JP4043118B2 - High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance - Google Patents

High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance Download PDF

Info

Publication number
JP4043118B2
JP4043118B2 JP32274698A JP32274698A JP4043118B2 JP 4043118 B2 JP4043118 B2 JP 4043118B2 JP 32274698 A JP32274698 A JP 32274698A JP 32274698 A JP32274698 A JP 32274698A JP 4043118 B2 JP4043118 B2 JP 4043118B2
Authority
JP
Japan
Prior art keywords
mass
less
conductivity
strength
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32274698A
Other languages
Japanese (ja)
Other versions
JP2000144284A (en
Inventor
洋介 三輪
雅弘 川口
節夫 山口
理一 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32274698A priority Critical patent/JP4043118B2/en
Publication of JP2000144284A publication Critical patent/JP2000144284A/en
Application granted granted Critical
Publication of JP4043118B2 publication Critical patent/JP4043118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、リードフレーム、端子、コネクタなど、電気電子部品に用いられる高強度・高導電性銅合金板及びその製造方法に関するものであり、より詳しくは、打ち抜き加工を含む複数の剪断加工により電気電子部品を製造する際、剪断加工時に生じた残留応力の除去を行うための焼鈍で軟化しにくい高強度・高導電性銅合金板に関する。
【0002】
【従来の技術】
従来、一般に上記の各種電気電子部品には、強度、伸び、導電性、耐熱性、Agめっき性、Snめっき及びはんだの耐熱剥離性などの特徴を具備することが要求されている。このことから、これらの特性をもった、例えばC19400(Cu−2.3mass%Fe−0.03mass%P−0.1mass%Zn)やC19210(Cu−0.1mass%Fe−0.03mass%P)をはじめ、その他多くの銅合金がその製造に用いられている。
【0003】
【発明が解決しようとする課題】
一方、最近の各種電気電子機器の軽薄短小化及び実装密度の向上要求に対して、使用部品の小形化、リード間距離の縮小などが加速している。そのため、例えばリードフレームのプレスによる打ち抜き加工において、打抜き後のリードツイスト、リードシフト、リード段差などが小さいことが求められている。これらリードの平坦性とも言うべき性能を確保するため、プレス打ち抜き時の剪断により発生する残留応力が小さいことが要求されている。
【0004】
また、これとともに発生した残留応力を小さくする技術も開発された。この技術はリード打ち抜きに際して、リード先端を切り落とさず束ねたままの状態で、一度、数秒〜数分間の短時間熱処理(焼鈍)を行い、リード側面を打ち抜いた時に生じた残留応力を逃がし、続いて、残留応力が小さくなった時点でリード先端部を切り落とし、平坦性を確保するという技術である。
この技術を適用した場合、打ち抜き加工途中の焼鈍によって材料自身を軟化させないことが必要である。材料自身の軟化が生じた場合には、この後のリード先端部の切り落としの際に強度が足りずに変形したり、例えリードフレームに加工できたとしても、その後のLSI組立工程で変形しやすく取り扱いが困難になり、生産性の低下につながってしまう。従って、耐熱性が非常に重要視されている。
【0005】
最近では、特開平2−111829号公報において、Fe及びSn並びにP、Zn、Si、Sb、In、Al、Mn、Ni、Mgのうちの1種以上を含む組成とし、かつFe析出物のサイズを制御した、耐熱性に富むリードフレーム用銅合金が提案されている。また、特許第2673967号公報ではFe、P、Zn、Mg、Siの組成を制御した、高強度を有する半導体装置のCu合金製リードフレーム材が提案されている。
しかしながら、特開平2−111829号公報には、耐熱性に富むことは記載されているが、Cu−Fe系合金で問題となる熱間加工性、あるいはリードフレーム材には必須ともいうべき曲げ加工性、Agめっき性、はんだ耐熱剥離性については触れられていない。
また、特許第2673967号公報では、その銅合金が高強度・高導電性及び耐熱性を有することが記載され、その特性はMgを0.001〜0.05mass%含有することで達成されているが、曲げ加工性、Agめっき性については触れられていない。特開平7−97646号公報にも示されたように、この範囲でMgを含有した場合、不可避不純物であるSと化合物を形成し、Agめっき性を阻害する。
【0006】
一方、Cu−Fe系銅合金板においては、打ち抜き加工途中の高温短時間焼鈍により材料の導電率が低下するという問題があり、そのため、導電率が高いと同時に焼鈍による導電率の低下の少ない材料が要求されている。
本発明は、リードフレーム、端子、コネクタなど電気・電子部品用銅合金として要求される強度、導電率、はんだ付け性、めっき性などの特性を通常の銅合金以上に維持しながら、打ち抜き加工で発生した残留応力を除去するための焼鈍を行った場合に軟化しにくく、かつ導電率の低下の少ないCu−Fe系銅合金板を得ることを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る耐熱性に優れる電気・電子部品用高強度・高導電性Cu−Fe系合金板は、プレス打ち抜き加工の途中で残留応力除去焼鈍が行われる電気・電子部品用高強度・高導電性Cu−Fe系合金板であり、Fe:1.8〜2.6mass%、P:0.01〜0.1mass%、Zn:0.05〜0.5mass%、Zr、In、Sn、Si、Be、Al、Mnのうち1種又は2種以上の合計:0.005〜0.1mass%、Ni、Cr、Coがそれぞれ単体で0.03mass%以下、かつ2種以上の合計で0.05mass%以下、O:100ppm以下、H:10ppm以下であり、残部が実質的にCu及び不可避不純物からなり、450℃×1分間の焼鈍後のビッカース硬さが150Hv以上、導電率が60%IACS以上であることを特徴とする。このCu−Fe系合金では、不可避不純物として、Pbが0.01mass%以下、Sが0.005mass%以下、Mg、Ca、Cd、Be、Ti、Hf、Th、Li、Na、K、Sr、Pd、W、C、Nd、V、Y、Mo、Ga、Ge、As、Se、Sb、Bi、Te、B、Ce、ミッシュメタルの合計が0.001mass%未満、かつ以上の成分が総量で0.01mass%以下に規制されていることが望ましい。
上記組成のCu−Fe系合金により、打ち抜き加工時の焼鈍(代表的な条件として450℃×1分間の加熱)前後において、ビッカース硬さHv150以上、導電率60%IACSの特性を確保できる。
【0008】
【発明の実施の形態】
次に、本発明合金において成分を上記の通りに限定した理由を以下に説明する。
<Fe>
Feには、Pとの化合物を形成し合金中に析出したり、Fe単体で合金中に析出することで、合金の強度及び耐熱性を確保する作用がある。しかし、その含有量が1.8mass%未満であると所望の強度及び耐熱性が得られない。また、鋳造時にFeの包晶反応が起きなくなり鋳塊の組織が粗大化するようになる。この結果、熱間加工性を低下させる。一方、2.6mass%を越える割合で含有させると合金中に粗大なFe析出物が形成されるようになり、熱間圧延時の加工性が低下すると共に、製品の曲げ加工性及び導電率の低下が著しくなり、好ましくない。従って、Fe含有量は1.8〜2.6mass%、さらに好ましくは2.0〜2.4mass%である。
【0009】
<P>
PはFeとの化合物を生成し、合金中に析出して強度及び耐熱性を向上させる。また、溶解時の脱酸作用により鋳塊の健全化に寄与する。Pの含有量が0.01mass%未満の場合は、Fe−P化合物の生成が不十分であり所望の強度及び耐熱性が得られない。また、溶解時の脱酸作用も不十分であるため健全な鋳塊が得られない。一方、Pの含有量が0.1mass%を越える場合には、Fe−P化合物の生成にFeがとられ、鋳造時のFeの包晶反応が起きなくなる。その結果、鋳塊の組織が粗大化するようになり、熱間加工性を低下させるため、好ましくない。従って、Pの含有量は0.01〜0.1mass%、さらに好ましくは0.01〜0.04mass%とする。
【0010】
<Ni、Co、Cr>
Ni、Co、Crは、Pとの化合物を生成し合金中に析出する。Ni−P化合物及びCo−P化合物は形成温度が低く、容易に粗大化する。また、Cr−P化合物は形成温度が熱延を行う温度に近いため、熱延途中においてすでに粗大に生成してしまう。
粗大に成長したこれらの化合物は合金のマトリックスとの整合性が極端に小さく、粗大析出物と母材との界面は自由界面に近い。このため、転位は粗大析出物にたどり着くと消滅してしまう。この結果、同じ加工率で冷間加工を行っても強度が高くならず、曲げ加工性も低下する。
これらは単体ではその含有量が0.03mass%を越えてくると、粗大化合物として析出しやすくなる。また、2種以上の場合は、その総量が0.05mass%を越えてくると、さらに顕著となる。従って、Ni、Co、Crの含有量はそれぞ、単体で0.03mass%以下、2種以上の合計では0.05mass%以下、好ましくは0.03mass%以下、さらに好ましくは0.01mass%以下とする。
【0011】
<Zn>
Znは銅合金のはんだ及びSnめっきの耐熱剥離性を改善する。しかし、含有量が0.05mass%未満の場合、所望の効果が得られない。一方、その含有量が0.5mass%を越えるとはんだ濡れ性が低下する。また、導電率の低下も激しくなる。従って、Znの含有量は総量で0.05〜0.5mass%、好ましくは0.1〜0.3%massとする。
<Zr、In、Sn、Si、Be、Al、Mn量>
Zr、In、Sn、Si、Be、Al、Mnは、合金中に固溶することで強度を向上させるのみならず、Fe−P析出物又はFe析出物と共存した状態で耐熱性を向上させる。これらの原子は合金中の空孔との親和性が強い。このため空孔による転位の上昇運動が起きにくく、析出粒子にトラップされた転位は移動しにくくなる。結果、耐熱性が向上する。また、これらの元素は打ち抜き加工途中の焼鈍による導電率の低下を低減する作用がある。
この特性は、これらの元素のうち1種又は2種以上の含有量が0.005mass%未満では十分でなく、0.1mass%を超えると導電率が低下し、450℃×1分間加熱前後において60%IACSを切るようになる。従って、これらの元素のうち1種又は2種以上の含有量は0.005〜0.1mass%、好ましくは0.01〜0.1mass%、さらに好ましくは0.02〜0.08mass%とする。
【0012】
<O>
OはPと反応しやすい。Oが100ppmを越えた場合、反応したPは上述したFeとの化合物を形成できなくなる。結果、耐熱向上の効果が低下してしまう。また、Oと反応したPは鋳塊の結晶粒界に集まり、粒界強度を低下させ、熱間加工性の低下を招く。従って、Oの含有量は100ppm以下、好ましくは50ppm以下、さらに好ましくは30ppm以下とする。
<H>
Hは、O量が10ppm以上含有されている場合、H量が10ppmを越えてくると、鋳造時の冷却時の冷却過程でOと結び付いて水蒸気となり、この水蒸気が鋳塊中にブローホール欠陥を生じてしまう。従って、Hの含有量は10ppm以下、好ましくは4ppm以下、さらに好ましくは2ppm以下とする。O、Hの低減については、必要に応じて溶湯を木炭被覆下でArバブリングを行うとよい。
【0013】
<その他>
Pbが0.01mass%を越えるか、Sが0.005mass%を越えるか、Mg、Ca、Cd、Be、Ti、Hf、Th、Li、Na、K、Sr、Pd、W、C、Nd、V、Y、Mo、Ga、Ge、As、Se、Sb、Bi、Te、B、Ce、ミッシュメタルの合計が0.001mass%以上となるか、又は以上の元素が総量で0.01mass%を越えた場合、固溶したこれらの原子はZr、In、Sn、Be、Al、Mn原子と転位との相互作用を阻害し、上述した耐熱性の効果を妨げ、また、焼鈍後の導電率の低下を大きくする。さらに、Agめっき性も低下させる。従って、これらの元素はPbが0.01mass%以下、Sが0.005mass%以下、Mg、Ca、Cd、Be、Ti、Hf、Th、Li、Na、K、Sr、Pd、W、C、Nd、V、Y、Mo、Ga、Ge、As、Se、Sb、Bi、Te、B、Ce、ミッシュメタルの合計が0.001mass%未満、かつ以上の成分が総量で0.01mass%以下、好ましくは0.005mass%以下に規制されるのが望ましい。
【0014】
ところで、先に述べたように、例えばリードフレームのプレスによる打ち抜き加工において、発生した残留応力を小さくするため、数秒〜数分間の短時間高温焼鈍を行うことが一般化している。この熱処理は生産性のためにトンネル炉などを用いて行われ、その代表的な条件としては450℃以下の温度で1分以下の時間加熱である。この熱処理後の特性がビッカース硬さでHv150未満となると、この後のLSIなどの組み立て工程中に変形を生じやすくなり、生産性を著しく阻害する。また、加熱前に60%IACS以上の導電率であったものが、加熱後に60%IACSを下回った場合、LSIに組み立て後、製品に実装する際のはんだ付けにおいて、はんだの経時変化によりはんだの剥離を生じることになり、好ましくない。
本発明のCu−Fe系銅合金板では、450℃×1分間加熱前後のビッカース硬さがHv150以上、導電率が60%IACS以上の特性を得ることが可能となる。
【0015】
上記特性を持つCu−Fe系銅合金板は、上記組成のCu−Fe系銅合金からなる鋳塊を熱間圧延した後、急冷し、続いて冷間圧延を施して製造する場合において、冷間圧延の前又は冷間圧延の途中で500℃以上の温度に5分間以上保持する熱処理を行い、その条件を満たす最終の熱処理以降に80%以上の加工率で冷間圧延を行うことにより得ることができる。熱処理条件を上記のように設定するのは、添加元素を析出させて強度向上を図り、同時に導電率を改善するためであり、冷間加工率を上記のように設定した理由は、添加元素と合わせた強度改善効果を得て450℃×1分間加熱後のビッカース硬さをHv150以上とするためである。冷間加工率は、より好ましくは90%以上、さらに好ましくは95%以上である。
ただし、500℃以上の温度で5分以上の保持時間の熱処理を行う工程の前工程又は後工程、若しくはその両方に400℃以下の温度で保持する熱処理を行う工程があっても差し支えない。また、必要に応じて仕上げ圧延後に熱処理工程を設け、伸び及び曲げ加工性の回復を図ることができる。
【0016】
【実施例】
本発明に係わる銅合金板及びその製造方法の実施例について、比較例及び従来例とともに説明する。
表1〜表2に示す組成の銅合金をクリプトル炉にて木炭被覆下で大気溶解し、ブックモールドに鋳造して50mm×80mm×200mmの鋳塊を作製した。この鋳塊を約900℃にて熱間圧延し、直ちに水中急冷し、厚さ15mmの熱延材を作製した。この熱延材の表面の酸化スケールを除去するため、軽く表面切削した後、1.5mmtまで冷延した後、550℃で4時間の析出処理を行った。この後、酸洗いを行い表面酸化スケールを除去した後、0.25mmtまで冷延して試験材を作製した。
得られた試験材について、強度、硬さ、導電率、曲げ加工性及びAgめっき性の測定を下記要領で実施した。
さらに、この試験材を窒素−水素の混合ガス雰囲気中で450℃×1分間加熱し、加熱後の硬さ、導電率、はんだ耐熱剥離性を下記要領で調べた。
以上の結果を表3〜表4に示す。
【0017】
【表1】

Figure 0004043118
【0018】
【表2】
Figure 0004043118
【0019】
引張強さは、試験材からJIS5号試験片を加工して引張強さを測定し、硬さは、JIS Z 2244に規定された方法に基づいて測定した(ただし、試験加重は500gfとした)。
導電率は、JIS H 0505に規定されている方法に基づきダブルブリッジを用いて測定した。
曲げ加工性は、JIS H3130の方法で板厚と同等の曲げ半径を有するW型の曲げ治具を用いて加工した。加工後のW曲げ部を目視で観察し、クラックの有無で加工性を評価した。
Agめっきテストは、シアン系Agめっきを厚さ1μm行った時に、局所的に厚さが厚くなる現象(突起)の有無を実体顕微鏡で観察した。
はんだ耐熱剥離性は、6Sn/4Pbはんだを245±5℃×5秒にてはんだ付けした後、150℃のオーブンで1000Hrまで加熱した。この試験片を180℃曲げ戻しにて加工を加え加工部のはんだが剥離するか観察した。
【0020】
【表3】
Figure 0004043118
【0021】
【表4】
Figure 0004043118
【0022】
表3より、本発明の規定範囲内に入る(ただし、No.1〜6,8はNi含有量がクレームの規定をオーバー)No.1〜10の試験材は、加熱前において、強度、硬さ、導電率、曲げ加工性、Agめっき性など、電気電子部品が要求する特性を具備し、さらに加熱後においても、Hv150以上、導電率60%IACS以上をもち、はんだ耐熱剥離性が優れている。
一方、表4より、本発明の規定範囲外の合金から製造されたNo.11〜23の試験材は材料調整ができていないか、いずれかの性能が低い。例えばNi量が多いNo.15とNi+Co+Cr量が多いNo.16は、加熱前の強度が低く、曲げ加工性が劣る。No.17はZnが少なくはんだが剥離し、No.18はZnが多すぎて導電率が低い。Zr〜Mnから選ばれる元素の添加量が少ないNo.21は加熱後の硬さと導電率の低下が大きく、はんだ耐熱剥離性も劣り、Zr〜Mnが多いNo.22は導電率が低い。Pb〜ミッシュメタルの多いNo.23はAgめっき性が劣り、加熱後の硬さ、導電率、はんだ耐熱剥離性も劣る。
【0023】
【発明の効果】
本発明によれば、リードフレーム、端子、コネクタなど電気・電子部品用銅合金として要求される強度、導電率、Agめっき性、はんだ付け性などの特性を通常の銅合金以上に維持しながら、プレス打ち抜き時に発生する残留御力を除去するために行われる焼鈍時に軟化しにくく、耐熱性のよいCu−Fe系銅合金を得ることができる。従って、各種電気電子機器の微細化による寸法精度に対する厳しい要求に対応が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength, high-conductivity copper alloy plate used for electrical and electronic parts such as lead frames, terminals, connectors, and the like, and more particularly to a method for manufacturing the same. The present invention relates to a high-strength and high-conductivity copper alloy sheet that is hard to be softened by annealing for removing residual stress generated during shearing when manufacturing electronic components.
[0002]
[Prior art]
Conventionally, in general, the various electric and electronic parts described above are required to have characteristics such as strength, elongation, conductivity, heat resistance, Ag plating property, Sn plating, and heat release property of solder. Therefore, for example, C19400 (Cu-2.3 mass % Fe-0.03 mass % P-0.1 mass % Zn) or C19210 (Cu-0.1 mass % Fe-0) having these characteristics. And many other copper alloys are used in its manufacture, including .03 mass % P).
[0003]
[Problems to be solved by the invention]
On the other hand, in response to recent demands for reduction in size, size, and mounting density of various electric and electronic devices, downsizing of parts used and reduction in the distance between leads have been accelerated. For this reason, for example, in punching by pressing a lead frame, there is a demand for small lead twist, lead shift, lead step, and the like after punching. In order to ensure the performance that can be called flatness of these leads, it is required that the residual stress generated by the shearing during press punching is small.
[0004]
A technology to reduce the residual stress generated along with this has also been developed. With this technology, when the lead is punched, the lead tip is not cut off but left in a bundled state, and then a short heat treatment (annealing) is performed for a few seconds to several minutes, to release the residual stress generated when the lead side is punched. In this technique, the tip of the lead is cut off when the residual stress becomes small to ensure flatness.
When this technique is applied, it is necessary not to soften the material itself by annealing during punching. If the material itself softens, the lead tip will be deformed without sufficient strength when it is cut off, and even if it can be processed into a lead frame, it will be easily deformed in the subsequent LSI assembly process. Handling becomes difficult, leading to a decrease in productivity. Therefore, heat resistance is very important.
[0005]
Recently, in Japanese Patent Application Laid-Open No. 2-111829, the composition contains Fe and Sn and one or more of P, Zn, Si, Sb, In, Al, Mn, Ni, and Mg, and the size of the Fe precipitate. There has been proposed a copper alloy for lead frames, which controls the heat resistance and is rich in heat resistance. Japanese Patent No. 2673967 proposes a lead frame material made of a Cu alloy for a semiconductor device having high strength, in which the composition of Fe, P, Zn, Mg, and Si is controlled.
However, Japanese Patent Laid-Open No. 2-111829 describes that heat resistance is high, but hot workability, which is a problem with Cu-Fe alloys, or bending that should be said to be essential for lead frame materials. No mention is made of the property, Ag plating property, and solder heat resistance peelability.
Japanese Patent No. 2673967 describes that the copper alloy has high strength, high conductivity, and heat resistance, and the characteristics are achieved by containing 0.001 to 0.05 mass % of Mg. However, it does not mention bending workability and Ag plating property. As disclosed in Japanese Patent Laid-Open No. 7-97646, when Mg is contained within this range, it forms a compound with S, which is an inevitable impurity, and inhibits Ag plating properties.
[0006]
On the other hand, in the Cu-Fe-based copper alloy plate, there is a problem that the electrical conductivity of the material is lowered due to high-temperature and short-term annealing in the middle of the punching process. Is required.
The present invention provides a punching process while maintaining the strength, conductivity, solderability, plating properties, etc. required for copper alloys for electrical and electronic parts such as lead frames, terminals, connectors, etc., exceeding those of ordinary copper alloys. It is an object of the present invention to obtain a Cu—Fe-based copper alloy sheet that is difficult to soften when annealed to remove the generated residual stress and that has little decrease in conductivity.
[0007]
[Means for Solving the Problems]
The high-strength and high-conductivity Cu-Fe alloy plate for electric and electronic parts having excellent heat resistance according to the present invention is a high-strength and high-conductivity for electric and electronic parts that is subjected to residual stress removal annealing during press punching. Cu: Fe based alloy plate, Fe: 1.8 to 2.6 mass %, P: 0.01 to 0.1 mass %, Zn: 0.05 to 0.5 mass %, Zr, In, Total of one or more of Sn, Si, Be, Al, and Mn: 0.005 to 0.1 mass %, Ni, Cr, and Co are each 0.03 mass % or less, and two or more 0.05 mass % or less, O: 100 ppm or less, H: 10 ppm or less, the balance being substantially made of Cu and inevitable impurities, and the Vickers hardness after annealing at 450 ° C. for 1 minute being 150 Hv or more, 60% IAC conductivity Characterized in that at least. In this Cu—Fe-based alloy, Pb is 0.01 mass % or less, S is 0.005 mass % or less, Mg, Ca, Cd, Be, Ti, Hf, Th, Li, Na, K, as inevitable impurities. The total of Sr, Pd, W, C, Nd, V, Y, Mo, Ga, Ge, As, Se, Sb, Bi, Te, B, Ce, and Misch metal is less than 0.001 mass %, and the above components Is desirably regulated to 0.01 mass % or less in total.
With the Cu—Fe based alloy having the above composition, characteristics of Vickers hardness of Hv 150 or more and conductivity of 60% IACS can be ensured before and after annealing during annealing (typically heating at 450 ° C. for 1 minute).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the components are limited as described above in the alloy of the present invention will be described below.
<Fe>
Fe forms a compound with P and precipitates in the alloy, or Fe alone precipitates in the alloy, thereby ensuring the strength and heat resistance of the alloy. However, if the content is less than 1.8 mass %, desired strength and heat resistance cannot be obtained. Further, the peritectic reaction of Fe does not occur during casting, and the ingot structure becomes coarse. As a result, hot workability is reduced. On the other hand, if it is contained in a proportion exceeding 2.6 mass %, coarse Fe precipitates are formed in the alloy, and the workability during hot rolling is lowered, and the bending workability and conductivity of the product are reduced. This is not preferable because the decrease in the resistance becomes remarkable. Therefore, Fe content is 1.8 to 2.6 mass%, more preferably from 2.0 to 2.4 mass%.
[0009]
<P>
P forms a compound with Fe and precipitates in the alloy to improve strength and heat resistance. Moreover, it contributes to the soundness of an ingot by the deoxidation action at the time of melt | dissolution. When the P content is less than 0.01 mass %, the formation of the Fe—P compound is insufficient, and the desired strength and heat resistance cannot be obtained. Moreover, since the deoxidation action at the time of melting is insufficient, a sound ingot cannot be obtained. On the other hand, when the P content exceeds 0.1 mass %, Fe is taken to form the Fe—P compound, and the peritectic reaction of Fe does not occur during casting. As a result, the structure of the ingot is coarsened and the hot workability is lowered, which is not preferable. Therefore, the P content is set to 0.01 to 0.1 mass %, more preferably 0.01 to 0.04 mass %.
[0010]
<Ni, Co, Cr>
Ni, Co and Cr form a compound with P and precipitate in the alloy. Ni-P compounds and Co-P compounds have low formation temperatures and easily coarsen. Moreover, since the formation temperature of the Cr—P compound is close to the temperature at which hot rolling is performed, the Cr—P compound is already generated roughly in the middle of hot rolling.
These coarsely grown compounds have extremely low compatibility with the alloy matrix, and the interface between the coarse precipitate and the base metal is close to the free interface. For this reason, the dislocation disappears when it reaches the coarse precipitate. As a result, even if cold working is performed at the same working rate, the strength does not increase and bending workability also decreases.
If the content of these alone exceeds 0.03 mass %, they tend to precipitate as coarse compounds. Moreover, in the case of 2 or more types, it becomes more remarkable when the total amount exceeds 0.05 mass %. Therefore, the content of Ni, Co, and Cr is 0.03 mass % or less as a single substance, and the total of two or more types is 0.05 mass % or less, preferably 0.03 mass % or less, and more preferably 0.003 mass % or less. 01 mass % or less.
[0011]
<Zn>
Zn improves the heat-resistant peelability of copper alloy solder and Sn plating. However, when the content is less than 0.05 mass %, the desired effect cannot be obtained. On the other hand, when the content exceeds 0.5 mass %, the solder wettability decreases. In addition, the decrease in conductivity becomes severe. Accordingly, the total content of Zn is 0.05 to 0.5 mass %, preferably 0.1 to 0.3% mass .
<Zr, In, Sn, Si, Be, Al, Mn amount>
Zr, In, Sn, Si, Be, Al, and Mn not only improve the strength by dissolving in the alloy, but also improve the heat resistance in the presence of Fe-P precipitates or Fe precipitates. . These atoms have a strong affinity for vacancies in the alloy. For this reason, the upward movement of dislocations due to vacancies hardly occurs, and the dislocations trapped in the precipitated particles are difficult to move. As a result, heat resistance is improved. Moreover, these elements have the effect | action which reduces the fall of the electrical conductivity by the annealing in the middle of stamping.
For this property, it is not sufficient that the content of one or more of these elements is less than 0.005 mass %, and if it exceeds 0.1 mass %, the electrical conductivity decreases, and heating is performed at 450 ° C. for 1 minute. Before and after 60% IACS. Accordingly, the content of one or more of these elements is 0.005 to 0.1 mass %, preferably 0.01 to 0.1 mass %, more preferably 0.02 to 0.08 mass. %.
[0012]
<O>
O tends to react with P. When O exceeds 100 ppm, the reacted P cannot form a compound with Fe described above. As a result, the effect of improving heat resistance is reduced. Further, P that reacts with O collects at the crystal grain boundaries of the ingot, lowers the grain boundary strength, and causes a decrease in hot workability. Accordingly, the O content is 100 ppm or less, preferably 50 ppm or less, and more preferably 30 ppm or less.
<H>
When H content exceeds 10 ppm, when H content exceeds 10 ppm, H is combined with O in the cooling process at the time of cooling at the time of casting to become water vapor, and this water vapor is blowhole defect in the ingot. Will occur. Therefore, the H content is 10 ppm or less, preferably 4 ppm or less, more preferably 2 ppm or less. About reduction of O and H, it is good to perform Ar bubbling under a charcoal coating for molten metal as needed.
[0013]
<Others>
Pb exceeds 0.01 mass %, S exceeds 0.005 mass %, Mg, Ca, Cd, Be, Ti, Hf, Th, Li, Na, K, Sr, Pd, W, C, The total of Nd, V, Y, Mo, Ga, Ge, As, Se, Sb, Bi, Te, B, Ce, and misch metal is 0.001 mass % or more, or the total amount of the above elements is 0.00. When the mass exceeds 01 mass %, these solid-dissolved atoms inhibit the interaction between Zr, In, Sn, Be, Al, Mn atoms and dislocations, hinder the above-mentioned heat resistance effect, and after annealing The decrease in the electrical conductivity is increased. Furthermore, Ag plating property is also reduced. Therefore, these elements have Pb of 0.01 mass % or less, S of 0.005 mass % or less, Mg, Ca, Cd, Be, Ti, Hf, Th, Li, Na, K, Sr, Pd, W, The total of C, Nd, V, Y, Mo, Ga, Ge, As, Se, Sb, Bi, Te, B, Ce, and misch metal is less than 0.001 mass %, and the total amount of the above components is 0.01. It is desirable that the content is regulated to mass % or less, preferably 0.005 mass % or less.
[0014]
By the way, as described above, in order to reduce the generated residual stress, for example, in a punching process by pressing a lead frame, it is common to perform high-temperature annealing for a few seconds to several minutes. This heat treatment is performed using a tunnel furnace or the like for productivity, and a typical condition is heating at a temperature of 450 ° C. or lower for a time of 1 minute or shorter. If the characteristic after this heat treatment is less than Hv150 in terms of Vickers hardness, deformation is likely to occur during the subsequent assembly process of LSI or the like, and productivity is significantly hindered. Also, if the electrical conductivity of 60% IACS or higher before heating is lower than 60% IACS after heating, soldering due to changes over time in soldering when mounting on a product after assembling to LSI Peeling occurs, which is not preferable.
In the Cu—Fe based copper alloy plate of the present invention, it is possible to obtain characteristics such that the Vickers hardness before and after heating at 450 ° C. for 1 minute is Hv 150 or more and the conductivity is 60% IACS or more.
[0015]
A Cu—Fe based copper alloy plate having the above characteristics is produced by hot rolling an ingot made of a Cu—Fe based copper alloy having the above composition, followed by cold cooling, followed by cold rolling. It is obtained by performing a heat treatment that is held at a temperature of 500 ° C. or higher for 5 minutes or more before cold rolling or in the middle of cold rolling and performing cold rolling at a processing rate of 80% or higher after the final heat treatment that satisfies the conditions. be able to. The reason why the heat treatment conditions are set as described above is to improve the strength by precipitating the additive element and at the same time improve the electrical conductivity. The reason for setting the cold work rate as described above is that This is because the combined strength improvement effect is obtained and the Vickers hardness after heating at 450 ° C. for 1 minute is set to Hv 150 or more. The cold working rate is more preferably 90% or more, and still more preferably 95% or more.
However, there may be a step of performing a heat treatment to be held at a temperature of 400 ° C. or lower in a step before or after the step of performing a heat treatment at a temperature of 500 ° C. or higher for a holding time of 5 minutes or longer, or both. In addition, if necessary, a heat treatment step can be provided after finish rolling to recover elongation and bending workability.
[0016]
【Example】
The Example of the copper alloy plate concerning this invention and its manufacturing method is demonstrated with a comparative example and a prior art example.
Copper alloys having the compositions shown in Tables 1 and 2 were melted in the atmosphere under a charcoal coating in a kryptor furnace, and cast into a book mold to produce 50 mm × 80 mm × 200 mm ingots. This ingot was hot-rolled at about 900 ° C. and immediately quenched in water to produce a hot rolled material having a thickness of 15 mm. In order to remove the oxide scale on the surface of the hot-rolled material, the surface was lightly cut and then cold-rolled to 1.5 mmt, followed by precipitation treatment at 550 ° C. for 4 hours. Then, after pickling and removing the surface oxide scale, it cold-rolled to 0.25 mmt and produced the test material.
About the obtained test material, the measurement of intensity | strength, hardness, electrical conductivity, bending workability, and Ag plating property was implemented in the following way.
Furthermore, this test material was heated at 450 ° C. for 1 minute in a nitrogen-hydrogen mixed gas atmosphere, and the hardness, conductivity, and heat resistance peelability after heating were examined as follows.
The above results are shown in Tables 3-4.
[0017]
[Table 1]
Figure 0004043118
[0018]
[Table 2]
Figure 0004043118
[0019]
The tensile strength was measured by processing a JIS No. 5 test piece from the test material and measuring the tensile strength, and the hardness was measured based on the method defined in JIS Z 2244 (however, the test load was 500 gf). .
The conductivity was measured using a double bridge based on the method defined in JIS H 0505.
The bending workability was processed by a JIS H3130 method using a W-shaped bending jig having a bending radius equivalent to the plate thickness. The W-bending part after processing was visually observed, and the workability was evaluated based on the presence or absence of cracks.
In the Ag plating test, the presence or absence of a phenomenon (protrusion) in which the thickness locally increased when cyan-based Ag plating was performed at a thickness of 1 μm was observed with a stereomicroscope.
As for solder heat resistance, 6Sn / 4Pb solder was soldered at 245 ± 5 ° C. × 5 seconds and then heated to 1000 Hr in an oven at 150 ° C. This test piece was processed by bending back at 180 ° C., and it was observed whether or not the solder in the processed part was peeled off.
[0020]
[Table 3]
Figure 0004043118
[0021]
[Table 4]
Figure 0004043118
[0022]
From Table 3, it falls within the specified range of the present invention (however, in No. 1 to 6, 8, the Ni content exceeds the definition of the claims) . The test materials 1 to 10 have properties required by electric and electronic parts such as strength, hardness, electrical conductivity, bending workability, and Ag plating property before heating. It has a rate of 60% IACS or more and excellent heat-resistant peelability.
On the other hand, from Table 4, No. manufactured from an alloy outside the specified range of the present invention. The test materials Nos. 11 to 23 are not adjusted in material, or any of the performances is low. For example, no. 15 and a large amount of Ni + Co + Cr. No. 16 has low strength before heating and is inferior in bending workability. No. No. 17 has less Zn and the solder peeled off. No. 18 has too much Zn and has low conductivity. No. in which the addition amount of an element selected from Zr to Mn is small. No. 21 has a large decrease in hardness and electrical conductivity after heating, inferior solder heat resistance, and a large number of Zr to Mn. No. 22 has low conductivity. Pb to No. with many misch metals. No. 23 is inferior in Ag plating property, and inferior in hardness after heating, electrical conductivity, and solder heat resistance peelability.
[0023]
【The invention's effect】
According to the present invention, while maintaining properties such as strength, conductivity, Ag plating property, solderability, etc. required for copper alloys for electrical and electronic parts such as lead frames, terminals, connectors, etc., more than ordinary copper alloys, It is possible to obtain a Cu—Fe based copper alloy that is hard to be softened during annealing performed to remove the residual control force generated during press punching and has good heat resistance. Therefore, it is possible to meet strict requirements for dimensional accuracy due to miniaturization of various electric and electronic devices.

Claims (2)

プレス打ち抜き加工の途中で残留応力除去焼鈍が行われる電気・電子部品用高強度・高導電性Cu−Fe系合金板であり、Fe:1.8〜2.6mass%、P:0.01〜0.1mass%、Zn:0.05〜0.5mass%、Zr、In、Sn、Si、Be、Al、Mnのうち1種又は2種以上の合計:0.005〜0.1mass%、Ni、Cr、Coがそれぞれ単体で0.03mass%以下かつ2種以上の合計で0.05mass%以下(ただし、Ni:0.001mass%以上を除く)、O:100ppm以下、H:10ppm以下であり、残部がCu及び不可避不純物からなり、450℃×1分間の焼鈍後のビッカース硬さが150Hv以上、導電率が60%IACS以上であることを特徴とする耐熱性に優れる電気・電子部品用高強度・高導電性Cu−Fe系合金板。It is a high-strength, high-conductivity Cu—Fe based alloy plate for electric / electronic parts that undergoes residual stress removal annealing during press punching, Fe: 1.8 to 2.6 mass %, P: 0.01 ~ 0.1 mass %, Zn: 0.05 to 0.5 mass %, Zr, In, Sn, Si, Be, Al, Mn, one or more total: 0.005 to 0.1 mass %, Ni, Cr, and Co are each 0.03 mass % or less and the total of two or more is 0.05 mass % or less (excluding Ni: 0.001 mass % or more), O: 100 ppm or less , H: 10 ppm or less, with the balance being Cu and inevitable impurities, Vickers hardness after annealing at 450 ° C. × 1 minute is 150 Hv or more, and conductivity is 60% IACS or more. Excel High-strength and high-conductivity Cu-Fe alloy plate for electrical and electronic parts. Pbが0.01mass%以下、Sが0.005mass%以下、Mg、Ca、Cd、Be、Ti、Hf、Th、Li、Na、K、Sr、Pd、W、C、Nd、V、Y、Mo、Ga、Ge、As、Se、Sb、Bi、Te、B、Ce、ミッシュメタルの合計が0.001mass%未満、かつ以上の成分が総量で0.01mass%以下に規制されたことを特徴とする請求項1に記載された耐熱性に優れる電気・電子部品用高強度・高導電性Cu−Fe系合金板。Pb is 0.01 mass % or less, S is 0.005 mass % or less, Mg, Ca, Cd, Be, Ti, Hf, Th, Li, Na, K, Sr, Pd, W, C, Nd, V, The total of Y, Mo, Ga, Ge, As, Se, Sb, Bi, Te, B, Ce, and misch metal is regulated to less than 0.001 mass %, and the above components are regulated to a total amount of 0.01 mass % or less. The high-strength and high-conductivity Cu—Fe-based alloy plate for electric and electronic parts having excellent heat resistance according to claim 1 .
JP32274698A 1998-11-13 1998-11-13 High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance Expired - Lifetime JP4043118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32274698A JP4043118B2 (en) 1998-11-13 1998-11-13 High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32274698A JP4043118B2 (en) 1998-11-13 1998-11-13 High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance

Publications (2)

Publication Number Publication Date
JP2000144284A JP2000144284A (en) 2000-05-26
JP4043118B2 true JP4043118B2 (en) 2008-02-06

Family

ID=18147183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32274698A Expired - Lifetime JP4043118B2 (en) 1998-11-13 1998-11-13 High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance

Country Status (1)

Country Link
JP (1) JP4043118B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056756B (en) * 2008-06-12 2013-05-01 三菱电机株式会社 Ventilating and air-conditioning apparatus for vehicle
CN105220007A (en) * 2015-10-29 2016-01-06 安徽鑫科新材料股份有限公司 A kind of high-strength copper ferrophosphor(us) and production method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092616B1 (en) * 2008-04-29 2011-12-13 일진머티리얼즈 주식회사 Metal frame for electronic part
JP5570109B2 (en) * 2008-10-15 2014-08-13 三菱伸銅株式会社 Copper alloy and lead frame material for electronic equipment
JP5866410B2 (en) * 2013-08-09 2016-02-17 三菱マテリアル株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP5866411B2 (en) * 2013-08-09 2016-02-17 三菱マテリアル株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP2016211053A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy excellent in heat resistance
KR102043789B1 (en) * 2017-12-26 2019-11-12 주식회사 포스코 Iron-copper alloy material and manufacturing method of the same
CN114000009B (en) * 2021-09-29 2022-06-21 宁波兴业盛泰集团有限公司 Copper-iron intermediate alloy with uniform components and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056756B (en) * 2008-06-12 2013-05-01 三菱电机株式会社 Ventilating and air-conditioning apparatus for vehicle
CN105220007A (en) * 2015-10-29 2016-01-06 安徽鑫科新材料股份有限公司 A kind of high-strength copper ferrophosphor(us) and production method thereof

Also Published As

Publication number Publication date
JP2000144284A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JPH0841612A (en) Copper alloy and its preparation
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP2002088428A (en) Copper alloy for connector having excellent stress corrosion cracking resistance and its production method
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP3797736B2 (en) High strength copper alloy with excellent shear processability
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JPH10130755A (en) High strength and high conductivity copper alloy excellent in shearing workability
JP3729733B2 (en) Copper alloy plate for lead frame
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS6231059B2 (en)
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2019173090A (en) Copper alloy
JPH11323463A (en) Copper alloy for electrical and electronic parts
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

EXPY Cancellation because of completion of term