JP4129807B2 - Copper alloy for connector and manufacturing method thereof - Google Patents

Copper alloy for connector and manufacturing method thereof Download PDF

Info

Publication number
JP4129807B2
JP4129807B2 JP2000004658A JP2000004658A JP4129807B2 JP 4129807 B2 JP4129807 B2 JP 4129807B2 JP 2000004658 A JP2000004658 A JP 2000004658A JP 2000004658 A JP2000004658 A JP 2000004658A JP 4129807 B2 JP4129807 B2 JP 4129807B2
Authority
JP
Japan
Prior art keywords
mass
less
young
modulus
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000004658A
Other languages
Japanese (ja)
Other versions
JP2001164328A (en
Inventor
章 菅原
邦彦 智原
宏人 成枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2000004658A priority Critical patent/JP4129807B2/en
Publication of JP2001164328A publication Critical patent/JP2001164328A/en
Application granted granted Critical
Publication of JP4129807B2 publication Critical patent/JP4129807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コネクタ等の電気・電子部品用材料として好適な強度導電性を有し、さらにヤング率の小さい銅合金およびその製造法に関するものである。
【0002】
【従来の技術】
近年のエレクトロニクスの発達により、種々の機械の電気配線は複雑化、高集積化が進み、それに伴いコネクタ等の電気・電子部品用として使用される伸銅品材料が増加している。また、コネクタ等の電気・電子部品は、軽量化、高信頼性、低コスト化が要求されている。よって、これらの要求を満たすために、コネクタ用銅合金材料は薄肉化され、また複雑な形状にプレスされるため、強度、弾性、導電性及びプレス成形性が良好でなければならない。
【0003】
具体的には、端子において、挿抜時や曲げに対して座屈や変形しない強度、電線の加締め、保持に対する強度、したがって引張強さは、600N/mm2以上、できれば700N/mm2以上が好ましい。さらに通電によるジュール熱発生を抑えるため導電率は、18%IACS以上が好ましい。また、端子の小型化によりプレス成形性の要求も厳しくなり、曲げ部半径(R)と板厚(t)の比R/tが1以下を満足するような加工性が必要である。
【0004】
また従来は、コネクタが小型化され、小さい変位で大きな応力が得られるよう材料のヤング率が大きいことが求められていたが、端子自身の寸法精度が厳しくなり、金型技術やプレスの操業管理、または材料の板厚や残留応力のバラツキ等、管理基準が厳しくなり、逆にコストアップを招いていた。そこで、最近はヤング率の小さい材料を用い、ばねの変位を大きくとる構造とし、寸法のばらつきを許容できる設計が求められてきている。したがって、ヤング率が115kN/mm2以下、好ましくは110kN/mm2以下であることが求められてきている。
【0005】
上記に加え、金型のメンテナンスの頻度もコストに占める割合が大きく、クローズアップされてきている。金型のメンテナンスの大きな要因として、工具の摩耗があげられる。素材をプレス加工(打ち抜きや曲げ)する際に、パンチ、ダイス、ストリッパー等の工具が摩耗し、加工材のバリ発生や寸法不良につながる。この際、素材自身の摩耗に与える影響も大きい。したがって、金型摩耗性に対する材料側の改善要求も高くなってきている。
【0006】
更に、耐食性、耐応力腐食割れ性に優れていることが必要であり、またメス端子に至っては、熱的負荷が加わることから、耐応力緩和特性に優れていなければならない。具体的には、応力腐食割れ寿命は従来の黄銅一種の3倍以上、応力緩和率は80〜150℃において緩和率が黄銅一種の半分以下であることが望ましい。
【0007】
従来、黄銅やりん青銅等が、コネクタ材として一般的に使用されていた。黄銅は低コストの材料として使用されているが、引張強さは質別がEHでも600N/mm2を越えず、また耐食性、耐応力腐食割れ性、耐応力緩和特性で劣っている。りん青銅は、強度、耐食性、耐応力腐食割れ性、耐応力緩和特性のバランスに優れている。しかしながら、導電率が例えばばね用りん青銅で12%IACSと小さく、且つコスト的にも不利である。そこで多くの銅合金が研究、開発され提案されている。しかしながら、提案された多くの銅合金は、銅に微量な添加元素を加え、強度、電気伝導性、耐応力緩和特性等の特性をバランスさせたものであり、ヤング率については120〜135kN/mm2と大きな値であり、またコストも高かった。
【0008】
ここで、黄銅、りん青銅共にヤング率は110〜120kN/mm2であり、小さいヤング率が前述設計の要求に合致し、最近またこれらの材料が見直されてきている。よって、黄銅に近い価格で、引張強さ600N/mm2以上、導電率が18%IACS以上、ヤング率が115kN/mm2以下、好ましくは110kN/mm2以下である材料が切に望まれている。
【0009】
また、コネクタ等の電気・電子部品はSnめっきされることが多いが、これを原料にするために合金元素としてSnを含有することが必要である。次に、切断、切削やプレスしたくずは、切断、切削、プレス等の油の存在のために、溶解原料として使用するためには、脱脂や洗浄等が必要であった。前処理なしに直接原料として使用した場合には、油の燃焼(酸化)や蒸発の過程で炉壁を痛めたり、水素の吸蔵によるインゴットのブローホール発生があり、歩留まり低下等コストアップの要因となっていた。
【0010】
さらに、従来のSnめっき材は、母材となる素材の製造工程とSnめっき等の表面処理工程が各々独立して実施されており、熱処理等をはじめとした工程短縮等のコストダウンの余地があった。また母材の材質によって、Cu下地めっきの有無や厚さ等が検討されているが、これはめっき加熱剥離の見地から検討されたものであり、耐応力緩和特性、はんだ付け性、接触抵抗、ばね性などコネクタ端子として要求される特性において、総合的には検討されていなかった。そのため、CuやSnの最適膜厚の検討は不十分であった。
【0011】
【発明が解決しようとする課題】
本発明は、エレクトロニクスの発達にともない、コネクタ等の電気・電子部品用材料に要求される上記のような諸特性を兼備した銅合金、すなわち強度、導電率、ヤング率、プレス成形性、コスト等に優れたコネクタ用銅合金およびその製造法を提供するものである。
【0012】
【課題を解決するための手段】
本発明は、銅より安価な成分を添加することにより低コスト化を図りつつ、コネクタ等の電気・電子部品用材料に要求される上記のような諸特性を兼備した銅合金、すなわち強度、導電率、ヤング率、プレス成形性、コスト等に優れたコネクタ用銅合金を提供するものである。またさらに、Snを表面処理した本合金のプレスくずを直接溶解原料として使用することが可能な製造法および本合金のSn表面処理材をより有利に得るための製造法を提供するものである。
【0013】
(1) Zn:20〜41質量%Sn:0.1 〜4.0 質量%の範囲で含有し、かつ次式(1)を満たし
6.0 ≦0.25X+Y≦12・・・(1)
ただし、X:Znの含有量(質量%)
Y:Snの含有量(質量%)
なるZn,Snを含み、残部がCuおよび不可避不純物からなり、
更にTi0.01〜3質量%、Mg:0.01〜2質量%、Si:0.01〜0.05質量%、Mn:0.01〜0.23質量%、Be:0.01〜3質量%、Cr:0.01〜3質量%、Ag:0.01〜5質量%のうち少なくとも1種以上の元素を含み、その総量が0.01〜5質量%であり、ただし、Sが30ppm 以下第2相の面積占有比率が10%以下であり更に、引張強さ700N/mm2以上、導電率が18%IACS以上、ヤング率が115kN/mm2、以下であることを特徴とするコネクタ用銅合金。
【0014】
(2)Zn:20〜41質量%、Sn:0.1 〜4.0 質量%の範囲でかつ次式(1)を満たしてなるZn,Snを含み、
6.0 ≦0.25X+Y≦12・・・(1)
ただし、X:Znの含有量(質量%)
Y:Snの含有量(質量%)
残部がCuおよび不可避不純物からなり、更にTi0.01〜3質量%、Mg:0.01〜2質量%、Si:0.01〜0.05質量%、Mn:0.01〜0.23質量%、Be:0.01〜3質量%、Cr:0.01〜3質量%、Ag:0.01〜5質量%のうち少なくとも1種以上の元素を含み、その総量が0.01〜5質量%であり、ただしSが30ppm 以下、である銅合金材料を、300〜750℃の温度で1〜360分間の熱処理後、加工率15%以上で冷間加工することによって、第2相の面積占有比率が10%以下で、更に引張強さ700N/mm2以上、導電率が18%IACS以上、ヤング率が115kN/mm2以下であることを特徴とするコネクタ用銅合金の製造法。
【0015】
【作用】
次に、本発明の内容を具体的に説明する。先ず、本発明銅合金における成分量限定理由につき説明する。Zn:Znを添加することにより、強度、ばね性が向上し、かつCuより安価であるため多量に添加することが望ましいが、41質量%を越えると第2相の面積比率も10%を越える場合があり、加工性、耐食性、耐応力腐食割れ性が低下する。さらにめっき性、はんだ付性が低下する。また、20質量%より少ないと強度、ばね性が不足し、ヤング率が大きくなり、さらにSnを表面処理したスクラップを原料とした場合、溶融時の水素ガス吸蔵が多くなり、インゴットのブローホールが発生しやすくなる。また、安価なZnが少なく経済的にも不利になる。したがって、Znは、20〜41質量%の範囲であれば良い。更に好ましい範囲としては、25〜38質量%である。
【0016】
Sn:
Snは微量で強度,弾性をはじめとした機械的特性を向上させる効果がある。また、Znの共存下で多くの銅合金系に比較し小さいヤング率を満足することができる。さらにSnめっき等のSnを表面処理した材料の再利用の点からも添加元素として含有するのが好ましい。しかし、Sn含有量が増すと導電率が急激に低下し、また熱間加工性も低下する。導電率18%IACSを確保するためには、4.0 質量%を越えない範囲でなければならない。また、0.1 質量%より少ないと以上のような効果が望めない。したがって、Snは、0.1 〜4.0 質量%の範囲であれば良い。
【0017】
また、第2相の面積比率は10%以下が望ましい。ここで第2相は、CuとZnとの化合物による第1相(いわゆるα相)以外の相の全てをさすものとし例えばβ相、γ相あるいは後述する第3以降の添加元素とZn、Snとの化合物やこれら同士の化合物によって得られる相である。これらの異相の合計が10%をこえると成形加工性が極端に劣化するのと同時にヤング率にも影響してしまう。したがって、第2相の面積比率は10%以下、好ましくは5%以下とする。しかしながら金型摩耗に対して、わずかの第2相を含んでいた方が有利であることがわかった。このような効果は、0.1 %以上必要であり、更に好ましくは0.5 %以上必要である。これらを勘案すると好ましい第2相の面積比率は0.5 〜5%となる。
【0018】
また、以上のようにして限定された成分の範囲であれば、Cuの固溶限を越えて析出する第2相の面積比率を制御でき、なおかつ以下の式(1)より限定される範囲(図1.斜線部が本銅基合金の組成範囲)でZn、SnをCuに添加することで引張強さ600N/mm2以上、導電率が18%IACS以上、ヤング率が115kN/mm2以下、さらにコネクタ材として必要な諸特性、具体的には耐食性、耐応力腐食割れ性(アンモニア蒸気中での割れ寿命が黄銅一種の3倍以上)、耐応力緩和特性(80〜120℃における緩和率が黄銅一種の半分以下、りん青銅並)、成形加工性(R/t≦1.0 の90°W曲げにもクラック発生無し)等を満足するコネクタ用銅基合金を製造できる。
【0019】
(1)式について
6.0 ≦0.25X+Y≦12・・・(1)
ただし、X:Znの含有量(質量%)
Y:Snの含有量(質量%)
なお(1)式において式の値が6.0より少ないと引張強さ等の強度が低下し、所望のヤング率が得られず,12より大きいと導電率や成形加工性が低下するなどの悪影響をおよぼすことになる。
【0020】
さらに、不純物のSはできるだけ少ない方が望ましい。Sは少量の含有で、熱間圧延における変形能を著しく低下させる。特に、硫酸浴でSnめっきされたくずを使用した場合やプレス等の油からSが取り込まれるが、この値を規制することにより、熱間圧延での特に350〜600℃の温度域での割れ防止につなげることができる。このような効果を発現するには、Sは30ppm 以下、好ましくは15ppm 以下が必要である。
【0021】
さらに、第3添加元素として、更にTi0.01〜3質量%、Mg:0.01〜2質量%、Si:0.01〜0.05質量%、Mn:0.01〜0.23質量%、Be:0.01〜3質量%、Cr:0.01〜3質量%、Ag:0.01〜5質量%のうち少なくとも1種以上の元素を含み、その総量が0.01〜5質量%を含んでも良い。これらは、導電率、ヤング率や成形加工性を大きく損なうことなく、強度を向上できる。また、各元素の含有範囲からはずれると所望とする効果が得られなくないかもしくは、成形加工性、導電率、ヤング率、コスト面で不利となる。
【0022】
次に、本発明に係る製造条件の限定理由につき説明する。本発明合金にSnを表面処理した材料のプレス打ち抜きくずを原料として溶解するに際し、300〜600℃の温度で0.5 〜24hr、大気中または不活性雰囲気中で熱処理した後に溶解する。300℃未満の温度では、プレスくずに付着したプレス油の燃焼が不十分であり、また保管中に吸着した水分の乾燥が不十分であり、この後急激に温度を上昇させ溶解作業に入ると、分解により生成した水素を溶湯中に吸収しブローホール発生の原因となる。
【0023】
また、600℃を超える温度では、酸化が急激に進みドロス発生の原因となる。このドロスは溶湯の粘性を高め鋳造性を低下させる。したがって、熱処理温度は300〜600℃の範囲とする。0.5 時間未満の時間では、プレス油の燃焼や水分の乾燥が十分でなく、24時間を超えると母材のCuがSn表面処理層に拡散し酸化し、Cu−Sn−O系の酸化物を形成しドロスの原因となり、また経済的でもない。しがたって熱処理時間は0.5 〜24時間の範囲とする。また、雰囲気は大気中で十分であるが、不活性ガスでシールした方が酸化防止の面から好ましい。ただし、還元ガス中では高温になると水分の分解による水素の吸収、拡散によって不利になる。
【0024】
また、本銅合金材料を350〜750℃の温度で1〜360分間の熱処理後、加工率15%以上で冷間加工した材料の表面に、Cu下地0.3 〜2.0 μm、Sn0.5 〜5.0 μmの表面処理した後に、100〜280℃の温度で1〜180分間の熱処理を施すとさらにコネクタ用材料としての特性を向上させることができる。
【0025】
最終冷間加工前の焼鈍において、結晶粒径を5〜20μmに制御すればプレス成形性が向上するが、この時の処理温度は300〜750℃が好ましい。300℃未満の温度では再結晶に必要な温度としては低すぎ、処理時間が長くなり経済的でなく、750℃を超える温度では短時間で結晶粒が粗大化し結晶粒径の制御が難しい。また時間については、1〜360分間が好ましい。処理時間が短すぎると再結晶による結晶粒の制御が十分でなく、長すぎると結晶粒の成長、粗大化がおこりやすくまた経済的にも不利になる。また、最終冷間加工率は15%以上が好ましい。15%未満では加工硬化による強度、硬さ等の向上が十分でない。ただし、加工率が大きすぎると加工性が低下するので、好ましい範囲としては15〜80%、より好ましくは20〜60%の範囲とする。
【0026】
このようにして得られた材料に、表面処理としてCu下地を0.3 から2.0 μm、Sn表面処理を0.5 〜5.0 μm施す。Cu下地は0.3 μm未満では、合金中のZnが表面処理層および表面に拡散し酸化することによる接触抵抗の増加やはんだ付け性の低下を防止する効果が少なく、2.0 μmを超えても効果が飽和しまた経済的でもなくなる。ただし、Cu下地めっきは、純Cuであることに限らず、Cu−FeやCu−Ni等の銅合金でも良い。
【0027】
Sn表面処理層は、0.5 μm未満では耐食性、特に耐硫化水素性が不十分であり、また5.0 μmを超えても効果が飽和し経済的にも不利となる。さらに、これらの表面処理は電気めっきによって実施すれば、膜厚の均一性、経済性の面から好ましい。表面処理後に光沢をだすためにリフロー処理を施してもよい。この処理はさらにウイスカ対策にも有効である。
【0028】
この表面処理材を100〜280℃の温度で1〜180分間熱処理する。この熱処理によって、材料のばね限界値、耐応力緩和特性、ウイスカ対策が実現できる。100℃未満の温度ではこのような効果が十分でなく、280℃を超えると拡散や酸化により、接触抵抗、はんだ付け性、加工性が低下する。また、熱処理時間が1分間未満では効果が十分でなく、180分間を超えると拡散や酸化による前述の特性低下が起こりまた経済的でもない。次に本発明の実施の形態を実施例により説明する。
【0029】
【発明の実施の形態】
実施例1
表1に化学成分(質量%)を示す銅合金No.1〜11を高周波誘導溶解炉を用いて溶製し、40×40×150(mm)の鋳塊に鋳造した。ただし、溶解鋳造時の雰囲気はArガス雰囲気とし、鋳造後直ちに水冷した。ここでNo.11の合金は、原料中のSnめっきくずの油も処理せず、急速溶解鋳造した。その後、各鋳塊を熱間圧延後、冷間圧延と焼鈍を繰り返し、厚さ0.50mmとした。そして、450℃の温度で60分間熱処理材後、水急冷を行い、さらに酸洗を施した。上記のように得られた熱処理材を厚さ0.25mmまで冷間圧延し、試験材とした。
【0030】
以上のようにして得られた試験材を用いてビッカース硬さ、引張強さ、ヤング率および導電率の測定を行った。試験方法は、それぞれJIS−Z−2244、JIS−Z−2241、JIS−H−0505にしたがった。曲げ加工性は、90°W曲げ試験(CES−M−0002−6、R=0.2 mm、R/t=0.8 、圧延方向および垂直方向)を行い、中央部の山表面が、良好なものを○印、しわの発生したものを△印、割れの発生したものを?印として評価した。
【0031】
【表1】

Figure 0004129807
【0032】
表1に示した結果から、No.1〜8の銅合金は、引張強さ、ヤング率、導電率のバランスに優れ、また曲げ加工性も良好である。したがって、コネクタ等の電気・電子用材料として非常に優れた特性を有する銅合金である。またNo.1〜8いずれの合金も第2相の面積比は5%以内であった。第2相の面積比率を調べるために、板表面を研磨、エッチング後組織観察を行い、格子をきざんで打点法により面積比率を求めた。
【0033】
これに対して、Zn、Sn含有量が(1)式で規定するより小さいNo.9は、引張強さ、ヤング率に劣り、Zn、Sn含有量が一式で規定するより大きいNo.10は第2相の面積比は10%を越え、曲げ加工性に劣っている。Zn、Sn含有量が1式で規定する範囲内であってもS不純物の多いNo.11は、熱間圧延の途中で割れが入り、その後の冷間加工との兼ね合いで最終板厚まで歩留まり良く製造できなかった。
【0034】
参考例1
前記実施例1の表1中に示す合金No.1と市販の黄銅1種(C2600−EH)、りん青銅2種(C5191−EH)について、硬さ、引張強さ、曲げ加工性、ヤング率、導電率及び応力腐食割れ寿命を試験測定した。硬さ、引張強さ、ヤング率及び導電率の測定試験は、実施例1と同様の測定法であり、応力腐食割れ時間は、試料に約400N/mm2の曲げ応力を負荷し12.5%アンモニア水の入ったデシケータ内に暴露し割れが発生した時間である。
【0035】
表2に示す結果から、No.1の銅合金は、従来の代表的なコネクタ等の電気・電子用材料である黄銅に比較して強度、ヤング率、曲げ加工性、耐応力腐食割れ性が向上していることがわかる。りん青銅に比較しても、強度,曲げ加工性,ヤング率,導電率に優れている。さらにコスト面でも成分と製造工程から優れているといえる。したがって、本発明銅基合金は従来の黄銅、りん青銅に比較しても十分に優れているといえる。
【0036】
【表2】
Figure 0004129807
【0037】
参考例2
表3に示す合金条材を作製後、Cu下地めっきを0.5 μm,Snめっきを1.1 μm実施した後に、プレス打ち抜きした材料を溶解鋳造用の原料として準備した。鋳造における目標組成は表3とし、また溶解用の原料としてプレスくずは約1t、残りは電気Cu、Znにより成分調整し約2tのインゴットを6本得た。得られたインゴットの成分はほぼ表3と同じであった。
【0038】
ここで3本は、原料のプレスくずを450℃で3時間大気中で加熱した。残り3本は何も処理しなかった。これを急速に溶解し2tのインゴットを鋳造し、熱間圧延、冷間圧延、焼鈍を繰り返し、0.25mmに仕上げた。このようにして得られた材料の全長を検査し、インゴットのブロホールに起因した欠点の個数を数えた。(表4)
表4より、プレスくずを熱処理したものは欠陥がなく優れていた。これに対し熱処理していないものは欠陥が発生しており、歩留まりに問題があるのがわかる。
【0039】
【表3】
Figure 0004129807
【0040】
【表4】
Figure 0004129807
【0041】
実施例1に記載の合金No.1にCu下地めっき0.5 μm、Snめっき1.1 μmを施した後、190℃の温度で60分間の熱処理を実施した。この材料とめっき処理後熱処理しなかったものの特性を比較したのが表5である。ただし、応力緩和率は、試験片の中央部の応力が、400N/mm2になるようにアーチ状に曲げ150℃の温度で500時間保持後の曲げぐせを応力緩和率として次式により算出した。
応力緩和率(%)=[(L1−L2)/(L1−L0)]×100
ただしL0:治具の長さ(mm)
1:開始時の試料長さ(mm)
2:処理後の試料端間の水平距離(mm)
【0042】
【表5】
Figure 0004129807
【0043】
表5より、めっき処理後に熱処理した材料は、熱処理しなかった材料に比べ特性に優れ、コネクタ用として適していることがわかった。なお、同様にして比較した従来合金(黄銅1種 比較材 C2600 EH、りん青銅2種 比較材 C5191 H 表2中の合金)の応力緩和率は、それぞれ56.5%、22.1%であり、これからも本発明合金および本発明法の耐応力緩和特性が、優れていることがわかる。
【0044】
実施例1によって得られた、表1の本発明合金No.5と比較合金No.9を準備した。第2相の面積比率を調べるために、板表面を研磨、エッチング後組織観察を行い、格子をきざんで打点法により面積比率を求めた。その結果、本発明合金No.5の第2相の面積比は3%であり、比較合金No.9は第2相を確認できなかった。(α単相)。
面積比率は上記のように打点法によって求めてもよいし、他の方法(例えばコンピューターによる画像解析法)によって求めてもよい。
両者を超硬のパンチと工具鋼のダイスを用いてクリアランスを板厚の8%とし、100万ショットのプレス打ち抜き後のバリの状況を圧延方向、直角方向で調査したところ、No.5にはバリが確認されなかったが、比較合金No.9の圧延方向に平行な部分は15μmもの大きなバリが発生していた。以上より、本発明に係るNo.5の合金は金型摩耗に対しても優れていることがわかる。
【0045】
【発明の効果】
以上から明らかなように、本発明に係る銅基合金または本発明法によって得られた材料は、従来の黄銅やりん青銅等に比較して、強度,導電率,ヤング率のバランスや成形加工性をはじめ耐環境性,耐熱性,耐応力緩和特性,金型摩耗等に優れるため黄銅やりん青銅に代わる安価なコネクタ等の電気・電子材料として最適なものである。
【図面の簡単な説明】
【図1】 本発明に係る6.0 ≦0.25X+Y≦12を図示したものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper alloy having strength conductivity suitable as a material for electrical and electronic parts such as connectors and having a low Young's modulus, and a method for producing the same.
[0002]
[Prior art]
With the recent development of electronics, the electrical wiring of various machines has become more complex and highly integrated, and along with this, the number of copper products used for electrical and electronic parts such as connectors has increased. In addition, electrical and electronic parts such as connectors are required to be lightweight, highly reliable, and low in cost. Therefore, in order to satisfy these requirements, the copper alloy material for connectors is thinned and pressed into a complicated shape, so that the strength, elasticity, conductivity and press formability must be good.
[0003]
Specifically, the strength of the terminal that does not buckle or deform when inserted or removed or bending, the strength against crimping or holding of the wire, and therefore the tensile strength is 600 N / mm 2 or more, preferably 700 N / mm 2 or more. preferable. Furthermore, in order to suppress generation of Joule heat due to energization, the conductivity is preferably 18% IACS or more. Further, the demand for press formability becomes stricter due to the miniaturization of the terminals, and workability is required so that the ratio R / t of the bending portion radius (R) to the plate thickness (t) satisfies 1 or less.
[0004]
Conventionally, the connector has been downsized and the material has to have a high Young's modulus so that a large stress can be obtained with a small displacement. However, the dimensional accuracy of the terminal itself has become stricter, and die technology and press operation management have been increased. Or, the management standards such as the thickness of the material and the variation of the residual stress became stricter, and the cost was increased. Therefore, recently, there has been a demand for a design that uses a material having a small Young's modulus and has a structure in which the displacement of the spring is large, and can tolerate variation in dimensions. Accordingly, it has been demanded that the Young's modulus is 115 kN / mm 2 or less, preferably 110 kN / mm 2 or less.
[0005]
In addition to the above, the frequency of maintenance of molds is a large part of the cost and has been highlighted. Tool wear is a major factor in mold maintenance. When a material is pressed (punched or bent), tools such as punches, dies, strippers, etc. wear, leading to burrs on the workpiece and dimensional defects. At this time, the influence on the wear of the material itself is great. Therefore, there is an increasing demand for improvement on the material side with respect to mold wear.
[0006]
Furthermore, it is necessary to have excellent corrosion resistance and stress corrosion cracking resistance, and the female terminal must be excellent in stress relaxation resistance because a thermal load is applied. Specifically, it is desirable that the stress corrosion cracking life is at least three times that of a conventional brass, and the stress relaxation rate is 80% to 150 ° C., and the relaxation rate is less than half that of one type of brass.
[0007]
Conventionally, brass, phosphor bronze, and the like have been generally used as connector materials. Brass is used as a low-cost material, but its tensile strength does not exceed 600 N / mm 2 even when the type is EH, and is inferior in corrosion resistance, stress corrosion cracking resistance, and stress relaxation characteristics. Phosphor bronze has an excellent balance of strength, corrosion resistance, stress corrosion cracking resistance, and stress relaxation resistance. However, for example, the phosphor bronze for springs is as small as 12% IACS and is disadvantageous in terms of cost. Therefore, many copper alloys have been researched, developed and proposed. However, many proposed copper alloys are obtained by adding a small amount of additive elements to copper to balance the properties such as strength, electrical conductivity, stress relaxation resistance, and the Young's modulus is 120 to 135 kN / mm. It was a large value of 2 and the cost was high.
[0008]
Here, the Young's modulus of both brass and phosphor bronze is 110 to 120 kN / mm 2 , and the small Young's modulus meets the requirements of the above design, and these materials have been reviewed recently. Therefore, a material having a tensile strength of 600 N / mm 2 or more, a conductivity of 18% IACS or more, and a Young's modulus of 115 kN / mm 2 or less, preferably 110 kN / mm 2 or less, at a price close to that of brass is desired. Yes.
[0009]
In addition, electrical / electronic components such as connectors are often Sn-plated, but in order to use this as a raw material, it is necessary to contain Sn as an alloy element. Next, cutting, cutting, and pressing wastes must be degreased and washed to be used as a raw material for dissolution because of the presence of oil such as cutting, cutting, and pressing. When used directly as a raw material without pretreatment, the furnace wall may be damaged during oil combustion (oxidation) or evaporation, and ingot blowholes may be generated due to occlusion of hydrogen. It was.
[0010]
Furthermore, the conventional Sn plating material has a manufacturing process for the material that is the base material and a surface treatment process such as Sn plating, which are independent of each other, and there is room for cost reduction such as heat treatment and other process shortening. there were. In addition, depending on the material of the base material, the presence or absence of Cu base plating and the thickness, etc. have been studied, but this was examined from the viewpoint of plating heat peeling, stress relaxation resistance, solderability, contact resistance, The properties required for connector terminals such as springiness have not been comprehensively studied. Therefore, examination of the optimal film thickness of Cu or Sn has been insufficient.
[0011]
[Problems to be solved by the invention]
The present invention is a copper alloy having the above-mentioned properties required for materials for electrical and electronic parts such as connectors as electronics develops, that is, strength, conductivity, Young's modulus, press formability, cost, etc. An excellent copper alloy for connectors and a method for producing the same are provided.
[0012]
[Means for Solving the Problems]
The present invention is a copper alloy that combines the above-mentioned properties required for materials for electrical and electronic parts such as connectors, while reducing costs by adding components cheaper than copper, that is, strength, conductivity The present invention provides a copper alloy for connectors which is excellent in the ratio, Young's modulus, press formability, cost and the like. Furthermore, the present invention provides a production method capable of directly using the press scrap of the present alloy surface-treated with Sn as a raw material and a production method for obtaining the Sn surface treatment material of the present alloy more advantageously.
[0013]
(1) Zn: 20 to 41% by mass Sn: 0.1 to 4.0% by mass and satisfies the following formula (1)
6.0 ≦ 0.25X + Y ≦ 12 (1)
However, X: Zn content (mass%)
Y: Sn content (% by mass)
Zn, Sn comprising the balance consisting of Cu and inevitable impurities,
Further Ti0.01~3 mass%, Mg: 0.01 to 2 mass%, Si: 0.01~ 0.05 wt%, Mn: 0.01~ 0.23 mass%, Be: 0.01 to 3 mass%, Cr: 0.01 to 3 Mass%, Ag: contains at least one element of 0.01 to 5 mass%, the total amount is 0.01 to 5 mass%, provided that S is 30 ppm or less and the area occupation ratio of the second phase is 10% or less Furthermore, a copper alloy for connectors, characterized by having a tensile strength of 700 N / mm 2 or more, an electrical conductivity of 18% IACS or more, and a Young's modulus of 115 kN / mm 2 or less.
[0014]
(2) Zn: 20 to 41% by mass, Sn: 0.1 to 4.0% by mass, including Zn and Sn satisfying the following formula (1),
6.0 ≦ 0.25X + Y ≦ 12 (1)
However, X: Zn content (mass%)
Y: Sn content (% by mass)
The balance consists of Cu and inevitable impurities, and further 0.01 to 3 mass% of Ti, 0.01 to 2 mass% of Mg, 0.01 to 0.05 mass% of Si, 0.01 to 0.23 mass% of Mn, Be: 0.01 to Copper containing 3% by mass, Cr: 0.01-3% by mass, Ag: 0.01-5% by mass, the total amount of which is 0.01-5% by mass, provided that S is 30 ppm or less The alloy material is heat-treated at a temperature of 300 to 750 ° C. for 1 to 360 minutes, and then cold-worked at a processing rate of 15% or more, whereby the area occupation ratio of the second phase is 10% or less and a tensile strength of 700 N / Mm 2 or more, electrical conductivity is 18% IACS or more, and Young's modulus is 115 kN / mm 2 or less.
[0015]
[Action]
Next, the contents of the present invention will be specifically described. First, the reason for limiting the amount of components in the copper alloy of the present invention will be described. Zn: Addition of Zn improves strength and springiness and is cheaper than Cu, so it is desirable to add a large amount. However, if it exceeds 41% by mass, the area ratio of the second phase also exceeds 10%. In some cases, workability, corrosion resistance, and stress corrosion cracking resistance are reduced. Further, the plating property and solderability are deteriorated. On the other hand, if the amount is less than 20% by mass, the strength and springiness are insufficient, the Young's modulus is increased, and when scrap is used as a raw material, the storage of hydrogen gas during melting increases, and the blowhole of the ingot increases. It tends to occur. Moreover, there is little inexpensive Zn and it becomes economically disadvantageous. Therefore, Zn should just be the range of 20-41 mass%. A more preferable range is 25 to 38% by mass.
[0016]
Sn:
Sn is effective in improving mechanical properties such as strength and elasticity in a small amount. Moreover, a small Young's modulus can be satisfied in the presence of Zn as compared with many copper alloy systems. Furthermore, it is preferable to contain Sn as an additive element from the viewpoint of reuse of the surface-treated material such as Sn plating. However, when the Sn content is increased, the conductivity is drastically lowered and the hot workability is also lowered. In order to secure an electrical conductivity of 18% IACS, it must be within a range not exceeding 4.0 mass%. On the other hand, if the amount is less than 0.1% by mass, the above effect cannot be expected. Therefore, Sn should just be the range of 0.1-4.0 mass%.
[0017]
The area ratio of the second phase is desirably 10% or less. Here, the second phase refers to all of the phases other than the first phase (so-called α phase) due to the compound of Cu and Zn, for example, β phase, γ phase, or third and subsequent additive elements described later, and Zn, Sn. It is a phase obtained by the compound of these and these compounds. If the total of these different phases exceeds 10%, the moldability is extremely deteriorated and the Young's modulus is also affected. Therefore, the area ratio of the second phase is 10% or less, preferably 5% or less. However, it has been found that it is advantageous to include a small second phase for mold wear. Such an effect requires 0.1% or more, more preferably 0.5% or more. Taking these into consideration, the preferred area ratio of the second phase is 0.5 to 5%.
[0018]
Moreover, if it is the range of the component limited as mentioned above, the area ratio of the 2nd phase which precipitates exceeding the solid solubility limit of Cu can be controlled, and the range limited by the following formula | equation (1) ( Fig. 1. The shaded area is the composition range of the copper-based alloy, and Zn and Sn are added to Cu to obtain tensile strength of 600 N / mm 2 or more, conductivity of 18% IACS or more, and Young's modulus of 115 kN / mm 2 or less Furthermore, various properties required for connector materials, specifically corrosion resistance, stress corrosion cracking resistance (crack life in ammonia vapor is more than 3 times that of brass), stress relaxation resistance (relaxation rate at 80-120 ° C) Is less than half the kind of brass, comparable to phosphor bronze), and can produce a copper-based alloy for connectors satisfying moldability (no cracking even in 90 ° W bending with R / t ≦ 1.0).
[0019]
About formula (1)
6.0 ≦ 0.25X + Y ≦ 12 (1)
However, X: Zn content (mass%)
Y: Sn content (% by mass)
It should be noted that if the value of the formula (1) is less than 6.0, the tensile strength and other strengths are reduced, and the desired Young's modulus cannot be obtained, while if it is greater than 12, the electrical conductivity and molding processability are adversely affected. Will be affected.
[0020]
Furthermore, it is desirable that the impurity S is as small as possible. S is contained in a small amount and significantly reduces the deformability in hot rolling. In particular, when Sn-plated scraps are used in a sulfuric acid bath or S is taken in from oil such as a press, by controlling this value, cracking in the temperature range of 350 to 600 ° C. particularly in hot rolling. It can be connected to prevention. In order to exhibit such an effect, S is required to be 30 ppm or less, preferably 15 ppm or less.
[0021]
Further, as the third additive element, Ti 0.01 to 3 mass%, Mg: 0.01 to 2 mass%, Si: 0.01 to 0.05 mass%, Mn: 0.01 to 0.23 mass%, Be: 0.01 to 3 It may contain at least one element of mass%, Cr: 0.01 to 3 mass%, and Ag: 0.01 to 5 mass%, and the total amount may include 0.01 to 5 mass%. These can improve the strength without significantly impairing the electrical conductivity, Young's modulus and moldability. Moreover, if it deviates from the content range of each element, the desired effect cannot be obtained, or it is disadvantageous in terms of moldability, electrical conductivity, Young's modulus, and cost.
[0022]
Next, the reasons for limiting the manufacturing conditions according to the present invention will be described. When the stamped scrap of the material surface-treated with Sn is melted as a raw material in the alloy of the present invention, it is melted after heat treatment in the atmosphere or in an inert atmosphere at a temperature of 300 to 600 ° C. for 0.5 to 24 hours. When the temperature is lower than 300 ° C., the press oil adhering to the press scrap is not sufficiently burned, and the moisture adsorbed during storage is insufficiently dried. The hydrogen generated by the decomposition is absorbed into the molten metal and causes blowholes.
[0023]
Further, at a temperature exceeding 600 ° C., oxidation rapidly proceeds and causes dross generation. This dross increases the viscosity of the melt and lowers the castability. Therefore, the heat treatment temperature is in the range of 300 to 600 ° C. When the time is less than 0.5 hours, the combustion of the press oil and the drying of moisture are not sufficient. When the time exceeds 24 hours, the base material Cu diffuses and oxidizes in the Sn surface treatment layer, and Cu—Sn—O-based oxides are formed. It forms, causes dross, and is not economical. Therefore, the heat treatment time is in the range of 0.5 to 24 hours. The atmosphere is sufficient in the air, but sealing with an inert gas is preferable from the viewpoint of preventing oxidation. However, when the temperature of the reducing gas is high, it is disadvantageous due to the absorption and diffusion of hydrogen due to the decomposition of moisture.
[0024]
In addition, after the heat treatment of the present copper alloy material at a temperature of 350 to 750 ° C. for 1 to 360 minutes and cold working at a processing rate of 15% or more, a Cu base 0.3 to 2.0 μm, Sn 0.5 to 5.0 μm After the surface treatment, the heat treatment for 1 to 180 minutes at a temperature of 100 to 280 ° C. can further improve the characteristics as a connector material.
[0025]
In the annealing before the final cold working, if the crystal grain size is controlled to 5 to 20 μm, the press formability is improved, but the processing temperature at this time is preferably 300 to 750 ° C. If the temperature is lower than 300 ° C., the temperature required for recrystallization is too low, and the treatment time becomes longer and is not economical. If the temperature exceeds 750 ° C., the crystal grains become coarse in a short time and it is difficult to control the crystal grain size. Moreover, about time, 1-360 minutes are preferable. If the treatment time is too short, the control of crystal grains by recrystallization is not sufficient, and if the treatment time is too long, crystal grains are likely to grow and become coarse, and this is economically disadvantageous. Further, the final cold working rate is preferably 15% or more. If it is less than 15%, the strength, hardness and the like are not sufficiently improved by work hardening. However, if the processing rate is too high, the workability deteriorates, so the preferable range is 15 to 80%, more preferably 20 to 60%.
[0026]
The material obtained in this manner is subjected to surface treatment with a Cu underlayer of 0.3 to 2.0 μm and an Sn surface treatment of 0.5 to 5.0 μm. If the Cu substrate is less than 0.3 μm, Zn in the alloy diffuses and oxidizes on the surface treatment layer and the surface, and is less effective in preventing an increase in contact resistance and a decrease in solderability. Saturated and not economical. However, the Cu base plating is not limited to pure Cu, but may be a copper alloy such as Cu—Fe or Cu—Ni.
[0027]
If the Sn surface treatment layer is less than 0.5 μm, the corrosion resistance, particularly hydrogen sulfide resistance is insufficient, and if it exceeds 5.0 μm, the effect is saturated and economically disadvantageous. Furthermore, if these surface treatments are carried out by electroplating, it is preferable in terms of film thickness uniformity and economy. A reflow treatment may be performed after the surface treatment to give gloss. This process is also effective for whisker countermeasures.
[0028]
This surface treatment material is heat-treated at a temperature of 100 to 280 ° C. for 1 to 180 minutes. By this heat treatment, it is possible to realize the spring limit value, stress relaxation resistance, and whisker countermeasure of the material. Such effects are not sufficient at temperatures below 100 ° C., and contact resistance, solderability, and workability deteriorate due to diffusion and oxidation at temperatures above 280 ° C. In addition, if the heat treatment time is less than 1 minute, the effect is not sufficient, and if it exceeds 180 minutes, the above-described characteristic deterioration due to diffusion or oxidation occurs, and it is not economical. Next, embodiments of the present invention will be described by way of examples.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
Table 1 shows the chemical composition (mass%) of copper alloy No. 1 to 11 were melted using a high frequency induction melting furnace and cast into a 40 × 40 × 150 (mm) ingot. However, the atmosphere during melting and casting was an Ar gas atmosphere, and water cooling was performed immediately after casting. Here, no. The alloy No. 11 was cast by rapid melting without treating the Sn plating scrap oil in the raw material. Then, after hot rolling each ingot, cold rolling and annealing were repeated to obtain a thickness of 0.50 mm. And after heat-processing material for 60 minutes at the temperature of 450 degreeC, water quenching was performed, and also the pickling was performed. The heat-treated material obtained as described above was cold-rolled to a thickness of 0.25 mm to obtain a test material.
[0030]
Vickers hardness, tensile strength, Young's modulus, and electrical conductivity were measured using the test materials obtained as described above. The test method followed JIS-Z-2244, JIS-Z-2241, and JIS-H-0505, respectively. Bending workability is 90 ° W bending test (CES-M-0002-6, R = 0.2 mm, R / t = 0.8, rolling direction and vertical direction) A mark with ◯ marks and wrinkles was evaluated as a mark △, and a mark with cracks was evaluated as a mark.
[0031]
[Table 1]
Figure 0004129807
[0032]
From the results shown in Table 1, no. The copper alloys 1 to 8 are excellent in the balance of tensile strength, Young's modulus, and electrical conductivity, and also have good bending workability. Therefore, it is a copper alloy having very excellent characteristics as an electrical / electronic material such as a connector. No. In any of the alloys 1 to 8, the area ratio of the second phase was within 5%. In order to investigate the area ratio of the second phase, the surface of the plate was polished, the structure was observed after etching, and the area ratio was determined by the dot method using the lattice.
[0033]
On the other hand, the Zn and Sn contents are smaller than those defined by the formula (1). No. 9 is inferior in tensile strength and Young's modulus and has a Zn and Sn content larger than those specified in the set. No. 10 has an area ratio of the second phase exceeding 10% and inferior in bending workability. Even when the Zn and Sn contents are within the range defined by Formula 1, No. 1 containing a large amount of S impurities. No. 11 was cracked in the middle of hot rolling and could not be manufactured with a good yield up to the final thickness due to the subsequent cold working.
[0034]
Reference example 1
Alloy No. 1 shown in Table 1 of Example 1 was used. 1 and commercially available brass 1 type (C2600-EH) and phosphor bronze 2 type (C5191-EH) were tested for hardness, tensile strength, bending workability, Young's modulus, electrical conductivity and stress corrosion cracking life. The hardness, tensile strength, Young's modulus, and conductivity measurement tests were the same as in Example 1. The stress corrosion cracking time was 12.5% ammonia with a bending stress of about 400 N / mm 2 applied to the sample. This is the time when cracking occurred after exposure in a desiccator containing water.
[0035]
From the results shown in Table 2, no. It can be seen that the copper alloy No. 1 has improved strength, Young's modulus, bending workability, and stress corrosion cracking resistance compared to brass, which is a conventional electrical / electronic material such as a connector. Compared to phosphor bronze, it excels in strength, bending workability, Young's modulus, and electrical conductivity. Furthermore, it can be said that it is excellent also in terms of cost from a component and a manufacturing process. Therefore, it can be said that the copper base alloy of the present invention is sufficiently superior to conventional brass and phosphor bronze.
[0036]
[Table 2]
Figure 0004129807
[0037]
Reference example 2
After the alloy strips shown in Table 3 were prepared, Cu underplating was performed at 0.5 μm and Sn plating was performed at 1.1 μm, and then the press punched material was prepared as a raw material for melting casting. The target composition in the casting was shown in Table 3, and about 1 ton of press scrap was prepared as a raw material for melting, and the remainder was adjusted with electric Cu and Zn to obtain 6 ingots of about 2 ton. The components of the obtained ingot were almost the same as in Table 3.
[0038]
Here, as for three pieces, the press scrap of the raw material was heated at 450 degreeC for 3 hours in air | atmosphere. The remaining three were not processed. This was rapidly melted and a 2t ingot was cast, and hot rolling, cold rolling and annealing were repeated to finish to 0.25 mm. The total length of the material thus obtained was inspected, and the number of defects due to ingot blowholes was counted. (Table 4)
From Table 4, the heat-treated press waste was excellent with no defects. On the other hand, those not heat-treated have defects, and it can be seen that there is a problem in yield.
[0039]
[Table 3]
Figure 0004129807
[0040]
[Table 4]
Figure 0004129807
[0041]
Alloy No. 1 described in Example 1 1 was subjected to Cu undercoating 0.5 μm and Sn plating 1.1 μm, followed by heat treatment at 190 ° C. for 60 minutes. Table 5 compares the properties of this material and those that were not heat treated after plating. However, the stress relaxation rate was calculated by the following equation as the stress relaxation rate after bending for 500 hours at a temperature of 150 ° C. in an arch so that the stress at the center of the test piece was 400 N / mm 2 . .
Stress relaxation rate (%) = [(L 1 −L 2 ) / (L 1 −L 0 )] × 100
L 0 : Jig length (mm)
L 1 : Sample length at the start (mm)
L 2 : Horizontal distance between sample ends after processing (mm)
[0042]
[Table 5]
Figure 0004129807
[0043]
From Table 5, it was found that the material heat-treated after the plating treatment was excellent in characteristics as compared with the material not heat-treated and suitable for the connector. In addition, the stress relaxation rate of the conventional alloy (Brass 1 type comparative material C2600 EH, Phosphor bronze 2 type comparative material C5191 H alloy shown in Table 2) was 56.5% and 22.1%, respectively. It can be seen that the stress relaxation resistance characteristics of the inventive alloy and the method of the present invention are excellent.
[0044]
This invention alloy No. 1 of Table 1 obtained by Example 1 was shown. 5 and comparative alloy no. 9 was prepared. In order to investigate the area ratio of the second phase, the surface of the plate was polished, the structure was observed after etching, and the area ratio was determined by the dot method using the lattice. As a result, the present alloy No. The area ratio of the second phase of No. 5 is 3%. No 9 could confirm the second phase. (Α single phase).
The area ratio may be obtained by a dot method as described above, or may be obtained by another method (for example, an image analysis method using a computer).
When the clearance was set to 8% of the plate thickness using a cemented carbide punch and tool steel dies, and the state of burrs after press punching for 1 million shots was investigated in the rolling direction and the perpendicular direction, no. Although no burrs were observed in Comparative Example 5, comparative alloy no. A large burr as large as 15 μm was generated in a portion parallel to the rolling direction of 9. Based on the above, No. 1 according to the present invention. It can be seen that the alloy No. 5 is superior to mold wear.
[0045]
【The invention's effect】
As is apparent from the above, the copper-based alloy according to the present invention or the material obtained by the method of the present invention has a balance of strength, electrical conductivity, Young's modulus and molding processability as compared with conventional brass and phosphor bronze. It is ideal for electrical and electronic materials such as inexpensive connectors that replace brass and phosphor bronze because of its excellent environmental resistance, heat resistance, stress relaxation resistance, and mold wear.
[Brief description of the drawings]
FIG. 1 illustrates 6.0 ≦ 0.25X + Y ≦ 12 according to the present invention.

Claims (2)

Zn:20〜41質量%、Sn:0.1 〜4.0質量%の範囲でかつ次式(1)を満たしてなるZn,Snを含み、
6.0 ≦0.25X+Y≦12・・・(1)
ただし、X:Znの含有量(質量%)
Y:Snの含有量(質量%)
残部がCuおよび不可避不純物からなり、更にTi0.01〜3質量%、Mg:0.01〜2質量%、Si:0.01〜0.05質量%、Mn:0.01〜0.23質量%、Be:0.01〜3質量%、Cr:0.01〜3質量%、Ag:0.01〜5質量%のうち少なくとも1種以上の元素を含み、その総量が0.01〜5質量%であり、ただしSが30ppm 以下、第2相の面積占有比率が10%以下で、更に引張強さ700N/mm2以上、導電率が18%IACS以上、ヤング率が115kN/mm2以下であることを特徴とするコネクタ用銅合金。
Zn: Sn in the range of 20 to 41% by mass, Sn: 0.1 to 4.0% by mass and satisfying the following formula (1),
6.0 ≦ 0.25X + Y ≦ 12 (1)
However, X: Zn content (mass%)
Y: Sn content (% by mass)
The balance consists of Cu and inevitable impurities, and further 0.01 to 3 mass% of Ti, 0.01 to 2 mass% of Mg, 0.01 to 0.05 mass% of Si, 0.01 to 0.23 mass% of Mn, Be: 0.01 to 3% by mass, Cr: 0.01-3% by mass, Ag: 0.01-5% by mass, containing at least one element, the total amount of which is 0.01-5% by mass, provided that S is 30 ppm or less, the second phase A copper alloy for connectors, characterized by having an area occupation ratio of 10% or less, a tensile strength of 700 N / mm 2 or more, a conductivity of 18% IACS or more, and a Young's modulus of 115 kN / mm 2 or less.
Zn:20〜41質量%、Sn:0.1 〜4.0質量%の範囲でかつ次式(1)を満たしてなるZn,Snを含み、
6.0 ≦0.25X+Y≦12・・・(1)
ただし、X:Znの含有量(質量%)
Y:Snの含有量(質量%)
残部がCuおよび不可避不純物からなり、更にTi0.01〜3質量%、Mg:0.01〜2質量%、Si:0.01〜0.05質量%、Mn:0.01〜0.23質量%、Be:0.01〜3質量%、Cr:0.01〜3質量%、Ag:0.01〜5質量%のうち少なくとも1種以上の元素を含み、その総量が0.01〜5質量%であり、ただしSが30ppm 以下、である銅合金材料を、300〜750℃の温度で1〜360分間の熱処理後、加工率15%以上で冷間加工することによって、第2相の面積占有比率が10%以下で、更に引張強さ700N/mm2以上、導電率が18%IACS以上、ヤング率が115kN/mm2以下であることを特徴とするコネクタ用銅合金の製造法。
Zn: 20 to 41% by mass, Sn: Zn in the range of 0.1 to 4.0% by mass and satisfying the following formula (1), Sn,
6.0 ≦ 0.25X + Y ≦ 12 (1)
However, X: Zn content (mass%)
Y: Sn content (% by mass)
The balance consists of Cu and inevitable impurities, and further 0.01 to 3 mass% of Ti, 0.01 to 2 mass% of Mg, 0.01 to 0.05 mass% of Si, 0.01 to 0.23 mass% of Mn, Be: 0.01 to Copper containing 3% by mass, Cr: 0.01-3% by mass, Ag: 0.01-5% by mass, the total amount of which is 0.01-5% by mass, provided that S is 30 ppm or less The alloy material is heat-treated at a temperature of 300 to 750 ° C. for 1 to 360 minutes, and then cold-worked at a processing rate of 15% or more, so that the area occupation ratio of the second phase is 10% or less and the tensile strength is 700 A method for producing a copper alloy for connectors, wherein N / mm 2 or more, electrical conductivity is 18% IACS or more, and Young's modulus is 115 kN / mm 2 or less.
JP2000004658A 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof Expired - Lifetime JP4129807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004658A JP4129807B2 (en) 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28162099 1999-10-01
JP11-281620 1999-10-01
JP2000004658A JP4129807B2 (en) 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001164328A JP2001164328A (en) 2001-06-19
JP4129807B2 true JP4129807B2 (en) 2008-08-06

Family

ID=26554254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004658A Expired - Lifetime JP4129807B2 (en) 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4129807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216429A (en) * 2016-08-25 2016-12-14 铜陵华洋特种线材有限责任公司 Zinc white wire rod processing process

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824944B2 (en) * 2002-02-25 2006-09-20 同和鉱業株式会社 Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
DE10308779B8 (en) * 2003-02-28 2012-07-05 Wieland-Werke Ag Lead-free copper alloy and its use
DE602005023737D1 (en) 2004-08-10 2010-11-04 Mitsubishi Shindo Kk CASTLE BASE ALLOY WITH REFINED CRYSTAL GRAINS
CN101787463B (en) * 2010-04-09 2012-04-25 宁波博威合金材料股份有限公司 Environmentally-friendly lead-free free-machining zinc white copper and preparation method thereof
CN102230105A (en) * 2011-04-08 2011-11-02 菏泽广源铜带股份有限公司 High strength tin brass
CN102828064B (en) * 2012-09-28 2014-06-18 合肥工业大学 Lead-free free-cutting brass alloy and preparation method thereof
CN104294137A (en) * 2014-09-25 2015-01-21 昆山伯建精密模具有限公司 Copper-zinc alloy mold
CN105400989A (en) * 2015-11-13 2016-03-16 太仓荣中机电科技有限公司 Electronic alloy material containing rare earth elements
DE102016001994A1 (en) * 2016-02-19 2017-08-24 Wieland-Werke Ag Sliding element made of a copper-zinc alloy
WO2018079507A1 (en) 2016-10-28 2018-05-03 Dowaメタルテック株式会社 Copper alloy sheet and method for manufacturing same
JP6803457B2 (en) 2017-03-24 2020-12-23 株式会社Ihi Abrasion resistant copper-zinc alloy and machinery using it
CN107419961A (en) * 2017-07-18 2017-12-01 宁波瑞国精机工业有限公司 Key and preparation method thereof made of one kind copper alloy
CN107502780A (en) * 2017-07-18 2017-12-22 宁波瑞国精机工业有限公司 Lock core and preparation method thereof made of one kind copper alloy
DE202018100075U1 (en) * 2018-01-09 2019-04-10 Otto Fuchs - Kommanditgesellschaft - Copper-zinc alloy
JP7195054B2 (en) 2018-03-09 2022-12-23 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method thereof
KR102120320B1 (en) * 2018-12-26 2020-06-08 태원공업(주) Manufacturing Method of Rectangular Wire Composed of Brass
JP6713074B1 (en) 2019-04-16 2020-06-24 Dowaメタルテック株式会社 Copper alloy sheet and method for producing the same
CN110117736B (en) * 2019-06-17 2021-11-19 上海理工大学 Corrosion-resistant bismuth brass alloy with good plasticity
CN111799117B (en) * 2020-06-25 2022-07-29 西安斯瑞先进铜合金科技有限公司 Preparation method of self-operated contact finger product made of CuCrZr alloy material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456755A (en) * 1990-06-25 1992-02-24 Nikko Kyodo Co Ltd Manufacture of phosphor bronze excellent in bendability
JPH0533087A (en) * 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The Copper alloy for small conductive member
JP3050763B2 (en) * 1994-11-09 2000-06-12 古河電気工業株式会社 Heat resistant automotive terminal materials
JP3408929B2 (en) * 1996-07-11 2003-05-19 同和鉱業株式会社 Copper-based alloy and method for producing the same
JP3459520B2 (en) * 1996-09-05 2003-10-20 古河電気工業株式会社 Copper alloy for lead frame
JPH11264039A (en) * 1998-03-16 1999-09-28 Sumitomo Metal Mining Co Ltd Brass material containing tin and excellent in mechanical property, and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216429A (en) * 2016-08-25 2016-12-14 铜陵华洋特种线材有限责任公司 Zinc white wire rod processing process

Also Published As

Publication number Publication date
JP2001164328A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP4729680B2 (en) Copper-based alloy with excellent press punchability
EP2184371B1 (en) Copper alloy sheet
JP4441669B2 (en) Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP5150908B2 (en) Copper alloy for connector and its manufacturing method
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP3105392B2 (en) Manufacturing method of copper base alloy for connector
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

R150 Certificate of patent or registration of utility model

Ref document number: 4129807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term