm、長さ 150mmの鋳塊に鋳造した。次にこの鋳塊を
980℃で12mmまで熱間圧延し、その後直ちに30℃/秒の
速度で急冷した。この熱延材の酸化皮膜を除去するため
厚さ9mmまで面削したのち、厚さ 1.2mmまで冷間圧延
し、次いで 550℃で2時間の焼鈍を不活性ガス雰囲気中
で施し、さらに0.33mmまで冷間圧延後、 530℃で1時間
の熱処理を不活性ガス雰囲気中で施し、次いで 0.2mmに
仕上圧延した。その後、不活性ガス雰囲気中で 300℃で
2時間の焼鈍を施して板材とした。比較のため、本発明
条件以外の条件によっても 0.2mmの板材を製造した。
The present invention will be described below in detail with reference to examples. (Example 1) Alloys having compositions shown in Tables 1 to 8 (base metals containing at least one selected element group A such as Pb, Bi, Ca, Sr, Ba, and Te) are melted by a high-frequency melting furnace. Then, at a cooling rate of 6 ° C./sec, the thickness is 30 mm and the width is
It was cast into an ingot of 100 mm and length of 150 mm. Next, this ingot
It was hot rolled at 980 ° C. to 12 mm and immediately quenched at a rate of 30 ° C./sec. In order to remove the oxide film from the hot-rolled material, it was chamfered to a thickness of 9 mm, cold-rolled to a thickness of 1.2 mm, and then annealed at 550 ° C. for 2 hours in an inert gas atmosphere. After cold rolling to 530 ° C., heat treatment was performed at 530 ° C. for 1 hour in an inert gas atmosphere, and then finish rolling was performed to 0.2 mm. Thereafter, annealing was performed at 300 ° C. for 2 hours in an inert gas atmosphere to obtain a plate material. For comparison, a plate of 0.2 mm was manufactured under conditions other than the conditions of the present invention.

【0040】このようにして得られた各々の板材につい
て、晶出物または析出物の大きさ、結晶粒径、および打
抜加工性を下記方法により調べた。 晶出物または析出物の大きさ:走査型電気電子顕微鏡
観察(1000倍)により10個の大きさを測定し、その平均
値で表した。 結晶粒の大きさ:光学顕微鏡(200倍) により視野内の
平均粒径を測定した。 打抜加工性:SKD11 製金型で 1mm×5mm の角穴を開
け、5001回目から10000回目までの打抜き分から20個の
サンプルを無作為に抽出し、これらのサンプルのバリ高
さIを測定した。また打抜き面を観察して破断部の厚さ
aを計測し、試験片の厚さbに対する破断部割合 (a/b)
×100%を求めた。この破断部割合は打抜加工性の目安の
一つとされ、この値が大きい程、打抜加工性は良好であ
るとされ、歩留まりの向上や精密な加工が行えたと評価
される。さらに金型寿命については、金型再研磨後 500
01回目から 55000回目までの打抜き分から20個のサンプ
ルを無作為に抽出し、これらのバリ高さIIを測定して評
価した。なお、このバリの大きさは、金型磨耗が激しい
ほど高くなり、金型寿命の指標になる。バリ高さI、II
は針接触式形状測定機を用いて行った。結果を表1〜8
に示す。
With respect to each of the sheet materials thus obtained, the size of crystallized material or precipitate, crystal grain size, and punching workability were examined by the following methods. Size of crystallized product or precipitate: Ten sizes were measured by observation with a scanning electron microscope (× 1000) and expressed as an average value. Crystal grain size: The average particle size in the visual field was measured with an optical microscope (200 times). Punching workability: A 1 mm x 5 mm square hole was made with a SKD11 mold, and 20 samples were randomly extracted from the 5001st to 10000th punchings, and the burr height I of these samples was measured. . The thickness a of the fractured part was measured by observing the punched surface, and the ratio of the fractured part to the thickness b of the test piece (a / b)
× 100% was determined. This broken portion ratio is regarded as one of the standards of the punching workability. The larger this value is, the better the punching workability is, and it is evaluated that the yield was improved and the precision processing was performed. In addition, regarding the mold life, 500
Twenty samples were randomly extracted from the punching from the 01st to the 55000th, and the burr height II was measured and evaluated. The size of the burrs increases as the mold wear increases, and serves as an index of the mold life. Burr height I, II
Was performed using a needle contact shape measuring instrument. Tables 1 to 8 show the results.
Shown in

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 [Table 6]

【0047】[0047]

【表7】 [Table 7]

【0048】[0048]

【表8】 [Table 8]

【0049】表1〜8より明らかなように、本発明例
は、いずれも打抜加工性が優れた。これに対し、表1〜
8の比較例No.1は選択元素群Aの添加量が少ないため、
バリ高さI、IIが大きくなり、破断面比率も低下し、打
抜加工性の改善効果が見られない。また表1〜8の比較
例No.2は選択元素群Aの添加量が多いため、熱間、冷間
加工時に割れが発生して製造ができなかった。表1〜8
の比較例No.3は、晶出物または、析出物の大きさが大き
いため、バリ高さIは小さいものの、バリ高さIIが大き
くなり、打抜加工性の改善効果が半減した。さらに、表
1〜8の比較例No.4は結晶粒径が大きいため、バリ高さ
I、IIが大きくなるとともに、破断面比率も低下し、打
抜加工性の改善効果が殆ど認められなかった。
As is clear from Tables 1 to 8, all of the examples of the present invention were excellent in punching workability. In contrast, Table 1
Comparative Example No. 8 of No. 8 has a small addition amount of the selected element group A,
The burr heights I and II increase, the fracture surface ratio also decreases, and no improvement in punching workability is seen. Further, Comparative Example No. 2 in Tables 1 to 8 was not able to be manufactured due to cracking during hot and cold working due to the large addition amount of the selected element group A. Tables 1-8
In Comparative Example No. 3 of No. 3, the burr height I was small but the burr height II was large because the size of the crystallized substance or the precipitate was large, and the effect of improving the punching workability was reduced by half. Further, Comparative Example No. 4 in Tables 1 to 8 has a large crystal grain size, so that the burr heights I and II increase, the fracture surface ratio decreases, and the effect of improving the punching workability is hardly recognized. Was.

【0050】前記実施例では、板材を熱間加工を含む工
程で製造する場合について説明したが、Snを4wt%以上
含むりん青銅合金は熱間加工が困難なため、横型連続鋳
造法で薄板を鋳造しこれを直接冷間加工する方法がとら
れている。このようなことから、Snを3〜9wt% 含
み、Pを0.03〜0.35wt% 含むりん青銅合金にPb、B
i、Ca、Sr、Ba、Teの元素のうちの少なくとも
1種を0.002〜0.5wt%含有させた合金を横型連続鋳造法
により厚さ10mmの薄板鋳塊に鋳造し、これを均質化処理
後、途中に焼鈍を入れながら冷間圧延して 0.2mm厚さに
仕上げ、その後、不活性ガス雰囲気中で 300℃で2時間
焼鈍して板材とし、この板材について実施例1と同じ調
査を行った。その結果、Snを多量に含有するりん青銅
合金でも打抜加工性など良好な特性が得られることが確
認された。なお、この横型連続鋳造法を用いる場合は、
熱間加工工程を含まないため晶出物や析出物、結晶粒径
などを小さく制御には十分な留意が必要である。
In the above embodiment, the case where the sheet material is manufactured by a process including hot working has been described. However, since a phosphor bronze alloy containing 4 wt% or more of Sn is difficult to hot work, a thin plate is formed by a horizontal continuous casting method. A method of casting and directly cold-working this is used. Therefore, phosphorous bronze alloys containing 3 to 9 wt% of Sn and 0.03 to 0.35 wt% of P are added to Pb and B.
An alloy containing at least one of the elements i, Ca, Sr, Ba, and Te in an amount of 0.002 to 0.5 wt% is cast into a thin ingot having a thickness of 10 mm by a horizontal continuous casting method, and after homogenization, Then, the sheet was cold-rolled while being annealed to a thickness of 0.2 mm, and then annealed at 300 ° C. for 2 hours in an inert gas atmosphere to obtain a sheet. The same investigation as in Example 1 was performed on this sheet. . As a result, it was confirmed that even a phosphor bronze alloy containing a large amount of Sn can obtain good properties such as punching workability. When using this horizontal continuous casting method,
Since a hot working step is not included, sufficient attention must be paid to control of crystallized matters, precipitates, crystal grain size and the like to be small.

【0051】(実施例2)表9に示す組成の銅合金を用
い、厚さ1.2mm の冷間圧延材の焼鈍を 530℃で1時間不
活性ガス雰囲気中で行った他は、実施例1と同じ方法に
より板材を製造し、得られた板材について、晶出物と析
出物の大きさ、結晶粒径、強度、導電率、耐熱性、Ag
めっき性、ばり高さ(I、II)、および破断部割合を調
べた。なお、前記銅合金は、Cu−Zr系合金に選択元
素群A、または選択元素群Aと選択元素群Bの両方を添
加した銅合金である。
Example 2 A 1.2 mm thick cold-rolled material was annealed at 530 ° C. for 1 hour in an inert gas atmosphere using a copper alloy having the composition shown in Table 9. A plate material is produced by the same method as described above, and the size of crystallized material and precipitate, crystal grain size, strength, conductivity, heat resistance, Ag
Plating properties, flash heights (I, II), and fracture ratios were examined. The copper alloy is a copper alloy obtained by adding the selective element group A or both the selective element group A and the selective element group B to a Cu-Zr-based alloy.

【0052】晶出物と析出物の大きさは走査型電気電子
顕微鏡観察(1000倍)により10個測定しその平均値を求
めた。結晶粒径は光学顕微鏡(200倍) により、視野内の
平均粒径を測定した。引張強度はJISZ2241に準じて測定
した。導電率はJISH0505に準じて測定した。Agめっき
性は40mm×100mm の試験片を電解脱脂したのち、10%硫
酸溶液にて酸洗し、シアン浴にて厚さ5μmのAgめっ
きを施し、大気中で 450℃×10min.加熱して顕微鏡(20
倍)により表面の膨れの有無を目視にて観察した。この
観察で明瞭に膨れが認められる場合は不良とした。半田
の耐剥離性は、230℃の共晶半田(Pb-63wt%Sn)浴
中に5秒間浸漬し、表面に半田を付着させたのち、大気
中で 150℃×1000時間加熱し、次いで 180度の密着曲げ
と曲げ戻しを行った後、半田の剥離状況を目視にて観察
した。打抜加工性は実施例1と同じ方法で測定した。結
果を表10に示す。
The size of the crystallized product and the precipitate was measured by scanning electron microscope observation (× 1000), and the average value was determined. The average grain size in the visual field was measured with an optical microscope (200 times) for the crystal grain size. The tensile strength was measured according to JISZ2241. The conductivity was measured according to JISH0505. The Ag plating property is as follows: After a test specimen of 40 mm x 100 mm is electrolytically degreased, it is acid-washed with a 10% sulfuric acid solution, plated with Ag in a cyan bath with a thickness of 5 μm, and heated in air at 450 ° C for 10 min. Microscope (20
), The presence or absence of surface swelling was visually observed. When swelling was clearly observed in this observation, it was determined to be defective. The peeling resistance of the solder was determined by immersing it in a eutectic solder (Pb-63wt% Sn) bath at 230 ° C for 5 seconds, attaching the solder to the surface, heating in air at 150 ° C for 1000 hours, and then heating at 180 ° C. After performing close contact bending and bending back, the state of peeling of the solder was visually observed. Punching workability was measured in the same manner as in Example 1. Table 10 shows the results.

【0053】[0053]

【表9】 [Table 9]

【0054】[0054]

【表10】 [Table 10]

【0055】表10より明らかなように、本発明例のNo.1
〜12は、いずれも特性に優れた。中でも、No.8〜12は選
択元素群Bが添加されているため、強度、導電率、耐熱
性、Agめっき性などが特に優れている。これに対し
て、比較例のNo.1はZrの量が少ないため強度と耐熱性
に劣った。No.2はZrの量が多いため導電率が低下し、
また晶出物や析出物のサイズが大きくなり金型磨耗の指
標であるバリ高さIIが大きくなり、打抜加工性が低下し
た。また加熱によりAgめっきに膨れが生じた。比較例
のNo.3は選択元素群Aの量が少ないためバリ高さI、II
が大きく、破断面割合が小さく、打抜加工性に劣った。
比較例のNo.4,5は熱間、冷間加工時に割れが発生し、加
工ができなかった。比較例のNo.6,7は選択元素群Bが多
いため、導電率が大幅に低下した。また比較例のNo.8,9
は晶出物や析出物のサイズが大きいためバリ高さIIが大
きくなり、また加熱によりAgめっきに膨れが生じた。
比較例のNo.10,11は結晶粒径が大きいためバリ高さI、
IIが大きく、破断面割合が小さく、打抜加工性に劣っ
た。
As is clear from Table 10, No. 1 of the present invention example
Nos. To 12 were all excellent in characteristics. Among them, Nos. 8 to 12 are particularly excellent in strength, electrical conductivity, heat resistance, Ag plating property, etc. because the selected element group B is added. On the other hand, No. 1 of the comparative example was inferior in strength and heat resistance due to a small amount of Zr. No.2 has a large amount of Zr, so the conductivity decreases,
In addition, the size of crystallized substances and precipitates increased, and the burr height II, which is an index of mold wear, increased, resulting in a decrease in punching workability. The Ag plating swelled due to the heating. No. 3 of the comparative example has the burr heights I and II because the amount of the selected element group A is small.
, The fracture surface ratio was small, and the punching workability was poor.
Nos. 4 and 5 of the comparative examples cracked during hot and cold working and could not be worked. In Comparative Examples Nos. 6 and 7, since the number of selected element groups B was large, the conductivity was significantly reduced. Nos. 8 and 9 of Comparative Examples
The burr height II was increased due to the large size of the precipitates and precipitates, and the Ag plating was swollen by heating.
Nos. 10 and 11 of the comparative examples had a burr height I,
II was large, the fracture surface ratio was small, and the punching workability was poor.

【0056】(実施例3)表11に示す組成の銅合金を用
い、厚さ9mmの面削材を焼鈍せずに厚さ0.33mmに冷間圧
延し、これを500 ℃で2時間の熱処理を不活性ガス雰囲
気中で施し、次いで厚さ 0.2mm仕上げ圧延した。その
後、不活性ガス雰囲気中で 200℃で1時間熱処理して板
材を製造した。得られた板材について、晶出物と析出物
の大きさ、結晶粒径、強度、導電率、打抜加工性(ばり
高さI,II、破断部割合、リードの変位)、耐熱性(半
田めっき層の剥離有無、加熱後のAgめっき層)を調べ
た。結果を表12に示す。なお、前記銅合金は、Cu−S
n−Ni−(P)系合金に選択元素群Aを添加した銅合
金である。前記調査項目のうち、打抜加工性、金型寿命
および半田剥離性は下記方法により調査し、それ以外は
実施例1または実施例2と同じ方法により調査した。 〔打抜加工性〕 SKD11製金型を用いてリードフレーム
(リード幅0.25mm、リードピッチ0.4mm 、リード長さ20
mm、リード本数4本)を打抜き、打抜き回数1000回目ま
での打抜き分から20個のサンプルを無作為に抽出し、下
記 (a),(b),(c)の項目を測定し評価した。なお、リード
フレームはその長さ方向が板材の圧延方向に対し直角に
なるように打抜いた。 (a)破断部割合:3番リードの後
抜き側破面を観察し、実施例1と同じ方法で評価した。
(b)リードの変位:3番リードのインナー側で、水平方
向の変位量を 300倍に拡大し測定した。目標位置からの
変位量を絶対値で求めた。 (c)バリ高さI:針接触式形
状測定機により3番リードのバリ高さを測定した。 〔金型寿命〕2mm×4mmの角型打抜き金型を使用した。
金型再研磨後、500000回目から501000回目までの打抜き
分より20個のサンプルを無作為に抽出し、コーナー部の
バリ高さIIを求めた。バリ高さIIは金型摩耗が激しいほ
ど高くり、金型摩耗が進行したことを意味する。バリ高
さI、IIは実施例1と同じように針接触式計上測定機を
用いて行った。 〔ハンダ剥離性〕Sn-10%Pb半田を1μm厚さにめっ
きし、これを 150℃で1000時間大気中で加熱したのち、
V曲げ試験を行い曲げ部のハンダ剥離の有無を目視観察
して行った。
(Example 3) A copper alloy having a composition shown in Table 11 was cold-rolled to a thickness of 0.33 mm without annealing a 9 mm-thick facing material, and this was heat-treated at 500 ° C for 2 hours. Was applied in an inert gas atmosphere, followed by finish rolling of 0.2 mm in thickness. Thereafter, the sheet was heat-treated at 200 ° C. for 1 hour in an inert gas atmosphere to produce a sheet material. Regarding the obtained plate material, the size of crystallized substance and precipitate, crystal grain size, strength, conductivity, punching workability (burr height I, II, fractured portion ratio, lead displacement), heat resistance (solder The presence or absence of peeling of the plating layer and the Ag plating layer after heating were examined. Table 12 shows the results. In addition, the said copper alloy is Cu-S
This is a copper alloy obtained by adding a selection element group A to an n-Ni- (P) -based alloy. Among the above-mentioned investigation items, the punching workability, the mold life and the solder releasability were investigated by the following method, and other than that, they were investigated by the same method as in Example 1 or Example 2. [Punching workability] Using a SKD11 mold, lead frame (lead width 0.25mm, lead pitch 0.4mm, lead length 20)
mm, 4 leads), and 20 samples were extracted at random from the punching up to the 1000th punching, and the following items (a), (b) and (c) were measured and evaluated. The lead frame was punched so that its length direction was perpendicular to the rolling direction of the sheet material. (a) Breakage ratio: The cutout side fracture surface of the No. 3 lead was observed and evaluated in the same manner as in Example 1.
(b) Displacement of the lead: The amount of displacement in the horizontal direction at the inner side of the lead No. 3 was measured 300 times and measured. The displacement from the target position was obtained as an absolute value. (c) Burr height I: The burr height of the third lead was measured with a needle contact type shape measuring instrument. [Mold life] A square die of 2 mm x 4 mm was used.
After the mold was re-polished, 20 samples were randomly extracted from the 500,000 to 501,000 times punching, and the burr height II at the corner was determined. The burr height II increases as the mold wear increases, meaning that the mold wear has progressed. The burr heights I and II were measured using a needle contact type measuring instrument as in Example 1. [Solder peelability] Sn-10% Pb solder is plated to a thickness of 1 μm and heated in the air at 150 ° C. for 1000 hours.
A V-bending test was performed, and the presence or absence of solder peeling at the bent portion was visually observed.

【0057】[0057]

【表11】 [Table 11]

【0058】[0058]

【表12】 [Table 12]

【0059】表12より明らかなように、本発明例のNo.1
〜12は、いずれも特性に優れた。これに対し、Sn量の
少ない比較例No.13 は強度が低く、No.14 はSn量が多
いため熱間加工中に割れが生じ、製造不可能であった。
比較例のNo.15 は、Ni含有量が多いため、導電率が大
幅に低下した。No. 16〜18は選択元素群Aが少ないた
め、打抜加工性が低下した。比較例の No.19〜23は選択
元素群Aの添加量が多いため熱間加工で割れが生じたり
(No.20,21,22)、晶出物または析出物の粗大化により金
型磨耗が激しくなり(No.19,23)、半田剥離が生じ易く、
またAgめっき性も劣った。No.24 はP含有量が多いた
め、粗大晶出物が生成し、金型磨耗の進行が早かった。
また耐半田剥離性、Agめっきの耐加熱膨れ性も劣っ
た。
As is clear from Table 12, No. 1 of the present invention example
Nos. To 12 were all excellent in characteristics. On the other hand, Comparative Example No. 13 having a small amount of Sn had low strength, and No. 14 had a large amount of Sn, so that cracks occurred during hot working and production was impossible.
In No. 15 of the comparative example, since the Ni content was large, the electrical conductivity was significantly reduced. In Nos. 16 to 18, the selectable element group A was small, so that the punching workability was reduced. In Comparative Examples Nos. 19 to 23, the added amount of the selected element group A was large, so that cracks occurred during hot working (Nos. 20, 21, and 22), and crystallization or wear of the mold due to coarsening of precipitates occurred. Becomes severe (No. 19, 23), and solder peeling is likely to occur,
Also, the Ag plating property was inferior. In No. 24, since the P content was large, coarse crystals were formed, and the abrasion of the mold was accelerated.
Also, the solder peeling resistance and the heat swelling resistance of Ag plating were inferior.

【0060】(実施例4)表13に示す組成の合金を用い
て、実施例2と同じ方法により板材を製造し、得られた
板材について実施例1と同じ方法で調査した。結果を表
14に示す。
Example 4 Using an alloy having the composition shown in Table 13, a plate was produced in the same manner as in Example 2, and the obtained plate was investigated in the same manner as in Example 1. Table of results
See Figure 14.

【0061】[0061]

【表13】 [Table 13]

【0062】[0062]

【表14】 [Table 14]

【0063】表14より明らかなように、本発明例のNo.1
〜12はいずれも特性がすぐれた。これに対し、比較例の
No.1,3はFe、P量が少ないため強度、耐熱性がともに
低下した。比較例のNo.2,4はFe、P量が多いため導電
率が低下した。比較例のNo.5は選択元素群Aの量が少な
いためバリ高さI、IIが大きく、破断面割合も小さく、
打抜加工性が悪かった。逆に選択元素群Aの量が多い比
較例No.6,7では、熱間、冷間加工時に割れが発生して製
造ができなかった。No.8,9は選択元素群Bが多いため導
電率の低下が著しい。No.10,11では加熱後にAgめっき
層に膨れが生じ、金型磨耗の指標であるバリ高さが大き
かった。No.12,13はバリ高さI、IIがともに大きく、破
断部割合も小さく打抜加工性が悪かった。
As is clear from Table 14, No. 1 of the present invention example
~ 12 all had excellent characteristics. In contrast, the comparative example
In Nos. 1 and 3, both the strength and the heat resistance decreased because the amounts of Fe and P were small. In Comparative Examples Nos. 2 and 4, the electrical conductivity decreased due to the large amounts of Fe and P. In Comparative Example No. 5, the burr heights I and II were large because the amount of the selected element group A was small, and the fracture surface ratio was small.
Punching workability was poor. Conversely, in Comparative Examples Nos. 6 and 7 in which the amount of the selected element group A was large, cracks occurred during hot and cold working and production was not possible. Nos. 8 and 9 have a large decrease in conductivity due to the large number of selected element groups B. In Nos. 10 and 11, the Ag plating layer swelled after heating, and the burr height as an index of mold wear was large. In Nos. 12 and 13, both the burr heights I and II were large, the percentage of breakage was small, and the punching workability was poor.

【0064】(実施例5)表15に示す組成の合金を用い
て、実施例3と同じ方法により板材を製造し、得られた
板材について実施例1と同じ方法で調査した。結果を表
16に示す。
Example 5 Using an alloy having the composition shown in Table 15, a plate was produced in the same manner as in Example 3, and the obtained plate was investigated in the same manner as in Example 1. Table of results
See Figure 16.

【0065】[0065]

【表15】 [Table 15]

【0066】[0066]

【表16】 [Table 16]

【0067】表16より明らかなように、本発明例のNo.1
〜12はいずれも特性が優れた。これに対し、比較例のN
o.13 はFe量が少ないため強度が低下した。比較例のN
o.14 はFe量が多いため導電率が低く、半田剥離も認
められた。No. 15はP量が多いため導電率が多く、半田
剥離も認められた。No. 16はP量が少ないため強度が低
下した。No. 17はZn量が少ないため半田剥離が認めら
れ、No. 18はZn量が多いため半田濡れ性が低下した。
No.19は選択元素群Aが少ないため打抜加工性が低下し
た。No.20,21は選択元素群Aが多いため熱間加工中に割
れが生じた。No.22,23は選択元素群Bが多いため導電率
が低下した。No.24,25は結晶出物や析出物のサイズが大
きいため加熱によりAgめっき層に膨れが生じた。また
金型磨耗の指標であるバリ高さIIが大きくなった。No.2
6,27は結晶粒径が大きいためバリ高さI、IIが大きく、
破断部割合が小さく、打抜加工性の改善効果が認められ
なかった。
As is clear from Table 16, No. 1 of the present invention example
Nos. To 12 had excellent properties. On the other hand, N
In the case of o.13, the strength decreased due to the small amount of Fe. N in Comparative Example
In o.14, since the amount of Fe was large, the conductivity was low, and solder peeling was also observed. No. 15 had a high P content due to a large amount of P, and solder peeling was also observed. In No. 16, the strength was reduced due to the small amount of P. In No. 17, solder peeling was observed because of a small amount of Zn, and in No. 18, solder wettability was reduced because of a large amount of Zn.
In No. 19, the punching workability was reduced due to the small number of the selected element group A. In Nos. 20 and 21, cracks occurred during hot working due to the large number of selected element group A. In Nos. 22 and 23, the conductivity was reduced due to the large number of the selected element group B. In Nos. 24 and 25, the Ag plating layer swelled due to heating due to the large size of the crystal deposits and precipitates. Also, the burr height II, which is an indicator of mold wear, increased. No.2
6, 27 have large burr heights I and II due to large crystal grain size,
The fracture ratio was small, and no effect of improving the punching workability was observed.

【0068】(実施例6)表11に示すNo.1,5,11 の組成
の合金を用いて、表17に示す条件にて鋳造、熱間圧延、
冷間加工と焼鈍を繰返す諸工程にて板材を製造し、得ら
れた板材について実施例3と同じ調査、および曲げ加工
性の調査を行った。曲げ加工性は曲げ軸が圧延方向と平
行または直角となるように90度曲げを行った。クラック
が発生しない最小曲げと半径を求め、平衡曲げと直角曲
げで最小曲げ半径の差が0.2 mm以上の場合は異方性あり
とし、 0.2mm以下の場合は異方性なしと判定した。結果
を表18に示す。表18にはNo.1,5,11 を再掲した。
(Example 6) Using an alloy having a composition of Nos. 1, 5, and 11 shown in Table 11, casting, hot rolling,
A plate was manufactured in various steps of repeating cold working and annealing, and the obtained plate was subjected to the same investigation as in Example 3 and to the bending workability. For bending workability, bending was performed at 90 degrees so that the bending axis was parallel or perpendicular to the rolling direction. The minimum bend and radius at which cracks did not occur were determined. If the difference between the minimum bend radius in equilibrium bending and right-angle bending was 0.2 mm or more, it was determined that there was anisotropy. The results are shown in Table 18. Table 18 shows Nos. 1, 5, and 11 again.

【0069】[0069]

【表17】 [Table 17]

【0070】[0070]

【表18】 [Table 18]

【0071】表18より明らかなように、本発明例の No.
25〜33はいずれも特性が優れた。これに対し、比較例の
No.34,41は鋳造時の冷却速度が遅かったため、No.35,42
は熱間加工温度が低かったため、No.36,45は熱間加工後
の冷却速度が遅かったため、いずれも晶出物や析出物が
粗大化し、金型磨耗後のバリが大きくなった。No.38,43
は冷間加工の際の熱処理温度が高かったため、結晶粒径
が大きくなり、本発明例のNo.1,5と比較してバリ高さ
I、IIが大きくなった。逆にNo.39,44は焼鈍温度が低い
ため十分に再結晶せず、異方性が大きくなり、特に圧延
方向と平行な軸での曲げ加工性が劣った。No.37,40は熱
間加工温度が1000℃を超えたため、圧延材に厚い酸化皮
膜が形成された。これらの特性は本発明のNo.1,5と同等
であり、1000℃を超える温度で熱間加工することはエネ
ルギーコストの上昇を招くだけで意味がないことが判
る。
As is clear from Table 18, the No. of the present invention example
25 to 33 all had excellent characteristics. In contrast, the comparative example
Nos. 34 and 41 had slow cooling rates during casting,
In Nos. 36 and 45, the cooling rate after hot working was low because the hot working temperature was low, so that the crystallization and precipitates became coarser and the burrs after mold abrasion increased in each case. No.38,43
Since the heat treatment temperature at the time of cold working was high, the crystal grain size was large, and the burr heights I and II were large as compared with Nos. 1 and 5 of the present invention. Conversely, Nos. 39 and 44 did not recrystallize sufficiently due to the low annealing temperature, and the anisotropy was large. In particular, bending workability in an axis parallel to the rolling direction was poor. In Nos. 37 and 40, since the hot working temperature exceeded 1000 ° C., a thick oxide film was formed on the rolled material. These characteristics are equivalent to those of Nos. 1 and 5 of the present invention, and it can be understood that hot working at a temperature exceeding 1000 ° C. only increases the energy cost and is meaningless.

【0072】[0072]

【発明の効果】以上に述べたように、本発明の銅合金
は、Pb、Bi、Ca、Sr、Ba、Teの元素のうち
の少なくとも1種が、単体化合物、Cuとの化合物、前
記元素同士の化合物などとして銅マトリックス中に分散
するので打抜加工性に優れる。また晶出物または析出物
の径を5μm以下または/および結晶粒径を30μm未満
に限定することにより打抜加工性がさらに向上する。本
発明の銅合金は、通常の溶解、鋳造、熱間圧延、冷間圧
延を所定条件で行うことにより容易に製造できる。依っ
て、リードフレーム、端子、コネクタ、スイッチ、接
点、一般導電材などの打抜加工が施される電気電子機器
部品の高集積化、小型化、低コスト化などに十分対応可
能であり、工業上顕著な効果を奏する。
As described above, in the copper alloy of the present invention, at least one of the elements Pb, Bi, Ca, Sr, Ba, and Te is a simple compound, a compound with Cu, Since it is dispersed in the copper matrix as a compound between the two, it has excellent punching workability. By limiting the size of the crystallized substance or precipitate to 5 μm or less and / or the crystal grain size to less than 30 μm, the punching workability is further improved. The copper alloy of the present invention can be easily manufactured by performing ordinary melting, casting, hot rolling, and cold rolling under predetermined conditions. Therefore, it is possible to fully cope with high integration, miniaturization, low cost, etc. of electrical and electronic equipment parts to be punched such as lead frames, terminals, connectors, switches, contacts, and general conductive materials. It has a remarkable effect.

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 CuにPb、Bi、Ca、Sr、Ba、
Teの元素のうちの少なくとも1種を 0.002〜0.5wt%含
有させたことを特徴とする打抜加工性に優れた電気電子
機器用銅合金。
1. Cu is composed of Pb, Bi, Ca, Sr, Ba,
A copper alloy for electrical and electronic equipment excellent in punching workability, characterized by containing at least one of the elements of Te in an amount of 0.002 to 0.5 wt%.
【請求項2】 Cu−Zn系合金にPb、Bi、Ca、
Sr、Ba、Teの元素のうちの少なくとも1種を 0.0
02〜0.5wt%含有させたことを特徴とする打抜加工性に優
れた電気電子機器用銅合金。
2. A Cu—Zn based alloy containing Pb, Bi, Ca,
At least one of the elements Sr, Ba and Te is 0.0
A copper alloy for electrical and electronic equipment with excellent punching characteristics characterized by containing 02 to 0.5 wt%.
【請求項3】 Zrを0.02〜0.2wt%含有するCu−Zr
系合金にPb、Bi、Ca、Sr、Ba、Teの元素の
うちの少なくとも1種を 0.002〜0.5wt%含有させたこと
を特徴とする打抜加工性に優れた電気電子機器用銅合
金。
3. Cu-Zr containing 0.02-0.2 wt% of Zr
A copper alloy for electric and electronic equipment excellent in punching workability, characterized in that at least one of elements of Pb, Bi, Ca, Sr, Ba, and Te is contained in a system alloy at 0.002 to 0.5 wt%.
【請求項4】 Cu−Sn系合金にPb、Bi、Ca、
Sr、Ba、Teの元素のうちの少なくとも1種を 0.0
02〜0.5wt%含有させたことを特徴とする打抜加工性に優
れた電気電子機器用銅合金。
4. A Cu—Sn based alloy containing Pb, Bi, Ca,
At least one of the elements Sr, Ba and Te is 0.0
A copper alloy for electrical and electronic equipment with excellent punching characteristics characterized by containing 02 to 0.5 wt%.
【請求項5】 Cu−Sn−Ni系合金にPb、Bi、
Ca、Sr、Ba、Teの元素のうちの少なくとも1種
を 0.002〜0.5wt%含有させたことを特徴とする打抜加工
性に優れた電気電子機器用銅合金。
5. A Cu—Sn—Ni alloy containing Pb, Bi,
A copper alloy for electrical and electronic equipment excellent in punching workability, characterized by containing at least one of Ca, Sr, Ba and Te elements in an amount of 0.002 to 0.5 wt%.
【請求項6】 Snを 1.5〜2.5wt%、Niを 0.1〜0.3w
t%、Pを 0.15wt%以下含有するCu−Sn−Ni−P系
合金にPb、Bi、Ca、Sr、Ba、Teの元素のう
ちの少なくとも1種を 0.002〜0.5wt%含有させたことを
特徴とする打抜加工性に優れた電気電子機器用銅合金。
6. Sn is 1.5 to 2.5 wt% and Ni is 0.1 to 0.3 watts.
Cu-Sn-Ni-P based alloy containing 0.15 wt% or less of t% and P contains at least one of Pb, Bi, Ca, Sr, Ba, and Te elements in an amount of 0.002-0.5 wt%. A copper alloy for electrical and electronic equipment with excellent punching work characteristics.
【請求項7】 Cu−Fe系合金にPb、Bi、Ca、
Sr、Ba、Teの元素のうちの少なくとも1種を 0.0
02〜0.5wt%含有させたことを特徴とする打抜加工性に優
れた電気電子機器用銅合金。
7. Pb, Bi, Ca, Cu-Fe alloys
At least one of the elements Sr, Ba and Te is 0.0
A copper alloy for electrical and electronic equipment with excellent punching characteristics characterized by containing 02 to 0.5 wt%.
【請求項8】 Feを0.02〜0.5wt%、Pを0.01〜0.2wt%
含有するCu−Fe−P系合金にPb、Bi、Ca、S
r、Ba、Teの元素のうちの少なくとも1種を 0.002
〜0.5wt%含有させたことを特徴とする打抜加工性に優れ
た電気電子機器用銅合金。
8. An Fe content of 0.02 to 0.5 wt% and a P content of 0.01 to 0.2 wt%.
Pb, Bi, Ca, S
at least one of the elements r, Ba and Te is 0.002
A copper alloy for electrical and electronic equipment with excellent punching workability, characterized by containing up to 0.5 wt%.
【請求項9】 Feを 1.0〜2.6wt%、Znを0.05〜2.0w
t%、Pを 0.015〜0.15wt% 含有するCu−Fe−Zn−
P系合金にPb、Bi、Ca、Sr、Ba、Teの元素
のうちの少なくとも1種を 0.002〜0.5wt%含有させたこ
とを特徴とする打抜加工性に優れた電気電子機器用銅合
金。
9. An Fe content of 1.0 to 2.6 wt% and a Zn content of 0.05 to 2.0 watts.
Cu-Fe-Zn- containing 0.15 to 0.15 wt% P
A copper alloy for electrical and electronic equipment having excellent punching characteristics, characterized in that a P-based alloy contains at least one element of Pb, Bi, Ca, Sr, Ba, and Te in an amount of 0.002 to 0.5 wt%. .
【請求項10】 Cu−Cr系合金にPb、Bi、Ca、
Sr、Ba、Teの元素のうちの少なくとも1種を 0.0
02〜0.5wt%含有させたことを特徴とする打抜加工性に優
れた電気電子機器用銅合金。
10. A Cu—Cr alloy containing Pb, Bi, Ca,
At least one of the elements Sr, Ba and Te is 0.0
A copper alloy for electrical and electronic equipment with excellent punching characteristics characterized by containing 02 to 0.5 wt%.
【請求項11】 Cu−Cr−Zr系合金にPb、Bi、
Ca、Sr、Ba、Teの元素のうちの少なくとも1種
を 0.002〜0.5wt%含有させたことを特徴とする打抜加工
性に優れた電気電子機器用銅合金。
11. A Cu—Cr—Zr alloy containing Pb, Bi,
A copper alloy for electrical and electronic equipment excellent in punching workability, characterized by containing at least one of Ca, Sr, Ba and Te elements in an amount of 0.002 to 0.5 wt%.
【請求項12】 請求項1、2、7、8、9のいずれかに
記載の電気電子機器用銅合金に、さらにSn、Cr、M
g、Zr、Ni、Ag、Mnの元素のうちの少なくとも
1種を総計で0.01〜0.5wt%含有させたことを特徴とする
打抜加工性に優れた電気電子機器用銅合金。
12. The copper alloy according to claim 1, further comprising Sn, Cr, M
A copper alloy for electrical and electronic equipment excellent in punching workability, characterized by containing at least one of g, Zr, Ni, Ag, and Mn elements in a total amount of 0.01 to 0.5 wt%.
【請求項13】 請求項3に記載の電気電子機器用銅合金
に、さらにSn、Cr、Mg、Ni、Ag、Mnの元素
のうちの少なくとも1種を総計で0.01〜0.5wt%含有させ
たことを特徴とする打抜加工性に優れた電気電子機器用
銅合金。
13. The copper alloy for electric / electronic equipment according to claim 3, further comprising at least one of Sn, Cr, Mg, Ni, Ag, and Mn in a total amount of 0.01 to 0.5 wt%. A copper alloy for electrical and electronic equipment which is excellent in stamping workability.
【請求項14】 請求項4に記載の電気電子機器用銅合金
に、さらにCr、Mg、Zr、Ni、Ag、Mnの元素
のうちの少なくとも1種を総計で0.01〜0.5wt%含有させ
たことを特徴とする打抜加工性に優れた電気電子機器用
銅合金。
14. The copper alloy for electrical and electronic equipment according to claim 4, further comprising at least one of Cr, Mg, Zr, Ni, Ag, and Mn elements in a total amount of 0.01 to 0.5 wt%. A copper alloy for electrical and electronic equipment which is excellent in stamping workability.
【請求項15】 請求項5、6のいずれかに記載の電気電
子機器用銅合金に、さらにCr、Mg、Zr、Ag、M
nの元素のうちの少なくとも1種を総計で0.01〜0.5wt%
含有させたことを特徴とする打抜加工性に優れた電気電
子機器用銅合金。
15. The copper alloy for electrical and electronic equipment according to claim 5, further comprising Cr, Mg, Zr, Ag, M
at least one of the n elements is 0.01 to 0.5 wt% in total
A copper alloy for electric and electronic equipment, which is excellent in punching workability, characterized by being contained.
【請求項16】 請求項10に記載の電気電子機器用銅合金
に、さらにSn、Mg、Zr、Ni、Ag、Mnの元素
のうちの少なくとも1種を総計で0.01〜0.5wt%含有させ
たことを特徴とする打抜加工性に優れた電気電子機器用
銅合金。
16. The copper alloy for electric / electronic equipment according to claim 10, further comprising at least one of Sn, Mg, Zr, Ni, Ag, and Mn elements in a total amount of 0.01 to 0.5 wt%. A copper alloy for electrical and electronic equipment which is excellent in stamping workability.
【請求項17】 請求項11に記載の電気電子機器用銅合金
に、さらにSn、Mg、Ni、Ag、Mnの元素のうち
の少なくとも1種を総計で0.01〜0.5wt%含有させたこと
を特徴とする打抜加工性に優れた電気電子機器用銅合
金。
17. The copper alloy for electrical and electronic equipment according to claim 11, further comprising at least one of Sn, Mg, Ni, Ag, and Mn elements in a total amount of 0.01 to 0.5 wt%. Copper alloy for electrical and electronic equipment with excellent punching workability.
【請求項18】 晶出物または析出物の径が5μm以下で
あることを特徴とする請求項1〜17のいずれかに記載の
打抜加工性に優れた電気電子機器用銅合金。
18. The copper alloy for electrical and electronic equipment excellent in punching workability according to claim 1, wherein a diameter of a crystallized substance or a precipitate is 5 μm or less.
【請求項19】 結晶粒の径が30μm未満であることを特
徴とする請求項1〜17のいずれかに記載の打抜加工性に
優れた電気電子機器用銅合金。
19. The copper alloy for electric and electronic equipment excellent in punching workability according to claim 1, wherein the crystal grains have a diameter of less than 30 μm.
【請求項20】 晶出物または析出物の径が5μm以下、
かつ結晶粒の径が30μm未満であることを特徴とする請
求項1〜17のいずれかに記載の打抜加工性に優れた電気
電子機器用銅合金。
20. A crystal or precipitate having a diameter of 5 μm or less,
18. The copper alloy for electrical and electronic equipment excellent in punching workability according to claim 1, wherein the crystal grains have a diameter of less than 30 [mu] m.
【請求項21】 請求項1〜17のいずれかに記載した組成
の銅合金に、鋳造加工、熱間加工、冷間加工を施すにあ
たり、前記鋳造加工時の冷却速度を5℃/秒以上とし、
前記鋳造加工にて得られる銅合金鋳塊を 700〜1000℃に
加熱して熱間加工し、熱間加工後10℃/秒以上の速度で
急冷し、次いで冷間加工を、途中に 300〜600 ℃で30秒
〜6時間加熱する熱処理を少なくとも1回入れて施すこ
とを特徴とする打抜加工性に優れた電気電子機器用銅合
金の製造方法。
21. A casting, hot working, and cold working of a copper alloy having a composition according to any one of claims 1 to 17, wherein the cooling rate during the casting is 5 ° C./sec or more. ,
The copper alloy ingot obtained by the casting process is heated to 700 to 1000 ° C., hot worked, rapidly cooled at a rate of 10 ° C./sec or more after the hot working, and then cold worked, A method for producing a copper alloy for electrical and electronic equipment having excellent punching workability, wherein a heat treatment of heating at 600 ° C. for 30 seconds to 6 hours is performed at least once.
JP00180297A 1997-01-09 1997-01-09 Copper alloy for electrical and electronic equipment with excellent punching workability Expired - Lifetime JP3418301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00180297A JP3418301B2 (en) 1997-01-09 1997-01-09 Copper alloy for electrical and electronic equipment with excellent punching workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00180297A JP3418301B2 (en) 1997-01-09 1997-01-09 Copper alloy for electrical and electronic equipment with excellent punching workability

Publications (2)

Publication Number Publication Date
JPH10195562A true JPH10195562A (en) 1998-07-28
JP3418301B2 JP3418301B2 (en) 2003-06-23

Family

ID=11511712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00180297A Expired - Lifetime JP3418301B2 (en) 1997-01-09 1997-01-09 Copper alloy for electrical and electronic equipment with excellent punching workability

Country Status (1)

Country Link
JP (1) JP3418301B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063309A2 (en) * 1999-06-07 2000-12-27 Waterbury Rolling Mills, Inc. Copper alloy
US6627011B2 (en) * 2000-04-14 2003-09-30 Dowa Mining Co., Ltd. Process for producing connector copper alloys
US6797082B1 (en) * 1999-02-08 2004-09-28 La Farga Lacambra, S.A. Manufacture of copper microalloys
US6949150B2 (en) 2000-04-14 2005-09-27 Dowa Mining Co., Ltd. Connector copper alloys and a process for producing the same
WO2010071220A1 (en) 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
JP2014095107A (en) * 2012-11-07 2014-05-22 Fujikura Ltd Cu-Mg ALLOY BODY, MANUFACTURING METHOD OF Cu-Mg ALLOY BODY AND DRAWN WIRE MATERIAL
WO2014109211A1 (en) * 2013-01-09 2014-07-17 三菱マテリアル株式会社 Copper alloy for electronic or electrical device, component for electronic or electrical device, and terminal
KR20150026843A (en) * 2013-08-30 2015-03-11 미쓰비시 마테리알 가부시키가이샤 Copper alloy sputtering target
JP2015113492A (en) * 2013-12-11 2015-06-22 三菱マテリアル株式会社 Copper alloy for electronic/electrical equipment, copper alloy plastic processing material for electronic/electrical equipment, component and terminal for electronic/electrical equipment
JP2015127456A (en) * 2013-11-26 2015-07-09 三菱伸銅株式会社 Cu-Zr-BASED COPPER ALLOY SHEET AND PRODUCTION METHOD THEREOF
CN105931861A (en) * 2016-06-14 2016-09-07 南京工程学院 Preparation method for supercapacitor electrode coated with active electrode membrane

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797082B1 (en) * 1999-02-08 2004-09-28 La Farga Lacambra, S.A. Manufacture of copper microalloys
EP1063309A2 (en) * 1999-06-07 2000-12-27 Waterbury Rolling Mills, Inc. Copper alloy
EP1063309A3 (en) * 1999-06-07 2002-09-18 Waterbury Rolling Mills, Inc. Copper alloy
US6689232B2 (en) 1999-06-07 2004-02-10 Waterbury Rolling Mills Inc Copper alloy
US6627011B2 (en) * 2000-04-14 2003-09-30 Dowa Mining Co., Ltd. Process for producing connector copper alloys
US6949150B2 (en) 2000-04-14 2005-09-27 Dowa Mining Co., Ltd. Connector copper alloys and a process for producing the same
WO2010071220A1 (en) 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
JP2012519781A (en) * 2009-03-09 2012-08-30 ナショナル ブロンズ アンド メタルズ インコーポレイテッド Lead-free brass alloy
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
JP2014095107A (en) * 2012-11-07 2014-05-22 Fujikura Ltd Cu-Mg ALLOY BODY, MANUFACTURING METHOD OF Cu-Mg ALLOY BODY AND DRAWN WIRE MATERIAL
WO2014109211A1 (en) * 2013-01-09 2014-07-17 三菱マテリアル株式会社 Copper alloy for electronic or electrical device, component for electronic or electrical device, and terminal
JP2014133913A (en) * 2013-01-09 2014-07-24 Mitsubishi Materials Corp Copper alloy for electronic and electrical equipment, part and terminal for electronic and electrical equipment
CN104822853A (en) * 2013-01-09 2015-08-05 三菱综合材料株式会社 Copper alloy for electronic or electrical device, component for electronic or electrical device, and terminal
TWI502084B (en) * 2013-01-09 2015-10-01 Mitsubishi Materials Corp Copper alloy for electronic/electric device, component for electronic/electric device, and terminal
KR20150026843A (en) * 2013-08-30 2015-03-11 미쓰비시 마테리알 가부시키가이샤 Copper alloy sputtering target
JP2015063749A (en) * 2013-08-30 2015-04-09 三菱マテリアル株式会社 Copper alloy sputtering target
JP2015127456A (en) * 2013-11-26 2015-07-09 三菱伸銅株式会社 Cu-Zr-BASED COPPER ALLOY SHEET AND PRODUCTION METHOD THEREOF
JP2015113492A (en) * 2013-12-11 2015-06-22 三菱マテリアル株式会社 Copper alloy for electronic/electrical equipment, copper alloy plastic processing material for electronic/electrical equipment, component and terminal for electronic/electrical equipment
CN105931861A (en) * 2016-06-14 2016-09-07 南京工程学院 Preparation method for supercapacitor electrode coated with active electrode membrane

Also Published As

Publication number Publication date
JP3418301B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
CN103502487B (en) The manufacture method of copper alloy for electronic apparatus, copper alloy for electronic apparatus, copper alloy for electronic apparatus plastic working material and electronics assembly
JP3510469B2 (en) Copper alloy for conductive spring and method for producing the same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3729662B2 (en) High strength and high conductivity copper alloy sheet
JP2017179512A (en) Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP4177221B2 (en) Copper alloy for electronic equipment
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP4407953B2 (en) High strength and high conductivity copper alloy sheet
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH11323463A (en) Copper alloy for electrical and electronic parts
JP4175920B2 (en) High strength copper alloy
JPH10110228A (en) Copper alloy for electronic equipment and its production
JP6154996B2 (en) High-strength copper alloy material and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

EXPY Cancellation because of completion of term