JP3729733B2 - Copper alloy plate for lead frame - Google Patents

Copper alloy plate for lead frame Download PDF

Info

Publication number
JP3729733B2
JP3729733B2 JP2000398089A JP2000398089A JP3729733B2 JP 3729733 B2 JP3729733 B2 JP 3729733B2 JP 2000398089 A JP2000398089 A JP 2000398089A JP 2000398089 A JP2000398089 A JP 2000398089A JP 3729733 B2 JP3729733 B2 JP 3729733B2
Authority
JP
Japan
Prior art keywords
less
copper alloy
annealing
content
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000398089A
Other languages
Japanese (ja)
Other versions
JP2002194461A (en
Inventor
浩史 荒井
理一 津野
浩 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000398089A priority Critical patent/JP3729733B2/en
Publication of JP2002194461A publication Critical patent/JP2002194461A/en
Application granted granted Critical
Publication of JP3729733B2 publication Critical patent/JP3729733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はトランジスター、IC、LSI等に用いられるリードフレーム用銅合金に関し、さらに詳しくはスタンピング加工性やスティフネス特性に優れた民生、産業用電子部品に用いられるリードフレーム用銅合金に関する。
【0002】
【従来の技術】
銅及び銅合金は、引張り強さ、伸び等の機械的性質、導電率、熱伝導率等の物理的性質、プレス加工性、エッチング性等の成形性、及びめっき性、ボンディング性、耐食性等の二次特性に優れることから、トランジスター、IC、LSI用のリードフレーム材として多用されている。熱放散性や導電率を重視する用途には、C102(OFC)、C19210(Cu−0.1Fe−0.03P)、C151(Cu−0.02Zr)等が、強度と導電率の必要な用途にはC194(Cu−2.3Fe−0.03P−0.15Zn)、Cu−Ni−Si系(Cu−3.2Ni−0.7Si−0.2Zn等)等が、より高強度を要する用途にはCu−Ni−Si−Sn系(Cu−3.2Ni−0.7Si−0.2Zn−1.25Sn等)、C725(Cu−9.2Ni−2.3Sn)等が用いられている。
【0003】
近年の各種電気電子機器の小型化や実装密度の向上要求に対応して、トランジスター、IC、LSI等の電子部品に用いるリードフレームにおいても種々の形式のものが実用化され、リードピッチの縮小、薄肉化が進展し、要求される特性はより高度化している。例えば、リードフレームの肉厚は、従来主流であった0.25mmから0.1〜0.2mmのものが多用されるようになっており、さらに0.08mmのものも一部で実用化されつつある。
【0004】
リードフレームがこのように薄肉化すると、その組織や機械的性質によっては、半導体素子を載せるアイランド部及びワイヤボンディングの行われるリードの平坦性(coplanality)が悪化したり、ペコつきが発生しやすくなる。このようなリードフレームにおいては、Siチップのボンディング位置やワイヤボンディング位置の狂いが発生しやすく、電子部品の不良発生の原因となる。従って、薄肉・狭ピッチのリードフレームにおいては、従来並みの機械的性質、物理的性質、及び二次加工性を満足することが求められるだけでなく、アイランド部及びリード部の平坦性(coplanality)が良いこと、及びアイランドやリード部にペコつきが発生しないことが強く求められている。ペコ付きがあると、アイランドやリード部が斜めに傾いたりしてその平坦性が損なわれる。
【0005】
このような要求を満足させるため、リードフレーム材の組成及び組織を適正化して、リードフレーム加工後のアイランド部及びリード部が十分な剛性(スティフネス)を持つこと、及びスタンピング加工後の「ばり」や「だれ」を少なくすることが検討されている。前記の既存合金においても加工熱処理条件の変更によりその改善が検討されている。
また、前記のリードフレームの薄肉化により、熱間圧延終了後の冷間加工率が大きくなるためリードフレーム材の製造コストが高くなり、その結果リードフレーム材の価格が上昇する傾向がある。一方、電子部品の価格に占めるリードフレームの価格の割合が大きいことから、スタンパーや半導体メーカーからのリードフレーム材の価格低減に対する要求が根強い。このような要求に対応するために、伸銅メーカーにおいては、リードフレーム材の製造コストを低減する努力が払われている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、強度、導電性、めっき性等の特性は従来材以上の値を確保しながら、打抜き加工により発生する「ばり」、「だれ」を小さくし、かつアイランド部及びリード部のペコ付きの発生を抑えて平坦性の向上した、スティフネスの高いリードフレーム用銅合金を提供することである。
【0007】
【課題を解決するための手段】
本発明に係るリードフレーム用銅合金は、Ni:0.1%以上0.5%未満、Sn:1.0%を超え2.5%未満、Zn:1.0%を超え15%以下、Fe:0.001%以上0.1%以下、Mg:0.0001%以上0.02%以下、P:0.0005%以上0.05%未満とSi:0.0005%以上0.05%未満のいずれか一方又は双方を0.0005%以上0.05%未満、S:0.0005%以上0.003%以下、C含有量:0.0005%以下を含み、さらにO:0.005%以下、かつH:0.0002%以下であり、残部がCu及び不可避的不純物からなり、耐力/引張強さの値が0.9以上であることを特徴とする。さらに必要に応じて、Ag、Ti、Ca、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、B、Ge、Sb:各0.001〜0.1%の群より選択する1種又は2種以上を総量で0.001%以上0.1%以下含むことができる。
【0008】
また、上記リードフレーム用銅合金の特性として、焼鈍して得られる導電率の最大値に対して90%以下の導電率を有すること、の圧延面において、板幅方向に測定した結晶粒径が5〜20μmであり、かつ圧延方向に平行な方向に測定した結晶粒径が5〜300μmであることが望ましい。
【0009】
【発明の実施の形態】
以下、本発明に係るリードフレーム用銅合金について詳細に説明する。まず、各添加元素の添加理由及び組成限定理由について説明する。
(Ni)
NiはSnとの共存において変調構造を形成し、又は固溶状態で強度、伸び、スティフネス特性を向上させる元素である。その含有量が0.1%未満では、Snが1.0%を超え2.5 %未満含有されていても前記効果が得られない。また、0.5%以上含有されると電気伝導度及びはんだ耐候性の低下を招き、コスト的にも不利である。従って、Niの含有量は0.1%以上0.5%未満とした。
なお、本合金においてPを含有する場合に、Niの燐化物が形成されるとかえって強度及びスティフネスが低下するため、Niの燐化物が形成されないような製造方法を選定することが望ましい。
【0010】
(Sn)
本発明銅合金において、SnはNiとの共存において変調構造を形成し、又は固溶状態で、強度、伸び及びスティフネスの向上に効果を有するが、1.0%以下ではNiが0.1%以上0.5%未満含有されていても前記効果が得られず、また2.5%以上含有されると導電率の低下を招く。従って、Snの添加量は1.0%を超え2.5%未満とした。
なお、前記Ni及びSnの含有量範囲において、Niの含有量をx、Snの含有量をyとしたとき、xとyは次の関係式を満足することが望ましい。この範囲内において、機械的性質、導電率、曲げ加工性等のバランスが特に優れたものとなる。
y=3.75x+α
−0.875≦α≦1.125
【0011】
(Zn)
本発明銅合金において、Znは強度とはんだの耐候性向上及びSnめっき材のウイスカー発生の抑制に効果のある元素である。Zn含有量が1.0%以下では前記効果が小さく、Zn含有量が15%を超えると導電率が低下し、また応力腐食割れを起こし易くなる。従って、Zn含有量は1.0 を超え15%以下とする。
(Fe)
本発明銅合金において、Feは固溶又はPと化合物を形成し、微量でも強度、耐熱性及びスティフネス特性を向上させる効果を有する。FeはNiより燐化物を形成しやすいため、Feが燐化物を形成することによりNiの燐化物形成を妨害する役割を果す。その含有量が0.001%未満では効果がなく、0.1%を超えて含有されると導電率、はんだ耐候性等が劣るようになる。従って、Feの添加量は0.001%以上0.1%以下とする。
【0012】
(Mg)
溶解鋳造工程で原料、雰囲気などからSが容易に侵入するが、本発明合金において、MgはSを安定した化合物の形で母相中に固定し、熱間加工性を向上させる。さらに、Mgは微量でも、強度、耐熱性及びスティフネス特性を向上させる効果を有する。Mgの含有量が0.0001%未満であると前記効果が十分でない。また、その含有量が0.02%を超えると、Agめっきを行った場合Agが突起状に異常析出し、ワイヤボンディングの信頼性を低下させる。従って、Mg含有量は0.0001%以上0.02%以下とする。
【0013】
(P)
本発明銅合金においてPは溶湯の脱酸、流動性向上に寄与し、鋳塊の健全性を向上させる元素である。しかし、Pの含有量が0.0005%未満では、前記効果が十分でない。一方、Pが0.05%以上添加されると製造工程によっては容易にNi−P金属間化合物が形成され、強度、スティフネス、めっき性を低下させる。また、Ni−P化合物を析出させない条件で熱処理が行われた場合でも、導電率の低下、はんだ及びSnめっきの剥離、応力腐食割れを発生させやすい。従って、P添加量は0.0005%以上0.05%未満とする。より望ましい範囲は0.001%以上0.03%未満である。なお、後述するようにPとSiを共に含有させると、Pを単独で含有させた場合と同様な脱酸効果があるが、その場合P及びSiの合計含有量としては、0.0005%以上0.05%未満とする。望ましくは0.001%以上0.03%未満である。
【0014】
(Si)
本発明銅合金において、Siには銅溶湯の脱酸効果があり、かつ同量含有させてもPと比べて導電率を低下させる効果が小さい。そのため、Siを含有させることによってP含有量をそれだけ低減させることが可能となる。従って、Pの代わりに又はPと共に添加する。ただし、PとSiではPの方が脱酸効果は大きい。しかし応力腐食割れを考慮する場合はSiが好ましい。さらに、Siには再結晶温度を上昇させる効果がある。これらの効果を得るためには、Siは0.0005%以上含有させるのが望ましい。一方、Siを0.05%以上含有させた場合、大部分は脱酸後の酸化物として溶湯中から除去されるが、母相中に固溶したSiは、はんだ及びSnめっきの白化あるいは剥離を引き起こし、さらに導電率も低下する。従ってSiを添加する場合はその含有量は0.0005%以上0.05%未満とする。望ましい範囲は0.001%以上0.03%未満である。なお、Pと共に含有させた場合はPとSiの合計含有量として0.0005%以上0.05%未満とする。望ましくは0.0001%以上0.03%未満である。
【0015】
(S)
本発明銅合金において、Sは単体、低融点の金属間化合物又は複合酸化物などの形態で結晶粒界に存在し、そのため打抜き加工性を向上させ(ばりの低減、せん断加工性向上)、金型摩耗を低減させる効果がある。Sの含有量が0.0005%以下では前記効果がない。一方、Sの含有量が0.003%を越えた場合は、熱間加工時に粒界に存在するS又は前記硫化物が溶融して粒界割れを起こし、鋳塊に割れが発生してしまう。このため、S含有量は0.003%以下でなければならない。従って、Sの含有量は0.0005%以上0.003%以下とする。
(C)
本発明銅合金において、Cは溶湯の脱酸作用と、打抜き加工性、特に剪断加工性を向上させる効果があるため、含有させる。しかしながら、0.0005%を超えて含有すると熱間加工性を劣化させる。従って、Cの含有量は0.0005%以下(0%を含まず)とする。なお、溶解、鋳造において溶湯表面を被覆する木炭、C粒子等を溶湯と接触させることにより、溶湯にCを含有させることが可能である。この方法により通常0.0001〜0.0004%程度のCを含有させることができる。
【0016】
(O、H)
本発明銅合金は、真空炉などを用いなくても、通常のコアレス炉、溝型炉などを用い、溶湯表面を木炭、C粒子、適当なフラックス等で被覆することにより、大気中で溶解鋳造することができる。ただし、大気中での溶解鋳造工程において、原料、溶湯表面の前記被覆材、炉材等に付着したあるいは含まれる水分、酸化物や、雰囲気中に存在する水蒸気、酸素、二酸化炭素、水素等が溶湯と反応して溶湯にOやHが含有されることが避けられない。特に、Hはいったん含有されると効果的に除去することが難しいため、所定量以上含有させないよう溶解鋳造雰囲気、使用原料、溶湯被覆材の乾燥等に注意が必要である。
本発明銅合金において、Hの含有量が0.0002%を越えると、熱間圧延時の割れ、焼鈍時の膨れ、めっき膨れなどが発生して歩留りを低下させるため0.0002%以下に規制しなければならない。望ましくは0.0001%以下、さらに望ましくは0.00007%以下である。
【0017】
本発明銅合金において、Oの含有量が0.005%を越えると、溶解鋳造工程、熱間圧延、及び焼鈍工程において酸化物が形成されやすく、この酸化物によって製品の延性が低下しやすい。また、前記酸化物及び固溶酸素によりAg、Sn、はんだ等のめっき性が低下する。従って、O含有量は0.005%以下に規制しなければならない。望ましくは0.003%以下、さらに望ましくは0.002%以下である。
なお、通常HとOは共に含有されるが、H含有量をappm、O含有量をbppmとすると、a×bの値が40を越えると、熱間圧延、焼鈍などの加熱工程においてHとOが反応して水蒸気が形成されやすく、割れ、膨れ等の原因となるため、a×b(H含有量(ppm)×O含有量(ppm))の値を40以下とすることが望ましい。前記の値が30以下であることがより望ましく、20以下であることがさらに望ましい。
【0018】
(その他の選択元素)
Ag、Ti、Ca、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、B、Ge、Sbは、いずれも本発明銅合金の強度とスティフネスを向上させる効果を有するので、これらの群より選択される1種又は2種以上の元素が必要に応じて添加される。しかし、各元素とも0.001%未満の含有量では前記の効果が十分でなく、一方、これらの元素の1種又は2種以上が総量で0.1%を超えて含有されていると溶解鋳造時、熱間圧延時あるいは加工熱処理中に粗大な酸化物を形成したり、粗大な晶出物が発生し、めっき性や導電率を低下させてしまう。従って、これらの選択元素の含有量は各0.001%以上0.1%以下、かつ1種又は2種以上の総量で0.001%以上0.1%以下とする。
【0019】
次に、本発明銅合金の特性及び組織について説明する。
(導電率)
本発明銅合金においては、Ni−P化合物が析出すると、強度及びスティフネスがかえって劣化し、前記化合物を析出させずに、スピノーダル分解又は固溶(スピノーダル型変調構造)させることが望ましい。Ni−P化合物の析出量と導電率の間には相関関係があることから、前記化合物の析出状態は導電率で推定することができる。
本発明銅合金において目的とする強度とスティフネスを達成するには、当該銅合金を焼鈍して得られる導電率の最大値に対して90%以下の導電率とすることが望ましい。本発明銅合金において最大導電率は約500℃で得られ、この温度での加熱時間が長いほど導電率が向上するが、4時間の加熱で導電率は実際上ほぼ飽和する。これはこの焼鈍により析出物がほぼ最大量生成するためである。従って、本発明においては、最大導電率の得られる焼鈍条件を500℃×4時間とする。
なお、安定化焼鈍後において上記の導電率とするには、冷間圧延途中の焼鈍後(安定化焼鈍前)に上記の導電率となっている必要がある。
【0020】
(結晶粒径)
本発明銅合金において目的とする強度とスティフネスを達成するには、の圧延面において、板幅方向に測定した平均結晶粒径が5〜20μmであり、かつ圧延方向に平行な方向に測定した平均結晶粒径が5〜300μmであることが望ましい。前者の結晶粒径が5μmより小さく又は後者の結晶粒径が5μmより小さい場合、及び前者の結晶粒径が20μmを越え又は後者の結晶粒径が300μmを越える場合はいずれも曲げ加工性が低下し、曲げ部に割れが形成されやすくなる。従って、圧延表面において板幅方向に測定した結晶粒径が5〜20μmであり、かつ圧延方向に平行な方向に測定した結晶粒径が5〜300μmであることが望ましい。
【0021】
なお、前記の結晶粒径を達成するには、一度再結晶組織とした後最終の冷間圧延を行い、その後低温において安定化焼鈍を行うことが望ましい。安定化焼鈍においては、冷間圧延で導入された転位が再配列し、強度をほとんど低下させずに、スティフネス、伸びが少し向上する。また、機械的性質の異方性改善に対しても有効である。
前記の最終圧延前の再結晶組織においては、JISH0501に規定されている切断法で測定して特定の方向性あるいは偏りを持たずに平均寸法5〜30μmの再結晶粒が形成されていることが望ましい。ここで再結晶時の結晶粒度下限の5μmは工業的に実施可能な熱処理範囲内で比較的容易に実現可能な大きさであり、これ以下の結晶粒径も実現可能ではあるがきわめて短時間に熱処理を完了せねばならず、実用的でない。一方、再結晶時の結晶粒径が30μmを超えるようになると、連続竪型熱処理炉などの工程を通している際に自重による変形を受け、結晶粒内と粒界での歪の相違が生じ、製品表面に肌荒れが発生し、外観、曲げ加工性、製品特性の均一性が劣化する。
前記の再結晶組織においては強度が低下しているため、多量の転位を蓄積して強度を向上させるために加工率:10〜90%程度の最終冷間加工を施す。冷間加工によって再結晶組織は不可避的に圧延方向に引き伸ばされ、ラグビーボール形状となる。この場合、例えばJISH0501に規定されている切断法で測定すると、の圧延面において、板幅方向に測定した平均結晶粒径がほぼ5〜20μmの範囲内となり、かつ圧延方向に平行な方向に測定した平均結晶粒径がほぼ5〜300μmの範囲となる。
【0022】
(耐力/引張強さ)
本発明銅合金においては、耐力と引張り強さの比は、打抜き加工性(ばり量、だれ量など)に影響する打抜き断面比(せん断面/破断面)、及びスティフネスに影響を与える。打抜き断面比(せん断面/破断面)=1に近いほど打抜き加工性は良好である。また、本発明銅合金条からリードフレームを加工した場合、スティフネスが大きいほどアイランドのペコつきが発生し難くなる。
耐力と引張り強さの比(耐力/引張り強さ)が0.9以上になると、打抜き断面比がほぼ1となり打抜き加工性が向上し、かつスティフネスが向上するため打抜いたリードフレームにおけるアイランドのペコつきが発生し難くなる。このような理由から、耐力/引張強さの比は0.9以上とする。
【0023】
次に、製造工程について説明する。
(溶解鋳造)
本発明銅合金は大気中にて溶解鋳造が可能である。溶解炉としては、コアレス炉、溝型炉等を用いることができ、溶湯表面は木炭、黒鉛粒子、カバリングフラックス等で被覆し、なるべく大気との接触が少ない条件で行うことが望ましい。溶解手順は、例えば、先ず電気銅地金を溶解し、Sn、Zn、Fe、P又は/及びSiを適当な中間合金あるいは純金属の形態で、この順に銅溶湯に添加すれば特に問題は発生しない。また、溶解原料として、製造工程において発生したスクラップ、打抜き加工後の屑なども使用可能である。
また、水素が溶湯に取込まれないようにするために、溶湯と接触する木炭、黒鉛粒子、フラックス、炉材、鋳型、樋、治具の類などは十分乾燥しておくことが望ましい。本発明銅合金はZnを1.0%を越えて含むため、溶解鋳造工程においては溶湯からZnの蒸気が発生し、溶湯の水素含有量を低減するためには有利である。鋳造は、縦形連続鋳造によりスラブを造塊してもよく、あるいは横形連続鋳造を行ってもよい。
【0024】
(加工熱処理)
スラブの場合は、(1)熱間圧延、(2)冷間圧延、(3)焼鈍、(4)冷間圧延、(5)安定化焼鈍の工程((2)、(3)は繰返し行ってもよい)、水平連鋳材の場合は、(1)均質化焼鈍、(2)冷間圧延、(3)焼鈍、(4)冷間圧延、(5)安定化焼鈍の工程とすることが望ましい。熱間圧延は、合金組成によって適宜適当な圧延温度を選択すればよいが、鋳塊が750〜950℃に加熱されてからさらに30分〜2時間程度保持し、その後圧延を開始すればよい。熱間圧延終了後は水冷して、Ni−P化合物の析出を抑制しておくことが望ましい。
【0025】
本発明銅合金の特徴である強度及びスティフネスの向上を達成するには、一度再結晶組織とした後最終の冷間圧延を行い、その後低温において安定化焼鈍歪み取り焼鈍を行うことが望ましい。安定化焼鈍歪み取り焼鈍においては、冷間圧延で導入された転位が再配列し、強度をほとんど低下させずに、スティフネス、伸びが少し向上する。機械的性質の異方性改善に対しても有効である。
中間焼鈍、安定化焼鈍のいずれにおいても導電率を最大値に対して90%以下としておくことが望ましい。そのため、前記(3)の中間焼鈍においては、平均結晶粒径が5〜30μm程度の均一な再結晶組織を得るとともに、極力Ni−P化合物を析出させないために、350〜850℃、より好ましくは550〜650℃の温度で、5秒以上1分以下の条件(被加熱材が上記温度に達してからの当該温度と加熱時間)で焼鈍を行うことが望ましい。
【0026】
また、前記▲4▼の最終圧延は焼鈍により軟化した合金の強度及びスティフネスを向上させるために必要で、その加工率は10〜90%の間から選択すればよい。その後、▲5▼の安定化焼鈍を行うが、その目的は最終圧延により導入された転位を再配列させ、強度とスティフネスを保った状態で延性を改善することであるので、250〜850℃、より好ましくは300〜450℃の温度範囲で、5秒以上1分以下の条件で焼鈍(被加熱材が所定温度に達してからの当該温度と加熱時間)を行うことが望ましい。なお、本発明合金の焼鈍は再結晶や歪み取りが目的であるため、連続焼鈍炉により行うことが望ましい。
【0027】
さらに、連続焼鈍炉に付属の酸洗研磨装置あるいは別ラインにて、酸洗又は/及び研磨を行うことによって、表面の酸化膜が2〜4nm程度のリードフレーム用の材を製造することが可能である。歪みの少ないことを特に重視する用途に対しては、前記の最終焼鈍後、さらにテンションレベリング、あるいはテンションアニーリングの工程を追加してもよい。
なお、現状の高強度銅合金の多くは、銅母相中にNi−Si、Ni−P、Cu−Zr等の化合物、Cr等の金属原子が析出した析出強化型銅合金が大半を占めている(例えば特開2000−119779号参照)。一方、銅母相中にこれらの析出物粒子を形成させるには、銅に固溶している析出物構成元素を拡散させ、化合物を形成させてやる必要がある。そして、この拡散には400〜600℃の温度でも1〜数時間が必要であるため、これらの析出型銅合金の焼鈍はコイルをベル型炉などに装入後昇温し、所定温度到達後所定時間保持し、さらに室温近傍の温度まで降温するバッチ式焼鈍が採用されている。バッチ式焼鈍においては、焼鈍開始から焼鈍完了まで20〜30時間程度を要するため、析出型銅合金の生産性を低下させ、コストを上昇させる一因となっている。本発明の銅合金においては、Ni−P化合物を析出させる必要がないため、連続焼鈍炉の適用が可能となり、このことが生産性の向上及び製造コストの低減に大きく寄与している。
【0028】
【実施例】
以下に本発明に係る銅合金の実施例を説明する。
(実施例1)
表1、表2に示す組成の銅合金を電気炉により大気中、木炭被覆下で溶解し、ブックモールドに鋳造して50mm×70mm×200mmの鋳塊を製作した。この鋳塊を750〜900℃に加熱し、所定温度に到達してから1時間保持後熱間圧延した。板厚15mmまで圧延してから水に焼入れ、熱延上がり材とした。焼入れ時の温度はいずれも600℃以上であった。熱延上がり材において、割れの有無を目視にて確認した。割れの発生した熱延材はその後の加工熱処理を行わなかった。
【0029】
【表1】

Figure 0003729733
【0030】
【表2】
Figure 0003729733
【0031】
表1、2において、本発明例のNo.1〜8及び比較例のNo.9〜10、15〜27はいずれも熱間圧延時の割れは発生しなかった。一方、比較例のNo.11〜14の合金は熱延時に割れが発生したので、その後の加工熱処理を行わなかった。
なお、No.11はP及びSiが不足しているため脱酸不足により健全な鋳塊が得られず、No.12はHが過剰なため鋳塊に水素に起因すると思われるパイプ状の穴が多数形成されたため、いずれも熱間圧延を行わなかった。No.13はSが過剰なため熱間圧延時に割れが発生し、途中で熱延を中止した。No.14はCが過剰なため熱間上がり材に小さな割れが多く発生し、その後の加工熱処理を行わなかった。
【0032】
続いて、No.1〜10、15〜27について、熱延上がり材に下記の条件で加工熱処理を行い、厚さ0.11mmの板材を作製した。
熱延上がり材(15mmt)→0.22mmtまで冷間圧延→500〜700℃×20秒(塩浴炉)の焼鈍→0.11mmtまで冷間圧延→350℃×20秒の安定化焼鈍。
このようにして作製した厚さ0.11mmの薄板より試験片を加工し、下記の試験を行った。その結果を表3に示す。
【0033】
(機械的性質)
試験片の長手方向を圧延方向に平行としたJIS5号試験片(n=2)を加工し、引張り試験を行って0.2%耐力、引張強さを測定した。n=2の測定値の平均値をそれぞれの試験材の値とした。なお、ずれの試験片においても10%以上の伸びを確保することができた。
(電気伝導性)
電気伝導性は導電率を測定することにより評価した。導電率はJISH0505に基づいて測定した。
(はんだ耐候性)
MIL−STD−202F METHOD 208Dに基づき、60Sn−40Pb共晶はんだを用いてはんだ付けを行なった後、n=3にて大気中150℃×1000Hr経過後、曲げ直径1mmで180°曲げ戻しを行い、曲げ部におけるはんだの剥離の有無を目視で確認した。
【0034】
(スティフネス特性)
電子材料工業会規格:EMAS−1003に基づくモーメント式の試験機を使用し、曲げ半径:30mm、曲げモーメント:0.12N/mで負荷時の変位角度(゜)を測定した(n=2)。試験片は、幅10mm、長さ60mmで、試験片を保持した支点より30mmの位置に前記曲げモーメントを付加している。
(Agめっき性)
厚さ5μmのAgめっきを施した後、大気中で450℃×5分加熱後、表面を光学顕微鏡により倍率200倍で検鏡し、膨れ及び突起の有無を観察した。
【0035】
(耐応力腐食割れ性)
上記の試験片より12.7mmw×150mmlの試験片(n=4)を切り出し、応力腐食割れ試験をトンプソンの方法(Materials Research & Standards(1961)1081)に準じて行った。すなわち、試験片を図1に示すループ状にした後、14質量%のアンモニア水を入れ、40℃の温度で飽和蒸気を充満させたデシケータ中に暴露し、試験片が破断するまでの時間を測定した。
(耐ウイスカー性)
短冊状の試験片を治具を用いてアーク状に曲げ、それによりアークの頂点内側に約400N/mmの圧縮応力を作用させ、室温で3ヶ月保持した後、圧縮面(アーク頂上部内側)のウイスカーの発生状況を実体顕微鏡にて観察した。
【0036】
【表3】
Figure 0003729733
【0037】
本発明例No.1〜8は、いずれも良好な機械的性質、導電率、スティフネス特性、はんだ耐候性、耐応力腐食割れ性、Agめっき性、耐ウィスカー性を備えており、薄肉リードフレーム材として好適である。
一方、比較例のNo.9、10はSnの含有量が不足するためスティフネス特性に劣る。No.15はNiが過剰に含有されているため導電率が低く、はんだの剥離が生じ、スティフネス特性に劣る。No.16はNiの含有量が不足しているため耐力が低く、スティフネス特性にも劣る。No.17はSnが過剰に含有されているため導電率が低い。No.18はSnの含有量が不足しているため十分な耐力が得られず、スティフネス特性にも劣る。No.19はZnが過剰に含有されているため導電率が低く、応力腐食割れ性に劣る。No.20はZnの含有量が不足しているためはんだの剥離が生じ、さらにウイスカーが発生している。No.21はPが過剰に含有されているため導電率が低下し、はんだの剥離が生じ、さらに耐応力腐食割れ性に劣る。No.22はSiが過剰に含有されているため導電率が低下し、はんだ剥離が生じている。No.23はFeが過剰に含有されているため導電率が低下し、はんだ剥離が生じている。No.24はMgが過剰に含有されているため、Agめっきを行うと突起が発生し、さらにはんだ剥離が生じている。No.25はMn等が過剰に含有されているため導電率が低下し、はんだ剥離が生じている。No.26はP及びSiの含有量が上限値を超えるため導電率が低下し、はんだ剥離が生じ、さらに耐応力腐食割れ性が劣る。
【0038】
(実施例2)
表1のNo.2の熱延上がり材(15mmt)に、冷間圧延―中間焼鈍―冷間圧延−最終焼鈍等の加工熱処理を施して厚さ0.15mmの板材を作製した。表4にその加工熱処理条件を示す。これらの板材の結晶粒径、機械的性質、導電率、スティフネスなどを調査した。その結果を表5に示す。
【0039】
【表4】
Figure 0003729733
【0040】
【表5】
Figure 0003729733
【0041】
本発明例No.2−1〜2−3では耐力、導電率、密着曲げ加工性が良好、導電率がバッチ焼鈍材2−10に比較して90%以下であり、さらに耐力/引張強さの比が0.9以上、スティフネス特性も優れている。
一方、比較例No.2−4は中間焼鈍の加熱時間が短く、中間焼鈍時に再結晶せず、スティフネス特性に劣る。なお、表には記載しないが延び、曲げ加工性にも劣っている。No.2−5は中間焼鈍の加熱時間が長いため結晶粒が粗大化し、導電率がバッチ焼鈍材の90%以上であり、強度が低下している。また、耐力/引張強さの比が0.9未満であり、スティフネス特性も劣る。比較例2−6は最終焼鈍を行っていないためスティフネス特性が劣る。なお、表には記載しないが延び、曲げ加工性にも劣っている。No.2−7は最終焼鈍の温度が低く、加熱時間も短いため転位の再配列が発生せず、スティフネス特性が劣る。なお、表には記載しないが延び、曲げ加工性にも劣っている。No.2−8は最終焼鈍の温度が高く加熱時間も長いため、結晶粒が粗大化し強度が低下している。耐力/引張強さの比も0.9未満であり、スティフネス特性も劣る。No.2−9は最終焼鈍時間が長く結晶粒が粗大化し、Ni−P化合物などの析出が起こったため導電率もバッチ焼鈍材の90%以上となり、強度が低下している。耐力/引張強さの比も0.9未満であり、スティフネス特性にも劣る。No.2−10は中間焼鈍をバッチ焼鈍で行いNi−P化合物などの析出が起こったため、スティフネス特性に劣る。
【0042】
(実施例3)
表6に示す組成の鋳塊を連続鋳造により2本造塊した。鋳塊の寸法は、厚さ150mm、幅500mm、長さ5000mmである。この鋳塊を850℃に2時間保持後、厚さ15mmまで熱間圧延し、表面の酸化膜をスカルパーにより除去後、0.25mmまで冷間圧延し、DXガス雰囲気にて連続焼鈍、酸洗−研磨した。その後、この薄板を0.125mmまで冷間圧延し、仕上げ焼鈍をDXガス雰囲気の連続焼鈍炉にて行い、焼鈍後酸洗−研磨し、表面の酸化膜を除去して供試材とした。
【0043】
【表6】
Figure 0003729733
【0044】
上記供試材から、前記の方法により機械的性質、導電率、スティフネス特性等を測定し、さらに下記方法によりスタンピング加工し、打抜き加工性及び剪断加工性を評価した。その結果を表7に示す。
(打抜き加工性)
25tプレス(BRUDERER BSTA-25)を用いてクリアランス5%、打抜き速度600spmにてQFPタイプのリードフレームを100万ショット打抜き、その後の材料のばり高さ及びだれ幅を測定した。
(剪断加工性)
【0045】
【表7】
Figure 0003729733
【0046】
本発明例は、機械的性質、導電率、スティフネス特性、はんだ耐候性、スティフネス特性、耐応力腐食割れ性、Agめっき性、耐ウィスカー性、打抜き加工性及び剪断加工性を有することが分かる。また、打ち抜いたリードフレームのアイランド部にペコの発生はなく、アイランド部及びリード部の平坦性は共に極めて良好であった。
さらに、表面の酸化膜は2〜3nmであり、Agめっき、Snめっき性も極めて良好であった。めっき後のリードフレームにSiチップを実装し、LSIを製造したが、製造工程の加熱によっても強度不足、リードの反り、アイランドのペコなどの問題は発生することなく、歩留り及び生産性良くLSIの生産が可能であった。
【0047】
【発明の効果】
本発明によれば、打抜き加工性、スティフネス特性に優れ、さらに強度、はんだ耐候性、耐応力腐食割れ性、Agめっき性及び耐ウイスカー性にも優れるリードフレーム用銅合金を安価に供給することができる。
【図面の簡単な説明】
【図1】 耐応力腐食割れ性試験に用いたループ状試験片を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper alloy for lead frames used in transistors, ICs, LSIs, etc. Board More specifically, copper alloys for lead frames used in consumer and industrial electronic components with excellent stamping workability and stiffness characteristics Board About.
[0002]
[Prior art]
Copper and copper alloys have mechanical properties such as tensile strength and elongation, physical properties such as electrical conductivity and thermal conductivity, press workability, moldability such as etching properties, and plating properties, bonding properties, and corrosion resistance. Because of its excellent secondary characteristics, it is frequently used as a lead frame material for transistors, ICs, and LSIs. C102 (OFC), C19210 (Cu-0.1Fe-0.03P), C151 (Cu-0.02Zr), and other applications that require strength and electrical conductivity Applications such as C194 (Cu-2.3Fe-0.03P-0.15Zn), Cu-Ni-Si (Cu-3.2Ni-0.7Si-0.2Zn, etc.) that require higher strength Cu-Ni-Si-Sn type (Cu-3.2Ni-0.7Si-0.2Zn-1.25Sn etc.), C725 (Cu-9.2Ni-2.3Sn) etc. are used for this.
[0003]
In response to the recent demands for miniaturization of various electrical and electronic equipment and improvement in mounting density, various types of lead frames used for electronic parts such as transistors, ICs, LSIs, etc. have been put into practical use, lead pitch reduction, Thinning has progressed and the required properties have become more sophisticated. For example, the lead frame thickness of 0.25 mm to 0.1-0.2 mm, which has been the mainstream, has been widely used, and a 0.08 mm thickness has also been put into practical use. It's getting on.
[0004]
When the lead frame is thinned in this way, depending on the structure and mechanical properties, the planarity (coplanality) of the island portion on which the semiconductor element is mounted and the lead to which wire bonding is performed is likely to be deteriorated, or it becomes easy to generate sag. . In such a lead frame, the bonding position of the Si chip and the wire bonding position are likely to be misaligned, which causes a defect in the electronic component. Therefore, the thin and narrow pitch lead frames are required not only to satisfy the conventional mechanical properties, physical properties, and secondary workability, but also to the flatness of the island portion and the lead portion (coplanality). There is a strong demand for good quality and that the islands and lead portions do not become peckered. If there is a peco, the island and the lead will be inclined and the flatness will be lost.
[0005]
In order to satisfy such requirements, the composition and structure of the lead frame material are optimized, the island and lead portions after lead frame processing have sufficient rigidity (stiffness), and “burr” after stamping processing It is being considered to reduce “who”. Improvement of the existing alloys is also being studied by changing the thermomechanical treatment conditions.
Further, the thinning of the lead frame increases the cold working rate after the hot rolling is finished, so that the manufacturing cost of the lead frame material increases, and as a result, the price of the lead frame material tends to increase. On the other hand, since the ratio of the price of the lead frame to the price of the electronic component is large, there is a strong demand for a reduction in the price of the lead frame material from a stamper or a semiconductor manufacturer. In order to meet such demands, efforts are being made to reduce the manufacturing cost of lead frame materials at copper maker.
[0006]
[Problems to be solved by the invention]
The purpose of the present invention is to reduce the “burrs” and “sag” generated by the punching process while ensuring the values of strength, conductivity, plating properties, etc. that are higher than those of conventional materials, and the island and lead portions. Highly stiff copper alloy for leadframes with improved flatness by suppressing the occurrence of peking Board Is to provide.
[0007]
[Means for Solving the Problems]
Copper alloy for lead frames according to the present invention Board Ni: 0.1% or more and less than 0.5%, Sn: more than 1.0% and less than 2.5%, Zn: more than 1.0% and 15% or less, Fe: 0.001% or more. 1% or less, Mg: 0.0001% or more and 0.02% or less, P: 0.0005% or more and less than 0.05% and Si: 0.0005% or more and less than 0.05% or both of 0 .0005% or more and less than 0.05%, S: 0.0005% or more and 0.003% or less, C content: 0.0005% or less, O: 0.005% or less, and H: 0.0002 %, The balance is made of Cu and inevitable impurities, and the value of proof stress / tensile strength is 0.9 or more. Further, as required, Ag, Ti, Ca, Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, B, Ge, Sb: 0.001 to 0 each One or two or more selected from the 1% group can be included in a total amount of 0.001% to 0.1%.
[0008]
Also, the above lead frame copper alloy Board As a characteristic of having a conductivity of 90% or less with respect to the maximum value of the conductivity obtained by annealing, Board In the rolled surface, it is desirable that the crystal grain size measured in the plate width direction is 5 to 20 μm and the crystal grain size measured in a direction parallel to the rolling direction is 5 to 300 μm.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the copper alloy for lead frames according to the present invention Board Will be described in detail. First, the reason for adding each additive element and the reason for limiting the composition will be described.
(Ni)
Ni is an element that forms a modulation structure in the coexistence with Sn or improves strength, elongation, and stiffness characteristics in a solid solution state. If the content is less than 0.1%, the above effect cannot be obtained even if Sn exceeds 1.0% and less than 2.5%. On the other hand, when the content is 0.5% or more, the electrical conductivity and the solder weather resistance are lowered, which is disadvantageous in terms of cost. Therefore, the Ni content is set to be 0.1% or more and less than 0.5%.
In addition, when P is contained in this alloy, when Ni phosphide is formed, strength and stiffness are lowered. Therefore, it is desirable to select a manufacturing method that does not form Ni phosphide.
[0010]
(Sn)
In the copper alloy of the present invention, Sn forms a modulation structure in the coexistence with Ni, or has an effect of improving strength, elongation and stiffness in a solid solution state. If the content is less than 0.5%, the above effect cannot be obtained. If the content is 2.5% or more, the conductivity is lowered. Therefore, the addition amount of Sn exceeds 1.0% and is less than 2.5%.
In the Ni and Sn content ranges, it is desirable that x and y satisfy the following relational expression where the Ni content is x and the Sn content is y. Within this range, the balance of mechanical properties, electrical conductivity, bending workability, etc. is particularly excellent.
y = 3.75x + α
-0.875 ≦ α ≦ 1.125
[0011]
(Zn)
In the copper alloy of the present invention, Zn is an element effective in improving the strength and the weather resistance of the solder and suppressing the occurrence of whiskers in the Sn plating material. When the Zn content is 1.0% or less, the effect is small, and when the Zn content exceeds 15%, the electrical conductivity is lowered and stress corrosion cracking is likely to occur. Accordingly, the Zn content is more than 1.0 and 15% or less.
(Fe)
In the copper alloy of the present invention, Fe forms a solid solution or a compound with P, and has an effect of improving strength, heat resistance and stiffness characteristics even in a small amount. Since Fe forms phosphides more easily than Ni, Fe plays a role of preventing Ni phosphide formation by forming phosphides. If the content is less than 0.001%, there is no effect, and if it exceeds 0.1%, the electrical conductivity, solder resistance, etc. become poor. Therefore, the addition amount of Fe is 0.001% or more and 0.1% or less.
[0012]
(Mg)
In the melting and casting process, S easily penetrates from the raw material, atmosphere, etc., but in the alloy of the present invention, Mg fixes S in the matrix in the form of a stable compound and improves hot workability. Furthermore, even if Mg is a trace amount, it has the effect of improving strength, heat resistance and stiffness characteristics. If the Mg content is less than 0.0001%, the effect is not sufficient. On the other hand, when the content exceeds 0.02%, when Ag plating is performed, Ag is abnormally deposited in a protruding shape, and the reliability of wire bonding is lowered. Therefore, the Mg content is 0.0001% or more and 0.02% or less.
[0013]
(P)
In the copper alloy of the present invention, P is an element that contributes to the deoxidation and fluidity improvement of the molten metal and improves the soundness of the ingot. However, if the P content is less than 0.0005%, the effect is not sufficient. On the other hand, when 0.05% or more of P is added, a Ni-P intermetallic compound is easily formed depending on the manufacturing process, and strength, stiffness, and plating properties are lowered. In addition, even when heat treatment is performed under conditions that do not cause the Ni—P compound to precipitate, a decrease in electrical conductivity, peeling of solder and Sn plating, and stress corrosion cracking are likely to occur. Therefore, the P addition amount is set to 0.0005% or more and less than 0.05%. A more desirable range is 0.001% or more and less than 0.03%. As will be described later, when both P and Si are contained, there is a deoxidation effect similar to the case where P is contained alone. In this case, the total content of P and Si is 0.0005% or more. Less than 0.05%. Desirably, it is 0.001% or more and less than 0.03%.
[0014]
(Si)
In the copper alloy of the present invention, Si has a deoxidizing effect of the molten copper, and even if it is contained in the same amount, the effect of lowering the conductivity compared to P is small. Therefore, it becomes possible to reduce the P content by adding Si. Therefore, it is added instead of or together with P. However, P and Si have a larger deoxidizing effect. However, Si is preferred when considering stress corrosion cracking. Furthermore, Si has the effect of increasing the recrystallization temperature. In order to obtain these effects, it is desirable to contain Si by 0.0005% or more. On the other hand, when Si is contained in an amount of 0.05% or more, most is removed from the molten metal as an oxide after deoxidation, but Si dissolved in the matrix phase is whitened or peeled off of solder and Sn plating. In addition, the electrical conductivity is lowered. Therefore, when adding Si, the content is made 0.0005% or more and less than 0.05%. A desirable range is 0.001% or more and less than 0.03%. In addition, when it is contained together with P, the total content of P and Si is set to 0.0005% or more and less than 0.05%. Desirably, it is 0.0001% or more and less than 0.03%.
[0015]
(S)
In the copper alloy of the present invention, S is present at the grain boundary in the form of a simple substance, a low-melting intermetallic compound or a composite oxide, so that the punching processability is improved (reducing flash and improving the shear processability) It has the effect of reducing mold wear. If the S content is 0.0005% or less, the above effect is not obtained. On the other hand, when the content of S exceeds 0.003%, S present in the grain boundary during hot working or the sulfide is melted to cause grain boundary cracking, and the ingot is cracked. . For this reason, S content must be 0.003% or less. Therefore, the S content is set to be 0.0005% or more and 0.003% or less.
(C)
In the copper alloy of the present invention, C has the effect of improving the deoxidizing action of the molten metal and the punching workability, particularly the shear workability. For inclusion . However, if it exceeds 0.0005%, hot workability is deteriorated. Therefore, the content of C is 0.0005% or less (Excluding 0%) And In addition, it is possible to make the molten metal contain C by bringing charcoal, C particles, etc., covering the molten metal surface into contact with the molten metal during melting and casting. By this method, about 0.0001 to 0.0004% of C can be contained.
[0016]
(O, H)
The copper alloy of the present invention can be melted and cast in the atmosphere by using a normal coreless furnace, a grooved furnace, etc., without using a vacuum furnace, etc., and coating the molten metal surface with charcoal, C particles, appropriate flux, etc. can do. However, in the melting and casting process in the atmosphere, moisture, oxide, and water vapor, oxygen, carbon dioxide, hydrogen, etc. present in the atmosphere are attached to or contained in the coating material, furnace material, etc. on the surface of the molten metal. It is inevitable that the molten metal reacts with the molten metal to contain O or H. In particular, since it is difficult to effectively remove H once it is contained, care must be taken in the melting and casting atmosphere, the raw materials used, the molten metal coating material and the like so as not to contain more than a predetermined amount.
In the copper alloy of the present invention, if the H content exceeds 0.0002%, cracks during hot rolling, blistering during annealing, plating blistering, etc. occur and the yield is reduced, so the content is restricted to 0.0002% or less. Must. Desirably, it is 0.0001% or less, and more desirably 0.00007% or less.
[0017]
In the copper alloy of the present invention, if the O content exceeds 0.005%, oxides are likely to be formed in the melt casting process, hot rolling, and annealing process, and the ductility of the product is likely to be lowered by the oxides. Further, the plating properties of Ag, Sn, solder, etc. are lowered by the oxide and the solid solution oxygen. Therefore, the O content must be regulated to 0.005% or less. Desirably, it is 0.003% or less, and more desirably 0.002% or less.
Normally, both H and O are contained. However, if the H content is appm and the O content is bppm, if the value of a × b exceeds 40, H and H in the heating process such as hot rolling and annealing are performed. Since O reacts easily to form water vapor and causes cracking, swelling, etc., it is desirable that the value of a × b (H content (ppm) × O content (ppm)) be 40 or less. The value is more preferably 30 or less, and further preferably 20 or less.
[0018]
(Other selected elements)
Ag, Ti, Ca, Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, B, Ge, and Sb all have the strength and stiffness of the copper alloy of the present invention. Since it has the effect of improving, 1 type, or 2 or more types of elements selected from these groups are added as needed. However, if the content of each element is less than 0.001%, the above-mentioned effect is not sufficient. On the other hand, if one or more of these elements are contained in a total amount exceeding 0.1%, dissolution occurs. Coarse oxides are formed during casting, hot rolling or during thermomechanical treatment, and coarse crystallized substances are generated, resulting in a decrease in plating properties and electrical conductivity. Therefore, the content of these selective elements is 0.001% or more and 0.1% or less, and the total amount of one or more elements is 0.001% or more and 0.1% or less.
[0019]
Next, the copper alloy of the present invention Board The characteristics and organization of this will be described.
(conductivity)
In the copper alloy of the present invention, when the Ni—P compound is precipitated, the strength and the stiffness are deteriorated, and it is desirable to cause spinodal decomposition or solid solution (spinodal modulation structure) without precipitating the compound. Since there is a correlation between the precipitation amount of the Ni—P compound and the conductivity, the precipitation state of the compound can be estimated by the conductivity.
The copper alloy of the present invention Board In order to achieve the intended strength and stiffness, it is desirable that the conductivity be 90% or less with respect to the maximum value of the conductivity obtained by annealing the copper alloy. In the copper alloy of the present invention, the maximum conductivity is obtained at about 500 ° C., and the longer the heating time at this temperature, the higher the conductivity. However, the heating is practically saturated after 4 hours of heating. This is because this annealing produces almost the maximum amount of precipitates. Accordingly, in the present invention, the annealing condition for obtaining the maximum conductivity is set to 500 ° C. × 4 hours.
In addition, in order to set it as said electroconductivity after stabilization annealing, it is necessary to become said electroconductivity after annealing in the middle of cold rolling (before stabilization annealing).
[0020]
(Crystal grain size)
The copper alloy of the present invention Board To achieve the desired strength and stiffness in Board The average crystal grain size measured in the sheet width direction is preferably 5 to 20 μm and the average crystal grain size measured in the direction parallel to the rolling direction is preferably 5 to 300 μm. When the former crystal grain size is smaller than 5 μm or the latter crystal grain size is smaller than 5 μm, and when the former crystal grain size exceeds 20 μm or the latter crystal grain size exceeds 300 μm, bending workability is lowered. In addition, cracks are easily formed in the bent portion. Therefore, it is desirable that the crystal grain size measured in the plate width direction on the rolling surface is 5 to 20 μm and the crystal grain size measured in a direction parallel to the rolling direction is 5 to 300 μm.
[0021]
In order to achieve the crystal grain size described above, it is desirable to perform a final cold rolling after a recrystallized structure once, and then perform a stabilization annealing at a low temperature. In the stabilization annealing, the dislocations introduced in the cold rolling are rearranged, and the stiffness and elongation are slightly improved without substantially reducing the strength. It is also effective for improving the anisotropy of mechanical properties.
In the recrystallized structure before the final rolling, recrystallized grains having an average size of 5 to 30 μm are formed without having a specific directionality or deviation as measured by a cutting method defined in JISH0501. desirable. The crystal grain size lower limit of 5 μm at the time of recrystallization is a size that can be realized relatively easily within the industrially feasible heat treatment range, and a crystal grain size smaller than this can be realized, but in a very short time. The heat treatment must be completed and is not practical. On the other hand, when the crystal grain size at the time of recrystallization exceeds 30 μm, it undergoes deformation due to its own weight during the process such as continuous vertical heat treatment furnace, resulting in a difference in strain between the crystal grain and the grain boundary. The surface becomes rough and the appearance, bending workability, and uniformity of product characteristics deteriorate.
Since the strength of the recrystallized structure is lowered, a final cold working of a processing rate of about 10 to 90% is performed in order to accumulate a large amount of dislocations and improve the strength. Due to cold working, the recrystallized structure is inevitably stretched in the rolling direction to form a rugby ball. In this case, for example, when measured by the cutting method specified in JISH0501, Board In the rolled surface, the average crystal grain size measured in the sheet width direction is in the range of about 5 to 20 μm, and the average crystal grain size measured in the direction parallel to the rolling direction is in the range of about 5 to 300 μm.
[0022]
(Yield strength / Tensile strength)
The copper alloy of the present invention Board , The ratio of proof stress to tensile strength affects the punching cross-sectional ratio (shear surface / fracture surface) and the stiffness, which affect the punching workability (burr amount, droop amount, etc.). The closer the punching section ratio (shear surface / fracture surface) = 1, the better the punching workability. In addition, when a lead frame is processed from the copper alloy strip of the present invention, the island becomes less likely to stick as the stiffness increases.
When the ratio of proof stress to tensile strength (proof strength / tensile strength) is 0.9 or more, the punching section ratio is almost 1, improving the punching workability and improving the stiffness. It becomes difficult for peking to occur. For these reasons, the ratio of proof stress / tensile strength is set to 0.9 or more.
[0023]
next, Manufacturing process Will be described.
(Melting casting)
The copper alloy of the present invention can be melt cast in the atmosphere. As the melting furnace, a coreless furnace, a grooved furnace, or the like can be used, and it is desirable that the surface of the molten metal be covered with charcoal, graphite particles, covering flux, etc., and performed under conditions where contact with the atmosphere is as small as possible. For example, first, electrolytic copper metal is melted, and if Sn, Zn, Fe, P or / and Si are added in the form of a suitable intermediate alloy or pure metal to the copper melt in this order, there will be a particular problem. do not do. Moreover, scrap generated in the manufacturing process, scraps after punching, and the like can be used as the melting raw material.
In order to prevent hydrogen from being taken into the molten metal, it is desirable that charcoal, graphite particles, flux, furnace material, mold, firewood, jigs, and the like that are in contact with the molten metal be sufficiently dried. Since the copper alloy of the present invention contains Zn in excess of 1.0%, Zn vapor is generated from the molten metal in the melt casting process, which is advantageous for reducing the hydrogen content of the molten metal. For casting, the slab may be formed by vertical continuous casting, or horizontal continuous casting may be performed.
[0024]
(Process heat treatment)
For slabs, (1) Hot rolling, (2) Cold rolling, (3) Annealing, (4 ) Cold rolling, (5) Stabilization annealing process ( (2), (3) Can be repeated), in the case of horizontal continuous casting, (1) Homogenized annealing, (2) Cold rolling, (3) Annealing, (4) Cold rolling, (5) It is desirable to set it as the process of stabilization annealing. In hot rolling, an appropriate rolling temperature may be selected as appropriate depending on the alloy composition, but after the ingot is heated to 750 to 950 ° C., it is held for about 30 minutes to 2 hours, and then rolling may be started. After the hot rolling is finished, it is desirable to cool with water to suppress the precipitation of the Ni-P compound.
[0025]
The copper alloy of the present invention Board In order to achieve the improvement in strength and stiffness, which is a feature of the above, it is desirable to carry out final cold rolling after making a recrystallized structure once, and then perform stabilization annealing strain relief annealing at a low temperature. In the stabilization annealing and strain relief annealing, the dislocations introduced in the cold rolling are rearranged, and the stiffness and elongation are slightly improved without substantially reducing the strength. It is also effective for improving the anisotropy of mechanical properties.
In both the intermediate annealing and the stabilization annealing, it is desirable that the conductivity be 90% or less with respect to the maximum value. Therefore, in the intermediate annealing of (3), 350 to 850 ° C., more preferably, in order to obtain a uniform recrystallized structure having an average crystal grain size of about 5 to 30 μm and to prevent precipitation of Ni—P compounds as much as possible. It is desirable to perform annealing at a temperature of 550 to 650 ° C. for 5 seconds or more and 1 minute or less (the temperature and the heating time after the material to be heated reaches the above temperature).
[0026]
The final rolling (4) is necessary for improving the strength and stiffness of the alloy softened by annealing, and the processing rate may be selected from 10 to 90%. Thereafter, stabilization annealing of (5) is performed, the purpose of which is to rearrange the dislocations introduced by the final rolling and to improve the ductility while maintaining the strength and stiffness. More preferably, it is desirable to perform annealing (the temperature and the heating time after the material to be heated reaches a predetermined temperature) in the temperature range of 300 to 450 ° C. for 5 seconds to 1 minute. In addition, since annealing of the alloy of the present invention is aimed at recrystallization and distortion removal, it is desirable to carry out with a continuous annealing furnace.
[0027]
Furthermore, by pickling or / and polishing with a pickling and polishing apparatus attached to the continuous annealing furnace or another line, the surface oxide film is used for lead frames of about 2 to 4 nm. Board It is possible to produce a material. For applications that place particular importance on low distortion, a tension leveling or tension annealing step may be added after the final annealing.
Most of the current high-strength copper alloys are mainly composed of compounds such as Ni—Si, Ni—P, Cu—Zr, and precipitation strengthened copper alloys in which metal atoms such as Cr are precipitated in the copper matrix. (For example, refer to Japanese Patent Laid-Open No. 2000-119779). On the other hand, in order to form these precipitate particles in the copper matrix, it is necessary to form a compound by diffusing precipitate constituent elements dissolved in copper. Since this diffusion requires one to several hours even at a temperature of 400 to 600 ° C., annealing of these precipitation-type copper alloys is performed after the coil is charged into a bell-type furnace or the like, and after reaching a predetermined temperature. Batch type annealing is employed in which the temperature is maintained for a predetermined time and further lowered to a temperature near room temperature. In batch-type annealing, it takes about 20 to 30 hours from the start of annealing to the completion of annealing, which contributes to a decrease in productivity of the precipitation-type copper alloy and an increase in cost. In the copper alloy of the present invention, since it is not necessary to precipitate the Ni—P compound, it is possible to apply a continuous annealing furnace, which greatly contributes to improvement of productivity and reduction of manufacturing cost.
[0028]
【Example】
The copper alloy according to the present invention below Board Examples will be described.
(Example 1)
Copper alloys having the compositions shown in Tables 1 and 2 were melted in the atmosphere and under a charcoal coating in an electric furnace, and cast into a book mold to produce a 50 mm × 70 mm × 200 mm ingot. The ingot was heated to 750 to 900 ° C., held for 1 hour after reaching a predetermined temperature, and hot rolled. After rolling to a plate thickness of 15 mm, it was quenched in water to obtain a hot rolled material. The temperature during quenching was 600 ° C. or higher. The hot-rolled material was visually checked for cracks. The hot-rolled material with cracks was not subjected to subsequent heat treatment.
[0029]
[Table 1]
Figure 0003729733
[0030]
[Table 2]
Figure 0003729733
[0031]
In Tables 1 and 2, Nos. 1-8 and Comparative Example No. In any of Nos. 9 to 10, 15 to 27, cracks during hot rolling did not occur. On the other hand, no. Since the alloys 11 to 14 were cracked during hot rolling, no subsequent heat treatment was performed.
In addition, No. No. 11 has a lack of P and Si, so a sound ingot cannot be obtained due to insufficient deoxidation. In No. 12, since H was excessive, a number of pipe-like holes believed to be caused by hydrogen were formed in the ingot, and none of them was hot-rolled. No. No. 13 had an excess of S, so cracking occurred during hot rolling, and hot rolling was stopped halfway. No. In No. 14, since C was excessive, many hot cracks were generated in the hot-rolled material, and no subsequent heat treatment was performed.
[0032]
Subsequently, no. About 1-10, 15-27, the hot-rolled material was subjected to a thermomechanical treatment under the following conditions to produce a plate material having a thickness of 0.11 mm.
Hot rolled material (15 mmt) → cold rolling to 0.22 mmt → annealing at 500 to 700 ° C. × 20 seconds (salt bath furnace) → cold rolling to 0.11 mmt → stabilizing annealing at 350 ° C. × 20 seconds.
A test piece was processed from the thin plate having a thickness of 0.11 mm produced as described above, and the following test was performed. The results are shown in Table 3.
[0033]
(mechanical nature)
A JIS No. 5 test piece (n = 2) in which the longitudinal direction of the test piece was parallel to the rolling direction was processed, and a tensile test was performed to measure 0.2% proof stress and tensile strength. The average value of the measured values of n = 2 was taken as the value of each test material. It should be noted that an elongation of 10% or more could be ensured even in the misaligned test piece.
(Electrical conductivity)
Electrical conductivity was evaluated by measuring conductivity. The conductivity was measured based on JISH0505.
(Solder weather resistance)
After soldering with 60Sn-40Pb eutectic solder based on MIL-STD-202F METHOD 208D, after 150 ° C x 1000Hr in air at n = 3, bend back 180 ° with a bending diameter of 1mm The presence or absence of peeling of the solder in the bent part was visually confirmed.
[0034]
(Stiffness characteristics)
Electronic Material Industry Association Standard: Using a moment type testing machine based on EMAS-1003, the displacement angle (°) under load was measured at a bending radius of 30 mm and a bending moment of 0.12 N / m (n = 2). . The test piece has a width of 10 mm and a length of 60 mm, and the bending moment is applied to a position 30 mm from the fulcrum holding the test piece.
(Ag plating property)
After applying Ag plating with a thickness of 5 μm, after heating at 450 ° C. for 5 minutes in the air, the surface was examined with an optical microscope at a magnification of 200 times to observe the presence of swelling and protrusions.
[0035]
(Stress corrosion cracking resistance)
A 12.7 mmw × 150 ml test piece (n = 4) was cut out from the above test piece, and a stress corrosion cracking test was performed according to the Thompson method (Materials Research & Standards (1961) 1081). That is, after making the test piece into the loop shape shown in FIG. 1, 14% by mass of ammonia water was added and exposed to a desiccator filled with saturated vapor at a temperature of 40 ° C., and the time until the test piece broke was determined. It was measured.
(Whisker resistance)
A strip-shaped test piece is bent into an arc shape using a jig, and thereby approximately 400 N / mm inside the top of the arc. 2 Then, after maintaining for 3 months at room temperature, the occurrence of whiskers on the compression surface (inside the top of the arc) was observed with a stereomicroscope.
[0036]
[Table 3]
Figure 0003729733
[0037]
Invention Example No. Each of Nos. 1 to 8 has good mechanical properties, electrical conductivity, stiffness characteristics, solder weather resistance, stress corrosion cracking resistance, Ag plating property, and whisker resistance, and is suitable as a thin lead frame material.
On the other hand, no. Nos. 9 and 10 are inferior in stiffness characteristics due to insufficient Sn content. No. Since No. 15 contains Ni excessively, the electrical conductivity is low, the solder is peeled off, and the stiffness characteristics are inferior. No. No. 16 has a low yield strength due to a lack of Ni content and inferior stiffness properties. No. Since No. 17 contains Sn excessively, its conductivity is low. No. No. 18 has insufficient Sn content, so that sufficient proof stress cannot be obtained, and the stiffness characteristics are inferior. No. Since No. 19 contains Zn excessively, electrical conductivity is low and stress corrosion cracking property is inferior. No. In No. 20, since the Zn content is insufficient, the solder is peeled off, and whiskers are generated. No. No. 21 contains P excessively, so that the electrical conductivity is lowered, the solder is peeled off, and the stress corrosion cracking resistance is inferior. No. No. 22 contains Si excessively, so that the electrical conductivity is lowered and the solder is peeled off. No. In No. 23, Fe is excessively contained, so that the electrical conductivity is lowered and the solder is peeled off. No. Since No. 24 contains excessive Mg, when Ag plating is performed, protrusions are generated and further solder peeling occurs. No. No. 25 contains Mn and the like excessively, so that the electrical conductivity is lowered and the solder is peeled off. No. In No. 26, since the P and Si contents exceed the upper limit, the electrical conductivity is lowered, solder peeling occurs, and the stress corrosion cracking resistance is inferior.
[0038]
(Example 2)
No. in Table 1 No. 2 hot rolled material (15 mmt) was subjected to processing heat treatment such as cold rolling-intermediate annealing-cold rolling-final annealing to produce a plate material having a thickness of 0.15 mm. Table 4 shows the conditions for the thermomechanical treatment. The crystal grain size, mechanical properties, conductivity, stiffness, etc. of these plate materials were investigated. The results are shown in Table 5.
[0039]
[Table 4]
Figure 0003729733
[0040]
[Table 5]
Figure 0003729733
[0041]
Invention Example No. In 2-1 to 2-3, the proof stress, electrical conductivity and adhesion bending workability are good, the electrical conductivity is 90% or less as compared with the batch annealed material 2-10, and the ratio of proof stress / tensile strength is 0. 9 or more, the stiffness characteristic is also excellent.
On the other hand, Comparative Example No. 2-4 Short heating time for intermediate annealing It does not recrystallize during intermediate annealing and is inferior in stiffness characteristics. Although not shown in the table, it extends and is inferior in bending workability. No. In 2-5, since the heating time of the intermediate annealing is long, the crystal grains are coarsened, the conductivity is 90% or more of the batch annealing material, and the strength is reduced. Moreover, the ratio of proof stress / tensile strength is less than 0.9, and the stiffness characteristics are also inferior. Since Comparative Example 2-6 was not subjected to final annealing, the stiffness characteristics were inferior. Although not shown in the table, it extends and is inferior in bending workability. No. In No. 2-7, the final annealing temperature is low and the heating time is short, so rearrangement of dislocation does not occur and the stiffness characteristics are inferior. Although not shown in the table, it extends and is inferior in bending workability. No. In No. 2-8, since the final annealing temperature is high and the heating time is long, the crystal grains are coarsened and the strength is reduced. The ratio of proof stress / tensile strength is also less than 0.9, and the stiffness characteristics are inferior. No. In No. 2-9, the final annealing time is long and the crystal grains become coarse, and precipitation of Ni—P compounds and the like occurs. Therefore, the conductivity is 90% or more of the batch annealing material, and the strength is reduced. The ratio of proof stress / tensile strength is also less than 0.9, and the stiffness characteristics are inferior. No. In No. 2-10, intermediate annealing is performed by batch annealing, and precipitation of Ni—P compound or the like occurs, so that the stiffness characteristics are inferior.
[0042]
(Example 3)
Two ingots having the composition shown in Table 6 were formed by continuous casting. The dimensions of the ingot are a thickness of 150 mm, a width of 500 mm, and a length of 5000 mm. The ingot is kept at 850 ° C. for 2 hours, hot rolled to a thickness of 15 mm, the oxide film on the surface is removed by a scalper, cold rolled to 0.25 mm, continuously annealed in a DX gas atmosphere, pickled -Polished. Then, this thin plate was cold-rolled to 0.125 mm, and finish annealing was performed in a continuous annealing furnace in a DX gas atmosphere. After annealing, pickling and polishing were performed, and the oxide film on the surface was removed to obtain a test material.
[0043]
[Table 6]
Figure 0003729733
[0044]
From the above specimens, mechanical properties, electrical conductivity, stiffness characteristics and the like were measured by the above-mentioned methods, and further stamped by the following methods to evaluate punching workability and shear workability. The results are shown in Table 7.
(Punching workability)
Using a 25-ton press (BRUDERER BSTA-25), a QFP type lead frame was punched 1 million shots with a clearance of 5% and a punching speed of 600 spm, and then the flash height and the droop width of the material were measured.
(Shearability)
[0045]
[Table 7]
Figure 0003729733
[0046]
Example of the present invention Is found to have mechanical properties, electrical conductivity, stiffness properties, solder weatherability, stiffness properties, stress corrosion cracking resistance, Ag plating properties, whisker resistance, punching workability and shearing workability. Further, there was no occurrence of peco in the island part of the punched lead frame, and the flatness of both the island part and the lead part was very good.
Furthermore, the oxide film on the surface was 2 to 3 nm, and Ag plating and Sn plating properties were extremely good. An LSI was manufactured by mounting a Si chip on the lead frame after plating, but there was no problem of insufficient strength, lead warpage, island pecoing, etc. due to heating in the manufacturing process. Production was possible.
[0047]
【The invention's effect】
According to the present invention, the copper alloy for lead frames is excellent in punching workability and stiffness characteristics, and also excellent in strength, solder weather resistance, stress corrosion cracking resistance, Ag plating property and whisker resistance. Board Can be supplied at low cost.
[Brief description of the drawings]
FIG. 1 is a view showing a loop-shaped test piece used in a stress corrosion cracking resistance test.

Claims (4)

Ni:0.1%(質量%、以下同じ)以上0.5%未満、Sn:1.0%を超え2.5%未満、Zn:1.0%を超え15%以下、Fe:0.001%以上0.1%以下、Mg:0.0001%以上0.02%以下、P:0.0005%以上0.05%未満とSi:0.0005%以上0.05%未満のいずれか一方又は双方を0.0005%以上0.05%未満、S:0.0005%以上0.003%以下、C:0.0005%以下を含み、さらにO:0.005%以下、かつH:0.0002%以下であり、残部がCu及び不可避的不純物からなり、耐力/引張強さの値が0.9以上であることを特徴とするリードフレーム用銅合金Ni: 0.1% (mass%, hereinafter the same) or more and less than 0.5%, Sn: more than 1.0% and less than 2.5%, Zn: more than 1.0% and less than 15%, Fe: 0.0. 001% or more and 0.1% or less, Mg: 0.0001% or more and 0.02% or less, P: 0.0005% or more and less than 0.05% and Si: 0.0005% or more and less than 0.05% One or both include 0.0005% or more and less than 0.05%, S: 0.0005% or more and 0.003% or less, C: 0.0005% or less, O: 0.005% or less, and H: A copper alloy plate for a lead frame, characterized in that it is 0.0002% or less, the balance is made of Cu and inevitable impurities, and the value of proof stress / tensile strength is 0.9 or more. さらにAg、Ti、Ca、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、B、Ge、Sb:各0.001〜0.1%の群より選択する1種又は2種以上を総量で0.001%以上0.1%以下含むことを特徴とする請求項1に記載されたリードフレーム用銅合金Furthermore, Ag, Ti, Ca, Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, B, Ge, Sb: each group of 0.001 to 0.1% The lead alloy copper alloy sheet according to claim 1, further comprising one or more selected from a total amount of 0.001% to 0.1%. 焼鈍して得られる導電率の最大値に対して90%以下の導電率を有することを特徴とする請求項1又は2に記載されたリードフレーム用銅合金The copper alloy plate for a lead frame according to claim 1 or 2, wherein the copper alloy plate has a conductivity of 90% or less with respect to a maximum value of the conductivity obtained by annealing. の圧延面において、板幅方向に測定した平均結晶粒径が5〜20μmであり、かつ圧延方向に平行な方向に測定した平均結晶粒径が5〜300μmであることを特徴とする請求項1〜3のいずれかに記載されたリードフレーム用銅合金 The average crystal grain size measured in the plate width direction on the rolled surface of the plate is 5 to 20 µm, and the average crystal grain size measured in a direction parallel to the rolling direction is 5 to 300 µm. The copper alloy plate for lead frames described in any one of 1-3.
JP2000398089A 2000-12-27 2000-12-27 Copper alloy plate for lead frame Expired - Fee Related JP3729733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398089A JP3729733B2 (en) 2000-12-27 2000-12-27 Copper alloy plate for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398089A JP3729733B2 (en) 2000-12-27 2000-12-27 Copper alloy plate for lead frame

Publications (2)

Publication Number Publication Date
JP2002194461A JP2002194461A (en) 2002-07-10
JP3729733B2 true JP3729733B2 (en) 2005-12-21

Family

ID=18863119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398089A Expired - Fee Related JP3729733B2 (en) 2000-12-27 2000-12-27 Copper alloy plate for lead frame

Country Status (1)

Country Link
JP (1) JP3729733B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277256A (en) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd Lead wire and thermoelectric module comprising the same
JP4493083B2 (en) * 2004-12-01 2010-06-30 日鉱金属株式会社 High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
CN101693960B (en) * 2005-06-08 2011-09-07 株式会社神户制钢所 Copper alloy, copper alloy plate, and process for producing the same
CN100469923C (en) * 2006-09-27 2009-03-18 苏州有色金属加工研究院 High temperature copper alloy for lead frame and its making process
US7928541B2 (en) 2008-03-07 2011-04-19 Kobe Steel, Ltd. Copper alloy sheet and QFN package
JP5236973B2 (en) * 2008-03-18 2013-07-17 株式会社神戸製鋼所 Copper alloy plate for QFN package with excellent dicing workability
EP2653575B1 (en) 2010-12-13 2016-07-27 Nippon Seisen Co., Ltd. Copper alloy wire and copper alloy spring
CN108384986B (en) * 2018-05-07 2020-02-21 宁波博威合金材料股份有限公司 Copper alloy material and application thereof
CN113774250A (en) * 2021-09-24 2021-12-10 佛山市顺德区精艺万希铜业有限公司 High-strength high-heat-conductivity high-corrosion-resistance copper alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2002194461A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP4566048B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
JP4787986B2 (en) Copper alloy and manufacturing method thereof
KR20120041808A (en) Copper alloy plate for electrical and electronic components
JP4441669B2 (en) Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP3729733B2 (en) Copper alloy plate for lead frame
JP3729662B2 (en) High strength and high conductivity copper alloy sheet
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
TWI527914B (en) Strength, heat resistance and bending workability of the Fe-P copper alloy plate
US6949150B2 (en) Connector copper alloys and a process for producing the same
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JP4407953B2 (en) High strength and high conductivity copper alloy sheet
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP2012153938A (en) Cu-Ni-Si-BASED COPPER ALLOY EXCELLENT IN BENDABILITY AND STRESS RELAXATION RESISTANCE
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP2962139B2 (en) Copper alloy with excellent plating properties and conductivity and thin plate or strip made of this copper alloy
JP2555070B2 (en) Manufacturing method of high strength copper base alloy
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP2001279348A (en) Copper alloy for electronic and electrical parts, planar row material and row material having deformed cross section, and lead frame formed by the planar row material or row material having deformed cross section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Ref document number: 3729733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees