JPH11323463A - Copper alloy for electrical and electronic parts - Google Patents

Copper alloy for electrical and electronic parts

Info

Publication number
JPH11323463A
JPH11323463A JP13172198A JP13172198A JPH11323463A JP H11323463 A JPH11323463 A JP H11323463A JP 13172198 A JP13172198 A JP 13172198A JP 13172198 A JP13172198 A JP 13172198A JP H11323463 A JPH11323463 A JP H11323463A
Authority
JP
Japan
Prior art keywords
weight
grain size
less
copper alloy
electronic parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13172198A
Other languages
Japanese (ja)
Inventor
Takashi Hamamoto
孝 濱本
Tetsuzo Ogura
哲造 小倉
Yoshio Henmi
義男 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13172198A priority Critical patent/JPH11323463A/en
Publication of JPH11323463A publication Critical patent/JPH11323463A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Cr-Mg alloy for electrical and electronic parts, excellent in Ag platability and etching processability as well as in press blankability (minimal burr height). SOLUTION: The steel has a composition consisting of, by weight, 0.05-0.6% Cr, 0.05-1.0% Mg, 0.0003-0.02% C, 0.0003-0.005% S, 0.00001-0.001% Se, and the balance Cu with inevitable impurities and further containing, if necessary, 0.05-5.0% Zn or/and 0.05-2.0% Sn. It is desirable that crystal grain size at final sheet thickness is regulated to <=30 μm and that the number of Cr precipitates having <=0.1 μm grain size comprises >=98% of that of the whole Cr precipitates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気・電子部品用
銅合金に関するものである。更に詳しくは、高強度、高
導電性を有し、特にスタンピング性、Agめっき性等に
優れたリードフレーム、端子などの電気・電子部品用銅
合金に関する。
TECHNICAL FIELD The present invention relates to a copper alloy for electric / electronic parts. More specifically, the present invention relates to a copper alloy for electric / electronic parts such as lead frames and terminals having high strength and high conductivity, and particularly excellent in stamping property, Ag plating property and the like.

【0002】[0002]

【従来の技術】従来より、高強度、高導電性の電気・電
子部品用銅合金として、Cu−Cr−Mg系合金が知ら
れている(特開平62−130247号公報、特開平6
3−109130号公報、特開平4−21733号公
報、特開平8−13066号公報等参照)。このCu−
Cr−Mg系合金は、Cu−Cr系合金、Cu−Mg系
合金に比べ、高導電率を維持しながら強度を向上させた
ものである。
2. Description of the Related Art Conventionally, Cu--Cr--Mg alloys have been known as high-strength, high-conductivity copper alloys for electric and electronic parts (JP-A-62-130247, JP-A-6-130247).
3-109130, JP-A-4-21733, JP-A-8-13066 and the like). This Cu-
The Cr-Mg-based alloy has improved strength while maintaining high electrical conductivity, as compared with Cu-Cr-based alloys and Cu-Mg-based alloys.

【0003】[0003]

【発明が解決しようとする課題】このCu−Cr−Mg
系合金は高スピードでスタンピング(プレス打ち抜き)
され、リードフレーム等の電気・電子部品に成形される
が、スタンピングの際にバリ高さが大きく出るという問
題がある。また、鋳造時に発生するCr晶出物が原因と
なってAgめっき性が悪く(突起が形成される)、さら
にリードフレームをエッチング加工により成形する場合
は、エッチング後のリードが短絡するという問題があ
る。従って、本発明の目的は、高強度、高導電性を有
し、電気・電子部品用合金としての基本的特性である曲
げ加工性、はんだの耐熱剥離性を示したうえで、さら
に、プレス打ち抜き性(バリ高さが小さい)に優れ、ま
た、Agめっき性及びエッチング加工性にも優れたCu
−Cr−Mg系合金を提供することにある。
SUMMARY OF THE INVENTION This Cu-Cr-Mg
System alloy is stamped at high speed (press punching)
Then, it is formed into an electric or electronic component such as a lead frame, but there is a problem that a burr height is large at the time of stamping. Also, Ag plating properties are poor (protrusions are formed) due to the crystallization of Cr generated at the time of casting. Further, when the lead frame is formed by etching, the lead after etching is short-circuited. is there. Accordingly, an object of the present invention is to provide high strength, high conductivity, and exhibit bending workability and solder heat-resistant peeling properties, which are basic properties as alloys for electric / electronic parts, and furthermore, press punching. Cu (excellent in burr height) with excellent Ag plating and etching processability
-To provide a Cr-Mg based alloy.

【0004】[0004]

【課題を解決するための手段】本発明に係る電気・電子
部品用銅合金は、Cr:0.05〜0.6重量%、M
g:0.05〜1.0重量%を含有し、C:0.000
3〜0.02重量%、S:0.0003〜0.005重
量%、Se:0.00001〜0.001重量%、残部
がCu及び不可避不純物からなる。この銅合金は、さら
にZn:0.05〜5.0重量%又は/及びSn:0.
05〜2.0重量%を含有することができる。また、こ
の銅合金において、最終板厚での結晶粒径が30μm以
下、かつ粒径0.1μm以下の析出物(この発明では晶
出物を含む)の個数が全体の98%以上を占めるように
するのが望ましい。
The copper alloy for electric / electronic parts according to the present invention comprises: Cr: 0.05 to 0.6% by weight;
g: 0.05 to 1.0% by weight, C: 0.000%
3 to 0.02% by weight, S: 0.0003 to 0.005% by weight, Se: 0.00001 to 0.001% by weight, the balance being Cu and unavoidable impurities. This copper alloy further contains Zn: 0.05 to 5.0% by weight or / and Sn: 0.
From 0.5 to 2.0% by weight. In this copper alloy, the number of precipitates (including crystallized substances in the present invention) having a crystal grain size of 30 μm or less and a grain size of 0.1 μm or less in the final plate thickness accounts for 98% or more of the whole. It is desirable to make.

【0005】[0005]

【発明の実施の形態】次に、本発明に係る銅合金の各成
分の添加理由、結晶粒径や析出物の粒径の限定理由につ
いて説明する。 (Cr)Crは容体化後の時効熱処理において母材であ
るCu中に微細に析出して強度を向上させる効果があ
り、またプレス打ち抜き性を向上させる作用をもつ。し
かしながら、0.05重量%未満ではその十分な効果が
期待できず、0.6重量%を越えると効果が飽和するだ
けではなく、過剰なCrが晶出し曲げ加工性、Agめっ
き性を劣化させる。また、硬いCrの晶出物は、圧延工
程において軟らかいCu母材から等方的に圧力を受ける
ことにより、圧延方向のみに細長く成長し、リードフレ
ームをエッチング加工により成形する場合には、隣接す
るリード同士の短絡の原因となる。従って、Crの含有
量は0.05重量%〜0.6重量%以下とする。
Next, the reasons for adding each component of the copper alloy according to the present invention and the reasons for limiting the crystal grain size and the grain size of precipitates will be described. (Cr) Cr has the effect of precipitating finely in Cu, which is the base material, in the aging heat treatment after soaking to improve the strength, and also has the effect of improving the press punching property. However, if the content is less than 0.05% by weight, the sufficient effect cannot be expected. If the content exceeds 0.6% by weight, not only the effect is saturated, but also excessive Cr deteriorates crystallizing bending workability and Ag plating property. . In addition, the crystallized material of hard Cr grows elongated only in the rolling direction by isotropically receiving pressure from the soft Cu base material in the rolling step, and is adjacent when the lead frame is formed by etching. This may cause a short circuit between the leads. Therefore, the content of Cr is set to 0.05% by weight to 0.6% by weight or less.

【0006】(Mg)Mgは導電率を大きく下げること
なく固溶強化により強度を向上させる。特に強度の軟化
温度を高温側にずらす効果を示し、高強度、高導電率に
寄与する。また、プレス打ち抜き性、はんだの耐熱剥離
性、耐応力緩和特性、ばね限界値の向上にも効果を示
す。しかしながら、0.05重量%未満ではその十分な
効果が期待できず、1.0重量%を越えると効果が飽和
するだけではなく、溶解鋳造時、溶湯の酸化が激しくな
り造塊が非常に困難となる。また、S量を、0.005
重量%未満としてもAg突起の発生が避けられなくな
る。従って、Mgの含有量は0.05重量%〜1.0重
量%以下とする。
(Mg) Mg improves the strength by solid solution strengthening without significantly lowering the conductivity. In particular, it has the effect of shifting the strength softening temperature to the higher temperature side, and contributes to high strength and high electrical conductivity. It is also effective in improving press punching properties, heat-peeling resistance of solder, stress relaxation resistance, and spring limit values. However, if the content is less than 0.05% by weight, the sufficient effect cannot be expected. If the content exceeds 1.0% by weight, not only the effect is saturated, but also the molten metal becomes extremely oxidized at the time of melting and casting, and it is very difficult to form an ingot. Becomes In addition, the amount of S
Even if it is less than the weight percentage, the generation of Ag projections cannot be avoided. Therefore, the content of Mg is set to 0.05% by weight to 1.0% by weight or less.

【0007】(Zn)Znは強度、はんだ耐候性、耐マ
イグレーション性を向上させるため、必要に応じて添加
される。しかしながら、0.05重量%未満ではその十
分な効果が期待できず、5.0重量%を越えると導電率
の低下が著しくなる。また、5.0重量%を超えるとは
んだと母材との界面に形成される合金層の成長が早く、
母材界面から表面まで脆くて電気伝導性に劣る合金層に
変化してしまう現象(白化)が生じる。従って、Znの
含有量は0.05重量%〜5.0重量%以下とする。
(Zn) Zn is added as necessary to improve strength, solder weather resistance and migration resistance. However, if the content is less than 0.05% by weight, a sufficient effect cannot be expected, and if it exceeds 5.0% by weight, the conductivity is significantly reduced. On the other hand, if the content exceeds 5.0% by weight, the growth of the alloy layer formed at the interface between the solder and the base material is accelerated,
A phenomenon (whitening) occurs in which the alloy layer is brittle from the base material interface to the surface and changes into an alloy layer having poor electrical conductivity. Therefore, the content of Zn is set to 0.05% by weight to 5.0% by weight or less.

【0008】(Sn)Snは固溶強化により強度を向上
させる。特に強度の軟化温度を高温側にずらす効果を示
し、高強度、高導電率に寄与するため、必要に応じて添
加する。また、ばね限界値を向上させる効果がある。し
かしながら、0.05重量%未満ではその十分な効果が
期待できず、2.0重量%を越えると導電率を低下させ
る。従って、Snの含有量は0.05重量%〜2.0重
量%以下とする。
(Sn) Sn improves strength by solid solution strengthening. In particular, it has the effect of shifting the strength softening temperature to a higher temperature side and contributes to high strength and high electrical conductivity. Further, there is an effect of improving the spring limit value. However, if the content is less than 0.05% by weight, the sufficient effect cannot be expected, and if it exceeds 2.0% by weight, the electrical conductivity decreases. Therefore, the content of Sn is set to 0.05% by weight to 2.0% by weight or less.

【0009】(C、S、Se)これらの元素はCu−C
r−Mg系合金のプレス打ち抜き性を向上させる。各元
素について個別に説明すると、Cは0.0003重量%
未満ではその効果が十分でない。一方、溶湯中に0.0
2重量%を越えて存在すると、鋳造時にCrの晶出物を
発生させ、はんだ耐熱性、Agめっき性を劣化させる。
従って、Cの含有量は0.0003重量%〜0.02重
量%以下とする。SはCu中に介在物として存在し、プ
レス打ち抜き性のほか、熱延材の面削時の切削性を向上
させる効果がある。しかし、0.0003重量%未満で
はその効果が十分でなく、0.005重量%を越えると
熱間加工性が劣化する。また、銅合金中に含有されるS
はMgと化合物を形成しやすく、このMg−S化合物が
合金中に多数存在すると、Agめっきを行った際(リー
ドフレームには通常Agめっきを行う)、板表面のMg
−S化合物部にAgが異常析出し、Agの突起が形成さ
れることがある。また、SはSeとも化合物を形成し、
このSe−Sが板表面に多数存在すると、Agめっきに
部分的な光沢を生じさせる。このようなAg突起、部分
的な光沢の存在はワイヤボンディングの信頼性を低下さ
せるため、これを防止する意味からも、Sは0.005
重量%以下とする必要がある。従って、Sの含有量は
0.0003〜0.005重量%とする。SeはSe−
S、Cu−Seなどの化合物を形成してプレス打ち抜き
性を向上させ、熱延材の面削時の切削性を向上させる効
果があるが、0.00001重量%未満では効果が十分
でない。一方、0.001重量%を越えるとSe−S化
合物が増加し、はんだ耐熱剥離性を低下するほか、Ag
めっき後の表面に部分的な光沢が発生し、ワイヤボンデ
ィングの信頼性を低下させる。従って、Seの含有量を
0.00001重量%〜0.001重量%とする。
(C, S, Se) These elements are composed of Cu-C
Improves the press punching property of the r-Mg based alloy. Explaining each element individually, C is 0.0003% by weight
If less than that, the effect is not sufficient. On the other hand, 0.0
If the content exceeds 2% by weight, crystallization of Cr is generated at the time of casting, and solder heat resistance and Ag plating property are deteriorated.
Therefore, the content of C is set to 0.0003% by weight to 0.02% by weight or less. S is present as an inclusion in Cu, and has an effect of improving the press-punching property and the machinability of the hot-rolled material during face cutting. However, if the content is less than 0.0003% by weight, the effect is not sufficient, and if it exceeds 0.005% by weight, the hot workability deteriorates. In addition, S contained in the copper alloy
Easily forms a compound with Mg. If a large amount of this Mg-S compound is present in the alloy, when the Ag plating is performed (the lead frame is usually subjected to Ag plating),
Ag may be abnormally precipitated in the -S compound portion, and a projection of Ag may be formed. S also forms a compound with Se,
If this Se-S is present in large numbers on the plate surface, it causes the Ag plating to have a partial luster. Since the presence of such Ag projections and partial luster lowers the reliability of wire bonding, S is 0.005 from the standpoint of preventing this.
% By weight or less. Therefore, the content of S is set to 0.0003 to 0.005% by weight. Se is Se-
Forming a compound such as S, Cu-Se, etc., has the effect of improving press punching properties and improving the machinability at the time of face milling of a hot-rolled material. However, the effect is insufficient when less than 0.00001% by weight. On the other hand, when the content exceeds 0.001% by weight, the Se—S compound increases, the soldering heat-peelability decreases, and the Ag content increases.
Partial gloss occurs on the surface after plating, and the reliability of wire bonding is reduced. Therefore, the content of Se is set to 0.00001% by weight to 0.001% by weight.

【0010】(結晶粒径)結晶粒径は一般に大きい程、
絞り加工性は向上し、機械的性質の異方性は消失してく
るが、強度そのものは結晶粒径の増大に伴って低下す
る。また、本件発明合金の用途である電気・電子部品用
銅合金は複雑な曲げ加工を施すことが多く、結晶粒径が
大きすぎると曲げ部にオレンジピールと呼ばれる肌荒れ
や、それに起因する割れなどが発生する。この肌荒れは
結晶粒内と粒界で変形による歪みが相違することにより
現れるものであり、商品価値を劣化させないためには結
晶粒径の制御が必要となる。さらには応力腐食割れ性に
対する感受性も結晶粒径が増大してくるにつれて高くな
り耐食性は低下する。これらの理由より最終製品の結晶
粒径は平均で30μm以下とするのが望ましい。なお、
結晶粒径は、圧延方向に平行な板断面の組織を光学顕微
鏡で観察し、切断方向を板厚方向とするJIS−H−0
501に規定される切断法に従って測定する。
(Crystal Grain Size) Generally, the larger the crystal grain size,
The drawability improves and the anisotropy of the mechanical properties disappears, but the strength itself decreases as the crystal grain size increases. In addition, copper alloys for electric and electronic parts, which are applications of the alloy of the present invention, are often subjected to complicated bending processing. If the crystal grain size is too large, roughened skin called orange peel at the bent portion and cracks due to it are caused. Occur. The rough surface is caused by a difference in distortion due to deformation between the crystal grain and the grain boundary, and it is necessary to control the crystal grain size so as not to deteriorate the commercial value. Further, the susceptibility to stress corrosion cracking increases as the crystal grain size increases, and the corrosion resistance decreases. For these reasons, the crystal grain size of the final product is desirably 30 μm or less on average. In addition,
The crystal grain size is determined by observing the structure of the plate cross section parallel to the rolling direction with an optical microscope and setting the cutting direction to the plate thickness direction according to JIS-H-0.
It is measured according to the cutting method specified in 501.

【0011】(析出物の粒径)粗大な析出物及び晶出物
は、強度への寄与が小さいだけではなく、Agめっき性
の劣化等を引き起こす。特に硬いCrの晶出物は、圧延
工程において軟らかいCu母材から等方的に静水圧を受
けることにより、圧延方向のみに細長く成長し、リード
フレームをエッチング加工により成形する場合には、隣
接するリード同士の短絡の原因となる。従って、粗大な
Cr析出物及び晶出物はできるだけ少ない方がよく、粒
径0.1μm以下の析出物及び晶出物の個数を、組織中
のCr化合物全体の個数の98%以上とするのが望まし
い。本発明に係る銅合金においては、特にCr含有量が
0.3wt%を越えるときは、鋳造時に粒径0.1μm
を越えるCrの晶出物が発生することがあり、熱間圧延
時にも0.1μm程度の粗大なCr析出物が形成される
ことがあるが、これらの粗大な晶出物や析出物の量は、
下記製造工程により全体の1%以下に抑えることができ
る。なお、晶出物や析出物の粒径は透過型電子顕微鏡
(TEM)で観察し、粒径10nm以上のものをカウン
トする。通常、母材と整合性のある析出物はコーヒー豆
状に、また整合性のない析出物は円あるいは楕円状に観
察されるが、いずれもその長半径をもって粒径とする。
(Grain Size of Precipitates) Coarse precipitates and crystallized substances not only contribute little to strength but also cause deterioration of Ag plating properties. Particularly hard crystallization of Cr grows elongated only in the rolling direction by isotropically receiving hydrostatic pressure from a soft Cu base material in the rolling step, and is adjacent when the lead frame is formed by etching. This may cause a short circuit between the leads. Therefore, it is better that the number of coarse Cr precipitates and crystallized substances is as small as possible. The number of precipitates and crystallized substances having a particle size of 0.1 μm or less should be 98% or more of the total number of Cr compounds in the structure. Is desirable. In the copper alloy according to the present invention, especially when the Cr content exceeds 0.3 wt%, the grain size is 0.1 μm during casting.
May be formed, and coarse Cr precipitates of about 0.1 μm may be formed during hot rolling. The amount of these coarse precipitates and precipitates Is
By the following manufacturing process, it can be suppressed to 1% or less of the whole. In addition, the particle size of a crystallized substance and a precipitate is observed with a transmission electron microscope (TEM), and those having a particle diameter of 10 nm or more are counted. Usually, a precipitate compatible with the base material is observed in the shape of coffee beans, and a precipitate incompatible with the base material is observed in the shape of a circle or an ellipse.

【0012】本発明に係る銅合金は、例えば次のような
工程で製造できる。 (1)溶体化処理・・・・(a)850℃〜1050℃の温
度にて10分〜5.0時間加熱後、熱間圧延を実施し、
熱間圧延終了温度で700℃以上を確保し、直後100
℃/分以上の速度で冷却を行う、又は/及び、(b)連
続焼鈍ラインを使用し、700℃以上の温度において加
熱炉通過時間で5秒〜5分加熱後、25℃/秒以上の速
度で冷却を行う。 (2)冷間加工・・・・溶体化処理後、30%以上の加工率
で冷間加工を行う。 (3)析出焼鈍・・・・300℃〜600℃の温度にて30
分〜5時間焼鈍を行う。 (4)冷間加工・・・・90%以下の加工率にて冷間加工を
行う。 必要に応じて(3)、(4)を複数回繰り返す。
The copper alloy according to the present invention can be produced, for example, by the following steps. (1) Solution treatment ... (a) After heating at a temperature of 850C to 1050C for 10 minutes to 5.0 hours, hot rolling is performed,
Ensure that the hot-rolling end temperature is at least 700 ° C and immediately after 100
Cooling at a rate of not less than 25 ° C./min, and / or (b) using a continuous annealing line and heating at a temperature of not less than 700 ° C. for 5 seconds to 5 minutes in a heating furnace, and Cool at speed. (2) Cold working: After solution treatment, cold working is performed at a working rate of 30% or more. (3) Precipitation annealing: 30 at a temperature of 300 to 600 ° C
Anneal for minutes to 5 hours. (4) Cold working: Cold working is performed at a working ratio of 90% or less. (3) and (4) are repeated a plurality of times as necessary.

【0013】次に、上記製造工程について説明する。 (1)溶体化処理・・・・溶体化処理は、母相にCrを固溶
させるために行う。溶体化温度は高温である方が固溶限
が広がるので固溶量が増加し、後の時効処理を実施後に
高強度が得られる。従って、少なくとも700℃以上を
確保する必要がある。また、溶体化処理後の冷却は冷却
速度が遅いと母材と整合性のない粗大な析出物が析出
し、時効処理後の強度が確保できない。従って、できる
だけ速やかに行われる必要がある。溶体化の方法とし
て、上記(a)、(b)のいずれかあるいは両方を行
う。(a)は熱間圧延で溶体化工程を兼ねるものであ
り、(b)は薄板においてより均一な溶体化を行う場合
に適する。(b)の場合の昇温速度は50℃/秒以上が
好ましい。
Next, the above manufacturing steps will be described. (1) Solution treatment ... The solution treatment is performed in order to dissolve Cr in the matrix. The higher the solution temperature, the higher the solid solution limit because the higher the solid solution limit, the higher the solid solution amount, and high strength is obtained after the subsequent aging treatment. Therefore, it is necessary to secure at least 700 ° C. or higher. If the cooling rate after the solution treatment is low, coarse precipitates inconsistent with the base material are deposited if the cooling rate is low, and the strength after the aging treatment cannot be secured. Therefore, it needs to be performed as quickly as possible. One or both of the above (a) and (b) are performed as a solution solution method. (A) also serves as a solution treatment step by hot rolling, and (b) is suitable for performing more uniform solution treatment on a thin plate. In the case of (b), the heating rate is preferably 50 ° C./sec or more.

【0014】(2)冷間加工・・・・この冷間加工は、溶体
化処理後、加工硬化と後の時効工程での析出核形成のた
め行う。30%未満の加工率ではその効果は不十分であ
る。従って、溶体化処理後の冷間加工率を30%以上と
する。 (3)析出焼鈍・・・・析出焼鈍は、溶体化処理により固溶
しているCrを母材に均一微細に析出させ、高強度を得
るため行う。焼鈍温度は、300℃以下では析出が速や
かに進行せず高強度を得るためには長時間を必要とし、
経済的でない。また、600℃を越えると結晶粒径の粗
大化(30μm超に成長)及びCr析出物の粗大化
(0.1μm超に成長)が進行し、強度が著しく低下す
る。さらに、一部のCrの再固溶も進行し、導電率も著
しく低下する。従って、処理温度は300℃〜600℃
とし、処理時間は30分〜5時間とした。 (4)冷間加工・・・・この冷間加工は、所望の調質の強
度、導電率、曲げ加工性等を調整するために行う。しか
し、90%を越える加工率では加工後の曲げ加工性が確
保できない。従って、冷間加工率は90%以下とした。
また、必要に応じて上記の析出焼鈍、冷間加工を複数回
繰り返すことにより、さらに高強度で高導電率な銅合金
を提供することができる。
(2) Cold working: This cold working is performed after the solution treatment, for work hardening and for forming precipitate nuclei in the subsequent aging step. If the working ratio is less than 30%, the effect is insufficient. Therefore, the cold working rate after the solution treatment is set to 30% or more. (3) Precipitation annealing: Precipitation annealing is performed in order to uniformly and finely precipitate the solid solution Cr in the base material by the solution treatment to obtain high strength. When the annealing temperature is lower than 300 ° C., the precipitation does not proceed rapidly and a long time is required to obtain high strength,
Not economic. On the other hand, when the temperature exceeds 600 ° C., coarsening of the crystal grain size (growing to more than 30 μm) and coarsening of the Cr precipitate (growing to more than 0.1 μm) progress, and the strength is significantly reduced. Further, the re-solution of a part of Cr also proceeds, and the electric conductivity is remarkably reduced. Therefore, the processing temperature is 300 ° C. to 600 ° C.
And the processing time was 30 minutes to 5 hours. (4) Cold working: This cold working is performed to adjust the desired strength, electrical conductivity, bending workability, and the like of the refining. However, if the working ratio exceeds 90%, the bending workability after working cannot be ensured. Therefore, the cold working ratio is set to 90% or less.
In addition, by repeating the above-described precipitation annealing and cold working a plurality of times as needed, a copper alloy having higher strength and higher conductivity can be provided.

【0015】[0015]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表1に示した成分の銅合金をクリプトル炉
において、ほう砂被覆下に大気造塊し、50mmt×8
0mmw×180mm1の鋳塊を作成した。これらの鋳
塊を、950℃×30min加熱し、熱間圧延を行った
後、800℃以上の温度から急冷却を行うことで溶体化
処理とした。その後、冷間圧延を行い、析出処理として
450℃×2hrの焼鈍を実施し、最終圧延を行って
0.25mmtの板材を得た。なお、No.15は熱間
圧延において割れが発生したため、以後の工程を行わな
かった。
Embodiments of the present invention will be described below. (Example 1) Copper alloys having the components shown in Table 1 were lumped in air in a crypt furnace under a borax coating, and were subjected to 50 mmt x 8
An ingot of 0 mmw × 180 mm1 was prepared. These ingots were heated at 950 ° C. for 30 minutes, subjected to hot rolling, and then rapidly cooled from a temperature of 800 ° C. or higher to form a solution treatment. Thereafter, cold rolling was performed, annealing was performed at 450 ° C. for 2 hours as a precipitation treatment, and final rolling was performed to obtain a 0.25 mmt sheet material. In addition, No. In No. 15, the subsequent steps were not performed because cracks occurred during hot rolling.

【0016】[0016]

【表1】 [Table 1]

【0017】この板材から試験材を採取し、下記の試験
により合金の特性を調べた。その結果を表2及び表3に
示す。 (引張強度及び導電率)引張試験はJIS5号に示され
る試験片を機械加工によって作成し、島津製作所性10
ton万能試験機を用いて行った。また、導電率はJI
S−H0505に示される非鉄金属材料導電率測定法に
従い、横河電気製ダブルブリッジを用いて測定した。 (W曲げ試験)JIS−H3110に示されるW曲げ試
験に従って行った。曲げ加工限界は、割れの生じない最
小曲げ半径rと板厚tとの比r/tと定義した。試料の
割れの有無は、SEM観察(250倍)及び断面観察
(200倍)により判断した。
A test material was sampled from this plate material, and the characteristics of the alloy were examined by the following tests. The results are shown in Tables 2 and 3. (Tensile strength and electrical conductivity) The tensile test was performed by machining a test piece specified in JIS No. 5 by Shimadzu Corporation.
The test was performed using a ton universal testing machine. The conductivity is JI
According to the non-ferrous metal material conductivity measurement method described in S-H0505, the measurement was performed using a double bridge manufactured by Yokogawa Electric Corporation. (W bending test) The test was performed according to the W bending test shown in JIS-H3110. The bending limit was defined as the ratio r / t between the minimum bending radius r at which no cracking occurs and the plate thickness t. The presence or absence of cracks in the sample was determined by SEM observation (250 times) and cross section observation (200 times).

【0018】(はんだ耐熱剥離性試験)供試材を、電解
脱脂及び硫酸で酸洗を行った後、非活性フラックスを塗
布し、245℃の60Sn/40Pbはんだ層に5秒間
浸漬してはんだ付けを行い、さらに、それらの材料を1
50℃のオーブンで1000時間加熱し、その後2mm
Rで180°曲げた後平板に曲げ戻し、はんだの剥離及
び白化状況を観察した。 (Agめっき性試験)試料は表面の影響を少なくするた
め、全て鏡面研磨した。めっき前処理としては電解脱脂
及び硫酸による酸洗を行った。Agめっきは、前処理を
行った材料にCu下地めっきを施した後、置換防止処理
を介して行った。観察は、実体顕微鏡(40倍)にて実
施した。突起や部分的な光沢が発生せず、Agめっき性
に優れていたものを○と評価した。
(Solder Resistance to Heat Resistance) After the test material was subjected to electrolytic degreasing and pickling with sulfuric acid, an inactive flux was applied and immersed in a 245 ° C. 60Sn / 40Pb solder layer for 5 seconds for soldering. And furthermore, the materials
Heat in an oven at 50 ° C for 1000 hours, then 2mm
After bending by 180 ° at R, the plate was bent back, and the peeling and whitening of the solder were observed. (Ag plating property test) All the samples were mirror-polished to reduce the influence of the surface. As plating pretreatment, electrolytic degreasing and pickling with sulfuric acid were performed. Ag plating was performed through a substitution prevention treatment after applying a Cu base plating to the pretreated material. The observation was performed with a stereoscopic microscope (× 40). Those which did not produce protrusions or partial gloss and were excellent in Ag plating properties were evaluated as ○.

【0019】(プレス打ち抜き試験)プレス打ち抜き試
験は円型の金型を用いて万能試験機により圧縮荷重をか
けることにより行い、SEM(500倍)にて圧延平行
方向に発生したバリを観察し、その平均高さを測定し
た。なお、打ち抜きクリアランスは、片側:板厚の20
%とした。 (耐マイグレーション性試験)幅3mmの試験片を、極
間1mmで固定し、露出長さ20mmとして、直流14
V印可しながら浸漬(水道水)と乾燥を50サイクル繰
り返し、そのときの最大リーク電流をもって耐マイグレ
ーション性を評価した。
(Press punching test) The press punching test is carried out by applying a compressive load using a circular die with a universal testing machine, and observing burrs generated in the rolling parallel direction by SEM (500 times). The average height was measured. In addition, the punching clearance is one side: plate thickness of 20.
%. (Migration resistance test) A test piece having a width of 3 mm was fixed at a gap of 1 mm, and the exposed length was set to 20 mm.
Immersion (tap water) and drying were repeated 50 cycles while applying V, and migration resistance was evaluated based on the maximum leak current at that time.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】表2及び表3より、本発明合金は高強度、
高導電率を有し、W曲げ加工性、はんだ耐候性、Agめ
っき性、プレス打ち抜き性(バリ高さ)、耐マイグレー
ション性(Leak電流)にも優れていることが分か
る。一方、比較合金はいずれかの特性が劣っている。特
にNo.16、18、20はそれぞれC、S、Seの添
加量が不足し、プレス打ち抜き性(バリ高さ)が十分で
ない。また、これらの元素が過剰に添加されたNo.1
7、19、21はプレス打ち抜き性はよいが、曲げ加工
性、はんだ耐熱剥離性及びAgめっき性が劣る。
From Tables 2 and 3, the alloy of the present invention has high strength,
It can be seen that it has high conductivity, and is excellent in W bending workability, solder weather resistance, Ag plating property, press punching property (burr height), and migration resistance (Leak current). On the other hand, the comparative alloy is inferior in either property. In particular, no. In Nos. 16, 18, and 20, the added amounts of C, S, and Se are insufficient, and the press punching property (burr height) is not sufficient. In addition, No. 1 containing these elements in excess. 1
Nos. 7, 19, and 21 have good press punching properties, but are inferior in bending workability, solder heat peelability, and Ag plating properties.

【0023】(実施例2)Cu−0.35Cr−0.3
4Mg−1.0Zn(S:0.0005%、C:0.0
007%、Se:0.0002%)の組成をもつ合金に
ついて、実施例1と同様の工程で熱間圧延、溶体化処理
を行った後、種々の条件で冷間圧延、析出処理及び最終
圧延を行い、結晶粒径、析出物粒径を変化させた3種類
の板材(0.25mmt)を得た。この板材から試験材
を採取し、前記の方法により結晶粒径及び粒径0.1μ
m以下の析出物の割合を測定し、さらに、前記の試験に
より合金の特性を調べ、また下記の試験でエッチング加
工性を調べた。 (エッチング加工性試験)エッチング加工性の評価は、
実際のリードフレームのエッチング加工を模擬し、圧延
直角方向に0.2mmピッチでリードのエッチング加工
を行い、隣接するリード間の短絡の有無を調べ、短絡数
/全数でエッチング加工性を評価した。
Example 2 Cu-0.35Cr-0.3
4Mg-1.0Zn (S: 0.0005%, C: 0.0
(007%, Se: 0.0002%), after hot rolling and solution treatment in the same steps as in Example 1, then cold rolling, precipitation and final rolling under various conditions. Was performed to obtain three types of plate materials (0.25 mmt) in which the crystal grain size and the precipitate grain size were changed. A test material was sampled from this plate, and the grain size and the grain size were 0.1 μm according to the method described above.
The ratio of precipitates of m or less was measured, and the characteristics of the alloy were examined by the above-mentioned test, and the etching workability was examined by the following test. (Etching workability test)
The actual lead frame etching was simulated, the leads were etched at a pitch of 0.2 mm in the direction perpendicular to the rolling direction, the presence or absence of short circuits between adjacent leads was examined, and the etching workability was evaluated by the number of short circuits / the total number.

【0024】[0024]

【表4】 [Table 4]

【0025】表4に示すように、結晶粒径が30μmを
超えるNo.2はW曲げ加工性が大きく劣化している。
また、0.1μmを越える析出物の割合が大きいNo.
3はAgめっき性及びエッチング加工性が劣化してお
り、粗大な析出物及び晶出物はAgめっき時の突起の起
点となるばかりでなく、エッチング加工後のリードの短
絡の原因となることが分かる。
As shown in Table 4, No. 1 having a crystal grain size exceeding 30 μm was used. In No. 2, the W-bending workability is greatly deteriorated.
Further, in the case of No. 3 having a large ratio of precipitates exceeding 0.1 μm.
No. 3 has deteriorated Ag plating property and etching processability, and coarse precipitates and crystallized substances not only act as starting points of projections during Ag plating, but also cause short-circuiting of leads after etching. I understand.

【0026】[0026]

【発明の効果】本発明に係る電気・電子部品用銅合金
は、高強度、高導電性、曲げ加工性、はんだの耐熱剥離
性、プレス打ち抜き性、Agめっき性及びエッチング加
工性に優れている。
The copper alloy for electric / electronic parts according to the present invention is excellent in high strength, high conductivity, bending workability, heat peeling resistance of solder, press punching property, Ag plating property and etching workability. .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cr:0.05〜0.6重量%、Mg:
0.05〜1.0重量%を含有し、C:0.0003〜
0.02重量%、S:0.0003〜0.005重量
%、Se:0.00001〜0.001重量%、残部が
Cu及び不可避不純物からなることを特徴とする電気・
電子部品用銅合金。
1. Cr: 0.05 to 0.6% by weight, Mg:
0.05-1.0% by weight, C: 0.0003-
0.02% by weight, S: 0.0003 to 0.005% by weight, Se: 0.00001 to 0.001% by weight, the balance being Cu and unavoidable impurities.
Copper alloy for electronic components.
【請求項2】 Cr:0.05〜0.6重量%、Mg:
0.05〜1.0重量%、Zn:0.05〜5.0重量
%を含有し、C:0.0003〜0.02重量%、S:
0.0003〜0.005重量%、Se:0.0000
1〜0.001重量%、残部がCu及び不可避不純物か
らなることを特徴とする電気・電子部品用銅合金
2. Cr: 0.05 to 0.6% by weight, Mg:
0.05 to 1.0% by weight, Zn: 0.05 to 5.0% by weight, C: 0.0003 to 0.02% by weight, S:
0.0003 to 0.005% by weight, Se: 0.00000
1 to 0.001% by weight, with the balance being Cu and unavoidable impurities, a copper alloy for electric / electronic parts
【請求項3】 さらにSn:0.05〜2.0重量%を
含有することを特徴とする請求項1又は2に記載された
電気・電子部品用銅合金
3. The copper alloy for electric / electronic parts according to claim 1, further comprising Sn: 0.05 to 2.0% by weight.
【請求項4】 最終板厚での結晶粒径が30μm以下で
あり、かつ粒径0.1μm以下の析出物の個数が全体の
98%以上を占めることを特徴とする請求項1〜3のい
ずれかに記載された電気・電子部品用銅合金
4. The method according to claim 1, wherein the crystal grain size at the final plate thickness is 30 μm or less, and the number of precipitates having a grain size of 0.1 μm or less accounts for 98% or more of the whole. Copper alloys for electric or electronic parts described in any of them
JP13172198A 1998-05-14 1998-05-14 Copper alloy for electrical and electronic parts Pending JPH11323463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13172198A JPH11323463A (en) 1998-05-14 1998-05-14 Copper alloy for electrical and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13172198A JPH11323463A (en) 1998-05-14 1998-05-14 Copper alloy for electrical and electronic parts

Publications (1)

Publication Number Publication Date
JPH11323463A true JPH11323463A (en) 1999-11-26

Family

ID=15064658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13172198A Pending JPH11323463A (en) 1998-05-14 1998-05-14 Copper alloy for electrical and electronic parts

Country Status (1)

Country Link
JP (1) JPH11323463A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009859A1 (en) * 2002-07-18 2004-01-29 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
EP1441040A1 (en) * 2003-01-22 2004-07-28 Dowa Mining Co., Ltd. Copper base alloy and method for producing the same
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
EP2540847A2 (en) * 2010-02-24 2013-01-02 Poongsan Corporation High-strength and highly conductive copper alloy, and method for manufacturing same
WO2013031841A1 (en) 2011-08-29 2013-03-07 古河電気工業株式会社 Copper alloy material and manufacturing method thereof
JP2015047605A (en) * 2013-08-30 2015-03-16 Jfeスチール株式会社 Evaluation method and estimation method of bending inside crack
WO2020145397A1 (en) * 2019-01-11 2020-07-16 三菱マテリアル株式会社 Copper alloy material
WO2021005923A1 (en) * 2019-07-10 2021-01-14 三菱マテリアル株式会社 Copper alloy trolley wire

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406579A (en) * 2002-07-18 2005-04-06 Honda Motor Co Ltd Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
GB2406579B (en) * 2002-07-18 2006-04-05 Honda Motor Co Ltd Copper alloy, method, of manufacturing copper alloy
US7544259B2 (en) 2002-07-18 2009-06-09 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
WO2004009859A1 (en) * 2002-07-18 2004-01-29 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
EP1441040A1 (en) * 2003-01-22 2004-07-28 Dowa Mining Co., Ltd. Copper base alloy and method for producing the same
US7351372B2 (en) 2003-01-22 2008-04-01 Dowa Mining Co., Ltd. Copper base alloy and method for producing same
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
EP2540847A4 (en) * 2010-02-24 2014-08-13 Poongsan Corp High-strength and highly conductive copper alloy, and method for manufacturing same
EP2540847A2 (en) * 2010-02-24 2013-01-02 Poongsan Corporation High-strength and highly conductive copper alloy, and method for manufacturing same
WO2013031841A1 (en) 2011-08-29 2013-03-07 古河電気工業株式会社 Copper alloy material and manufacturing method thereof
JP2015047605A (en) * 2013-08-30 2015-03-16 Jfeスチール株式会社 Evaluation method and estimation method of bending inside crack
WO2020145397A1 (en) * 2019-01-11 2020-07-16 三菱マテリアル株式会社 Copper alloy material
JP2020111789A (en) * 2019-01-11 2020-07-27 三菱マテリアル株式会社 Copper alloy material
EP3910085A4 (en) * 2019-01-11 2022-11-02 Mitsubishi Materials Corporation Copper alloy material
WO2021005923A1 (en) * 2019-07-10 2021-01-14 三菱マテリアル株式会社 Copper alloy trolley wire
JP2021014604A (en) * 2019-07-10 2021-02-12 三菱マテリアル株式会社 Copper alloy trolley wire

Similar Documents

Publication Publication Date Title
US6132529A (en) Leadframe made of a high-strength, high-electroconductivity copper alloy
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5818724B2 (en) Copper alloy material for electric and electronic parts, copper alloy material for plated electric and electronic parts
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP4887851B2 (en) Ni-Sn-P copper alloy
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JP2000178670A (en) Copper alloy for semiconductor lead frame
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP2000104131A (en) High strength and high conductivity copper alloy and its production
JP2001181759A (en) Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JPH11323463A (en) Copper alloy for electrical and electronic parts
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP2001303159A (en) Copper alloy for connector, and its producing method
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2001279347A (en) High strength copper alloy excellent in bending workability and heat resistance and its producing method